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Quelques problémes en optimisation non convexe et stochastique

Résumeé: Le sujet de cette thése est analyse de divers algorithmes stochastiques
visant & résoudre un probléme d’optimisation non convexe.

Nous commencons par un probléme d’optimisation lisse en analysant une famille
d’algorithmes adaptatifs avec moments qui comprend entre autres ADAM et la
descente de gradient accélérée de Nesterov. La convergence et la fluctuation des
itérés sont établies. Un résultat général d’évitement des piéges pour les algorithmes
stochastiques sous-tendus par une équation différentielle non autonome est présenté.
Il est appliqué pour établir la non-convergence des itérés aux points-selles.

La suite du manuscrit est consacrée au cas ot la fonction que ’on cherche & minimiser
est non lisse. La plupart de nos résultats dans cette partie s’appliquent aux fonc-
tions définissables dans une structure o-minimale. Tout d’abord, nous analysons
la version & pas constants de la descente de sous-gradient stochastique (SGD) et
montrons que ses itérés convergent en grande probabilité vers ’ensemble des points
critiques. Deuxiémement, nous montrons que chaque point critique d’une fonction
Lipschitz, définissable, générique se trouve sur une variété active, satisfaisant une
condition de Verdier et d’angle et est soit un minimum local, un point selle actif ou
un point critique fortement répulsif. Nous montrons, sous des conditions légéres sur
les perturbations, que le SGD évite les deux derniers types de points. Une amélio-
ration de la formule de projection pour les fonctions définissables, donnant une
condition de type Lipschitz sur ses sous-gradients de Clarke, est présentée. Enfin,
nous établissons un phénomeéne d’oscillation des itérés du SGD et de ses extensions
proximales.

Mots clés: optimisation stochastique, évitement des piéges, optimisation non
lisse, semi-algébrique, o-minimalité, stratifications, descente de sous-gradient
stochastique, ADAM, algorithmes adaptatifs avec moments




Some Problems in Nonconvex Stochastic Optimization

Abstract: The subject of this thesis is the analysis of several stochastic algorithms
in a nonconvex setting. The aim is to prove and characterize their convergence.
First, we study a smooth optimization problem, analyzing a family of adaptive al-
gorithms with momentum which includes the widely used ADAM and Nesterov’s
accelerated gradient descent. Convergence and fluctuation of the iterates are es-
tablished. A general avoidance of traps result for stochastic algorithms underlined
by a nonautonomous differential equation is presented and applied to establish the
nonconvergence of the iterates to saddle points.

The rest of the manuscript is devoted to the case where the function that we seek
to minimize is nonsmooth. Most of our results in this part apply to functions de-
finable in an o-minimal structure. Firstly, we analyze the constant step version of
the stochastic subgradient descent (SGD) and show that the iterates converge with
high probability to the set of critical points. Secondly, we show that every critical
point of a generic, definable, locally Lipschitz continuous function is lying on an
active manifold, satisfying a Verdier and an angle condition and is either a local
minimum, an active strict saddle or a sharply repulsive critical point. We show
that, under mild conditions on the perturbation sequence, the SGD escapes active
strict saddles and sharply repulsive critical points. An improvement of the projec-
tion formula for definable functions, giving a Lipschitz-like condition on its Clarke
subgradients is presented and is of independent interest. Finally, we establish an
oscillation phenomena of the iterates of the SGD and its proximal extensions.
Keywords: stochastic approximation, avoidance of traps, nonsmooth opti-
mization, semialgebraic, o-minimality, stratifications, stochastic subgradient
descent, ADAM, Nesterov’s accelerated gradient descent, adaptive algorithms
with momentum




Résumé substantiel en francais

L’objet de cette thése est 'étude de divers algorithmes stochastiques visant a ré-
soudre des problémes d’optimisation non convexe. L’objectif dans chacun des cas
est de démontrer et de caractériser la convergence de l’algorithme vers l’ensemble
des points critiques de la fonction & minimiser.

Le chapitre 3, le seul & aborder un probléme d’optimisation lisse, analyse une
famille d’algorithmes adaptatifs et & moment qui comprend entre autres ADAM et la
descente de gradient accélérée de Nesterov. En appliquant la méthode de 'ODE, qui
consiste & voir ces algorithmes comme une discrétisation d’Euler d’une équation dif-
férentielle (ED), nous montrons la convergence des itérés envers les points critiques
de la fonction & minimiser. La difficulté principale de ’analyse est que ’équation
différentielle mentionnée est non autonome. Nous établissons dans certains cas un
phénoméne de fluctuation des itérés sous forme d’un théoréme central limite. Enfin
nous abordons la question d’évitement des piéges. Cette question est importante car
I’ensemble des points critiques d’une fonction est, dans le cas non-convexe, générale-
ment strictement plus large que I'ensemble des minimiseurs (locals) de la fonction.
Cette question avait été abordée auparavant pour des algorithmes sous-tendus par
une ED autonome, ’approche étant basée sur I’application du théoréme de la variété
invariante de Poincaré. En utilisant la version non autonome de ce théoréme nous
établissons un résultat d’évitement de piége général pour tout algorithme discréti-
sation d’'une ED non autonome. Enfin, nous appliquons ce résultat aux algorithmes
étudiés pour montrer la non-convergence presque sfire des itérés envers les points
selles.

Le reste du manuscrit se concentre sur le cas ol la fonction a minimiser est
non différentiable. La plupart de nos résultats dans ce cas s’appliquent aux fonc-
tions semi-algébrique ou, plus généralement, aux fonctions définissables dans une
structure o-minimale. Cette classe de fonction, popularisée en optimisation par
les travaux de Bolte, Lewis, Daniilidis et Shiota, comprend la grande majorité des
fonctions étudiées en optimisation, statistiques et traitement de signal.

Le chapitre 4 analyse la version a pas constant de ’algorithme de la descente
de sous-gradient stochastique (SGD). A pas décroissants cet algorithme a déja été
étudié dans la littérature en supposant 'existence en chaque point d’'un estimateur
"oracle" tel que son espérance est égal au sous-gradient de Clarke de la fonction
4 minimiser. L’existence d’un tel oracle dans des cas pratiques étant rarement
vérifiée, nous montrons sous des conditions légéres, que pour presque tout point
d’initialisation l'existence d’un tel oracle n’est pas nécessaire. Dans un second
temps, nous montrons que quand le pas tend vers zéro, I'interpolation affine des
itérés converge vers ’ensemble des solutions du flot de sous-gradients (au sens de
la convergence uniforme sur les compacts). Enfin, en analysant le SGD a pas fixé
comme une chaine de Markov, nous montrons que quand le pas tend vers zéro, la
mesure invariante de cette chaine de Markov tend faiblement vers I’ensemble des
mesures invariantes du flot de sous-gradient. Ce résultat nous permet de montrer
que, quand le pas est petit, les itérés du SGD au pas constant convergent vers les
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points critiques de la fonction en grande probabilité.

Dans le chapitre 5 nous établissons un résultat d’évitement par le SGD des points
selles actifs. Ces points critiques sont d’une grande importance car, comme montré
par les travaux de Davis et Drusvyatskiy, les seuls points critiques que posséde
une fonction définissable, faiblement convexe, générique, sont des minima locaux
ou des points selles actifs. Par définition ces points selles actifs se trouvent sur
une variété active telle que la fonction est différentiable sur cette variété et “change
rapidement” en dehors de cette variété. Afin d’étudier le SGD au voisinage de ces
points nous introduisons deux conditions supplémentaires sur la variété active: la
condition de Verdier et la condition de l’angle. La premiére permet d’avoir une
condition de type Lipschitz entre le "gradient riemannien" de la fonction sur la
variété et ses sous-gradients de Clarke alors que la condition de I'angle permet de
montrer que le SGD converge rapidement vers la variété active. A ’aide de ces deux
conditions, sous des conditions d’isotropie sur les perturbations similaires & celles qui
sont nécessaires dans le cas lisse, nous montrons que le SGD évite un point selle actif
avec probabilité un. De maniére indépendante nous établissons une version renforcée
de la formule de projection de Bolte et al. en donnant une condition de type Lipschitz
sur les sous-gradients d’une fonction définissable et Lipschitz. Nous pensons que ce
type de résultat peut étre important pour I’étude des problémes d’optimisation non
lisse et définissable dans une structure o-minimale. En particulier, ce résultat nous
permet de démontrer la généricité de nos deux conditions: les points selles actifs
d’une fonction définissable, faiblement convexe, générique se trouvent sur une variété
active vérifiant les conditions de Verdier et de 'angle. Ainsi, une interprétation
possible des résultats de ce chapitre est que le SGD sur une fonction générique,
définissable et faiblement convexe converge vers un minimum local.

Naturellement, au vu des résultats énoncés ci-dessus on voudrait savoir quels
sont les points critiques d’une fonction définissable, générique sans I'’hypothése de
faible convexité. Nous montrons dans le chapitre 6 I’émergence dans la classe des
fonctions définissables et localement Lipschitz d’un troisiéme type de point: un point
critique fortement répulsif. Un tel point se trouve sur une variété active telle qu’au
voisinage de cette variété il existe une région répulsive ou les sous-gradients de la
fonction sont dirigés vers la variété. Le premier résultat du chapitre 6 est que tous
les points critiques d’une fonction définissable, localement Lipschitz, générique se
trouvent sur une variété active et sont soit des minima locaux, des points selles
actifs ou des points critiques fortement répulsifs. De plus, les variétés actives cor-
respondantes vérifient toujours les conditions de Verdier et de I’angle introduites
précédemment. La question d’évitement d’un point selle actif étant abordée dans le
chapitre précédent, nous montrons que, sous une condition de densité sur la loi des
perturbations, les points critiques fortement répulsifs sont évités par le SGD avec
probabilité un. Ainsi, une interprétation possible des résultats de ce chapitre est
que le SGD sur une fonction générique, définissable et localement Lipschitz converge
vers un minimum local.

Le chapitre 7 donne une caractérisation de la convergence du SGD et de ses
versions proximales vers ’ensemble des points critiques. Alors que ces algorithmes
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peuvent avoir plusieurs points d’accumulation, nous montrons que le temps mis par
les itérés de passer d’un voisinage d’un de ces points vers un autre tend vers ’infini.
De plus, un phénoméne d’oscillations des itérés est établi. Ce type de résultat pour
la descente de gradient déterministe avait été établi auparavant par Bolte, Pauwels
et Rios-Zertuche en utilisant la théorie des mesures fermées. Dans le chapitre 7 nous
établissons nos résultats sur la base de la théorie sur I’approximation stochastique
et les inclusions différentielles de Benaim, Hofbauer et Sorin ce qui permet de traiter
les cas déterministe, stochastique et proximal avec une approche unifiée.
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CHAPTER 1

Introduction

Various problems that arise in machine learning, signal processing and high dimen-
sional statistics can be formulated as an optimization problem consisting into finding
a minimum of a real valued function F : R — R.

In practical settings, this function might be unknown or the computation of its
different characteristics (such as the gradient or the Hessian) might be expensive.
In this case, stochastic approximation algorithms are particularly interesting since
at each iteration they require only an estimator of . When the function of interest
is convex such algorithms can be studied through the tools of convex analysis (see
e.g. |Bottou et al. 2018]). However, in many applications the convexity assumption
fails. In such a case the standard way to analyze the convergence of a stochastic
approximation algorithm is to view it as an Euler-like discretization of its continuous
counterpart: an ordinary differential equation (ODE).

If the corresponding ODE is well behaved then one will usually be able to prove
the convergence of the iterates to the set Z = {x € R? : VF(x) = 0} of critical
points of F' (see |[Benaim 1999, Kushner & Yin 2003, Borkar 2008|). This, however,
gives only a partial answer to the question of the convergence to the set of (local)
minimizers of F. Indeed, without the convexity assumption, Z is usually strictly
larger than the latter and contains all kinds of spurious points such as local maxima
or saddle points. The nonconvergence of stochastic approximation algorithms to
such points was analyzed in the literature under the name of “avoidance of traps".
(see e.g. [Brandiere & Duflo 1996, Pemantle 1990, Benaim 1999)).

The aim of this thesis is to analyze the convergence of stochastic approximation
algorithms to the set of critical points, when the continuous counterpart is no longer
a simple ODE. We will give various characterizations of this convergence and es-
tablish, among other things, several avoidance of traps results. With the exception
of Chapter 3, which analyzes a family of algorithms driven by a nonautonomous
differential equation, we will focus on the case where the function that we seek to
minimize is nonsmooth. The latter being especially important for various appli-
cations, the most notable one being the training of a neural networks with ReLLU
activation functions.

To better understand our approach we start by an illustrative example - the
stochastic gradient descent (SGD). The SGD, an archetype of stochastic approxi-
mations algorithms, dates back to Robbins and Monro [Robbins & Monro 1951] and
is written as follows:

Tp+1 = Tn — ’YnVF(xn) + Ynln+1 5 (11)



2 Chapter 1. Introduction

where (7,,) is a sequence of positive real numbers decreasing to zero and (7,41) is
a sequence of random perturbations (usually with zero mean) that modelizes our
partial knowledge of F. One can view the SGD as an Euler-like discretization of
the gradient flow:

x(t) = =VF(x(t)). (1.2)

The so-called ODE method [Benaim 1999, Borkar 2008, Kushner & Yin 2003] al-
lows to rigorously compare the path taken by the iterates of Equation (1.1) to the
solutions to the differential equation (1.2) and to establish that the iterates converge
to the set Z = {x e R?:0 e VF(x)} of critical points of F.

In the case of the SGD, the question of the avoidance of saddle points was first ad-
dressed by [Brandicre & Duflo 1996] and [Pemantle 1990]. Their technique of proof
is build upon the Poincaré invariant manifold theorem, which states that the set of
points from which ODE (1.2) converges to a saddle point is a manifold of a dimen-
sion strictly smaller than d. The idea of [Brandiére & Duflo 1996, Pemantle 1990]
is then to show that, under an isotropic condition on the sequence (n,,), the iterates
of the SGD will be driven away of this invariant manifold.

Throughout this thesis we will study different generalizations of the ODE method
and the ideas of [Brandiére & Duflo 1996, Pemantle 1990|. In particular, with the
exception of Chapter 3, which analyzes a family of algorithms driven by a nonau-
tonomous differential equation, we will focus on the case where the function that
we seek to minimize is nonsmooth.

If F' is merely locally Lipschitz continuous, then a natural generalization of the
SGD is the stochastic subgradient descent, which reads as follows:

Tn+1 € Ty — ’YnaF(wn) + Ynln+1, (1'3)

where 0F () is the set of Clarke subgradients of F' at x,, a notion that generalizes
the one of the gradient. Algorithm (1.3) being a generalization of (1.1) we will still
refer to it as the SGD. The set of critical points for the Clarke subgradient is now
Z ={zxeR?:0e dF(z)}, which still contains the (local) minima of F. Following
the work of [Benaim et al. 2005|, the continuous counterpart of this algorithm is no
longer an ODE but a differential inclusion (DI):

() e —OF (x(t)) . (1.4)

To obtain (and characterize) the convergence of Equation (1.3) to Z we first need
to restrict the class of functions that we analyze. Indeed, in full generality the Clarke
subgradient might not even be the right operator to consider. For instance, Rockafel-
lar in [Rockafellar 1981] constructs a Lipschitz function F : R¢ — R such that for ev-
ery x € R? we have 0F (z) = [—1,1]%. Results of [Borwein & Wang 1998| show that
this example is actually typical, e.g. almost every continuous function F : [0,1] — R
has 0F (z) = [0, 1] for all # € [0,1] 1. This implies that, generally, 0F gives us no in-
formation about the behavior of F. In fact, [Daniilidis & Drusvyatskiy 2019] shows

'Here almost every refers to the fact that this set is open and dense in the Baire’s topology. A
topology-independent result of this type was established in [Daniilidis & Flores 2019].
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that pathological dynamics can be exhibited such that (x,) is not even converging
to Z.

While these counterexamples may seem, at first sight, discouraging, in practical
settings such pathological behavior is rare. Indeed, the vast majority of functions
encountered in optimization are functions definable in an o-minimal structure, a
notion popularized in the optimization literature by the work of [Bolte et al. 2007].
The family of definable functions is broad: every semialgebraic function is defin-
able, the exponential and the logarithm are definable. Moreover, the notion of
definableness is stable by many of the elementary operations such as composition,
sum, multiplication and taking the inverse. While definable functions may be nons-
mooth, the nonsmoothness here appear in a very structured manner. Example given,
in [Bolte et al. 2007] the authors have established the so-called projection formula,
which gives a description of the Clarke subgradients of a definable function. More
precisely, the authors of [Bolte et al. 2007] have shown that, given a definable func-
tion I and p an integer, there exists (X;) a finite partition of the domain of F' into
C? manifolds such that F' is CP smooth on X; and, moreover, if y € X;, then we
have:

PTyXi(aF(y)) = {inF(y)}v (1.5)

where Vx, F(y) is the Riemannian gradient of F' restricted to X; at y and Pr,x,
denotes the orthogonal projection onto the the tangent space at y of X;. Equa-
tion (1.5) is the starting point in the proof of various properties of definable functions
such as the nonsmooth Kurdyka-Y.ojasiewicz inequality or the path differentiability
[Bolte & Pauwels 2019].

In recent years, this implicit smooth structure has allowed a thorough analysis of
algorithms operating on definable functions [Attouch et al. 2011, Bolte et al. 2009,
Davis & Drusvyatskiy 2021]. In particular, the work of [Davis et al. 2020] shows
that under mild conditions on the sequence (7,), the iterates of Equation (1.3) con-
verge to Z. In this thesis we will give different characterizations of this convergence,
with a particular focus in Chapters 5 and 6 on the question of the avoidance of traps
in a nonsmooth setting.

With Chapter 2 being dedicated to mathematical tools that will be used through-
out this thesis, we finish the present chapter by a detailed descriptions of the main
obtained results.

1.1 Stochastic algorithms with momentum

In Chapter 3, which is based on the publication {5}, we study a class of stochastic
algorithms which admits as a continuous counterpart the following ODE, introduced
in [Belotto da Silva & Gazeau 2018|. Let F : R? — R be a differentiable function to
minimize and let S : R — R‘i be a continuous function. Let h,r,p,q: (0,+0) —
R4 be continuous functions and let € > 0. Starting from a point (v(0), m(0),x(0)) €
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R‘i x R% x R%, the differential equation is written as follows:

v(t) = p(t)S(x(t) —alt)v(t)

m(t) =h(t)VE(x(t)) —r(t)m(t) , (1.6)
X(t) = —m(t) D) F e
where for two vectors x,y € R? x/y denotes the vector (z1/y1,...,zq4/yq) € R%

The main challenge in the analysis of the algorithms that are underlined by this
ODE is the fact that ODE (1.6) is nonautonomous. ODE (1.6) generalizes various
differential equations encountered in stochastic approximation. For instance, its
particular case is

which can be rewritten as
X(t) + r(t)x(t) + VFE(x(t)) = 0.

If we choose r(t) = a > 0, then we obtain the well-known Heavy-Ball with friction
algorithm [Attouch et al. 2000, Gadat et al. 2018]. Choosing r(t) = a/t, with a > 0,
gives us the Nesterov’s accelerated gradient algorithm which was studied from this
ODE in [Su et al. 2016a].

Going back to ODE (1.6) and choosing this time h(¢) = r(t) = a(t, \, a1), p(t) =
a(t) = a(t, A\, a2) for a(t,\,a) = 711 — exp(—Aa))/(1 — exp(—at)), \,a1,a2 > 0
and S = VF®2 we recover the widely used ADAM algorithm [Kingma & Ba 2015]
(see also [Belotto da Silva & Gazeau 2020, Sections 2.4-4.2] and [Barakat & Bianchi 2021]
for the stochastic version of this algorithm).

In this chapter we establish the convergence of the stochastic algorithms driven
by ODE (1.6) to the set of critical points of F. In this level of generality, the pre-
sented results are new. Convergence rates in the form of a central limit theorem are
given. Last but not least, an avoidance of traps result is established. This result
extends previous works of [Gadat et al. 2018] obtained in the context of SHB. This
result not only allows to study a broader class of algorithms but also significantly
weakens the assumptions. In particular, [Gadat et al. 2018] uses a sub-Gaussian
assumption on the noise and a rather stringent assumption on the stepsizes. The
main difficulty in the approach of [Gadat et al. 2018] lies in the use of the classical
autonomous version of Poincaré’s invariant manifold theorem. The key ingredient of
our proof is a general avoidance of traps result, adapted to nonautonomous settings,
which we believe to be of independent interest. It extends usual avoidance of traps
results to a nonautonomous setting, by making use of a nonautonomous version of
Poincaré’s theorem [Dalec’kit & Krein 1974, Kloeden & Rasmussen 2011].

Contributions.
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e First, we analyze ODE (1.6) by showing the existence and the uniqueness of
its solutions. Convergence of these solutions to the set of critical points of F
is established. In particular, no convexity assumption is made and, to the best
of our knowledge, the convergence statement for the ODE that underlines the
Nesterov’s accelerated gradient descent is new.

e Second, we analyze a class of stochastic approximation algorithms that are
Euler-like discretizations of this ODE. Examples of these are ADAM, Ada-
Grad, Heavy-Ball and Nesterov’s accelerated gradient descent. Bounded-
ness and convergence to the set of critical points of F' is established. Un-
der additional assumptions, convergence rates in the form of a central limit
theorem are given. These results extend the works of [Gadat et al. 2018,
Barakat & Bianchi 2021] to a more general setting. In particular, we highlight
the almost sure convergence result for the (stochastic) Nesterov’s accelerated
gradient descent in a nonconvex setting, which is, to the best of our knowledge,
new.

e Finally, a general avoidance of traps result is established for algorithms under-
lined by a nonautonomous ODE. An application of this result to the algorithms
that we analyze is given by establishing that, under assumptions on the pertur-
bation sequence similar to [Brandiére & Duflo 1996], the iterates avoid saddle
points with probability one.

1.2 Convergence of the stochastic subgradient descent
with a constant stepsize

Chapter 4, based on the publication {4}, analyzes the constant step version of
the SGD (1.3). While from a theoretical point of view, the vanishing step size is
convenient to show the convergence of the algorithm to Z, in practical applications
such as the training of a neural net, a vanishing step size is rarely used because
of slow convergence issues. In most computational frameworks, a possibly small
but nevertheless constant step size is used by default. The price to pay is that
the iterates are no longer expected to converge almost surely to the set Z but to
fluctuate in the vicinity of Z as n is large. Therefore, in this chapter we aim to
establish a result of the type

Ve >0, limsupP(dist(z,, Z) >¢) — 0. (1.7)

n—00 710

Although this result is weaker than in the vanishing step case, constant step stochas-
tic algorithms can reach a neighborhood of Z faster than their decreasing step
analogues, which is an important advantage in the applications where the accu-
racy of the estimates is not essential. Moreover, in practice they are able to
cope with non stationary or slowly changing environments which are frequently
encountered in signal processing, and possibly track a changing set of solutions
[Benveniste et al. 1990, Kushner & Yin 2003].
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Before proving this convergence result we address the question of the pertinence
of the algorithm (1.3) from a practical standpoint. Indeed, in stochastic approxima-
tion the designer has usually no access to the function F' but rather to a sequence
of i.i.d random variables (&), following a law p, and to a function f(x,§) such that
F(x) = Eeepy[f(2,£)]. In this case, the natural algorithm that comes to mind is:

Ip+1 = Tn — YUn+1, (18)

where vy, 41 is a selection of the Clarke subgradient 0, f(x, ) (taken relatively to the
first variable) at the point (z,,&,+1). Denoting %, the sigma algebra generated by

(xo,...,2n), we can rewrite this algorithm as:
Tp+l = Tp — V]E[Un+1|yn] + YMn+1 (1'9)
where 7,11 = —vp41 + E[vp41]|- %] is a martingale increment. The issue that arise

in this case is that the continuous counterpart of this equation is now

() € —Ee [0, F(x(1), ). (1.10)

This differential inclusion is not necessarily an instance of the DI (1.4), because we
do not generally have that E[v,1|-%,] € 0F(zy,). Indeed, the interchange E « ¢
holds for convex or smooth functions but fails in general. In [Majewski et al. 2018]
the authors restrict their analysis to Clarke regular functions [Clarke et al. 1998,
§2.4], for which the interchange of the expectation and the subdifferentiation applies.
However, this assumption can be restrictive, since a function as simple as —|z| is
not regular at the critical point zero.

In Chapter 4 we consider a slightly more general version of algorithm (1.8), which
includes the case where v,,11 is a selection of a so-called conservative field. This no-
tion, introduced in [Bolte & Pauwels 2019|, modelizes the output of the celebrated
backpropagation algorithm used in numerical libraries such as PyTorch or Tensor-
flow [Paszke et al. 2017]. A similar issue arise in this case since the interchange
between the expectation and a conservative field might not hold.

Our first result is that, under some mild conditions on the functions F' and
f(-,€) (for instance if they are definable), for almost every initialization point and
for every n € N, x,, almost never hits a nondifferentiable point of f(-,£,+1). As a
consequence, algorithm (1.3) can be rewritten as:

In+l = Tn — 'YVF(xn) + VYMn+1,

and its continuous counterpart is indeed the DI (1.4). Using this result, we show
that the continuous process obtained by a piecewise affine interpolation of (z,) is a
weak asymptotic pseudotrajectory of the DI (1.4). In other words, the interpolated
process converges in probability to the set of solutions to the DI, as v — 0, for the
metric of uniform convergence on compact intervals.

The proof technique to establish the convergence (1.7) is then rather standard
and consists to view (1.9) as a Markov process. For each v > 0, under a drift
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assumption on its kernel, this Markov process admits an invariant distribution ..

Every accumulation point of (p), in the sense of the weak convergence and when

v — 0, is then shown to be supported on Z, which in turn implies (1.7).
Contributions.

e We analyze the SGD algorithm with a constant step size in the non-smooth,
non-convex setting. Under mild conditions, we prove that when the initializa-
tion xq is chosen randomly x, almost never hits a non-differentiable point of
f('7£n+1) and

Tn+1 — Tn

~y = —VF(CUn) + n+1,

where (7)) is a martingale difference sequence, and VF(x,,) is the true gra-
dient of F' at x,. This argument allows to bypass the oracle assumption of
[Majewski et al. 2018, Davis et al. 2020].

e We establish that the continuous process obtained by a piecewise affine in-
terpolation of (z,,) is a weak asymptotic pseudotrajectory of the DI (1.4). In
other words, the interpolated process converges in probability to the set of so-
lutions to the DI, as v — 0, for the metric of uniform convergence on compact
intervals.

e We establish the long run convergence of the iterates x,, to the set Z of Clarke
critical points of F', in the sense of Equation (1.7). This result holds under
two main assumptions. First, it is assumed that F' admits a chain rule, which
is satisfied for instance if F' is a definable function. Second, we assume a stan-
dard drift condition on the Markov chain (1.9). Finally, we provide verifiable
conditions of the functions f(-,s) under which the drift condition holds.

e In many practical situations, the drift condition alluded to above is not sat-
isfied. To circumvent this issue, we analyze a projected version of the SGD
algorithm, which is similar in its principle to the well-known projected gradient
algorithm in the classical stochastic approximation theory.

1.3 SGD escapes active strict saddles

In Chapter 5, which is based on the publication {2}, we address the question
of the avoidance of traps in a nonsmooth setting. The traps that are consid-
ered here are the active strict saddles, a notion that was recently introduced in
[Davis & Drusvyatskiy 2021]. Formally, a Clarke critical point is an active strict
saddle if it lies on an active manifold M such that the Riemannian Hessian of F'
on M has at least one negative eigenvalue. An active manifold in this setting is a
manifold M such that i) F' varies sharply outside of M, ii) Fys, the restriction of F
to M, is smooth. For instance, the function (y, z) +— |z| — y? admits the point (0, 0)
as an active strict saddle (see Figure 1.1).
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Figure 1.1: The point (0,0) is an active strict saddle of F(y,z) = |z| — y?>. The
corresponding active manifold is M = R x {(0,0)}.

The importance of this notion comes from the fact, proved in [Drusvyatskiy et al. 2016,
Davis & Drusvyatskiy 2021|, that, given a weakly convex, definable function F' :
R? — R, for almost every u € R?, each of the Clarke critical points of the linearly
perturbated function F,(z) = F(z) —{u,z) is either a local minimum or an active
strict saddle. In that sense, active strict saddles are generic in the class of weakly
convex, definable functions.

In [Davis & Drusvyatskiy 2021] the authors have proven that, upon a random
initialization, proximal methods escape active strict saddles with probability one.
Such a result is possible due to the fact that proximal methods implicitly run a
gradient descent on a smoothened version of F' - the Moreau envelope. On the
contrary, in Chapter 5 we analyze algorithm (1.3) which is inherently nonsmoooth.
The aim is to establish that the SGD (with decreasing stepsizes) escapes active strict
saddles with probability one.

The intuition behind our approach could be grasped by looking at the stochas-
tic subgradient descent on the function from Figure 1.1. In this case, it is natu-
ral to write down the iterates (z,) as (yn, 2n) and to notice that (y,) follows an
SGD dynamic on a smoooth function y — —y?. Thus, applying the results of
[Brandiére & Duflo 1996, Pemantle 1990] to the sequence (y,), we obtain that, un-
der similar assumptions on the perturbation sequence, P(y, — 0) = 0. This implies
that the stochastic subgradient descent avoids (0,0) with probability one. On an
independent note, observe that in this example the sequence (z,) converges to zero
in a very fast manner.

To formalize this type of behavior in a more general setting we have introduced
two additional conditions on the active manifold. The first one, the Verdier condi-
tion, states that for = close to M:

Vv e dF (x), vy ~ VyF(Py(x))+ O(dist(z, M)), (1.11)

where Pys(x) is the projection of & onto M, V,F is the “Riemannian gradient" of
Fyr and vy is the projection of v along the tangent space of M (see Section 5.3.2



1.3. SGD escapes active strict saddles 9

for a precise statement). A consequence of this condition is that, writing down
(yn) = (Pap(zy)), a simple application of Taylor’s formula gives us:

Yn+1 = Yn — 'anMF(yn) + ’Ynnrjl/—[i-l + 'ynO(dist(azn, M)) + O(’erL) s (1'12)

where 77%1 is the projection of 7,41 on the tangent space of M at y,. That is to say,
up to a residual error term, (y,) follows an SGD dynamic on the (smooth) function
Fyy.

The purpose of the angle condition is to control this residual term. First, a
following observation is made. Let z* be a Clarke critical point of F' lying on an
active manifold M. Then, on the event [z, — z*], for n large enough, we have:

F(xn) = F(Py(2n)) 2 |20 — Par(zn)] - (1.13)
The angle condition then states that close to M we have:

F(2)=F(Py(2)) 2 2 — Pu(@)]| — (v, 0—Pu(@) 2 o — Pu(@), Yve dF(a).

(1.14)
Combining (1.13) with (1.14), we obtain that, for n large enough, the angle between
the set 0F(z,) and the normal direction to M is lower bounded. This is used to
show that dist(x,, M) converges to zero in a very fast manner and thus allows to
control the residual term in Equation (1.12).

The angle and the Verdier conditions provide a general way to analyze the
stochastic subgradient descent in a neighborhood of an active manifold by de-
composing the iterates (z,) into a sum of two sequences: (y,) = (Pa(x,)) and
(2n) = (n —Yn). The angle condition ensures the fact that ||z, | = dist(zy, M) — 0
(and hence x,, — M) fast enough. Combining this fact with the Verdier condi-
tion, this implies that (yy), up to a residual term, follows an SGD dynamic on the
smooth function Fjs. In Chapter 5 we illustrate this proof technique by showing
that, under conditions on (7,41) similar to the ones obtained in a smooth setting
by [Brandiére & Duflo 1996], the stochastic subgradient descent avoids active strict
saddles with probability one.

An important contribution of this chapter is an improvement of the projection
formula (1.5). One of the consequence of Equation (1.5) is that if we have a sequence
(Tn,vn), with z, — y € X; and v, € 0F(x,), then we always have Pr, x,(v,) —
Vx,F(y). In Theorem 5.2.1 of Chapter 5 we reinforce this result by showing that if
F is locally Lipschitz continuous, then there exists (a perhaps finer) finite partition
(X;) such that for any y € X;, there is C' > 0 such that for any ¢’ € X; and x € R?
that are close enough to y, we have:

e dF(x), | Pryx.(v) - VX F(y)

<Cllz—v] - (1.15)

The Verdier condition (1.11) thus merely states that M is one of the element of
this partition. The projection formula was initially proved in [Bolte et al. 2007]
using the fact that the graph of a definable function admits a so-called Whitney-
(a) stratification. Our proof of the reinforced projection formula is based on the
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fact, well known literature on o-minimal theory (see [Loi 1998|), that the graph
of a definable function admits a so-called Verdier stratification. Formula (1.15)
gives us a Lipschitz-like condition on the subgradient operator 0F. We believe that
such a result is of independent interest and might be important in the analysis of
nonsmooth algorithms operating in a definable setting.

One of the consequences of the reinforced projection formula that we prove is
that the Verdier and the angle conditions are generic in the class of weakly convex
functions. That is to say, given F : R? — R a weakly convex and definable function,
for almost every u € R?, every critical point of F}, is either a local minimum or an ac-
tive strict saddle, with the corresponding active manifold satisfying the Verdier and
the angle conditions. Therefore, a possible interpretation of the results of this chap-
ter is that the stochastic subgradient descent on a generic, weakly convex function
converges to a local minimum.

Contributions.

e Firstly, we bring to the fore the fact that definable functions admit stratifica-
tions of the Verdier type. These are more refined than the Whitney stratifica-
tions which were popularized in the optimization literature by [Bolte et al. 2007].
While such stratifications are well-known in the literature on o-minimal struc-
tures [Loi 1998], up to our knowledge, they have not been used yet in the
field of non smooth optimization. To illustrate their interest in this field,
we study the properties of the Verdier stratifiable functions as regards their
Clarke subdifferentials. Specifically, we refine the so-called projection formula
to the case of definable, locally Lipschitz continuous functions by establish-
ing a Lipschitz-like condition on the (Riemannian) gradients of two adjacent
stratas.

e Secondly, we introduce two additional assumptions on an active manifold:
the Verdier and the angle conditions. We prove that a generic active strict
saddle of a definable and weakly convex function is lying on an active manifold
satisfying both of these conditions.

e Finally, with the help of the Verdier and the angle conditions, we show that
the SGD avoids the active strict saddles if the noise 7, is omnidirectional
enough. We emphasize here that, while our genericity result holds under a
weak convexity assumption, no weak convexity is assumed for our avoidance
of traps result.

1.4 SGD on a generic definable function converges to a
minimizer
In Chapter 5 we have established that, given F' : R — R a weakly convex, definable

function, for almost every u € R%, the critical points of F,, are either local minima
or active strict saddles lying on active manifolds satisfying the Verdier and the
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angle conditions. Naturally, one might want to know what happens when the weak
convexity assumption fails. The first part of Chapter 6, which is based on the
publication {1}, addresses this question by classifying the generic Clarke critical
points of locally Lipschitz continuous, definable functions. Specifically, given such a
function F : R¢ — R it analyzes the type of points that might appear in:

{reRY:0€e d0F, ()}, (Z.)

for a non Lebesgue-null set of u € RY.

First, we must notice that such a simple classification in a weakly convex setting
comes from the fact that, from a minimization perspective, the local behavior of
F on an active manifold M dictates its shape outside of M. In particular, if F' is
weakly convex and z* is a local minimum of Fjs, then z* is a local minimum of
F (see [Drusvyatskiy & Lewis 2014]). Looking at an example as simple as (y, z) —
y? — |z| (see Figure 1.2), we see that this is no longer true when the weak convexity
assumption fails.

Figure 1.2: The point (0,0) is a sharply repulsive critical point of F(y, z) = —|z|+y>.
The corresponding active manifold is M = R x {(0,0)}.

This motivates the introduction of a third type of points: a sharply repulsive
critical point. We say that a Clarke critical point x* € M is a sharply repulsive
critical point if i) M is an active manifold (for F' and z*), ii) x* is a local minimum
of Fyy, iii) 0 € OpF(x*)\0F (x*), where 01 F(z) denotes the limiting subgradient
of F' at x*. Intuitively speaking, if x* € M is a sharply repulsive critical point, then
there is a large region neighboring M on which the subgradients of F' are pointing
towards M. A typical example of this situation is illustrated on Figure 1.2.

In Chapter 6 we show that such an example is generic. More precisely, in Theo-
rem 6.2.5 we establish that for almost every u € R, every point in (1.4) is lying on
an active manifold and is either a local minimum, an active strict saddle or a sharply
repulsive critical point (for the function F,). Moreover, the corresponding active
manifolds satisfy the Verdier and the angle conditions. In this sense, a generic trap
of a definable, locally Lipschitz continuous function is either an active strict saddle
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or a sharply repulsive critical point. We must notice here that almost all of the
points of Theorem 6.2.5 readily follow from the work of [Drusvyatskiy et al. 2016].
However, the question of the genericity of the angle condition seems to be delicate
and our proof of this point is based on some deep results of o-minimal theory.

Since the question of the avoidance of active strict saddles was treated in Chap-
ter 5, the rest of Chapter 6 is devoted to the question of the avoidance of sharply
repulsive critical points. Our first result shows that if z* is such a point, then, on
the event [z, — x*], for n large enough, we have:

F(zy,) = F(x").

While the proof of this inequality readily follows from the observations of Chapter 5,
this result reveals to be interesting. Indeed, it implies that while the iterates (x;,)
may in theory converge to x* this happens only if the SGD fails to explore the
repulsive region near z*. In some sense, the algorithm perceive the function F' as if
x* was indeed its local minimum.

In a second time, we show that a density-like assumption on (7,) forces the
SGD to visit the repulsive region near M and will imply the nonconvergence of the
SGD to a sharply repulsive critical point. We must notice here the difference with
the proof of Chapter 5 on the avoidance of active strict saddles. Indeed, if z* is a
sharply repulsive critical point, then asymptotically the sequence (y,,) = (Par(xy))
still follows an SGD dynamic on a smooth function Fj;. However, since in this case
x* is a local minimum of F); this is not sufficient to prove the nonconvergence of
(xn,) to M. Therefore, in the setting of Chapter 6 the avoidance of traps result is
established by using a density-like condition on (7,).

The final Section 6.3.3 shows that, while such a density-like assumption on (7,)
might not hold, a way to ensure it in a standard stochastic approximation model
is to add a small perturbation (e.g. a nondegenerate Gaussian) at each iteration of
(6.1). This fact, combined with the results of Chapter 5 on the avoidance of active
strict saddles, provides a practical way to avoid generic traps of definable functions,
and, therefore, ensure the convergence of the SGD to a local minimum.

We must mention here that shortly after the publication {2} and just before the
submission of {1} a concurrent work [Davis et al. 2021] has appeared. The latter,
sharing a lot of similarities with Chapter 5, analyzes the SGD (and its proximal
versions) in a neighborhood of an active manifold. An avoidance of active strict
saddles result was obtained as well as (local) rates of convergence and asymptotic
normality of the iterates were established. These results support our claim on the
importance of the Verdier and the angle conditions. A major difference with our
work is that their proximal aiming condition assume (close to the active manifold)
the left hand side of formula (1.14). Such an assumption rules out functions with
downward cusps such as (y, z) — 4% — |z|, which are treated in Chapters 5 and 6.
As a consequence, the question of genericity in [Davis et al. 2021] is addressed only
for the class of Clarke regular functions in which sharply repulsive critical points do
not exist. In particular, we believe that convergence rates of a similar kind could
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be obtained upon replacing the proximal aiming condition of [Davis et al. 2021] by
ours angle condition.
Contributions.

e We introduce the concept of a sharply repulsive critical point. Given F : R? —
R a locally Lipschitz continuous function that is definable in an o-minimal
structure, we show that for a full-measure set of u € R%, each of the critical
points of the linearly perturbated function F, is lying on an active manifold
satisfying a Verdier and an angle condition and is either a local minimum, an
active strict saddle or a sharply repulsive critical point.

e We show that if x* is a sharply repulsive critical point, then on the event
[z, — x*], for n large enough, we have F(x,) > F(x*). Furthermore, if the
corresponding active manifold satisfies an angle condition and under a density-
like assumption on the perturbation sequence (7,) we show that the iterates
of the SGD will avoid a sharply repulsive critical point with probability one.
Finally, in a standard stochastic approximation model, we show that such an
assumption can be ensured by adding at each iteration a small perturbation
with a density. The latter, combined with the results of Chapter 5, gives a
practical way to ensure the avoidance of the generic traps by the SGD.

1.5 Oscillations of the SGD and its proximal extensions

The purpose of Chapter 7, which is based on the publication {3}, is to give some
characterizations of the convergence of the algorithm (1.3) and its proximal exten-
sions. Given F,g : R — R two locally Lipschitz continuous functions and X a
closed convex set, we are seeking to minimize F' + g over X. A popular choice of
algorithm in this case is the stochastic proximal subgradient descent (SPGD), which

reads as follows:

Tn+1 € prOX;,nX(xn — YnUn + '7n77n+1) ) (1'16>

where proxg:}( is the proximal operator for the function g on X and v, is in the set
OF (xy,).

From the work of [Davis et al. 2020| it is known that in this case the iterates
() will converge to the set of composite critical points Z := {z : 0 € 0F(x) +
0g(x) + Nx(z)}, where Ny (x) is the normal cone of X at x. However, the iterates
(x,) might not converge to a unique point. Indeed, in [Rios-Zertuche 2020, Section
2| Rios-Zertuche considers the deterministic subgradient descent (that is to say
g=0,7,=0and X = R?) and constructs F, which verifies main assumptions of
nonsmooth optimization (such as Whitney stratifiability of its graph or Kurdyka-
Lojasiewicz inequality) but the limit set of (z,,) is equal to Z = {z : ||z|| = 1}. This
encourages a more precise study of Equation (1.16).

In Chapter 7 we establish two additional results on the convergence of Equa-
tion (1.16). First, we show that if z, y € Z are two distinct accumulation points, then
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the time that the iterates spend to get from a neighborhood of z to a neighborhood
of y goes to infinity. Secondly, we rewrite Equation (1.16) as:

Tn4+1 = Tn — 'Yn(vn + ’U;Z + U;}/) + Ynln+1 , (1'17)

where vj € dg(zn11) and v € Nxy(z,11) and establish an oscillation-type phe-

nomena. In a first approximation our results imply that, given § > 0 and any
accumulation point x, we have:
i i+ 0] + 0+ 1i1) (a5 ()
i1 Vil B(es) (z:) n—+o0

Intuitively speaking, this type of behavior shows that even if z,, —xzo = Y1 | vi(v;i +
X

0. (1.18)

vf —I—U{Y +1;+1) might not converge, the drift coming from the sugbradients vy, v, v;\
and the perturbation sequence 1,1, on average, compensate itself. This suggests
that the subgradient descent and its stochastic and proximal versions oscillates
around its accumulation set, with the center of these oscillations moving in a van-
ishing speed.

This type of results was obtained by [Bolte et al. 2020b| for the deterministic
gradient descent using the theory of closed measures. A nice feature of this chapter
is that all of our results are proved using the theory of [Benaim et al. 2005]. We
feel that this approach gives a simpler proof of the convergence and the oscillation
phenomena of the subgradient descent and its stochastic/proximal extensions.

Contributions.

e We show that the time spent by the SPGD to move from one accumulation
point to another goes to infinity and establish an oscillation-type behavior
of the drift. These two results extend [Bolte et al. 2020b, Theorem 7.| to a
stochastic and a proximal setting. Our technique of proof doesn’t rely on the
theory of closed measures used in [Bolte et al. 2020b] but is build upon the
classical work of Benaim, Hofbauer and Sorin [Benaim et al. 2005]. We feel
that this approach gives a simpler proof and allows us to treat the determin-
istic, the stochastic and the proximal cases in a unified manner.
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CHAPTER 2

Mathematical preliminaries

We gather in this chapter some standard results of variational analysis, differential
geometry and o-minimal theory that will be used throughout this thesis.

2.1 Subgradients

Most of the results of this section can be found in classical monographs on variational
analysis such as [Rockafellar & Wets 1998, Clarke et al. 1998].

When the function of interest is nonsmooth various notions of subgradients gen-
eralize the one of the gradient.

Definition 2.1.1 (Frechet subgradient). Consider f : R — R a locally Lipschitz
continuous function and x € R, The set Op f(x) < R? of Frechet subgradients of f
at x is the set of v e R¢ for which:

i {@) @) = =)

' —x H.’L’/ — 33”

The set dp f(z) can be empty (e.g. for the function f(x) = —|z|| at 0). This
motivates the following definitions.

Definition 2.1.2. Consider f : R — R a locally Lipschitz continuous function and
xz € RY. The set dpf(x) of limiting subgradients of f at x is the set of v e R? for
which there is a sequence (Ty,vy,) — (x,v), with v, € Op f(xy,) for all n € N.

Definition 2.1.3. Consider f : R — R a locally Lipschitz continuous function and
e RL The set 0f(x) of Clarke subgradients of f at  is defined as follows

of (x) = conv{d.f(z)},
where conv denotes the convex hull.
If fis C! around =z, then 0f(x) = o, f(x) = dpf(x) = {Vf(x)}.

Definition 2.1.4 (Clarke critical points). We say that x € R? is a Clarke critical
point of f if 0 € df(x).

Similarly to the smooth setting, the set of Clarke critical points of f contains
local maxima and minima of f.

Since f is locally Lipschitz continuous, by Rademacher’s theorem, f is differen-
tiable almost everywhere. The following proposition describes an alternative char-
acterization of 0f.
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Proposition 2.1.1 ([Clarke et al. 1998, Theorem 8.1]). Assume that f : R — R
is locally Lipschitz continuous. Denote D < R? the set of points at which f is
differentiable and let A < R% be any Lebesque-null set. Then

0f (x) = conv{v : there is a sequence x, — x s.t. x, € D n A, V f(x,) — v}.

The key notion in the analysis of the stochastic subgradient descent is the one
of path-differentiability.

Definition 2.1.5 (Path-differentiability [Bolte & Pauwels 2019]). A locally Lips-
chitz continuous function f : R — R is said to be path-differentiable if for every
absolutely continuous curve c : (0,1) — RY, one has for almost every t € (0,1),

(foo)(t) = (v, é(t), Vvedf(c(t)).

Examples of path-differentiable functions include convex, concave, semialgebraic
and more generally definable (see Section 2.4) functions [Bolte & Pauwels 2019].
In nonsmooth optimization, the path-differentiability condition is often a crucial
hypothesis in order to obtain relevant results e.g., on the convergence of iterates
[Bolte et al. 2007, Davis et al. 2020, Bolte & Pauwels 2019]. In particular, as we
will see in Section 2.2.2 path-differentiability of a function will ensure that it is a
Lyapounov function for the subgradient flow.

2.2 Asymptotic pseudotrajectories and differential in-
clusions

2.2.1 ODE method

The ODE method analyzes the convergence properties of a stochastic approximation
algorithm by studying its continuous counterpart: an ordinary differential equation.

Setting up the stage, let G : R* — R? be a continuous function and consider the
following ODE:

%(t) = G(x(1)) . (2.1)

For zg € R?, we denote ®(xg) : Ry — R? the solution to this ODE starting at .
The key notion of the ODE method is the one of the asymptotic pseudotrajectory
(APT).

Definition 2.2.1 (Asymptotic pseudotrajectory (APT) [Benaim 1999]). We say
that a continuous function X : R — R? is an asymptotic pseudotrajectory for the
ODE (2.1) if for all T > 0, we have:

sup ||[X(t+ h) — ®r(X(2))|| —— 0.
s X0+ R~ B X0
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We endow C(R,,R?), the space of continuous functions from Ry to R? with
the metric of uniform convergence on compact intervals of R, :

neN te [O,TL]

do(xy) = 27" (m sup x<t>—y<t>n> . (2.2)

Equivalently, X is an APT for the ODE (2.1) if

0.

do(X(t +-), ®(X(1)))

t—+40o0

As the following example shows, the notion of an APT naturally arise in the study
of stochastic approximation algorithms.

Example 2.2.1. Consider an R%-valued sequence (x,,) satisfying the following equa-
tion:
Tnt1 = Tn + G (Tn) + Wit s (2.3)

where (v,) is a positive sequence and (nn11) are R%*-valued. One can view Equa-
tion (2.3) as an Euler-like discretization of (2.1). Assume the following.

e (yn) is such that Y~y — +00.
e The sequence () is bounded.

o For every T > 0, we have:

N(T,n)

E Yinitr1|| — 0,
4 n—-+aoo
=N

where forne N and T > 0, N(T,n) =sup{k > n: Zf:n vi < T}.

Then the linearly interpolated process X : R — R? defined as:

(anrl - xn)7 Z'ft € [Tna Tn+1) s

where T, = > Vi, is an APT of the ODE (2.1) (see [Benaim 1999, Proposition
4.1]).

Remark 1. A typical situation when the assumption on (ny,) in Example 2.2.1 is
verified is when Y\ vini+1 converges. For instance, this is the case when (1) is a
sequence of martingale increments relatively to some filtration, limy,_, o >, 71-2 <
+o0 and sup,cy E[[|7. %] < +0.

To further characterize the convergence of a stochastic algorithm we need the
notion of a Lyapounov function.

Definition 2.2.2 (Lyapounov function). Let A be a set in RY. A continuous func-
tion V : R? — R is a Lyapounov function for A and the ODE (2.1) if for all x € R?,
the function t — V (®y(x)) is decreasing and is strictly decreasing as soon as x ¢ A.
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Example 2.2.2. Let f : R* — R be C' and consider the ODE (2.1), with G = —V f.
Then f is a Lyapounov function for its set of critical points. Indeed,

F(®1()) = f(z) fo IV £(@u(2))|P du.

When a process is an APT of an ODE with a Lyapounov function more can be
said about its convergence properties.

Proposition 2.2.1 (|[Benaim 1999, Proposition 5.7 and 6.4]). Let X be a bounded
APT of the ODE (2.1), let A = R? and let V be a Lyapounov function for A.
Denote

Lx = ) X([t. +))

teR4

the limit set of X. If V(A) is of empty interior, then the following holds.

e We have that Lx < A.
e The function V is constant on Lx.

Notice that in the context of Example 2.2.1 the set Ly is equal to the set of
accumulation points of (x,).

Example 2.2.3. Let f: RY — R be C' and consider the setting of Example 2.2.1,
with G = =V f. Applying Proposition 2.2.1, we obtain that f(x,) converges and
every accumulation point of (x,,) s a critical point of f.

2.2.2 Differential inclusions

In nonsmooth analysis the notion of an ODE is replaced by the one of a differential
inclusion (DI).

We say that H : R 3 R? is a set valued map if for each z € R?, we have that
H(z) is a subset of R%. Consider the DI:

x(t) € H(x(t)). (2.4)

We say that an absolutely continuous curve (a.c.) x : R, — R? is a solution to (2.4)
starting at = € RY, if x(0) =  and Equation (2.4) holds for almost every ¢t > 0. We
denote Sy(z) the set of these solutions.

Various notions of continuity exist for set valued maps. The one that will be
important for us is the notion of upper semicontinuouty.

Definition 2.2.3. We say that a set valued map H : R® =3 R? is upper semi
continuous at x € R? if for every U, a neighborhood of H(x), there is 6 > 0 such
that

ly—z]| <6 = Hy)cU.

We say that H is upper semi continuous (usc) if it is upper semicontinuous at every
point.
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For a locally Lipschitz continuous function f : R — R, the set valued map
of : R* = R? is upper semi continuous. Moreover, for 2 € R? the set of(x)
is nonempty, convex and compact. For this type of maps, we have the following
existence result.

Proposition 2.2.2 ([Aubin & Cellina 1984]). Assume that for each z in R?, H(z)
is nonempty, conver and compact and that there is a constant C = 0 s.t. sup{||v|| :
veH(x)} < O(1+|z|). Assume that H is usc, then for every x € RY, the set Sy(x)
18 nonempty.

The notion of an APT generalizes to the case of differential inclusions.

Definition 2.2.4 (|Benaim et al. 2005]). We say that a continuous curve X : Ry —
R is an APT of the DI (2.4) if for all T > 0,

sup inf X(t+h) —x(h)|| —— 0. 2.5
s nt X ) ] (25)

Example 2.2.4. Consider an R%-valued sequence (x,,) satisfying the following in-
clusion:

Tptl € Tp + 'VHH(xn) + Ynn+1, (2'6>

with (), (Mn) satisfying the assumptions of Example 2.2.1 and H satisfying the as-
sumptions of Proposition 2.2.2. Assume that (x,) is bounded, then the linearly inter-
polated process constructed from (xy,) is an APT for the DI (2.4) (see [Benaim et al. 2005,
Theorem 4.1]).

There is a notion of a Lyapounov function in the context of differential inclusions.

Definition 2.2.5 (Lyapounov function (DI)). Let A be a set in RE. A continuous
function V : R — R is a Lyapounov function for A and the DI (2.4) if for all
reR? t >0 and x € Sy(x), we have:

Vx(t) < V(z),
with strict inequality as soon as x ¢ A.

Example 2.2.5. Let f : RY — R be a locally Lipschitz continuous, path-differentiable,
function. Consider the DI (2.4), with H = —0f. For x € R, consider x € Sy(r).
By path-differentiability of f we have:

Fx(8)) = f(x(0)) = fo () |* du.

In particular, f is a Lyapounov function for this DI and the set {x e R?: 0 e 0f(x)}
of Clarke critical points of F.

Similarly to Proposition 2.2.1, a Lyapounov function allows to characterize the
convergence properties of an APT related to a DI.
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Proposition 2.2.3 (|[Benaim et al. 2005, Theorem 3.6 and Proposition 3.27]). As-
sume that H wverifies the assumptions of Proposition 2.2.2, X is a bounded APT of
the DI (2.4) and V is a Lyapounov function for a set A. Assume that V(A) is of
empty interior and denote Ly the limit set of X. The following holds.

e We have that Lx < A.

e The function V is constant on Lx.

Example 2.2.6. Let f : R — R be a path-differentiable function. Consider the
setting of Example 2.2.4, with H = —df. We have that f(x,) converges and the
accumulation points of x, are in the set {x € R? : 0 € df(x)} of Clarke critical
points of f.

Remark 2. In the context of the preceding example it is not necessary to have the
ezistence of a C = 0 such that:

sup{[[v] : v e 0f(z)} < C(1 + [|z]).

Indeed, since the sequence (xy,) is bounded, it is not hard to construct f that agrees
with f on a compact set containing (x,) and such that Of satisfies all of the as-
sumptions of Proposition 2.2.2. Such a construction is presented in Chapter 7,
Section 7.4.1.

Remark 3. Example 2.2.6 along with the preceding remark provides a simple proof of
the main result of [Davis € Drusvyatskiy 2021] on the convergence of the stochastic
subgradient descent towards the set of (Clarke) critical points.

2.3 Submanifolds

In this section we present some standard results of differential geometry. An inter-
ested reader can find more on this subject in [Lafontaine 2015, Boumal 2020].

We say that a smooth function is an immersion if its Jacobian is injective at
each point.

Definition 2.3.1 (Submanifold). Consider p = 1. We say that M < R? is a CP
submanifold of dimension k if for each y € M, there is U a neighborhood of vy,
V < RF a neighborhood of 0 and ¢ : V — U a CP immersion such that p(0) = y,
e(V)=U n M and ¢ is an homeomorphism on its image.

The function ¢ from the preceding proposition is called a local parametrization
of M around y.

Definition 2.3.2 (Tangent and normal spaces). Consider p > 1 and let M be a CP
submanifold of dimension k. Consider y € M, ¢ as in Definition 2.3.1 and denote
Jo(y) the Jacobian of ¢ at y. The tangent space of M at y, denoted T,M, is a
vector space of dimension k defined as:

TyM =TIm J,(y) .
The normal space of M at y is NyM = (T,M)*.
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Remark 4. Another characterization of the tangent space that we will use is:
T,M = {veR%: there is a CP curve v :] —&,e[— M,~(0) = y,%(0) = v}.

Definition 2.3.3. Consider p > 1. We say that a function f: M — R is CP if
M is a CP submanifold and for every y € M, there is a neighborhood U of y and a
CP function F : U — RF that agrees with f on M nU. We call F a (local) smooth
extension of f around y.

Lemma 2.3.1. Consider p > 1 and M < R% a CP manifold of dimension k. Let
©, U,V be as in Definition 2.3.1. Then the map ¢~ ' : M nU — V is CP.

Proof. By [Lafontaine 2015, Theorem 1.21] there is V < R% a neighborhood of
zero, U’ < U a neighborhood of y and ¢ : V. — U’ a C? diffeomorphism such

that @(x1,...,74,0,...,0) = ¢(z1,...,2%). As a consequence, ¢! is smooth and
Pgrop~ ! is a local smooth extension on ¢! around y, where Py is the projection
onto the first k coordinates. O

If a function on a manifold is C!, then as in the euclidian case we can define its
gradient.
Definition 2.3.4 ([Boumal 2020, Proposition 3.53]). Let f: M — R be C', ye M
and F be a local smooth extension of f around y. We define Vrf(y), the gradient
of f aty as:

Vuf(y) = Pr,uVFE(y),

where Pr,pr 1s the orthogonal projection onto T,M. This definition is independent
from our choice of F.
Definition 2.3.5 (critical points). Let f: M — R be C*. We say that z* € M is a
critical point of f if Vi f(z*) = 0.

Every local extremum of a function defined on a submanifold is a critical point.
In the euclidian setting the type of a critical point can be determined by the Hessian.
A similar information is available for functions defined on a submanifold.

Definition 2.3.6. Consider M a C? submanifold of R? of dimension greater than
0. Let f: M — R be C? and let x* € M be a critical point of f. Consider ¢ a local
parametrization around x* and denote H the Hessian of f o p at =1 (z*).

i) We say that =* is a nondegenerate critical point if H is invertible.

ii) We say that x* is a saddle point if H has at least one negative eigenvalue.

The consistency of the preceding definition comes from the fact that that if z*
is a critical point of f, then for ¢1, o, any two local parametrizations of M around
¥, we have:

T
. —1/ % =1 %
Hi = (T (971 @) Hadns, (97 (@),
where for i € {1,2}, H; is the Hessian of foy; at ¢; *(z*) and Jwglow is the Jacobian
of ¢y L6 1. I The proof of this result can be found in [Victor 1974, Page 42-43|.

!By Lemma 2.3.1 the composition @5 * o ¢ is indeed C2.
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Remark 5. An equivalent point of view on saddle points is given by the notion of
the Riemannian Hessian. Let f : M — R be C? and x* be a critical point of f, we
define the (Riemannian) Hessian of f at a x* as the quadratic form Hy(x*), defined
on R x R4 by:

Hem(z®): v vTPTZ*MJg(:z:*)PTZ*MU,

where G is a C* function, defined on a neighborhood of x*, which agrees with ¥V f
on M. This definition is independent of the choice of G (see [Boumal 2020, Section
5.5]) and a saddle point in this context is a critical point x* such that Hy a(x*) has
at least one negative eigenvalue.

The following lemma gathers useful properties of Py, the projection onto M.

Lemma 2.3.2 ([Lewis & Malick 2008, Lemma 4]). Consider p > 1 and let M < R?
be a CP submanifold and y be in M. There is v > 0 such that Py : B(y,r) — M s
well defined, is CP~1 and the following properties hold.

i) Fory' € M n B(y,r), the Jacobian of Py at y' is the projection onto T,y M.
i) For v € B(y,r), we have x — Py(x) € Np,, (o) M.

We finish this section by a lemma that gives us a Taylor-like expansion of f
around a point on a manifold.

Lemma 2.3.3. Let f: M — R be C? and consider y € M. Fory' € M, we have:
2
f) = fly) +<Vuf @)y =+ Oy —y[").

Proof. Consider F' alocal smooth extension of f around y and ¢ a local parametriza-
tion of M around y. We have:

F) = fy) + VF@).y =y + Oy —y|)-

Moreover, in the neighborhood of y:

v —y =0l ') —ele (y)
1 1

where the last equality comes from the fact that ¢! is Lipschitz around y (since

it is C?). Moreover, Im J, (¢~ (y)) = T,M. Therefore, (y' —y) — Pr,u(y’ —y) =
O(||y’ — y||*). This implies:

F) = F@) + I f@)y — v+ Oy =y
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2.4 o-minimality

An o-minimal structure can be viewed as an axiomatization of diverse proper-
ties of semialgebraic sets. In an o-minimal structure, pathological sets such as
Peano curves or the graph of the function sini do not exist. To our knowledge
the first work to link ideas between optimization and o-minimal structures was
[Bolte et al. 2007|, where the authors analyzed the structure of the Clarke sub-
differential of definable functions and extended the Kurdyka-f.ojasiewicz inequal-
ity [Kurdyka 1998| to the nonsmooth setting. Nowadays, a rich body of liter-
ature enforces this link, see e.g. [Davis et al. 2020, Drusvyatskiy & Lewis 2010a,
Bolte et al. 2009, Attouch et al. 2011, Bolte & Pauwels 2019]. A nice exposure about
usefulness of o-minimal theory in optimization is [loffe 2009]. Results on the Verdier
and Whitney stratification of definable sets can be found in [Coste 2002, van den Dries & Miller 1996,
Loi 1998].

2.4.1 Definition and basic properties

Most of the results of this section can be found in [Coste 2002, van den Dries & Miller 1996].
An o-minimal structure is a family O = (O, )nens, where O, is a set of subsets
of R™, verifying the following axioms.

1. If @ : R™ — R is a polynomial, then {Q(x) = 0} € O,,.

2. If A and B are in O,,, then the same is true for An B, A U B and A°.

3. If Ae O, and B € O,, then A x B € Opym.

4. If A € O,, then the projection of A on its first (n — 1) coordinates is in O,,_1.

5. Every element of O; is exactly a finite union of intervals and points.

Sets contained in O are called definable. We call a map f : R¥ — R™ definable if
its graph is definable. Definable sets and maps have remarkable stability properties,
for instance, if f and A are definable, then f(A) and f~!(A) are definable, any
composition of two functions definable in the same o-minimal structure is definable,
and many others. Let us look at some examples of o-minimal structures.

Semialgebraic. Semialgebraic sets form an o-minimal structure. A set A < R" is
semialgebraic if it is a finite union of intersections of sets of the form {Q(z) < 0},
where @ : R™ — R is some polynomial. A function is semialgebraic if its graph is
a semialgebraic set. Example of such functions include any piecewise polynomial
functions but also functions such as x — z9, where ¢ is any rational number. It can
be shown that any o-minimal structure contains every semialgebraic set.

Globally subanalytic. There is an o-minimal structure that contains, for ev-
ery n € N, sets of the form {(z,t) : t = f(x)}, where f : [-1,1]" — R is an
analytic function that can be analytically extended in the neighborhood of the hy-
percube. This comes from the fact that subanalytic sets are stable by taking a
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projection, which was shown by Gabrielov [Gabrielov 1968, Gabrielov 1996]. The
sets belonging to this structure are called globally subanalytic (see [Bolte et al. 2009,
Bierstone & Milman 1988| for more details).
Log-exp. There is an o-minimal structure that contains globally sub-analytic sets
as well as the graph of the exponential and the logarithm (see [Wilkie 2009]). As
a consequence of this result it can be shown that the loss of a neural network is a
definable function [Davis et al. 2020].

In the following we fix some o-minimal structure O. Definable will always means
definable in O.

An attractive property of definable sets is that they can be constructed by means
of first order formulas. A first order formula is constructed according to the following
rules.

i) If @ : R — R is a polynomial, then Q(z) = 0 and Q(z) > 0 are first order
formulas.

ii) If A < R" is definable, then z € A is a first order formula.

iii) If ®(z) and ¥(x) are first order formulas, “¥(x) and ®(x)", “¥(z) or ®(z)",
“not ®(z)" and “¥(x) = P(z)" are first order formulas.

iv) If ®(z,y) is a first order formula, where (z,y) € R x R!, and A c R” is defin-
able, then “Jx e A V¥(x,y)" and “Yr e A W(x,y)" are first order formulas.

Proposition 2.4.1 (|Coste 2002, Theorem 1.13|). If ®(z) is a first order formula,
then the set of x that satisfies ®(x) is a definable set.

The following lemmas show that one dimensional, definable functions behave
particularly well.

Lemma 2.4.2 (Monotonicity lemma [van den Dries & Miller 1996, Theorem 4.1 |).
Let f: (a,b) —» R, with —0 < a < b < 40, be a definable function and p = 0.
There is a finite subdivision a = ag < --- < ap = b such that on each interval
(ai,a;+1) f is CP and either constant or strictly monotone.

Lemma 2.4.3 (de I'Hopital inverse rule [Bolte et al. 2009, Lemma 1]). Let ¢, : [0,¢) —

R be two definable functions that are C* on (0,) and continuous at 0, with ¢(0) =
¥(0) = 0. Assume that Vt € (0,e) we have ¢'(t) > 0 and there is | € R s.t.
o(t) ¢ (i) -1

lims_,g v = [. Then lim;_,q N 0)

Lemma 2.4.4 (Definable choice). Let A = R™ x R! be a definable set. Let ,
denote the projection on the first n coordinates. Then there is a definable function
p:mn(A) - R st for any x € mp(A), (z,p(x)) € A.

Lemma 2.4.5 (Curve selection lemma [van den Dries & Miller 1996, Theorem 4.6],
[Bolte et al. 2009]). Let A = R™ be a definable set and a € A. For any p > 0, there
is € > 0 and a definable curve v : (—e,1) — R™ such that v is C?, v(0) = a and
7((0,1)) < A.
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Every definable set can be partitioned into simpler sets called cells. The defini-
tion is by induction on n.

Definition 2.4.1. A C? cell of R is either a point {a} or an open interval (a,b),
with —o0 < a < b < +00. Assume that we have constructed the CP cells of R™, then
there are two types of CP cells in R™+1,

Graphs. D' = {(x,(1(x)) : € D}, where D is a CP cell of R™ and {; : D — R is
a CP definable function.

Bands. D' = {(z,y) : G(z) <y < G(z)}, where D is a CP cell of R? and
(1,(2: D — R are CP definable functions.

Definition 2.4.2 (Cylindrical Definable Cell Decomposition (cded)). A CP cded of
R™ is a finite partition of R™ into CP cells. We say that a cded of R™ is compatible
with a family Ay, ..., A, where A; < R™ if every set of the family is a finite union
of cells of cdcd.

Proposition 2.4.6 (Cell decomposition [van den Dries & Miller 1996, 4.2]). Given
a finite family of definable sets A1, ..., A < R"™, there is a CP cded of R™ compatible
with Al, cee ,Ak.

Proposition 2.4.7 (Piecewise smoothness). Let A < R" be a definable set and
f A — R be a definable function. For any p = 0, there is a CP cded of R™
compatible with A such that f is continuous on any of its cell.

To each cell we can inductively associate a dimension.

Definition 2.4.3 (Dimension of a cell). Dimension of a point is 0, dim(a,b) = 1.
If a cell D' = {(x,(1(x)) : © € D} is a graph, then dim D’ = dim D. If a cell
D' ={(z,y): G1(x) <y < ((x)} is a band, then dim D' = dim D + 1.

With this definition in hand, Proposition 2.4.6 allows us to define the dimension
of any definable set.

Definition 2.4.4 (Dimension of a definable set). Given A < R", choose a CP cded
of R™ compatible with A. We define dim A as the maximum dimension of a cell of
this cded contained in A, dim A is then independent of the chosen cdcd.

Dimension of definable sets verifies many intuitive properties.
Proposition 2.4.8 (|Coste 2002, Section 3.3]).

1. Let A, B be two definable sets. Then dim(A u B) = max(dim A, dim B).

2. Let A, B be definable. Then dim(A x B) = dim A + dim B.

3. If A and f: A— R" are definable, then dim(f(A)) < dim A.

4. Let A < R™! be definable. For x € R", denote A, = {y € R' : (z,y) €
A}. Then for d € N, the set Ag = {z € R" : dim A, = d} is definable and
dim(A n Ay x RY) = dim Ay + d.
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Remark 6. It can be established by induction that every CP cell of dimension k
is a k-dimensional submanifold (see [Coste 2002, Chapter 6]). Since the Hausdorff
dimension of a k-dimensional CP submanifold is k, this implies that the Hausdorff
dimension of a definable set is equal to its “definable dimension” in the sense of

Definition 2.4.4.

We finish this section by a result that can be viewed as parametrized version of
the curve selection lemma. Its proof is an adaptation of [Loi 1998, Lemma 1.7].

Lemma 2.4.9 (Wing lemma). Let V, S be definable sets such that V < S\S. Assume
that dimV = k, with k > 0, let p be an integer and denote Py the projection onto
V. There is a definable set U < V', open in V, a constant ¢ > 0 and a definable CP
map p: U x (0,¢) = S such that Py (p(y,t)) =y and | Pv(p(y,t)) —yll = t.

Proof. First, notice that by Proposition 2.4.6 and Remark 6, without loss of general-
ity, we can assume that V is a k-dimensional manifold and, therefore, the projection
on V is well defined on its neighborhood.

Let Ac V xR x S be the following definable set:

A={(y,t,x):yeVweS;t>0Py(x) =y |Pv(z) -yl =t}

Let € : V - R uU {+o0} be defined as e(y) := inf{t > 0:3x € S, (y,t,z) € A}.
Claim: dim({y : e(y) > 0}) < k. By contradiction suppose that the dimension is k.
Then by Proposition 2.4.7 there is a set B < V, open in V, such that ¢ is continuous
on B. Shrinking B, we can assume that there is a constant ¢ > 0 such that Yy € B,
e(y) > c. This implies that B ¢ S\S, a contradiction.

Therefore, there is U open in V such that for each y € U, § > 0 there is ¢t < § and
x € S such that (y,t,z) € A. Fix y € U, the set {t : 3x € S, (y,t,x) € A} c R is
definable and therefore it is a finite union of points and intervals. Therefore, for
each y € U, there is 6 > 0 s.t. for every ¢t < 4, there is z € S and (y,t,x) € A. Let
d : U — R be a function defined as §(y) = sup{t’ : Vt € (0,t'),3z € S, (y,t,z) € A}.
We know that for all y € U, 6(y) > 0. Moreover, upon replacing U by a smaller
open set, we can assume that ¢ : U — R is continuous. Upon shrinking U one more
time, we have the existence of ¢ > 0 such that ¢ < §(y).

By the curve selection lemma there is p : U x (0,¢) — S s.t. (y,t,p(y,t)) € A.
Applying Proposition 2.4.7 to p, we obtain that, upon shrinking U and reducing c,
pis CP on U x (0,c), which finishes the proof. O

2.4.2 Stratifications

Various types of cded decompositions exist depending on how the neighboring cells
fit together. The notion that will be important for us is the notion of stratification.

Let A be a set in RY, a CP stratification of A is a finite partition of A into a
family of stratas (.S;) such that each of the S; is a CP submanifold verifying

Si(\?j#@ - Sicgj\Sj.
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Given a family {A;,..., Ax} of subsets of of A, we say that a stratification (.5;) is
compatible with {A1, ..., A}, if each of the A; is a finite union of stratas. We say
that a stratification (S;) is definable, if every strata S; is definable.

Different types of stratifications exist depending on how tangent spaces of neigh-
boring stratas fit together. Let us first define the asymmetric distance between two
vector spaces Fq, Fs:

da(El, EQ) = sup dist(u, Eg). (27)

ueFE,||ul|=1

Note that due to the lack of symmetry d, is not a distance. Nevertheless, we have
that d,(F1,E2) = 0 = FE; ¢ FE,. A distance d between E; and FEj is then
classically defined as

d(El,EQ) = max{da(El,Eg),da(Eg,El)} . (28)

This distance is equal to zero if and only if 1 = Es. For a sequence of vector spaces
(Ep)nen, we will denote E,, — E if d(E,, E) — 0.

Definition 2.4.5. We say that a CP stratification (S;) satisfies a Whitney-(a) prop-
erty, if for every couple of distinct stratas S;, S;, for each y € S; N'S; and for each
sequence (Ty)nen € (S;)N such that z, — y, we have:

w-(a) d(1y,8;,7) >0 —= T,S;cT. (2.9)
We will refer to (S;) as a Whitney CP stratification.

It is known (see [Coste 2002, van den Dries & Miller 1996]) that every definable
function f admits a Whitney CP (for any p) stratification (X;) of its domain such

that f is CP on each strata. The following “projection formula” relates the Clarke
subdifferential df(y) of f at y, to Vx, f(y).

Lemma 2.4.10 (Projection formula, [Bolte et al. 2007, Lemma 8|). Let f : R — R
be a locally Lipschitz, definable function and p a positive integer. There is (S;), a
definable Whitney CP stratification of Graph(f), such that if one denotes by X; the
projection of S; onto its first d coordinates, the restriction f: X; — R is CP and
the family (X;) is a Whitney CP stratification of R%. Moreover, for any y € X; and
ve df(y), we have Pr,x,(v) = Vx, f(y).

Lemma 2.4.10 has important consequences. One of them (see [Davis et al. 2020,
Section 5] is that every locally Lipschitz continuous and definable function is path-
differentiable.

Lemma 2.4.11 ([Davis et al. 2020, Theorem 5.8|). Let f : R? — R be a locally
Lipschitz continuous function. If Graph(f) admits a Whitney C stratification, then
f is path-differentiable.
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A Verdier stratification is a special case of Whitney stratification, which posit a
stronger condition on the (asymmetric) distance between adjacent stratas. Whereas
the Whitney stratification can now be considered as well known in optimization
community, the Verdier stratification is comparatively less popular. We illustrate
its advantage by establishing in Theorem 5.2.1 a Lipschitz-like condition in the
“projection formula" (Lemma 2.4.10). We believe that this strengthened result is of
independent interest.

Definition 2.4.6. Let (S;) be a CP stratification of some set A < R%. We say that
(S;) satisfies a Verdier property (v), if for every couple of distinct stratas S;, Sj and
for each y € S; 0 S; # &, there are two positive constants §,C such that:

y €B(y,0)nS;

@ e By s, do(Ty Si, ToSj) < Clly' —«f - (2.10)

We refer to (S;) as a Verdier CP stratification of A.

It is clear from the definitions that a Verdier CP stratification is always a Whitney
CP stratification. A fundamental result is that every definable set admits a Verdier
stratification.

Proposition 2.4.12 (|Loi 1998, Theorem 1.3]). Let {A1,..., A} be a family of
definable sets of R:. For any p = 1, there is a Verdier CP stratification of R?
compatible with {Aq, ..., Ak}.

In Chapter 5 this proposition will be used to prove a reinforced version of
Lemma 2.4.10.



CHAPTER 3

Stochastic optimization with
momentum: convergence,
fluctuations, and traps avoidance

3.1 Introduction

—_

Given a probability space Z, an integer d > 0, and a function f : R x & — R,
consider the problem of finding a local minimum of the function F'(x) 2 Ee[f(x,€)]
w.r.t. z € R? where E¢ represents the expectation w.r.t. the random variable £ on
=. This chapter focuses on the case where F' is possibly non-convex. It is assumed
that the function F' is unknown to the observer, either because the distribution of £
is unknown, or because the expectaction cannot be evaluated. Instead, a sequence
(&, :m = 1) of i.i.d. copies of the random variable ¢ is revealed online.

While the Stochastic Gradient Descent is the most classical algorithm that is
used to solve such a problem, recently, several other algorithms became very popular.
These include the Stochastic Heavy Ball (SHB), the stochastic version of Nesterov’s
Accelerated Gradient method (S-NAG) and the large class of the so-called adaptive
gradient algorithms, among which ADAM [Kingma & Ba 2015] is perhaps the most
used in practice. As opposed to the vanilla Stochastic Gradient Descent, the study of
such algorithms is more elaborate, for three reasons. First, the update of the iterates
involves a so-called momentum term, or inertia, which has the effect of “smoothing”
the increment between two consecutive iterates. Second, the update equation at
the time index n is likely to depend on mn, making these systems inherently non-
autonomous. Third, as far as adaptive algorithms are concerned, the update also
depends on some additional variable (a.k.a. the learning rate) computed online as
a function of the history of the computed gradients.

In this chapter, we study in a unified way the asymptotic behavior of these algo-
rithms in the situation where F is a differentiable function which is not necessarily
convex, and where the stepsize of the algorithm is decreasing.

Our starting point is a generic non-autonomous Ordinary Differential Equation
(ODE) introduced by Belotto da Silva and Gazeau [Belotto da Silva & Gazeau 2020]
(see also |Barakat & Bianchi 2021| for ADAM), depicting the continuous-time ver-
sions of the aforementioned florilegium of algorithms. The solutions to the ODE are
shown to converge to the set of critical points of F'. This suggests that a general
provably convergent algorithm can be obtained by means of an Euler discretization
of the ODE;, including possible stochastic perturbations. Special cases of our general
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algorithm include SHB, ADAM and S-NAG. We establish the almost sure bound-
edness and the convergence to critical points. Under additional assumptions, we
obtain convergence rates, under the form of a central limit theorem. These results
are new. They extend the works of [Gadat et al. 2018, Barakat & Bianchi 2021]| to
a general setting. In particular, we highlight the almost sure convergence result of
S-NAG in a non-convex setting, which is new to the best of our knowledge.

Next, we address the question of the avoidance of “traps”. In a non-convex set-
ting, the set of critical points of a function F'is generally larger than the set of local
minimizers. A “trap” stands for a critical point at which the Hessian matrix of F' has
negative eigenvalues, namely, it is a local maximum or saddle point. We establish
that the iterates cannot converge to such a point, if the noise is exciting in some
directions. The result extends previous works of [Gadat et al. 2018| obtained in the
context of SHB. This result not only allows to study a broader class of algorithms
but also significantly weakens the assumptions. In particular, [Gadat et al. 2018|
uses a sub-Gaussian assumption on the noise and a rather stringent assumption
on the stepsizes. The main difficulty in the approach of [Gadat et al. 2018] lies in
the use of the classical autonomous version of Poincaré’s invariant manifold theo-
rem. The key ingredient of our proof is a general avoidance of traps result, adapted
to non-autonomous settings, which we believe to be of independent interest. It
extends usual avoidance of traps results to a non-autonomous setting, by making
use of a non-autonomous version of Poincaré’s theorem [Dalec’kir & Krein 1974,
Kloeden & Rasmussen 2011].

Chapter organization. In Section 3.2, we introduce and study the ODE’s gov-
erning our general stochastic algorithm. We establish the existence and uniqueness
of the solutions, as well as the convergence to the set of critical points. In Sec-
tion 3.3, we introduce the main algorithm. We provide sufficient conditions under
which the iterates are bounded and converge to the set of critical points. A central
limit theorem is stated. Section 3.4 introduces a general avoidance of traps result
for non-autonomous settings. Next, this result is applied to the proposed algorithm.
Sections 3.5, 3.6 and 3.7 are devoted to the proofs of the results of Sections 3.2, 3.3
and 3.4, respectively.

Notations. Given an integer d > 1, two vectors z,y € R%, and a real «, we denote
by x ®y, 29% xz/y, |z|, and \/m the vectors in R? whose i-th coordinates are
respectively given by z;y;, =5, z;/yi, |xi, \/m . Inequalities of the form x < y are
to be read componentwise. The standard Euclidean norm is denoted | - |. Notation
MT represents the transpose of a matrix M. For z € R? and p > 0, the notation
B(z,p) stands for the open ball of R? with center x and radius p. We also write
R, = [0,00). If z € R? and A < RY, we write dist(z, A) = inf{[|z — 2| : 2/ € A}. By
L 4(x), we refer to the function that is equal to one if z € A and to zero elsewhere.
The set of zeros of a function h : R* — R? is zerh = {z : h(z) = 0}. Let D be a
domain in R%. Given an integer k& > 0, the class C¥(D, R) is the class of D — R maps
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such that all their partial derivatives up to the order k exist and are continuous. For
a function h € C¥(D,R) and for every i € {1,...,d}, we denote as oFh(z1,...,7q)
the k™ partial derivative of the function h with respect to ;. When k = 1, we just
write d;h(x1,...,2q). The gradient of a function F': RY — R at a point z € R? is
denoted as VF(z), and its Hessian matrix at = is V2F(x) as usual. For a function
S :R% — RY, the notation V.S(z) stands for the jacobian matrix of S at point x.

3.2 Ordinary Differential Equations

3.2.1 A general ODE

Our starting point will be a non-autonomous ODE which is almost identical to the

one introduced in [Belotto da Silva & Gazeau 2020] and close to the one in [Barakat & Bianchi 2021].
Let F be a function in C'(R? R), let S be a continuous R? — R‘i function, let

h,r,p,q: (0,00) = R be four continuous functions, and let ¢ > 0. Let vy € R‘i and

xg,mp € R%. Starting at v(0) = vy, m(0) = mg, and x(0) = xg, our ODE on R,

with trajectories in Z, a ]RflIr x R% x R? reads

v(t) = p()S(x(t) —a(t)v(t)
m(t) = h(O)VEFx(t)) — r(t)m(t) (ODE-1)

x(t) —m(t)/4/v(t) + &
This ODE can be rewritten compactly in the following form. Write zg = (vo, mg, o),

and let z(t) = (v(t),m(t),x(t)) € Z; for t e Ry. Let Z 2 R? x R? x R?, and define
the map g : Z; x (0,00) — Z as

p(t)S(z) —a(t)v
g(z,t) = | h(t)VEF(z) —r(t)m (3.1)
—m/y/v+e

for z = (v, m,x) € Z. With these notations, we can rewrite (ODE-1) as
z(0) = 29, z(t) = g(z(t),t) for t > 0.

By setting S(z) = VF(2)®? when necessary and by properly choosing the functions
h, r, p, and q, a large number of iterative algorithms used in Machine Learning
can be obtained by an Euler’s discretization of this ODE. For instance, choosing
h(t) = r(t) = a(t,\,a1) and p(t) = q(t) = a(t, )\, az) with a(t,\,a) = A71(1 —
exp(—Aa))/(1 — exp(—at)) and A, a1, 2 > 0, one obtains a version of the ADAM
algorithm [Kingma & Ba 2015] (see [Belotto da Silva & Gazeau 2020, Sections 2.4-
4.2] for details). To give another less specific example, if we set p = q = 0, then the
resulting ODE covers a family of algorithms to which the well-known HEAVY BALL
with friction algorithm [Attouch et al. 2000] belongs. For a comprehensive and more
precise view of the deterministic algorithms that can be deduced from (ODE-1) by



34 Chapter 3. Stochastic optimization with momentum

an Euler’s discretization, the reader is referred to [Belotto da Silva & Gazeau 2020,
Table 1].

In this chapter, since we are rather interested in stochastic versions of these
algorithms, Equation (ODE-1) will be the basic building block of the classical “ODE
method” which is widely used in the field of stochastic approximation [Benaim 1999|.
In order to analyze the behavior of this equation in preparation of the stochastic
analysis, we need the following assumptions.

Assumption 3.2.1. The function F belongs to C*(R% R) and VF is locally Lips-
chitz continuous.

Assumption 3.2.2. F is coercive, i.e., F(z) — +00 as |z| — +00.

Note that this assumption implies that the infimum F, of F' is finite, and the
set zer VF' of zeros of VF' is nonempty.

Assumption 3.2.3. The map S : R? — Ri 18 locally Lipschitz continuous.

Assumption 3.2.4. The continuous functions h,r,p,q: (0,+00) — R satisfy:

i) heCl((0,+%),Ry), h(t) < 0 on (0,+0) and the limit ho 2 limy_o h(t) is
positive.

ii) r and q are non-increasing and To a limy 00 r(t) , oo a limy o, q(t) are posi-
tive.

iii) p converges towards py as t — o0.

iv) For allt € (0,+00), r(t) = q(t)/4 and ro > qoo/4.

These assumptions are sufficient to prove the existence and the uniqueness of the
solution to (ODE-1) starting at a time ¢y > 0. The following additional assumption
extends the solution to ¢y = 0.

Assumption 3.2.5. Either h,r,p,q € C!([0,+),R,), or the following holds:

i) For every x € R, we have S(z) = VF ()2

ii) The functions g, qj2r’ t — th(t), t — tr(t), t — tp(t), t — tq(t) are bounded

near zero.
iii) There exists to > 0 such that for all t < to, 2r(t) —q(t) > 0.
iv) There exists § > 0 such that ? ,g e CH([0,6),Ry).

v) The initial condition zy = (vo, Mo, To) € Z4 satisfies

- _h(t) |
mo = VE(z0) U T 10 q(t)
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Remark 7. The functions h,r,p,q corresponding to ADAM satisfy these conditions.
We leave the straightforward verifications to the reader. We just observe here that
the function S that will correspond to our stochastic algorithm in Section 3.3 below
will satisfy Assumption 3.2.5-1) by an immediate application of Jensen’s inequality.

The following theorem slightly generalizes the results of [Belotto da Silva & Gazeau 2020,
Theorem 3 and Theorem 5].

Theorem 3.2.1. Let Assumptions 3.2.1 to 3.2.4 hold true. Consider zy € Z, and
to > 0. Then, there exists a unique global solution z : [ty,+0) — Z; to (ODE-1)
with initial condition z(tg) = zo. Moreover, z([ty, +0)) is a bounded subset of Z .
Ast — 400, z(t) converges towards the set

= {ze = (DS (24)/qo0,0,24) : Ty € Zer VF}. (3.2)

If, additionally, Assumption 3.2.5 holds, then we can take tg = 0.

Remark 8. Theorem 3.2.1 only shows the convergence of the trajectory z(t) towards
a set. Convergence of the trajectory towards a single point is not guaranteed when
the set T is not countable.

Remark 9. A simpler version of (ODE-1) is obtained when omitting the momentum
term. It reads:

p(£)S(x(t)) — alt)v(t)
—VF(x(t))/+/v(t) + €.
This ODE encompasses the algorithms of the family of RMSPROP [Tieleman € Hinton 2012,

as shown in [Barakat € Bianchi 2021, Belotto da Silva & Gazeau 2020]. The ap-
proach for proving the previous theorem can be adapted to (ODE-1") with only minor

(ODE-1')

—_——
X <

—~
~ ~~

S~— s
I

modifications. In the proofs below, we will point out the particularities of (ODE-1")
when necessary.

The following paragraph is devoted to a particular case of (ODE-1), which
does not satisfy Assumption 3.2.4, and which requires a more involved treatment
than (ODE-1").

3.2.2 The Nesterov case
The authors of [Cabot et al. 2009], [Su et al. 2016b] and others studied the ODE

(t) + %k(t) +VF(x(t) =0, a>0, FeC'(R%R),

which Euler’s discretization generates the well-known Nesterov’s accelerated gradi-
ent algorithm, see also [Attouch et al. 2018, Aujol et al. 2019]. This ODE can be
rewritten as

(ODE-N)
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which is formally the particular case of (ODE-1) that is taken for p(t) = q(t) = 0,
h(t) = 1, and r(t) = «/t. Obviously, this case is not covered by Assumption 3.2.4.
Moreover, it turns out that, contrary to the situation described in Remark 9 above,
this case cannot be dealt with by a straightforward adaptation of the proof of Theo-
rem 3.2.1. The reason for this is as follows. Heuristically, the proof of Theorem 3.2.1
is built around the fact that the solution of (ODE-1) “shadows” for large ¢ the solu-
tion of the autonomous ODE

V(t) = puS(x(t)) — qov(t)

m(t) = hooVI(’ )(X(t)) — reom(t)
m(t

IRVCE

and the latter can be shown to converge to the set YT defined in Equation (3.2),

-

—

o~

S~—
|

either under Assumption 3.2.4 or for the algorithms covered by Remark 9. This
idea does not work anymore for (ODE-N), for its large—t autonomous counterpart

can have solutions that do not converge to the critical points of F'. As an example
of such solutions, take d = 1 and F(x) = 22/2. Then, t ~ (cos(t),sin(t)) is an
oscillating solution of the latter ODE.

Yet, we have the following result. Up to our knowledge, the proof of the conver-
gence below as t — 400 is new.

Theorem 3.2.2. Let Assumptions 3.2.1 and 3.2.2 hold true. Then, for each xg €
R, there exists a unique bounded global solution (m,x) : Ry — R4 xR? to (ODE-N)
with the initial condition (m(0),x(0)) = (0,x0). Ast — +o0, (m(t),x(t)) converges
towards the set

T

>

{(0,z4) : xx € zer VF}. (3.3)

3.2.3 Related works

The continuous-time dynamical system (ODE-1) we consider was first introduced in
[Belotto da Silva & Gazeau 2020, Equation (2.1)] with S = VF®2. Theorem 3.2.1
above is roughly the same as [Belotto da Silva & Gazeau 2020, Ths. 3 and 5|, with
some slight differences regarding the assumptions on the function F', or Assump-
tion 3.2.4-iv). We point out that the main focus of [Belotto da Silva & Gazeau 2020]
is to study the properties of the deterministic continous-time dynamical system
(ODE-1). In the present chapter, we highlight that the purpose of Theorem 3.2.1
is to pave the way to our analysis of the corresponding stochastic algorithms in
Section 3.3.

Concerning Theorem 3.2.2, the existence and the uniqueness of a global so-
lution to (ODE-N) has been previously shown in the literature, for instance in
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[Cabot et al. 2009, Proposition 2.1] or in [Su et al. 2016b, Theorem 1]. The conver-
gence statement in Theorem 3.2.2 is new to the best of our knowledge. In partic-
ular, we stress that we do not make any convexity assumption on F'. The closest
result we are aware of is the one of Cabot-Engler-Gadat [Cabot et al. 2009]. In
[Cabot et al. 2009, Proposition 2.5], it is shown that if x(¢) converges towards some
point Z, then necessarily T is a critical point of F. Our result in Theorem 3.2.2
strengthens this statement, by establishing that x(¢) actually converges to the set
of critical points.

3.3 Stochastic Algorithms

In this section, we discuss the asymptotic behavior of stochastic algorithms that
consist in noisy Euler’s discretizations of (ODE-1) and (ODE-N) studied in the
previous section.

We first set the stage. Let (Z,.7, 1) be a probability space. Denoting as Z(R?)
the Borel o-algebra on RY, consider a Z(R?)® .7 -measurable function f : R x = —
R that satisfies the following assumption.

Assumption 3.3.1. The following conditions hold:
i) For every x € R, f(x,-) is p—integrable.
ii) For every s € 2, the map f(-,s) is differentiable. Denoting as V f(x,s) its
gradient w.r.t. x, the function V f(z,-) is integrable.

iii) There exists a measurable map r: RY x 2 — Ry s.t. for every x € R :
a) The map k(x,-) is u—integrable,
b) There exists € > 0 s.t. for every s € Z,
Vu,ve B(x,e), |Vf(u,s) — Vf(v,s)| <r(z,s)|u—2.
Under Assumption 3.3.1, we can define the mapping F : R? — R as
F(z) = Belf(x,€)] (3-4)

for all z € R?, where we write E¢p(€) = [p(&)u(d€). It is easy to see that the
mapping [ is differentiable,

VE(z) = Ec[Vf(z,8)]

for all z € R%, and VF is locally Lipschitz.
Let (yn)n>1 be a sequence of positive real numbers satisfying

Assumption 3.3.2. v,41/7, — 1 and ), v, = +0.

Define for every integer n > 1

n
Tn = Z’Yk
k=1

Let (Q, %, P) be a probability space, and let (£, : n = 1) be a sequence of iid random
variables defined from (92, .#,P) into (Z,.7, 1) with the distribution pu.
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3.3.1 General algorithm

Our first algorithm is a discrete and noisy version of (ODE-1). Let zg = (v, mo, z¢) €
Z. and hg, ro, po, qo € (0,0). Define for every n > 1

hin = (), T = 1(7), Pn = p(ma), and g, = q(7). (3.5)

The algorithm is written as follows.

Algorithm 1 (general algorithm)

Initialization: 2z € Z,.

for n = 1 to njier do
Un+1 = (1 - ’Yn+IQn)vn + 7n+1pnvf(xn>5n+1)®2
M1 = (1 = Yn4170) M0 + Yt 17nV f (T, §nt1)

Tn+l = Tp — ’7n+1mn+1/\/ Un+1 T € .

We suppose throughout this chapter that 1 — v,11¢g, = 0 for all n € N. This
will guarantee that the quantity /v, + € is always well-defined (see Algorithm 1).
This mild assumption is satisfied as soon as ¢y < %1 since the sequence (g¢,) is
non-increasing and the sequence of stepsizes (7,) can also be supposed to be non-
increasing.

Since this algorithm makes use of the function V f(z,£)®?, a strengthening of
Assumption 3.3.1 is required:

Assumption 3.3.3. In Assumption 3.53.1, Conditions ii) and iii) are respectively
replaced with the stronger conditions

ii’) For each x € R?, the function V f(x, )2 is p -integrable.
iti’) There exists a measurable map k : R x = — R, s.t. for every x € R%:

a) The map k(x,-) is u—integrable.
b) There exists € > 0 s.t.

Vv e Bz, ), |V f(u,8) = VI, 8)| v [V (,8)2 =V f(v,5)°%] < n(z,)|u—ovl.
Under Assumption 3.3.3, we can also define the mapping S : R* — R? as:
S(z) = E¢[V f(x,€)%]
for all x € R%. Notice that Assumptions 3.2.1 and 3.2.3 are satisfied for F' and S.
Assumption 3.3.4. Assume either of the following conditions.

i) There exists g = 2 s.t. for every compact set K = R?,

Sup B[V (@, €)% < o0 and Y9412 < oo
xek —
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ii) For every compact set KK < R, there exists a real ox # 0 s.t.

Ef exp<u, Vf(x, g) - VF(:U)>]]-IEIC
Ef exp<u, Vf($, 5)62 - S(x)>11x€lC

exp (U,%HUHQ/Q) and

<
< exp (o [lul?/2) |

for every x,u € R%. Moreover, for every a >0, 3. exp(—a/y,) < .
Remark 10. We make the following comments regarding Assumption 3.3.4.

o Assumption 3.5.4-1) allows to use larger stepsizes in comparison to the classical
condition Y, 72 < oo which corresponds to the particular case ¢ = 2.

e Recall that a random vector X is said to be subgaussian if there exists a real
o # 0 st B < o’ lul?/2 for every constant vector v € R, In Assump-
tion 3.3.4-1i), the subgaussian noise offers the possibility to use a sequence of
stepsizes with an even slower decay rate than in Assumption 3.3.4-1).

Assumption 3.3.5. The set F'({x : VF(x) = 0}) has an empty interior.

Remark 11. Assumption 3.3.5 excludes a pathological behavior of the objective
function F at critical points. It is satisfied when F € CF(RY, R) for k = d. Indeed,
in this case, Sard’s theorem stipulates that the Lebesgue measure of F({x : VF(x) =
0}) is zero in R.

Theorem 3.3.1. Let Assumptions 3.2.2, 3.2.4, and 3.3.2-3.3.5 hold true. Assume
that the random sequence (zp, = (Un,Mp,xy) @ n € N) given by Algorithm 1 is
bounded with probability one. Then, w.p.1, the sequence (z,) converges towards the
set T defined in Equation (3.2). If, in addition, the set of critical points of the
objective function F' is finite or countable, then w.p.1, the sequence (zy) converges
to a single point of T.

We now deal with the boundedness problem of the sequence (z,). We introduce
an additional assumption for this purpose.

Assumption 3.3.6. The following conditions hold.
i) VF is (globally) Lipschitz continuous.

ii) There exists C > 0 s.t. for all z € RY, E¢[|Vf(z,8)|*] < O(1 + F(x)),
ii) 3., 72 < 0.
Theorem 3.3.2. Let Assumptions 3.2.2, 3.2.4, 3.8.2, 3.3.3, 8.3.4-i) (with ¢ = 2)

and 3.3.6 hold. Then, the sequence (Vn, My, xy) given by Algorithm 1 is bounded
with probability one.

Remark 12. The above stability result requires square summable step sizes. Show-
ing the same boundedness result under the Assumption 3.3.4 that allows for larger
step sizes is a challenging problem in the general case. In these situations, the
boundedness of the iterates can be sometimes ensured by ad hoc means.
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Remark 13. We can also consider the noisy discretization of (ODE-1") introduced
. Remark 9 above. This algorithm reads

Un+1 = (1 - '7n+IQn)'Un + 7n+1pnvf(xna £n+1)®2 (3.6&)
Tn+1 = Tn — ’Yn+1vf($nu gn-ﬁ-l)/m (36b>

for (vo, o) € Ri x RY. With only minor adaptations, Theorem 3.3.1 and Theo-
rem 3.3.2 can be shown to hold as well for this algorithm. We refer to the concomi-
tant paper [Gadat & Gavra 2020, Sec. 2.2] for the link between this algorithm and the
seminal algorithms ADAGRAD [Duchi et al. 2011] and RMSPROP [Tieleman € Hinton 2012].

3.3.2 Stochastic Nesterov’s Accelerated Gradient (S-NAG)

S-NAG is the noisy Euler’s discretization of (ODE-N). Given a > 0, it generates
the sequence (my,, z,) on R? x R? given by Algorithm 2.

Algorithm 2 (S-NAG with decreasing steps)

Initialization: my = 0, 2o € R%.

for n = 1 to njter do
Mpt1 = (1 — aVny1/Tn)Mn + Vo1V (0, Enr1)
Tp+1 = Tn — Yn+1Mn+1 -

Assumption 3.3.7. Assume either of the following conditions.

i) There exists g = 2 s.t. for every compact set K = R?,

supEe|Vf (2,09 <0 and Y t9% <oo.
zell —

ii) For every compact set K < R?, there exists a real oxc # 0 s.t.
E¢ exp{u, Vf(2,£) — VF(z))1sexc < exp (of|ul?/2) ,
for every x,u € R%. Moreover, for every o >0, 3. exp(—a/y,) < .

Theorem 3.3.3. Let Assumptions 3.2.2, 8.3.1, 8.8.2, 8.3.5 and 3.5.7 hold true.
Assume that the random sequence (yn, = (mpn,zy) : n € N) given by Algorithm 2
is bounded with probability one. Then, w.p.1, the sequence (yy) converges towards
the set Y defined in Equation (3.3). If, in addition, the set of critical points of the
objective function F is finite or countable, then w.p.1, the sequence (yy) converges
to a single point of Y.

The almost sure boundedness of the sequence (y,) is handled in what follows.

Theorem 3.3.4. Let Assumptions 8.2.2, 3.8.1, 3.3.2 and 3.5.6 hold. Then, the
sequence (Yn = (Mmp,x,) : n € N) given by Algorithm 2 is bounded with probability
one.

Remark 14. Assumption 3.5.4-i) in Theorem 3.3.2 is not needed for Theorem 3.3.4.
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3.3.3 Central Limit Theorem

In this section, we establish a conditional central limit theorem for Algorithm 1.
Assumption 3.3.8. Let x, € zer VF. The following holds.
i) F is twice continuously differentiable on a neighborhood of x. and the Hessian
V2F(x,) is positive definite.
ii) S is continuously differentiable on a neighborhood of .

iii) There exists M > 0 and by > 4 s.t.

sup  Ee[|Vf(z,8)]] < 0. (3.7)
xeB(xx,M)

Under Assumptions 3.2.4-1) to iii), it follows from Equation (3.5) that the se-
quences (hy), (), (pn) and (g, ) of nonnegative reals converge respectively to hop, o0, Poo

and g where hy, 7o and go are supposed positive. Define v, = 0 poS (). Con-
sider the matrix

V 2 diag ((5 + v*)Q*%) . (3.8)

Let P be an orthogonal matrix s.t. the following spectral decomposition holds:

=

V%V2F(x*)V — Pdiag(my,--- ,mq) P71,
where m; < -+ < 74 are the (positive) eigenvalues of V%VQF(x*)V%. Define

| -V 0

where I is the d x d identity matrix. Then the matrix H is Hurwitz. Indeed, it
can be shown that the largest real part of the eigenvalues of H coincides with —L,

A To 4hoome
L=2<1—\/<1— = >v0>>0. (3.9)

Assumption 3.3.9. The sequence (v,) is given by v, = & for some a € (0,1],

where

Y0 > 0. Moreover, if o = 1, we assume that o > m

Theorem 3.3.5. Let Assumptions 3.2.4-1) to iii), 3.3.3, 3.5.8 and 3.3.9 hold. Con-
sider the iterates zp, = (Un, My, Ty) given by Algorithm 1. Set 6 29 if a <1 and
o2 1/(2v0) if o = 1. Assume that the event {z, — 2.}, where z, = (v4,0,x4), has
a positive probability. Then, given that event,

\/1/» [xnrrinx*] - N(O’ F) ’
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where = stands for the convergence in distribution and N (0,T') is a centered Gaus-
sian distribution on R*® with a covariance matriz T given by the unique solution to
the Lyapunov equation

(H + 0L5g)T + T(H + 0Lg) T = — [COV(hooVOf(x*, £)) 8] |

In particular, given {z, — 2.}, the vector \/yn (xn — x,) converges in distribution
to a centered Gaussian distribution with a covariance matriz given by:

Chry

29 20(0—7c0) (mp—p)?
O?LT(ﬂ—k Tt Ty =)+ 2(ro—=20) |1 0=1..4

Ty=ViP Plv:  (3.10)

where C 2 P~V 1E, [V (4, &)V f (20, €) | V2 P.
A few remarks are in order.

e The matrix I'y coincides with the limiting covariance matrix associated to the
iterates
{mn-H =Mpn + 'Yn-i—l(hoovvf(xna fn-i—l) - Toomn)

Tn+l = Tp — Yn+1Mn+1 -

This procedure can be seen as a preconditioned version of the stochastic heavy
ball algorithm |[Gadat et al. 2018| although the iterates are not implementable
because of the unknown matrix V. Notice also that the limiting covariance I'y
depends on v, but does not depend on the fluctuations of the sequence (vy,).

e When hy = 7o (which is the case for ADAM), we recover the expression of the
asymptotic covariance matrix previously provided in [Barakat & Bianchi 2021,
Section 5.3] and the remarks formulated therein.

e The assumption r > 0 is crucial to establish Theorem 3.3.5. For this reason,
Theorem 3.3.5 does not generalize immediately to Algorithm 2. The study of the
fluctuations of Algorithm 2 is left for future works.

3.3.4 Related works

In [Gadat et al. 2018|, Gadat, Panloup and Saadane study the SHB algorithm,
which is a noisy Euler’s discretization of (ODE-1) in the situation where h = r
and p = q = 0 (i.e., there is no v variable). In this framework, if we set h = r =
r > 0 in Algorithm 1 above, then Theorem 3.3.1 above recovers the analogous case
in |Gadat et al. 2018, Theorem 2.1], which is termed as the exponential memory
case. The other important case treated in [Gadat et al. 2018] is the case where
h(t) = r(t) = r/t for some r > 0, referred to as the polynomially memory case.
Actually, it is known that the ODE obtained for h(t) = r(t) = r/t and p =q =0
boils down to (ODE-N) after a time variable change (see, e.g., Lemma 3.5.3 below).



3.3. Stochastic Algorithms 43

Nevertheless, we highlight that the stochastic algorithm that stems from this ODE
and that is studied in |Gadat et al. 2018] is different from the S-NAG algorithm
introduced above which stems from a different ODE (ODE-N). Hence, the conver-
gence result of Theorem 3.3.3 for the S-NAG algorithm we consider is not covered
by the analysis of [Gadat et al. 2018|.

The specific case of the ADAM algorithm is analyzed in [Barakat & Bianchi 2021]
in both the constant and vanishing stepsize settings (see [Barakat & Bianchi 2021,
Ths. 5.2-5.4] which are the analogues of our Ths. 3.3.1-3.3.2). Note that we deal with
a more general algorithm in the present chapter. Indeed, Algorithm 1 offers some
freedom in the choice of the functions h, r, p, ¢ satisfying Assumption 2.4 beyond the
specific case of the ADAM algorithm studied in [Barakat & Bianchi 2021]. Apart
from this generalization, we also emphasize some small improvements. Regarding
Theorem 3.1, we provide noise conditions allowing to choose larger stepsizes (see As-
sumption 3.4 compared to [Barakat & Bianchi 2021, Assumption 4.2]). Concerning
the stability result (Theorem3.3.2), we relax [Barakat & Bianchi 2021, Assumption
5.3-(iii)] which is no more needed in the present chapter (see Assumption 3.3.6)
thanks to a modification of the discretized Lyapunov function used in the proof (see
Section 6.4 compared to [Barakat & Bianchi 2021, Section 9.2]).

In most generality, the almost sure convergence result of the iterates of Algo-
rithm 1 using vanishing stepsizes (Ths. 3.3.1-3.3.2) is new to the best of our knowl-
edge. Moreover, while some recent results exist for S-NAG in the constant stepsize
and for convex objective functions (see for e.g. [Assran & Rabbat 2020]), Ths. 3.3.3
and 3.3.4 which tackle the possibly non-convex setting are also new to the best of
our knowledge.

In the work [Gadat & Gavra 2020]| that was posted on the arXiv repository a few
days after our submission, Gadat and Gavra study the specific case of the algorithm
described in Equation (3.6) encompassing both ADAGRAD and RMSPRroP, with the
possibility to use mini-batches. For this specific algorithm, the authors establish a
similar almost sure convergence result to ours [Gadat & Gavra 2020, Theorem 1] for
decreasing stepsizes and derive some quantitative results bounding in expectation
the gradient of the objective function along the iterations for constant stepsizes
|Gadat & Gavra 2020, Theorem 2|. We highlight though that they do not consider
the presence of momentum in the algorithm. Therefore, their analysis does not cover
neither Algorithm 1 nor Algorithm 2.

In contrast to our analysis, some works in the literature explore the constant step-
size regime for some stochastic momentum methods either for smooth [Yan et al. 2018|
or weakly convex objective functions [Mai & Johansson 2020]. Furthermore, con-
cerning ADAM-like algorithms, several recent works control the minimum of the
norms of the gradients of the objective function evaluated at the iterates of the
algorithm over N iterations in expectation or with high probability [De et al. 2018,
Zhou et al. 2018, Chen et al. 2018, Zou et al. 2019, Chen et al. 2019, Zaheer et al. 2018,
Alacaoglu et al. 2020a, Défossez et al. 2020, Alacaoglu et al. 2020b] and establish
regret bounds in the convex setting |Alacaoglu et al. 2020b].

Similar central limit theorems to Theorem 3.3.5 are established in the cases of



44 Chapter 3. Stochastic optimization with momentum

the stochastic heavy ball algorithm with exponential memory [Gadat et al. 2018,
Theorem 2.4 and ADAM [Barakat & Bianchi 2021, Theorem 5.7|. In comparison to
|Gadat et al. 2018|, we precise that our theorem recovers their result and provides a
closed formula for the asymptotic covariance matrix I's. Our proof of Theorem 3.3.5
differs from the strategies adopted in [Gadat et al. 2018| and [Barakat & Bianchi 2021].

3.4 Avoidance of Traps

In Theorem 3.3.1 and Theorem 3.3.3 above, we established the almost sure conver-
gence of the iterates x, towards the set of critical points of the objective function
F for both Algorithms 1 and 2. However, the landscape of F' can contain what is
known as “traps” for the algorithm, namely, critical points where the Hessian matrix
of F' has negative eigenvalues, making these critical points local maxima or saddle
points. In this section, we show that the convergence of the iterates to these traps
does not take place if the noise is exciting in some directions.

Starting with the contributions of Pemantle [Pemantle 1990] and Brandiére and
Duflo [Brandiére & Duflo 1996|, the numerous so-called avoidance of traps results
that can be found in the literature deal with the case where the ODE that underlies
the stochastic algorithm is an autonomous ODE. Obviously, this is neither the case
of (ODE-1), nor of (ODE-N). To deal with this issue, we first state a general
avoidance of traps result that extends [Pemantle 1990, Brandiére & Duflo 1996]| to
a non-autonomous setting, and that has an interest of its own. We then apply this
result to Algorithms 1 and 2.

3.4.1 A general avoidance-of-traps result in a non-autonomous set-
ting

The notations in this subsection and in Sections 3.7.1-3.7.2 are independent from

the rest of the chapter. We recall that for a function h : R? —» R? we denote by

6fh(x1, ...,xq) the k™™ partial derivative of the function h with respect to ;.

The setting of our problem is as follows. Given an integer d > 0 and a continuous
function b : R? x Ry — R? we consider a stochastic algorithm built around the
non-autonomous ODE z(t) = b(z(t),t). Let z, € R? and assume that on V x Ry
where V is a certain neighborhood of z,, the function b can be developed as

b(z,t) = D(z — z) + e(z, 1), (3.11)

where e(z,, -) = 0, and where the matrix D € R¥*? is assumed to admit the following
spectral factorization: Given 0 < d~ < d and 0 < d™ < d with d~ +d* = d, we can
write

D=QAQ™', A= [A_ A+] , (3.12)

where the Jordan blocks that constitute A~ € RY ¥ (respectively At € Rd+Xd+)
are those that contain the eigenvalues \; of D for which R\, < 0 (respectively
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RN\; > 0). Since dt > 0, the point z, is an unstable equilibrium point of the ODE
z(t) = b(z(t),t), in the sense that the ODE solution will only be able to converge to
zy along a specific so-called invariant manifold which precise characterization will
be given in Section 3.7.1 below.

We now consider a stochastic algorithm that is built around this ODE. The
condition d* > 0 makes that z, is a trap that the algorithm should desirably avoid.
The following theorem states that this will be the case if the noise term of the
algorithm is omnidirectional enough. The idea is to show that the case being, the
algorithm trajectories will move away from the invariant manifold mentioned above.

Theorem 3.4.1. Given a sequence () of nonnegative deterministic stepsizes such
that 3, v = +0, >, 72 < +o0, and a filtration (F,), consider the stochastic
approzimation algorithm in RY

Zn4+1 = 2n + /Yn+1b(zn7 Tn) + VYn4+1Mn+1 + Yn+1Pn+1

where T, = > _y k. Assume that the sequences (n,) and (p,) are adapted to F,,
and that zy is Fo—measurable. Assume that there exists z, € R% such that Equa-
tion (3.11) holds true on V x Ry, where V is a neighborhood of z.. Consider the
spectral factorization (3.12), and assume that d* > 0. Assume moreover that the
function e at the right hand side of Equation (3.11) satisfies the conditions:

i) e(z4,-) = 0.

i) OnV x Ry, the functions 0yd¥e(z,t) exist and are continuous for 0 < n < 2
and 0 <k +n < 2.

iit) The following convergence holds :

lim  ||0ie(z,t)| =0. (3.13)

(Z,t)—>(z*,00)

iv) There exist ty > 0 and a neighborhood W < R? of z, s.t.

sup ||d2e(z,t)]| < + 0 and sup H&%e(z,t)“ < + .
ZEW,t=to W, t=to

Moreover, suppose that :
v) 3 lpn+1]?Lz,ew < 0 almost surely.
vi) limsup B[, 41]* | Znllz,ew < 00, and E[nng1 | Fllz,ew = 0.
vii) Writing N, = Q 'n, = (7, 7,) with 7% € R | for some ¢ > 0, it holds that

Hminf B[, 4 ]1° | Zn]leew = 1semw -

Then, P([zn, — 2«]) = 0.
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Remark 15. Assumptions i) to iv) of Theorem 3.4.1 are related to the function
e defined in Equation (3.11), which can be seen as a non-autonomous perturbation
of the autonomous linear ODE z(t) = D(z(t) — z.). These assumptions guarantee
the existence of a local (around the unstable equilibrium z.) non-autonomous invari-
ant manifold of the non-autonomous ODE z(t) = b(z(t),t) with enough regularity
properties, as provided by Proposition 3.7.1 and Proposition 3.7.3 below.

3.4.2 Application to the stochastic algorithms
3.4.2.1 Trap avoidance of the general algorithm 1

In Theorem 3.3.1 above, we showed that the sequence (z,) generated by Algorithm 1
converges almost surely towards the set T defined in Equation (3.2). Our purpose
now is to show that the traps in T (to be characterized below) are avoided by the
stochastic algorithm 1 under a proper omnidirectionality assumption on the noise.

Our first task is to write Algorithm 1 in a manner compatible with the state-
ment of Theorem 3.4.1. The following decomposition holds for the sequence (z, =
(Un, My, Tp ), n € N) generated by this algorithm:

Zn+l = Zn T 'Yn+lg(zna Tn) + VYt 1Mn+1 + Vnr1Pntls

n Mn
’ \/vmn-i-a - \/vn:;l-&-a
with respect to the filtration (.%,) which is defined by Equation (3.28).

Observe from Equation (3.2) that each z, € T is written as 2z, = (v.,0,y)
where z, € zer VF, and v, = q;'peoS(7,) (in particular, z, and z, are in a one-

where pp41 = (0 ,0 ), and where 7,41 is the martingale increment

to-one correspondence). We need to linearize the function g(-,¢) around z,. The
following assumptions will be required.

Assumption 3.4.1. The functions F and S belong respectively to C3(R%, R) and C%(RY,R%).

Assumption 3.4.2. The functions h,r,p,q belong to C*((0,0),R,) and have bounded
derivatives on [tg, +00) for some to > 0.

Lemma 3.4.2. Let Assumptions 3.2.4-i) to iii), 3.4.1 and 3.4.2 hold. Let z, =
(Us,0,24) € Y. Then, for every z € Z; and every t > 0, the following decomposition
holds true:

g(z,t) = D(z — z) + e(z,t) + c(t),

—qoolg 0 P VS (24) p(t)S(zs) — a(t)vs
where D = 0 —roly hoV2F(2,) |, ct) = 0 ,
0 -V 0 0

and the function e(z,t) (defined in Section 3.7.3.1 below for conciseness) has the
same properties as its analogue in the statement of Theorem 3.4.1.

Using this lemma, the algorithm iterate z,,1 can be rewritten as an instance of
the algorithm in the statement of Theorem 3.4.1, namely,

Zn+l = Zn + 7n+1b(Zm Tn) + Yn+1Tn+1 + Yn+1Pn+1, (3-14>
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where in our present setting, b(z,t) = g(z,t) — c(t) = D(z — z+) + e(z,t) and
pn = ¢(Th—1) + pn. In the following assumption, we use the well-known fact that
a symmetric matrix H has the same inertia as AHAT for an arbitrary invertible
matrix A.

Assumption 3.4.3. Let 2, € zer VF, let vy = q'peoS(xs), and define the diagonal
1
matriz V = diag((ve +€)©72) as in (3.8). Assume the following conditions:

i) 3 (GooPn — Poon)® < 0,

ii) The Hessian matriz V?F(z,) has a negative eigenvalue.

iii) There exists 6 > 0 such that Supgep(y, 5 Ee[|[Vf(z,8)]?] < 0.

iv) Defining I1,, as the orthogonal projector on the eigenspace of V%V2F(a:*)V%
that is associated with the negative eigenvalues of this matrix, it holds that

I,V B (V [ (20, €) = VE(@.))(Vf (20, €) = VF(2,)) VL, # 0.

Theorem 3.4.3. Let Assumptions 3.2.4, 3.5.83, and 3.4.1, 8.4.2 hold true. Let
zy € T be such that Assumption 3.4.3 holds true for this z.. Then, the eigenspace
associated with the eigenvalues of D with positive real parts has the same dimension
as the eigenspace of V2 F (z) associated with the negative eigenvalues of this matriz.
Let (zp, = (Un, mp,x,) : n € N) be the random sequence generated by Algorithm 1
with stepsizes satisfying Y., yn = +9 and X, V2 < +00. Then, P([2, — 2.]) = 0.

The assumptions and the result call for some comments.

Remark 16. The definition of a trap as regards the general algorithm in the state-
ment of Theorem 3.4.1 is that the matriz D in Equation (3.11) has eigenvalues with
positive real parts. Theorem 3.4.3 states that this condition is equivalent to V> F ()
having negative eigenvalues. What’s more, the dimension of the invariant subspace
of D corresponding to the eigenvalues with positive real parts is equal to the dimen-
sion of the negative eigenvalue subspace of V2F(x,). Thus, Assumption 3.4.3-iv)
provides the “largest” subspace where the noise energy must be non zero for the pur-
pose of avoiding the trap.

Remark 17. Assumptions 3.4.2 and 3.4.53-1) are satisfied by many widely studied
algorithms, among which RMSPROP and ADAM.

Remark 18. The results of Theorem 3.4.3 can be straightforwardly adapted to the
case of (ODE-1"). Assumption 3.4.3-iv) on the noise is unchanged.

In the case of the S-NAG algorithm, the assumptions become particularly sim-
ple. We state the afferent result separately.
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3.4.2.2 Trap avoidance for S-NAG

Assumption 3.4.4. Let x, € zer VF and let the following conditions hold.
i) The Hessian matriz V?F(x,) has a negative eigenvalue.

i) There exists 6 > 0 such that Supgep(y, 5 Ee[|[Vf(z,8)]*] < 0.

iii) TEe(Vf(24,&) — VE(22))(V (24, 6) — VF(2,)) T, # 0, where 11, is the
orthogonal projector on the eigenspace of V2F(x,) associated with its negative
ergenvalues.

Theorem 3.4.4. Let Assumptions 3.2.4, 3.83.1, 8.4.1 and 8.4.4 hold. Define y, =
(0,24). Let (yn, = (mp,x,) : n € N) be the random sequence given by Algorithm 2
with stepsizes satisfying Y., yn = +0 and >, v < +00. Then, P([y, — v4]) = 0.

3.4.3 Related works

Up to our knowledge, all the avoidance of traps results that can be found in the lit-
erature, starting from |Pemantle 1990, Brandiére & Duflo 1996], refer to stochastic
algorithms that are discretizations of autonomous ODE’s (see for e.g., [Benaim 1999,
Sec. 9] for general Robbins Monro algorithms and [Mertikopoulos et al. 2020a, Sec. 4.3]
for SGD). In this line of research, a powerful class of techniques relies on Poincaré’s
invariant manifold theorem for an autonomous ODE in a neighborhood of some
unstable equilibrium point. In our work, we extend the avoidance of traps results
to a non-autonomous setting, by borrowing a non-autonomous version of Poincaré’s
theorem from the rich literature that exists on the subject [Dalec’kit & Krein 1974,
Kloeden & Rasmussen 2011].

In |Gadat et al. 2018|, the authors succeeded in establishing an avoidance of
traps result for their non-autonomous stochastic algorithm which is close to our S-
NAG algorithm (see the discussion at the end of Section 3.3.4 above), at the expense
of a sub-Gaussian assumption on the noise and a rather stringent assumption on the
stepsizes. The main difficulty in the approach of [Gadat et al. 2018] lies in the use
of the classical autonomous version of Poincaré’s theorem (see |Gadat et al. 2018,
Remark 2.1]). This kind of difficulty is avoided by our approach, which allows to
obtain avoidance of traps results with close to minimal assumptions. More recently,
in the contribution of [Gadat & Gavra 2020] discussed in Sec. 3.3.4, the authors es-
tablish an avoidance of traps result ([Gadat & Gavra 2020, Theorem 3|) for the al-
gorithm described in Equation (3.6) using techniques inspired from [Pemantle 1990,
Benaim 1999|. As previously mentioned, this recent work does not handle momen-
tum and hence neither Algorithm 1 nor Algorithm 2. Moreover, as indicated in our
discussion of [Gadat et al. 2018], our strategy of proof is different.

Taking another point of view as concerns the trap avoidance, some recent works
[Lee et al. 2019, Du et al. 2017, Jin et al. 2017, Panageas & Piliouras 2017, Panageas et al. 2019]
address the problem of escaping saddle points when the algorithm is deterministic
but when the initialization point is random. In contrast to this line of research, our
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work considers a stochastic algorithm for which randomness enters into play at each
iteration of the algorithm via noisy gradients.

3.5 Proofs for Section 3.2

3.5.1 Proof of Theorem 3.2.1

The arguments of the proof of this theorem that we provide here follow the approach
of |Belotto da Silva & Gazeau 2020] with some small differences. Close arguments
can be found in [Barakat & Bianchi 2021]. We provide the proof here for com-
pleteness and in preparation of the proofs that will be related with the stochastic
algorithms.

3.5.1.1 Existence and uniqueness

The following lemma guarantees that the term 4/v(t) + ¢ in (ODE-1) is well-defined.

Lemma 3.5.1. Let tg € Ry and T € (tp,©]. Assume that there exists a solution
z(t) = (v(t),m(t),x(t)) to (ODE-1) on [to,T) for which v(to) = 0. Then, for all
te [to,T), V(t) = 0.

Proof. Assume that v 2 inf{t € [to,T), v(t) < 0} satisfies v < T. 1If v(ty) > 0,
Gronwall’s lemma implies that v(t) > v(to)exp(— S;O q(t)) on [to,v] which is in
contradiction with the fact that v(v) = 0. If v(tp) = 0, since v < T, there exists
t1 € (to,v) s.t. v(t1) < 0. Hence, using the first equation from (ODE-1), we obtain
v(t1) > 0. This brings us back to the first case, replacing to by t;. O

Recall that F, = inf F' is finite by Assumption 3.2.2. Of prime importance in
the proof will be the energy (Lyapunov) function £ : Ry x Z; — R, defined as

2
E(h,2) = h(F(z) — F,) + % : (3.15)

m

(v + €)©%

for every h = 0 and every z = (v,m,x) € Z,. This function is slightly differ-
ent from its analogues that were used in [Alvarez 2000, Barakat & Bianchi 2021,
Belotto da Silva & Gazeau 2020].

Consider (t,z) € (0,+0w0) x Z; and set z = (v,m,z). Then, using Assump-
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tion 3.2.1, we can write

atg(h(t)v Z) + <Vzg(h(t)? Z)’g(zv t)>
1 m®?

= RO~ F) = T o5t a0
e WOV —rm) — (T V)
2
a0y _m [ o(0) gy
<= (0~ ") | +h0EE - R - P, T
(3.16)

With the help of this function, we can now establish the existence, the uniqueness
and the boundedness of the solution of (ODE-1) on [tg, 00) for an arbitrary ¢y > 0.

Lemma 3.5.2. For each ty > 0 and zy € Z,, (ODE-1) has a unique solution on
[to, ) starting at z(tg) = zo. Moreover, the orbit {z(t) : t = to} is bounded.

Proof. Let to > 0, and fix zg € Z,. On each set of the type [to,to + A] x B(z0, R)
where A, R > 0 and B(z, R) < (—¢,%0)? x R? x R?, we easily obtain from our
assumptions that the function g defined in (3.1) is continuous, and that g(-,t) is
uniformly Lipschitz on ¢ € [tg, tg + A]. In these conditions, Picard’s theorem asserts
that (ODE-1) starting from z(typ) = zp has a unique solution on a certain maximal
interval [tg,T"). Lemma 3.5.1 shows that v(¢) = 0 on this interval.

Let us show that 7' = co. Applying Inequality (3.16) with (v, m,x) = (v(t), m(t),x(¢))
and using Assumption 3.2.4, we obtain that the function ¢t — E(h(t),z(t)) is decreas-
ing on [tg,T). By the coercivity of F' (Assumption 3.2.2) and Assumption 3.2.4—
i), we get that the trajectory {x(¢)} is bounded. Recall the equation m(t) =
h(t)VF(x(t)) — r(t)m(t). Using the continuity of the functions VF, h and r along
with Gronwall’s lemma, we get that {m(¢)} is bounded if T' < 0. We can show a
similar result for {v(¢)}. Thus, {z(t)} is bounded on [to,T) if T < oo which is a
contradiction, see, e.g., [Hartman 2002, Cor.3.2|.

It remains to show that the trajectory {z(¢)} is bounded. To that end, let us
apply the variation of constants method to the equation m(t) = h(¢)VF(x(t)) —
r(t)m(t). Writing R(t) = SIO r(u) du, we get that

% (¢"Om(n)) = " On()VF(x(1).

Therefore, for every t > tg,
t
m(t) = e FOm(to) + f MW =ROK (4)V F (x(u))du .
to

Using the continuity of VF' together with the boundedness of x, Assumption 3.2.4
and the triangle inequality, we obtain the existence of a constant C' > 0 independent
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of ¢ s.t.

t t
[m(#) = m(to)l| = [Im(to)]| < Chito) f o L) ds g,

to

t
< Ch(to) f emrolt=u) gy, < Chl0)

to To

The same reasoning applies to v(t) using the continuity of S and Assumption 3.2.4.
This completes the proof. O

We can now extend this solution to tg = 0 along the approach of [Belotto da Silva & Gazeau 2020,
where the detailed derivations can be found. The idea is to replace h(t) with
h(max(n,t)) for some 7 > 0 and to do the same for p, q, and r. It is then easy
to see that the ODE that is obtained by doing these replacements has a unique
global solution on R;. By making n — 0 and by using the Arzelad-Ascoli theorem
along with Assumption 3.2.5, we obtain that (ODE-1) has a unique solution on R

3.5.1.2 Convergence

The first step in this part consists in transforming (ODE-1) into an autonomous
ODE by including the time variable into the state vector. More specifically, we
start with the following ODE:

) I G R B | R

then, we perform the following change of variable in time

ol

allowing the solution to lie in a compact set.

We initialize the above ODE at a time instant {5 > 0. Define the functions
H,R,P,Q : Ry — R, by setting H(s) = h(1/s), R(s) = r(1/s), P(s) = p(1/s);
Q(s) = q(1/s) for s > 0; H(0) = hg, R(0) = ro, P(0) = py and Q(0) = go. Our
autonomous dynamical system can then be described by the following system of
equations:

3
=
~—
|
I T

£) (3.17)

(t) (D+e
§(t) =

X

Since the solution of the ODE §(t) = —s(¢)? for which s(tg) = 1/to is s(t) = 1/t,
the trajectory {s(t)} is bounded. The three remaining equations are a reformulation
of (ODE-1) for which the trajectories have already been shown to exist and to be
bounded in Lemma 3.5.2. In the sequel, we denote by & : Z, x Ry — Z, x R, the
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semiflow induced by the autonomous ODE (3.17), i.e., for every u = (z,s) € Z4 X
Ry, ®(u,-) is the unique global solution to the autonomous ODE (3.17) initialized at
u. Observe that the orbits of this semiflow are precompact. Moreover, the function
®((z,0), ) is perfectly defined for each z € Z since the associated solution satisfies
the ODE (3.19) defined below, which three first equations satisfy the hypotheses of
Lemma 3.5.2.

Consider now a continuous function V' : Z; x Ry — R defined by:

V(u)=E(H(s),2), u=(z1s)€Z; x(0,0).
As for Inequality (3.16) above, we have here that

2
d

GV @) < - (i - 1P|,

(v(t) + )5

p(t)

. m(t)®2
+h@)(EFX() — F1) = =S (1)), 5)

(v(t) +2)°2

if s > 0, and the same inequality with (h(¢), p(¢),r(t),q(t)) being replaced with
(0, Pooy Toos o) Otherwise.
Since VoCD( +) is non- increasing and nonnegative, we can define V, 2 limyo V(®(u,t)).

Let w(u) 2 MNs=0 Ut>s ) be the w-limit set of the semiflow ® issued from wu.
Recall that w(u) is an 1nvar1ant set for the flow ®(u,-), and that

dist(®(u, t), w(u)) = 0,
see, e.g., |[Haraux 1991, Theorem 1.1.8]). In order to finish the proof of Theo-
rem 3.2.1, we need to make explicit the structure of w(u).
We know from La Salle’s invariance principle that w(u) < V~1(Vy). In partic-
ular,

Vy e w(u), Vit =0, V(P(y,t)) =V(y) = Vi (3.18)

by the invariance of w(u).
From ODE (3.17), we have that any y € w(u) is of the form y = (z,0) since
s(t) — 0. As a consequence, ®(y, -) is a solution to the autonomous ODE

v(t) —pooS( (1) — quov(t)
m(t) = F(x(t)) — room(t
8 = V) oy 510
OO
s(t) =0.

The three first equations can be written in a more compact form :

2(t) = goo(z(t)) (3.20)
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where z(t) = (v(t), m(t),x(t)), and

PeoS(T) = goov
g (2) = tli}rg}g(z,t) = | hoVF(x) — room

—m/y/v+e

for each z € Z,. Consider y = (v, m,x,0) € w(u). Using Equation (3.18), we obtain
that dV (®(y,t))/dt = 0, which implies that

(re-%)

for all (v(t),m(t),x(t),0) = ®(y,t). As a consequence, Assumption 3.2.4-iv) gives

m(t) = m = 0, and then, x(¢) = x for some x s.t. VF(z) = 0 using ODE (3.19).

We now turn to showing that v(t) = v = ppS(x)/qs. We have proved so far that

any element y € w(u) is written y = (v,0,x,0) where VF(z) = 0. The component

v(-) of ®(y,-) is a solution to the ODE v(t) = pyS(x) — quov(t) and is thus written
oS (x) oS (x)

v(t) = P2 e—qwt<v - QT). (3.21)

2

+ B8 (x(1)),

m(t)
(v(t) + )7

Fixing z, let S, be the section of w(u) defined by:
Spw(u) = {y cew(u) : y=(0,0,2,0), 0 € R‘i} .

As w(u) is invariant, we have S;w(u) = S;®(w(u),t) for all ¢ = 0. Since the
set {# € R%s.t.(,0,2,0) € Syw(u)} lies in a compact, we deduce from Equa-
tion (3.21) that this set is reduced to the singleton {pyS(x)/gx} and in particular
v = ppS(2)/qe. Therefore, the union of w-limit sets of the semiflow ® induced by
ODE (3.17) coincides with the set of equilibrium points of this semiflow. The latter
set itself corresponds to the set of points (z,0) s.t. z € zer go. It remains to notice
that T = zer gy to finish the proof.

Remark 19. Commenting on Remark 9, the same proof works for (ODE-1") by
using the function F' — F, as a Lyapunov function. The corresponding limit set (as
t — +00) is then of the form

{Zoo = (Vep, Tp) € Ri x R? VF(Zx) = 0,00 = poS(Tw)/qoo}-

Similarly, if we set p = q =0 in (ODE-1) and we keep what remains in Assump-
tion 3.2.4, the function h(t)(F(z)— F.) + 5|m|* works as a Lyapunov function, and
the limit set has the form {(0,z) : VF(z) = 0}.

3.5.2 Proof of Theorem 3.2.2

The existence and the uniqueness of the solution to (ODE-N) have been shown in
the literature. We refer to [Cabot et al. 2009, Proposition 2.1-2.2.c)] for an identical
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statement of this result and [Su et al. 2016b, Theorem 1, Appendix A| for a complete
proof. The boundedness of the solution follows immediately from the coercivity of
F together with the fact that the function ¢ — F(x(t)) + 3|m(t)|? is nonincreasing.

Concerning the convergence statement, our proof is based on comparing the solu-
tions of (ODE-N) to the solutions of the ODE in [Gadat et al. 2018, Equation (2.3)].
We first note that under a change of variable, a solution to (ODE-N) gives a solution
to [Gadat et al. 2018, Equation (2.3)].

Lemma 3.5.3. Let (m,x) be a solution to (ODE-N). Define y(t) =
X (H\/i) , with k = /2a+ 2 and B = %2. Then, (y,u) verifies

{Y(t) = F(VF@u(®) - y(t)
u(t) = —y(t).

Proof. By simple differentiation, we get:

y(t) = g [VF (x(m/%)) - %m (m)] o (mﬁ) _ B R -y,

K At t
o(t) = —2iﬁm (5vE) = —y(0).
O

Consider a solution (m,x) of (ODE-N) starting at (mg, o) € RY x R%. As in
Section 3.5.1.2, for every ¢ty > 0, on [tg, +00), we have that (m,x,s) is a solution to
the autonomous ODE

x(t)  =-—m(t) (3.23)
(t) = —s(t)?,

starting at (mg, zo, 1/tg). Denote by ®n = (PR}, D%, %) the semiflow induced by
ODE (3.23) and wy((mo, zo, 1/to)) its limit set.

Define (y, u) as in Lemma 3.5.3. Starting at (y(to), u(to), 1/to), we also have that
(y,u,s) is a solution on [tp, +0) to the “autonomized” Heavy-Ball ODE

y(t) = Bs)(VF(u(t))) —y(t))
y(t) (3.24)
s(t)?.
Denote by @ = (®Y;, @Y, ®%;) the semiflow induced by ODE (3.24) and wg ((y(to), u(to), 1/t0))
its limit set.

Lemma 3.5.4. For any compact set K < R and any T > 0, the family of
functions {‘I>(z, ) [0,T] — RQdH}zeK ’
compact in (CO([0, T], R24H1) ||-]|0)-

where ® is either gy or Py, is relatively
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Proof. The map ® : R24+1 x R, — R24*1 is continuous, hence uniformly continuous
on K x [0,T]. The result follows from the application of the Arzela-Ascoli theorem

to the family {®(z,-) : [0,T] — R*¥*+1} . -

Let (m,z,0) € wn((mo,xo,1/tp)). There exists a sequence (tx) of nonnega-
tive reals such that (m,z,0) = limg_o(m(tx),x(tx),1/tx). For any T > 0, us-
ing Lemma 3.5.4, up to an extraction, we can say that the sequence of functions
{@n((m(tr),x(tr), 1/tr), ) }x converges towards (m, X, 0) in C°([0, T], R?), where (rn, X)

is a solution to

{rjw(t) - V() (3.25)
X(t)  =-—m(t),
with (m(0),%(0)) = (m,z). Moreover, by Lemma 3.5.3, we also have that:
sup ||(sVh) = BF((m(t), x(81), 1/t8), kV/h) |
hel0,T2 /x2]
= sup [R(sV) = B((m{t) (1), 1 /1) B)|| —— 0. (3.26)

hel[0,72/k2]

Using Lemma 3.5.4, up to an additional extraction, we get on C%([0, T?%/x?], R24+1)
that {®g((x(tx), m(tx), 1/tx), )}k converges to (u,y,0), where (u,y) is a solution to

{W) =0 (3.27)
u(t) = —y(t).

Therefore, u(t) = A 4+ Bt for some A and B in R?. Imagine that B # 0. We
previously proved that x (and therefore u) is bounded by some constant C' > 0.
Let 7" > CH?H. Up to an extraction, we obtain that {® g ((x(tx), m(tx), 1/tk), )}k
converges to u’ on C°([0, T'], R?¢*1), with u’(t) = A’ + B't for some A’ and B’ in R%.
We then have by uniqueness of the limit that A’ = A and B’ = B. As a consequence,
|lu'(T")]| = ||A + BT'|| > C and we obtain a contradiction. Hence B = 0.

This implies that u is constant. Then, if we go back to Eqs. (3.26) and (3.25),
we get that X is constant, hence m = 0 and then VF(X) = 0. In particular, this

means that m = m(0) = 0 and VF(x) = VF(x(0)) = 0.

3.6 Proofs for Section 3.3

3.6.1 Preliminaries

We first recall some useful definitions and results. Let ¥ represent any semiflow on
an arbitrary metric space (F,d). Asin the previous section, a point z € F is called an
equilibrium point of the semiflow ¥ if ¥(z,¢) = z for all ¢ = 0. We denote by Ay the
set of equilibrium points of ¥. A continuous function V : £ — R is called a Lyapunov
function for the semiflow W if V(¥ (z,t)) < V(z) forall z € F and allt > 0. It is called
a strict Lyapunov function if, moreover, {z € E : Vt = 0, V(¥(z,t)) = V(2)} = Ay.
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If V is a strict Lyapunov function for ¥ and if z € E is a point s.t. {¥(z,t) : ¢t >
0} is relatively compact, then it holds that Ay # @ and d(V¥(z,t),Ay) — 0, see
[Haraux 1991, Theorem 2.1.7|. A continuous function z : [0, +00) — E is said to be
an asymptotic pseudotrajectory (APT, [Benaim & Hirsch 1996|) for the semiflow ¥
if limy—, 4 o0 SUPepo, 7 d(2(t + 5), U(2(),5)) = 0 for every T'€ (0, +o0).

3.6.2 Proof of Theorem 3.3.1

Recall that @ is the semiflow induced by the autonomous ODE (3.17) which is an
“autonomized” version of our initial (ODE-1). In the remainder of this section, the
proof will be divided into two main steps : (a) we show that a certain continuous-
time linearly interpolated process constructed from the iterates of our algorithm 1 is
an APT of ®; (b) we exhibit a strict Lyapunov function for a restriction to a carefully
chosen compact set of a well chosen semiflow related to ®. Then, we characterize the
limit set of the APT using [Benaim 1999, Theorem 5.7| and [Benaim 1996, Propo-
sition 3.2]. The sequence (z,) converges almost surely to this same limit set.

(a) APT. For every n > 1, define z, = (v, My, zp—1) (note the shift in the index
of the variable z). We have the decomposition

Zn41 = Zn + Yn+19(Zn, Tn) + Yntr1Mnt1 + Yot 1S0+1 5

where ¢ is defined in Equation (3.1),

Tin+1 = (pn(vf(xnafn-i-l)@Q - S(xn))v hn<Vf(.%'n,§n+1) - VF(l'n)), O) ) (3'28)

is a martingale increment and where we set ¢,11 = (g}l’ £ Sl S Jr1) with the com-
ponents defined by:

§5+1 = pn(S(fEn) - S((L’n_l)>
§,T+1 = hn(VF(zy) — VF(xn—I»

Mn

s =G Dyt

We first prove that ¢, — 0 a.s. by considering the components separately. The
components ¢ ; and ¢/, ; converge a.s. to zero by using Assumptions 3.2.1, 3.2.3,
together with the boundedness of the sequences (p,) and (h,) (which are both
convergent). Indeed, since VF is locally Lipschitz continuous and the sequence (z;,)
is supposed to be almost surely bounded, there exists a constant C' s.t. |[VF(x,) —
VEF(2n-1)| < Clzn—zn-1] < 45 ]my|. The same inequality holds when replacing
VF by S which is also locally Lipschitz continuous. The component ¢, ; also
converges a.s. to zero by observing that |7 | < [1 — 2% |.|mn /v and using
Assumption 3.3.2 together with the a.s. boundedness of (z,). Now consider the
martingale increment sequence (7)), adapted to F,,. Take 6 > 0. Since (zy,) is a.s

bounded, there is a constant C’ > 0 such that P(sup ||z, || > C’) < 4. Denoting
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Nn 2 Nn1|e,|<cr and combining Assumptions 3.2.4 with 3.3.4-1) we can show using
convexity inequalities that
sup E|fjn41[ < oo.
n

Then, we deduce from this result together with the corresponding stepsize assump-
tion from 3.3.4-1) and [Benaim 1999, Proposition 4.2] (see also |[Métivier & Priouret 1987,
Proposition 8|) the key property:

L—-1
VT >0, maX{HZ %HﬁkHH : L=n+1,...,J(Tn+T)}£>O (3.29)

n—00
k=n

where J(t) = max{n >0 : 7, < t}. Hence, for all T > 0, with probability at least
1-96:

n—o0

L-1
maX{H Z ’Yk_l,.l'f]k.l,.l” s L=n+1,...,J(m, + T)} — 0. (3.30)
k=n

Since  can be chosen arbitrary small, Equation (3.30) remains true with probability
1. This result also holds under Assumption 3.3.4-ii) (instead of 3.3.4-1)) by applying
[Benaim 1999, Proposition 4.4].

Let z: [0,+00) — Z,; be the continous-time linearly interpolated process given

Zn-t—l — Zn
Tn+1
(where 7, = 33, 7). Let to > 0. Define w : [tg,0) — Z x (0,1/to] by

z(t) =ZzZp + (t — 1) (Yne N, Vt € [Th, Tnt1))

u(t) = [zl(/i)] , for t>ty>0.

Using Equation (3.30) and the almost sure boundedness of the sequence (zy)
along with the fact that ¢, converges a.s. to zero, it follows from [Benaim 1999,
Proposition 4.1, Remark 4.5] that w(t) is an APT of the already defined semiflow ®
induced by (3.17). Remark that it also holds that z(¢) is an APT of the semiflow
®* induced by (3.20). As the trajectory of u(t) is precompact, the limit set

L(u) = (] u([t,0))

t=to
is compact. Moreover, it has the form
S A —
L(u)= ||, where §= ) ([t 0)). (3.31)
t=to

Our objective now is to prove that
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In order to establish this inclusion, we study the behavior of the restriction ®|L of
the semiflow ® to the set L (which is well-defined since L is ®-invariant). Remark
that -
B|L - [ i } ,
where &% is the semiflow associated to (3.20). In the second part of the proof, we
establish Equation (3.32) combining item (a) we just proved with [Benaim 1999,
Theorem 5.7] and [Benaim 1999, Proposition 6.4|. In order to use the latter propo-
sition, we prove a useful proposition in item (b).
(b) Strict Lyapunov function and convergence. For every § > 0 and every
z = (v,m,z) € Z,, define:

Ws(v, m, x) 2 Ex(2) = 8(VF(x),m) + 8| geov — peoS(2)|?, (3.33)

where, under Assumption 3.2.4-i), the function &£ is defined by

2
m

(v + E)Qi

>

En(z) = lim E(t,2) = ho(F(x) — F¥) +

1
t—+o0 2 (3:34)

Proposition 3.6.1. Let tg > 0 and let Assumptions 3.2.1 to 8.2.4 and 3.3.5 hold
true. Let S be the limit set defined in Equation (3.31). Let & : 8 x [tg, +00) — S
be the restriction of the semiflow ®* to S i.e., 600(2’75) = ®%(z,t) forallze S,t >
to. Then,

i) S is compact.
ii) ” isa well-defined semiflow on S.
ii1) The set of equilibrium points of D s equal to Ago N S.

iv) There ezists § > 0 s.t. Ws is a strict Lyapunov function for the semiflow .

Proof. The first point is a consequence of the definition of .S and the boundedness of
z. The second point stems from the definition of ®*. Observing that 3% is valued
in S, the third point is immediate from the definition of Agx. We now prove the last
point. Consider z € § and write ®”(z, £) under the form & (z,¢) = (v(t), m(t), x(t)).
Notice that this quantity is bounded as a function of the variable ¢. For any map
W : Z, — R, define for all ¢ > to, Lw(t) 2 limsup, o5 H(W(® (z,t + 5)) —
W(®”(2,t))). Introduce G(z) = —(VF(z),m) and H(z) 2 |geov — pooS()|? for
every z = (v,m,z) € Z;. Consider § > 0 (to be specified later on). We study
Ly, = Le, +06Lg + 6Ly. Note that 7 (z,t) € S n Z, for all t > t by an
analogous result to Lemma 3.5.1 for ®©. Thus, t — E,(® 7 (z,t)) is differentiable
at any point ¢t > to and Lg, (t) = %500(600(2,75)). Using similar derivations to
Inequality (3.16), we obtain that

2

Le, () < — (7"00 - @) (3.35)
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We now study L. For every t = tg,

Lo (t) =limsup s (—(VF(x(t + 5)), m(t + 5)) + (VE(x(t)), m(t)))

s—0

< limsup s VE(x(t)) — VF(x(t + 9))||[m(t + s)| — (VF(x(t)), m(t)).

s—0
Let Ly r be the Lipschitz constant of VF on the bounded set {x : (v, m,z) € S}.

Define C; 2 sup; [+/v(t) + €|. Then,
Lo(t) < Lyplimsup s~ x(t) — x(t + )| [m(t + )| — (VE(x(t)), m(t))

S—>

< Lor[x@)lIm(t)| - (VE(x(8)), (1))
< Lor*O1Im)] - o [VEX(E)]? + rod VE(x(1)), m(t))

1
LVFC§ T Cl T u2
( Tt ;"2) —(hoo— °‘;1>VF<x<t>>||2
€1 uy

(3.36)
where we used the classical inequality [(a,b)| < [a|?/(2u?) + u?|b]|?/2 for any non-
zero real u to derive the last above inequality. We now study L. For every t = tg,

N

Lrr(t) = limsup s~ (|gov(t + 5) = pooS(x(t + 5)) — aeov(t) — pocS(x(1))]?)

s—0

= limsup s~ (p% | S(x(t)) — S(x(t + s))|*

s—0

+ 2poo(S(x(t)) = S(X(E + 5)), qoov(t + 5) — oS (x(1))))

+ 1im 57 (Jguov(t + 5) = pooS(x(D)]* = lgov(t) — poo S (x(1)[*) -
The second term in the righthand side coincides with —2¢u(pooS(x(t))—qeov(t), v(t)) =
—2¢o0||PooS (x(t)) —qoov(t)]|>. Denote by Lg the Lipschitz constant of S on the set {x :
(v,m,z) € S}. Note that s7 (| S(x(t + 5)) — S(x(t))[?) < Ls| s~ (x(t + s) —x(t))|?
which converges to zero as s — 0. Thus,

Li(t) = =24 poS(x(t)) = goov(t)|?
+ Limsup 2poes ™ (S (x(t)) — S(x(t + 5)), goov(t + 5) = peoS(x(1)))
5—0

< —2q00|peoS(x(t)) — %OV(t)HQ + 2poo[X(1) [ Ls || qoov (t) — peoS(2(t))|
2

P
2

S 1 — (2450 — Poous L) [P S (x(1)) — gov(t)|* . (3.37)
€2uj

Recalling that Ly, = Lg, + 0Lg + 6Ly and combining Egs. (3.35), (3.36)
and (3.37), we obtain for every ¢ = t,

2

m roou2
<<t>+(t)>® =8 (e = 25 ) IOF ()

— 0 (2450 — Poot3LE) [P0 S(x(t)) — aeov(t)[*. (3.38)

£W5 (t) < —M(5)
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1
A LypC2
where M(0) = ropp — L2 —§ roCy oy IVEVE 4 P | Now select wuq, us small
4 2uy el e2ul ’

enough s.t. ho —750u?/2 > 0 and 2¢ —poou%[% > 0. Then, choose § in such a way
that M (J) > 0. Thus, there exists a constant ¢ depending on J s.t.

2

M| IVER@)I? + [peS(0) — qov(d)]?

Vt = tg, Lw,(t) < —c||—"—
’ (v(t) + €)®3

(3.39)

It can easily be seen that for every z € S, t — Ws(®”(2,t)) is Lipschitz contin-

uous, hence absolutely continuous. Its derivative almost everywhere coincides with

Ly, which is nonpositive. Thus, W; is a Lyapunov function for . We prove that

the Lyapunov function is strict. Consider z = (v,m,z) € 8 s.t. Ws(® (z,t)) =

Wi(z) for all t > to. The derivative almost everywhere of t — Ws(®” (2,t)) is
identically zero, and by Equation (3.39), this implies that

2
+ [ VEE)? + [poS(x(t)) — geov(t)|?

is equal to zero for every t > ty a.e. (hence, for every ¢t > to, by continuity of 500). In
particular for t = tg, m = VF(z) = 0 and py,S(z) —geov = 0. Hence, z € zer gn N S.
This concludes the proof since Agxo = zer gg. L]

End of the Proof of Theorem 3.3.1. Finally, Assumption 3.3.5 implies that
Ws(Agx n S) is of empty interior. Recall that Assumptions 3.2.1 and 3.2.3 both
follow from Assumption 3.3.3 made in Theorem 3.3.1. Given Proposition 3.6.1, the
proof is concluded by applying [Benaim 1999, Proposition 6.4] to the restricted semi-
flow & (with (M, A) = (S, Ag=)). Note that a Lyapunov function for Ag« is what
is called a strict Lyapunov function. Such a function is provided by Proposition 3.6.1.
We obtain as a conclusion of [Benaim 1999, Proposition 6.4] that S < Agw. This
gives the desired result (Equation (3.32)) given Proposition 3.6.1-4ii).

The last assertion of Theorem 3.3.1 is a consequence of [Benaim 1999, Cor. 6.6].

3.6.3 Proof of Theorem 3.3.3

We can rewrite the iterates from Algorithm 2 as follows:

{anrl =My + 7n+1(VF($n) - % mn) + '7n+1(vf($na£n+1) - VF(:L'TL))
T+l = Tn — Yn+1Mn41 -

(3.40)

We prove that the sequence (y,, = (my,x,) : n € N) of iterates of this algorithm

converges almost surely towards the set T defined in Equation (3.3) if it is supposed

to be bounded with probability one. The proof follows a similar path to the proof

in Section 3.5.2.
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Indeed, denote by X and M the linearly interpolated processes constructed re-
spectively from the sequences (z,) and (m,) and let s(t) = 1/t. Recall that
Py = (PF, PR, Py) is the semiflow induced by (3.23). As in Section 3.6.2, we

have that Z 2 (M, X,s) is an APT of (3.23). In particular, this means that

VI'>0, sup [|[X(t+h)—P(Z(t),h)|| — 0. (3.41)
hel0,T7] t—a0

By Lemma 3.5.3, we also have that

sup
he[0,T2/k2]

]xu + VR — %(Z(1), m/E)H

]xa + svVh) — DY (Z(L), h)‘ 0. (3.42)

= sup
t—o0

he[0,72/x2]

Let (m, x) be a limit point of the sequence (y,,) and let 7' > 0. Using Lemma 3.5.4,
we can proceed in the same manner as in Section 3.5.2 and get a sequence (t) such
that

(M(tr + ), X(tx + ) = (m,x) and (D (Z(tr), ), P (Z(tk), ) = (y,u),

where (m(0),x(0)) = (m, ), and (m,x) and (x, u) are respectively solutions to (3.25)
and (3.27). As in the end of Section 3.5.2, we obtain that u and x are constant,
therefore m = 0 and VF(x) = 0, which finishes the proof.

3.6.4 Proof of Theorem 3.3.2

The idea of the proof is to apply Robbins-Siegmund’s theorem [Robbins & Siegmund 1971|

to
1

\/Up + €
(note the similarity of V;, with the energy function (3.15)). Since inf F' > —o0, we

assume without loss of generality that F' > 0. In this subsection, we use the notation
V fn+1 as a shorthand notation for V f(x,,&,+1) and C' denotes some positive con-

)

1
Vo = hnle(xn) + §<m92,

stant which may change from line to line. We write E,, = E[-|.%,] for the conditional
expectation w.r.t the o-algebra .%,,. Define P, 2 %(Dn,m§2>, with D, = U1+€.
We have the decomposition:

1 1
Poy1 = Py = 5{Dny1 = Dp,m2 5 + (D m®2, —m&?). (3.43)

We estimate the vector

_ VU +€—3/upy1 + €

D - D, = .
ntl " VUns1 + €OV v, +€
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Remarking that v,4+1 = (1 — Yp4+1¢n)vn and using the update rule of v, we obtain
for a sufficiently large n that

~ dnUn —anfn@_El
" on ¥ e+ oni1 ¥ e
U,
1+ 41— Y41qn)y/vn + €
_ Tn+14n m@ vV Un
1+ V1—=Y+1qn VUn + €

A Tn+14n
< h = '
Cnt+14/Un+1 Where ¢, 41 VI—="n4100(1 + /1T — Ynt1Gn)

(3.44)

Vun +&—4opy1 €=

< ’VnJrIQn(

It is easy to see that ¢,4+1/vn — Goo/2. Thus, for any § > 0, cp11 < (Goo + 20)7vn/2
for all n large enough. Using also that \/vnﬂ/\/vn“ + £ < 1, we obtain

26
Dyps1 — Dy < %%Dn. (3.45)

Substituting the above inequality in Equation (3.43), we obtain

Qoo + 20\ 7 1
Pria = o (520 B @) 4 D, )
G + 26 g +25 \ 1
< OOT%P,Z + (1 + £ 5 Vn §<Dn,m§il — m%2>
Using mgfl —mP? = 2m, © (Mps1 — Mp) + (Mpy1 — my)9?, and noting that

En(mn+1 - mn) = 'Yn+1thF($n) — Tn+1TnMn,

1
En§<Dm ngQA - m92> = ’7n+1hn<VF(35n) P,

ar——-—- T
7m ’Yn-i-l n
1
+ §<Dn7En[(mn+1 - mn)®2]> .

There exists 0 > 0 such that re, — L2 — g > 0 by Assumption 3.2.4-iv). As Vg—zlrn —

4o

2 — o — 42, for all n large enough, 2+ oo

- Tn_T>roo—qT°°—g>0. Hence, for
n

all n large enough,

6 m
EnPn""l - Pn < -2 (Too - qj.o - 2> ’YnPn + ryn+lhn<VF($n)7 \/ﬁ>

+ Ol VE (wn) ns Enl(mng1 —my)®?]). (3.46)

mn

, ————) + C{D
A/ Un + €> <
Using the inequality (u,v) < (||lul|? + |v]|?)/2 and Assumption 3.3.6-ii), it is easy to
show the inequality (VF(x,), \/%> < C(1 + F(x,) + P,). Moreover, using the
componentwise inequality (h,V fri1 — rnm,)©? < 2h2V fgfl + 2r2m®? along with
Assumption 3.3.6-ii) and the boundedness of the sequences (hy,), (rn) and (Yn4+1/7n),
we obtain

(D, Ep[(mps1 — mp)?]) < CY2(1 + F(zn) + Pp) . (3.47)
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Combining Equation (3.46) and Equation (3.47), we get

En(Pus1 — Po) < Vs 1halVE(z,),mn © Dp) + C2(1 + F(x,) + P,).  (3.48)
Denoting by M the Lipschitz coefficient of VF', we also have

'Y?%+1M

5 Hmn+1®Dn+1H2 .

(3.49)

F(zns1) < F(on) = Ye1(VF (@n), mnt1 © Dpt1) +

Using (3.45) and the update rule of m,,, we have
||mn+1 © Dn+1 — My O DnH2

<C H(mn+1 - mn) @DnH2 +C Hmn-i-l O] (Dn+1 - Dn)H2
< Ca 1 (IV st * + 1m0 © Dull?) + C¥2 4 |ming1 © Dl f? (3.50)
< C%%+1(Hmn®DnH2 + van—&-l”Q) .

Finally, recalling that V,, = h,_1F(x,) + P,, (h,) is decreasing, combining
Equation (3.48),(3.49),(3.50), and using Assumption 3.3.6, we have

En[Vit1] < Vo + i 1hndVF (1), Ep [mn © Dy, — min g1 © D)
+Cy2, <1 + F(xp) + Py + |mn © DnHQ)
+ Cy2 1 Enlllmn © Dy — mis1 © D[]
< Vit C92 (14 F(@n) + Po+ 1m0 © Dal* + By ||V frsa )

< Vi + CY2(1 + F(zp) + P,)

where we used Cauchy-Schwarz’s inequality and the fact that ||m, ® D,|* < CP,.
By the Robbins-Siegmund’s theorem [Robbins & Siegmund 1971], the sequence (V},)
converges almost surely to a finite random variable V,, € RT. Then, the coercivity
of F' implies that (x,) is almost surely bounded.

We now establish the almost sure boundedness of (m,,). Assume in the sequel
that n is large enough to have (1 —v,417,) = 0. Consider the martingale difference
sequence A, 1 = V fa+1 — VF (). We decompose my, = my, + m, where m, 1 =
(1 = Ys1m0)Mn + Yns1hn VE(2y) and mpe1 = (1 = Ypg1m0) M0 + Yor1hnlnya,
setting mo = 0 and my = mg. We prove that both terms m,, and m, are bounded.
Consider the first term: ||, 41] < (1—=Yn+170) |70 | +Vn+1 supy |V F(xr)| , where
the supremum in the above inequality is almost surely finite by continuity of VF.

We immediately get that if ||/m,| > %ZF(”)H, then ||mp11|| < ||my]. Thus

supy, [V ()|
,

o]

[T < + sup Y1 [ VE (@)

which implies that m,, is bounded.
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Consider now the term m,,:
Enllmn+1]?] = (1 = vmr1rn)?[mnl® + voaha Bl Ansa[?] < [al? + v AaEnl | Ana ] -

Then, the inequality Ep,[|Apn11]?] < En[|V frt1]*] combined with Assumption 3.3.4-
i) and the a.s. boundedness of the sequence (z;,) imply that there exists a finite
random variable Cx (independent of n) s.t. E,,[|V fr11]?] < Cx. As a consequence,
since Y, 72, , < o0 and the sequence (h,,) is bounded, we obtain that a.s.:

Z ’)’2+1h721En[HAn+1“2] < CCk Z %2L+1 < +00.

n=0 n=0

Hence, we can apply the Robbins-Siegmund theorem to obtain that sup,, [/, [? < ©
w.p.1. Finally, it can be shown that (v,) is almost surely bounded using the same
arguments, decomposing v, into v,, + ¥, as above. Indeed, first, we have:

Enl0n+11%] < [0n]® + 72 1P Bl IV F22 = S(2a) 7]
Second, it also holds that:
Eu[IV£22 = S(2a)P] < EnlIV 227 < Enl[V fasa|']-

Then, using Assumption 3.3.4-i) and the a.s. boundedness of the sequence (z,),
there exists a finite random variable Cy. (independent of n) s.t. E,[|V frt1]1] < C.
Moreover, the sequence (py) is bounded and ), 7721 41 < . As a consequence, it
holds that a.s:

D PEEA[VE = S(za)|P] < CCR Y vy < 40

n=0 n=0

It follows that the Robbins-Siegmund theorem can be applied to the sequence |7, ]?
as for the sequence |1m,[? to obtain that sup,, ||#,]|> < 00 w.p.1.

3.6.5 Proof of Theorem 3.3.4

The proof of Theorem 3.3.2 easily adapts to Algorithm 2 by replacing V,, by
- 1

Vo & Flan) + 3 lma?

The boundedness of (m,,) is an immediate consequence of the convergence of V,.

3.6.6 Proof of Theorem 3.3.5

We shall use the following result.

Theorem 3.6.2 (adapted from [Pelletier 1998|, Theorem 7). Let k > 1. On some
probability space equipped with a filtration F = (Fy)nen, consider a sequence of T.v.
on R* given by

Zpy1 =1+ ’Yn+1H)Zn + Ynt1bnt1 + VY11
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and E[|Zo|?] < oo, where H is a k x k Hurwitz matriz, (b,) and (n,) are random
sequences, and yn, = yon~ for some 9 > 0 and o € (0,1]. Let Qo € Fo have a
positive probability. Assume that the following holds almost surely on Qq:

i) E[nn+1]-Fn) = 0.
ii) There exists a constant b > 2 s.t. sup, IE[HnnHHl_’\ﬁn] < .

iii) E[nns1nlq|Fn] = S+ A, where E[|Ay|Lo,] — 0 and ¥ is a positive semidef-
mite matriz.

iv) The sequence (by) is the sum of two sequences (by 1) and (by2), adapted to F,
s.t. sup,=0 E[|bn,1]?] < 00, E[||bn,1]1a,] — 0 and by — 0 a.s. on .

Then, given Qq, (Z,) converges in distribution to the unique stationary distribution
U« of the generalized Ornstein- Uhlenbeck process

dX; = HX;dt + VXdB;

where (By) is the standard Brownian motion and /3 is the unique positive semidefi-
nite square root of ¥. The distribution . is the zero mean Gaussian distribution with

covariance matriz T given as the solution to (H + ]12(’;01 I)T+T(H + %a—,;llk)T = -2

Proof. The proof is identical to the proof of [Pelletier 1998, Theorem 7|, only sub-
stituting the inverse of the square root of ¥ by the Moore-Penrose inverse. Fi-
nally, the uniqueness of the stationary distribution u. and its expression follow from
[Karatzas & Shreve 1991, Theorem 6.7, p. 357] O

We define v,, = v,, + 6, where dp = 0, U9 = v and

Ont1 = (1= Yn119n)6n + i1 (Pn — dnde Poo) S (wn)
Upt1 = (1 - ’YnJrl(Jn)@n + 7n+1QnQO_olpOOS(:Cn) + ’7n+1pn(vf(xnv £n+1)®2 - S(Sﬂn)) :

For every z = (v,m,z) € Z; and 6 = 0, we define

—__m___

anoglpoo(s(l' — Tn \/m) —S(x))
A m
rn(2,0) = | hn(VE(2 — 7 m) — VF(z))

In

1 1
Tn+1 (\/ﬁ B \/v+(5+a) ©m

Moreover, for every z = (v,m,x) € Z; and every n € N, we set

409 PoS(x) — qnv

gn(2) = hoVF(z) —r,m
In m
T Ynt1 Vote

Defining ¢, = (0p, mp, xn—1) and recalling the definition of (n,,) from Equation (3.28),
we have the decomposition

<n+1 = Cn + '}/nJrlgn(Cn) + Yn+1Mn+1 + '7n+17”n(<.na 511) .
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Define z, 2 (x,0,v,). Note that g,(z.) = 0. Evaluating the Jacobian matrix G,
of g, at z., we obtain that there exist constants C > 0, M > 0 and ng € N s.t. for
all n = ng,

lgn(2) = Gn(z — 2)| < C|z — z|* (Vz € B(z,, M)), (3.51)

where G,, is given by

—qnlqg 0 ano_olpoovs(l'*)

G, 2 0 —rply h,V2F () ,
0 L 0
Yn+1

where VS is the Jacobian of S and the matrix V is defined in Equation (3.8). We
define
—qoold 0 PuVS(24)
Go 2limGy=| 0 —rply hoV2F(z.)
" 0 ~V 0
One can verify that G, is Hurwitz, and that the largest real part of its eigenvalues
is —L', where L' 2 L A g and L is defined in Equation (3.9).

We define Q@ 2 {zn — z}. We assume P(Q(®) > 0. Using for instance
[Delyon et al. 1999, Lemma 4 and Lemma 5], it holds that d,(w) — 0 for every w €
QO and since z,(w) — z,_1(w) — 0 on that set, we obtain that Q©) = {¢, — 2,}.
Let M € (0, M) be a constant, whose value will be specified later on. For every
Ny € N, define Qg\% = {Cn — 2« and sup,,> y, [ — 24| < M}. We seck to show that
\/’Tn_l(gn — Zx) = Vv given Q) for some Gaussian measure v, using Theorem 3.6.2.
As (2533 1 QO it is sufficient to show that the latter convergence holds given (2533,
for every Ny large enough. From now on, we consider that Ny is fixed. We define
the sequence (5n)n>N0 as éNO = (n, and for every n > Np,

En—&-l = gn + ’Yn+1§~]n(§n) + 'Yn+1(77n+1 + Tn(gm 5”))]1«/471

where A,, is the event defined by
N x
An = () fllok — 2l < M3 A {1n — 2]l < M}
k=N

and

- A

Gn(2) = gn(2) L aezjer — K(2 = 2) Loy 501
where K > 0 is a large constant which will be specified later on. The sequences
(Cn)n=N, and ((n)n>nN, coincide on Qg\?()) Thus, it is sufficient to study the weak
convergence of (Cp)pn=ng-

An estimate of [r,(Cy,0,)||14,. We start by studying the sequence ([[6,[1.4,,).
Unfolding the update rule defining J,, and using the fact that (g,,) is a sequence of
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positive reals converging to g, > 0, we obtain that

n n

[0n]1 4, < Z H 11— vjqi—1] | Yelpr—1 — Ge—105" Pool| S (@r—-1)[1 4,
k=1 | j=k+1

n n
_ A
<C Z exp | =0 Z Yi | Vklpr—1 — Qk—lqOolpoo| = Wn
j=k+1

for some § > 0. The sequence (wy,) is deterministic and converges to zero by

[Delyon et al. 1999, Lemma 4]. There exists ny = ng s.t. w, < M. As v — ﬁ

is Lipschitz and VF and S are locally Lipschitz, for every z = (v,m,z) and § s.t.
|z — z4|| < M and |6 < M, we have

o-1
[rn(2, )| < Consall(w + 6 +&)O72 [ |m] + C (v + 6 +£)°7% — (v + €)% m)]
< Cyntilz — 2] + Clé]]lz — 2] -
This implies that for every n > n,

170Gy 01 < Cymat +wn) [n = 2] (3.52)

Tightness of \/7, ' (Cy — 2). We decompose

<n+1 — 2zx = (I3¢ + Yn11Gn )(C — Zx) + Yns1 (gn(é:n) — Gn(Cn — Z*)) ]len—Z*”ﬁM
- ’Yn+1(K + Gn)(én - Z*)]lugnfz*\pM + Y1 (M1 + Tn(fnv 5n))]1An . (3-53)

For a given t > 0, we write G, = Bt_thBt the Jordan-like decomposition of G,
where the ones of the second diagonal of the usual Jordan decomposition are replaced
by ¢, and where B; is some invertible matrix. We define S, 2 Byi(n — 2). Setting
GS) a BthBt_l, we obtain

St = (Ing + 1ms1GP)Sp + s Be (gn(§n> ~ GG — Z*)> g, —z<m

Choose A € (0,2L') and A" € (A,2L). There exists 7 and t > 0 s.t. for every
v <7, I +~Gi|a < 1—~(A" +2L")/2, where | - |2 is the spectral norm. As
Ggf) — G, there exists ny = ny, such that for all n > ng, |1 + ’ng) [ <1—~A"
Recall the notation E, = E[-|.%,]. We expand |S,11]|? and use the inequality
. - 2
gn(Gn) = Gn(Gn — 2)| 1

bra

[Cn—zil<M S C||Sn|? to obtain after straightforward alge-

En[Sn+1]? < (1 = 7414)[Sul? + Crip 1Sl
+ C’Yer+1(En“77n+1H2 + Hrn(Cm‘Sn)‘P)]lAn
+ 27 +1Re (S:;Bt (.gn(gn) - Gn(&n - Z*))) ]l“fn_z*HgM

~ 2yn11Re (s;;(K + G§f>)sn) Lie . joar + 2ms1Re (sgBtrn(gn, 5n)) T, .
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Choose ¢ 2 (A" — A)/2. If M is chosen small enough,
~ ~ C _ _ ~
190(G) = GG = 2001 ey car < SUBA 1B 11 = 1.

Moreover, choosing K > sup, HG,(f)HQ, it holds that Re <S;L"(K+ Gg))Sn) > 0.
Then,

En|Snt1]? < (1= vn41(A" = €)[[Snl? + Cyi 1 [19nl?
+ Cyi 1 Bl msa|* + |70 (Gny 80)IP) Ly, + 2941 I BelSn 70 Gy 60) [ L, -
Using Equation (3.52),
2 / 2 2 2 2
En|[Sn1l” < (1 = yms1(A" = ¢ = wn)) [Sn[” + Crpr (14 wi) [ Sa
+ Cyp 1 Bnllmnia 14, -
Therefore, there exists ng = nq s.t. for all n > ng,
E[Snt1]? < (1 = 441 ADE[Su]* + Cr i B(I0n+1 11— <) -

The second expectation in the righthand side is bounded uniformly in n by the
condition (3.7). Using |Delyon et al. 1999, Lemma 4 and Lemma 5|, we conclude
that sup,, v, 'E|S,|? < . Therefore, sup, v, 'E|{, — 2> < o0, which in turn
implies sup,, 7, "E([[ ¢ — Z*HQJIQ;%) < .

Strongly perturbed iterations. We define g, = /7, _l(fn — 24). Define

~ A _
Go 24k ( T _ 1> L+ -G,
Yn+1 Tn+1

]12"7:01 I34. Recalling Equation (3.53), we

The sequence C_T‘n converges to (_}oo 2 G +
can write

gnJrl = (ISd + 7n+léoo)gn + 7n+177n + A 7n+177n+1

where 7,41 = Mnt1l4, and 7, = 71 + T2 + Ty 3, Where

Tn,1 é A/ ’Yn+1_17"n(<~n75n)ﬂ¢4n + (Gn - GOO)gn

_ A — ot e

Fuz & 3wt (9n(G) = GG = 2)) Lig, o
_ A — <

T3 = —4/In+l l(K +Gn) (G — Z*)ﬂllfn—z*\bM'

We now check that the assumptions of Theorem 3.6.2 are fulfilled. On the event
QS\(;()), we recall that ¢, = (,, hence 7, 3 is identically zero. Moreover, using Equa-
tion (3.52), it holds that for all n large enough,

[l < C ( e +02) + G Goo> 1]

n+1
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and therefore, E[||7,.1]|?] — 0. Now consider the term 7, 2. By Equation (3.51),

[Pn2ll < C\/’Yn+171H<n - Z*HQJLHQﬁ*HgM-

Thus, [Fn2|* < C|n[? which implies that sup,,>y, E[|rnz2]?*] < c0. Moreover,
E[|Fn2l] € CvAntiE|Jn|? tends to zero. Finally, consider 7,+1. Using condi-
tion (3.7), there exist M > 0 and bys > 4 s.t.

‘bM/2]

B[ 77411 < En[[71]™* 11 g, -0 <s
<

CEAIV f(@n, &t )" 11 gy —aaj<rs < C.

Moreover, E,[7,+1] = 0 and finally, almost surely on Qg\?), En[fn+17, 1] converges
to
T
o [ o[ [P0 ste) pe@stes g st
g2 | hooV £ (4, €) hooV £ (24, ) 0
0 0 0
(3.54)

Therefore, the assumptions of Theorem 3.6.2 are fulfilled for the sequence g,. We
obtain the desired result for the sequence (my,,x,—1). We now show that the same
result also holds for the sequence (my,, z,,). For this purpose, observe that

l{mn}_l{mn]_i_ 0
\/’% Tp — Tx _\/’% Tp—1 — Tx \/%(xn—xn—l) .

Then, notice that H%H = \/%H\/%H < /2 |my| — 0 as n — oo since it is
assumed that z, — z. (which implies in particular that m, — 0). Hence, it holds
that \/77_1(%1 — xp_1) converges a.s. to 0. We conclude by invoking Slutsky’s
lemma.

Proof of Equation (3.10). We have the subsystem:

~ ~ ~h2Q 0 -~ A0 —r0)ly hoV2F(zy)
HU +THY = | ™* here H = :
+ [ 0 0] where v oL, (3.55)
and where Q £ Cov (Vf(x,€)). The next step is to triangularize the matrix H
in order to decouple the blocks of I'. For every & = 1,...,d, set l/];i = -+
\/12/4 — hoom, with the convention that 4/—1 = @ (inspecting the characteristic
polynomial of H, these are the eigenvalues of H). Set M+ a diag (I/li, e ,I/;_r) and
R 2 V3 PMEPTV 3. Using the identities M+ + M~ = —rooy and MT M~ =
ho diag (71, - -+ ,mg), it can be checked that
~ RV 4+ 601, 0 All; R
R [ -V VR++91JR’W%R {o Iy

Set T' 2 RI'RT. Denote by (f’i,j)M:Lg the blocks of T'. Note that f’272 =TI'y5. By
left /right multiplication of Equation (3.55) respectively by R and RT, we obtain
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(RTV +0I)T11 +T11(VR™ +601,) = —h%Q (3.56)
(R*V + Hfd)flg + f172<R+V + 01(1) = lev (3.57)
(VR +01)Ta + Too(RTV +01;) = VI o + TT,V . (3.58)

Set Ty = P~1V2T V2 P. Define C 2 P~1V2QV2P. Equation (3.56) yields
(M_ + Qld)f‘l’l + f‘l,l(M_ + Qld) = —h%OC

Set T2 = P_]'V%f‘LQV_%P. Equation (3.57) is rewritten (M~ + 6I;)T12 +
[y 2(M* +6014) =T11. The component (k, ) is given by

Pkl _ (1t —h3,Cye
’ ’ (vp +v/ +20) (v, +v, +20)

Set finally 1_“2,2 = P_1V7%F272V7%P. Equation (3.58) becomes

(M+ + GId)FQQ + F272(M+ + Gfd) = f‘172 + f’£2 .

—kl Tk
_ g+ 105
Vi 420
_ —h3,Chy ( 1 . 1 >
W+l +20) (v +vy +20) \vp +uf +20 0 v+, +20) 0

After tedious but straightforward computations, we obtain

hgock,e
2 (m),— ’
(roo — 20) (hoo (g + 70) + 20(0 — 755)) + h%o((ofi_ga‘f

=k, 0
[y =
and the result is proved.

3.7 Proofs for Section 3.4

3.7.1 Preliminaries

Most of the avoidance of traps results in the stochastic approximation literature
deal with the case where the ODE that underlies the stochastic algorithm under
study is an autonomous ODE z = h(z). In this setting, a point z, € zerh is
called a trap if h(z) admits an expansion around z, of the type h(z) = D(z —
2+) + o(|z — 24||), where the matrix D has at least one eigenvalue which real part
is (strictly) positive. Initiated by Pemantle [Pemantle 1990] and by Brandiére and
Duflo [Brandiére & Duflo 1996], the most powerful class of techniques for establish-
ing avoidance of traps results makes use of Poincaré’s invariant manifold theorem
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for the ODE z = h(z) in a neighborhood of some point z, € zer h. The idea is to
show that with probability 1, the stochastic algorithm strays away from the max-
imal invariant manifold of the ODE where the convergence to z, of the ODE flow
can take place. As previously mentioned, since we are dealing with algorithms
derived from non-autonomous ODEs, we extend the results of [Pemantle 1990,
Brandiére & Duflo 1996] to this setting. The proof of Theorem 3.4.1 relies on a non-
autonomous version of Poincaré’s theorem. We borrow this result from the rich liter-
ature that exists on the subject [Dalec’kil & Krein 1974, Kloeden & Rasmussen 2011].

Let us start by setting the context for the non-autonomous version that we shall
need for the invariant manifold theorem. Given an integer d > 0 and a matrix
D e R%? consider the linear autonomous differential equation

z(t) = Dz(t), (3.59)
which solution is obviously z(t) = eP?z(0) for t € R. Let us factorize D as in (3.12),

and write D = QAQ ! with A = {A_ AJJ where we recall that the Jordan blocks

that constitute A~ € R% *4™ (respectively AT € RE"*4") are those that contain the
eigenvalues \; of D such that ®\; < 0 (respectively R\; > 0). Let us assume here
that both d~ and d* are positive. It will be convenient to work in the basis of the
columns of ) by making the variable change

v -1
z|—>y:|:y+j|:Q z,

where y € R%". In this new basis, the ODE (3.59) is written as

M A] .

which solution is y* (¢) = exp(tA*)y*(0). One can readily check that for each couple
of real numbers ot and o~ that satisfy

0<a <abt <min{R)\; : R\; > 0}, (3.61)

there exists a so-called exponential dichotomy of the ODE solutions, which amounts
in our case to the existence of two constants K, Kt > 1 such that

tA7)]
tA™)]

I

| exp( 0
0

< K e*? fort>
+
| < Kte*? fort<

| exp(

I

see, e.g., [Horn & Johnson 1994].
We now consider a non-autonomous perturbation of this ODE, which is repre-
sented in the basis of the columns of () as

y(t) = h(y(t),t) with h(y,t)= [A A*] y+e(y,t), (3.62)
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and € : R? x R — R% is a continuous function. In the sequel, we shall be interested
in the asymptotic behavior of this equation for the large values of ¢, and therefore,
restrict our study to the interval I = [tg,00) for some given ¢y = 0 that we shall
fix later. We assume that £(0,-) = 0 on I. We denote as ¢ : I x I x R? — R
the so-called general solution of (3.62), which is defined by the fact that ¢(-, ¢, z) is
the unique noncontinuable solution of (3.62) such that ¢(¢,t,z) = = for t € I and
z € R%, assuming this solution exists and is unique for each (x,t) € R? x I.
In the linear autonomous case provided by the ODE (3.60), the subspace

oo (o]} emo o]

is trivially invariant in the sense that if (¢,y) € G, then, (s, ¢(s,t,y)) € G for each
s € R. This concept can be generalized to the non-linear and non-autonomous
case. We say that the C! function w : R x 1 — R?" defines a global non-
autonomous invariant manifold for the ODE (3.62) if w(0,t) = 0 for all ¢ € I,
and, furthermore, if for each t € I and each y~ € R, writing y = (y~,w(y ™, 1)),
the general solution ¢(s,t,y) = (¢ (s,t,y), dT(s,t,y)) with ¢*(s,t,y) € R ver-
ifies ¢ (s,t,y) = w(¢p~(s,t,y),s) for each s € I. The non-autonomous invariant
manifold is the set

[ R

which obviously satisfies (¢,y) € G = (s,¢(s,t,y)) € G for each s € 1.

These invariant manifolds are described by the following proposition, which is a
straightforward application of [Pétzsche & Rasmussen 2006, Theorem A.1] (see also
[Kloeden & Rasmussen 2011, Theorem 6.3 p. 106, Rem. 6.6 p. 111]). It is useful to
note that under the conditions provided in the statement of this proposition, the
existence of the general solution ¢ of the ODE (3.62) is ensured by Picard’s theorem.

Proposition 3.7.1. Let T = [tg,0) for some ty = 0. Assume that the function
e(y,t) is such that £(0,-) = 0 on 1, the function €(-,t) is continuously differentiable
for each t € 1, and furthermore, the Jacobian matriz 01€(y,t) satisfies

+
A a’ — o
leli = sup  |die(y, t)| < —7—

3.63
(y,t)eR? xI 4K ( )

with K=K +K"+K KT(K~ v K") and a™,a" chosen as in Equation (3.61).
Then, for each § € (2K |e|1, (o™ —a™)/2) and each v € (™ + §,a™ — §), the set

G~ { () e Tx R < suplos.t)] expla(t — 9) < 0}

1s monempty, and does not depend on . Moreover, this set is a global invariant
manifold for the ODE (3.62) that is defined by a continuously differentiable mapping
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w:RT xI >R In addition, if the partial derivatives 6]f6 :R? x T exist and are
continuous for k € {1,...,m} with globally bounded partial derivatives

A
lelk 2 sup  [dFe(y,t)| < o, (3.64)
(y,t)eRI I

under the gap condition
ma~ <at, meN*, (3.65)

the partial derivatives ofw : R x 1 exist and are continuous with

sup | fw(y=,t)| < oo forall ke {l,...,m}. (3.66)
(y—,t)eRI™ xI

Finally, if 03d%e exist and are continuous for 0 < n <m and 0 < k +n < m, then
w is m-times continuously differentiable.

Let us partition the function h(y,t) as

_ [Pt _ Ay e (v, 1)
h(y,t) = [h+(y,t)] = Lﬁzﬁ +€+(y,t)], (3.67)

where h*t : R% x I — ]Rdi, yt e R and e* : R x T — R¥ . With these notations,
the previous proposition leads to the following lemma.

Lemma 3.7.2. In the setting of Proposition 3.7.1, for each t in the interior of 1
and each vector y = (y~,y") such that y* € R and yT =w(y,t), it holds that

ht(y,t) = drw(y™,t)h™ (y,t) + daw(y~,t). (3.68)

Assume that o~ is small enough so that Inequality (3.65) and Equation (3.64) hold
true with m = 2. Assume in addition that 050%e exists and is continuous for 0 <
n<2and0 < k+n <2, and furthermore, that there exists a bounded neighborhood
VY < R? of zero such that

sup ||02e(y, t)]| < +o0. (3.69)
(y,t)eVxI

Then, there exists a neighborhood V=~ < R of zero such that

sup  ||o102w(y,b)|| < +o0, (3.70)
(y=,t)eV—xI

sup H@%w(y_,t)H < +0w. (3.71)
(y—,t)ev—xI

Proof. By Proposition 3.7.1, the general solution ¢(s,t,y) of the ODE (3.62) can be
written as ¢(s,t,y) = (¢~ (s,t,y),d (s, t,y)) with ¢7(s,t,y) = w(p~(s,t,y),s) for
each s € I. Equating the derivatives with respect to s of the two members of this
equation and taking s = t, we get the first equation.
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Writing g : R~ x I — R%, (y~,t) — (y~,w(y",t)), Equation (3.68) can be
rewritten as

dow(y~,t) = h'(g(y~,t).t) — drw(y ™, )h" (g(y ™, 1), 1). (3.72)
By Proposition 3.7.1, the function w is twice differentiable, and we can write
8§w(y*,t) = 51h+(929 + thJr - (c%&gw)h’ — (81w)(81h’&gg + 52}17), (3.73)

where, e.g., h™ is a shorthand notation for h*(g(y~,t),t). It holds from Equa-
tion (3.67) and the assumptions of Proposition 3.7.1 that for each (y,t) € R? x I,

lo1hy, DI < A+ llowe(y, )] < €, (3.74)

where the constant C' > 0 is independent of (y,t) and can change from an inequal-
ity to another in the remainder of the proof. By the mean value inequality and
Proposition 3.7.1, we also get that

lw(y™, O = lwly™,t) —w(0,8)] < sup [drw(u, s)| |y~ [ < Cly~|,

u,S

thus, ||g(y~,t)| < Clly~||. By the mean value inequality again,

|h(g(y, 1), )| = ||A(g(y,1),t) — h(0, 1) || < sup [|Orh(u, )| |9y, t)||

(u.t)

<Cllgly~. ) <Cly~I.
By Equation (3.72) and Proposition 3.7.1, this implies that

H&gg(y*,t)H = H&gw(y*,t)H = Hh+ — (alw)h*H < CHy* , and (3.75)
[0102w(y ™, t)|| = [|1hT 019 — (FFw)h™ — (Arw)(d1h~drg)|| < C([|y~|| + 1)
(3.76)

Let V= < R?" be a small enough neighborhood of zero so that g(y~,t) € V for each
y~ € V7, which is possible by the inequality ||g(y—,t)| < C|y~|. By the assumption
on [02e(y, t)| in the statement of Lemma 3.7.2, we have

Vy eV, |[ah(gy,t),t)]| = ||dee(g(y™, 1), 0)|| < C. (3.77)

The bound (3.70) is an immediate consequence of Equation (3.76). Getting back to
Equation (3.73), the bound (3.71) follows from the inequalities (3.74)—(3.77). O

Proposition 3.7.1 deals with the case where the function ¢ is globally Lipschitz
continuous. In practical cases, such a strong assumption is not necessarily verified.
In particular, for the ODEs we consider for our application, it is not satisfied (see
the function e defined in Subsec. 3.7.3.1 below). Nonetheless, recall that we only
need the existence of a local non-autonomous invariant manifold, i.e. defined in the
vicinity of an arbitrary solution such as the trivial zero solution (since we suppose
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here £(0,-) = 0) whereas the aforementioned strong assumption provides a global
non-autonomous invariant manifold. Indeed, as for the avoidance of traps result
we intend to show, we will only need to look at the behavior of our ODE in the
neighborhood of a trap z.. Therefore, in prevision of the proof of Theorem 3.4.1,
we localize the ODE (3.62) in the neighborhood of zero. This is the purpose of the
next proposition.

Proposition 3.7.3. Let I = [tg, +0) for some tg = 0 and let h : RY x T — RY be
defined as in Equation (3.62). Assume that €(0,-) =0 on I, that the function e(-,t)
is continuously differentiable for every t € I and that
lim ore(y, )| =0. 3.78
olm o) .79
Then, there exist ¢ > 0,t1 > 0, a function & : R4 x I; — R¢ where I) = [t1,+00)
and a function h : R x I — R? defined for every y € R4t € Iy by h(y,t) =
Ay + E(y,t) s.t. h and & verify the assumptions of Proposition 3.7.1 and for every
(y,t) € B(0,0) xIy, we have that h(y,t) = h(y,t) and E(y,t) = £(y,t). Moreover, for
any § > 0, we can choose o,t1 respectively small and large enough s.t. the mapping
w:RY xI; - R obtained from Proposition 3.7.1 (applied to h and €) satisfies
lw|y = sup  ||Gw(y,t)| < 0. (3.79)
(y,t)ERd7 xIy
Furthermore, Equation (3.68) holds for h and w for all (y,t) € B(0,0) x I. If,
additionally, Equation (3.69) holds for e, then there exists o1 < o such that

sup |0102w(y~, t)|| < +o0, (3.80)
(y—,t)eB(0,01) xIy
sup |03w(y=, 1) < +oo. (3.81)

(v~ H)eB(0,01) xT

Proof. The idea of the proof is to localize the function h(y,t) to a neighborhood of
zero in the variable y for the purpose of applying Proposition 3.7.1. This cut-off tech-
nique is known in the non-autonomous ODE literature, see, e.g., [Kloeden & Rasmussen 2011,
Theorem 6.10]. Let ¢ : R? — [0,1] be a smooth function such that 1 (y) = 1 if
lyl| <1, and ¢(y) = 0if |y| > 2. Let C = maxy |V (y)| where V1) is the Jacobian
matrix of ¢. Thanks to the convergence (3.78), we can choose ¢; > 0 large enough

and o > 0 small enough so that
at —a~
sup [o1e(y, t)]| < ———x,
(t,y)e[t1,00) x B(0,20) 4K (1 +20)

and we set I} = [t1,00). Writing é(y,t) = ¥(y/o)e(y,t), it holds that for each
(t,y) e I; x RY,

|016(y, )| < 07 CLyy <o le(w, )] + Ljyj<20 | 1e(y, 1)

< max |(915(y,t)|> (o™ Clyl +1) 1jyj<2n

ly|<20
+

N

at —a”
4K

S
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where we used the mean value inequality along with £(0,¢) = 0 to obtain the sec-
ond inequality. Thus, the function h(y,t) = Ay + &(y,t) satisfies all the assump-
tions of Proposition 3.7.1. In addition, the function £ coincides with the function e
on B(0,01) x I, and so it is for the functions h and h. Finally, it follows from
[Kloeden & Rasmussen 2011, Theorem 6.3| that

2K?
ay —a_ —4K|g|

‘w|1 < |€~’1

(note that L in [Kloeden & Rasmussen 2011, Theorem 6.3] corresponds to |€|; with
our notations). Using Equation (3.78), we can make |£]; as small as needed by
choosing o, t; respectively small and large enough, which gives us Equation (3.79).
The proof of the last two equations follows from the application of Lemma 3.7.2 to
h and w. The result is immediate after noticing that for (y,t) € R? x Iy, we have
1028 (y, )| < [ 022y, )]|- O

3.7.2 Proof of Theorem 3.4.1

We shall rely on the following result of Brandiére and Duflo. Recall that (£2,.7,P)
is a probability space equipped with a filtration (%, )nen.

Proposition 3.7.4. ([Brandi¢re & Duflo 1996, Proposition 4]) Given a sequence
() of deterministic nonnegative stepsizes such that > v, = +0 and Y. vz < +00,
consider the R%—valued stochastic process (zp)nen given by

Zn+1 = (I + 7n+1Hn)Zn + Yn+1Mn+1 + Yn+1Pn+1-

Assume that zo is Fo—measurable and that the sequences (ny,), (pn) together with the
sequence of random matrices (H,) are (Z,)-adapted. Moreover, on a given event
A e F, assume the following facts:

i) X lonl? < 0.
i) limsup E[|n,41]>7* | %] < o for some a > 0, and E[n,+1|Fn] = 0.
i1) liminf E[|n,41% | %a] > 0.

Let H € R¥? be q deterministic matriz such that the real parts of its eigenvalues
are all positive. Then,

P(An [z, —> 0] n[H,— H]) =0.

We now enter the proof of Theorem 3.4.1. Recall the development (3.11) of
b(z,t) near z, and the spectral factorization (3.12) of the matrix D. To begin with,
it will be convenient to make the variable change y = Q~!(z — z.), and set

h(y> t) = Q_lb(Qy T Zas t) = Ay + é(y> t)a
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with &(y,t) = Q 'e(Qy + z,t), in such a way that our stochastic algorithm is
rewritten as

Yn+1 = Yn + 'Yn+1h(yna7'n) + Yn+1Mn+1 + Yn+1Pn+1

where 7, is as in the statement of the theorem and j, = Q!p,. Observe that the
assumptions on the function e in the statement of the theorem remain true for €
with z, replaced by zero.

If the matrix A has only eigenvalues with (strictly) positive real parts, i.e.,
d~ = 0, then we can apply Proposition 3.7.4 to the sequence (z,). Henceforth, we
deal with the more complicated case where d= > 0.

Apply Proposition 3.7.3 to h to obtain h and o, t respectively small and large
enough and w : RY x I} — R%" where I := [t;,+0). By Assumption iv) of
Theorem 3.4.1 and Proposition 3.7.3 we can choose 01 < ¢ such that Equation (3.80)
and Equation (3.81) hold. Now, given p € N, let us define the event

Ep = [V’fl =D, Hyn|| < 01,Tp € Hl] .
On E,, it holds that h(yn, 7n) = A(Yn, ) and

Vn = p, Yn+1l = Yn + ’Yn+1h(ym Tn) + Yn+1Tn+1 + Ynt+1Pn+1

Yn h~ (yna Tn):| [ﬁ;u] [ﬁ;-u]
= +7, 1{ + Yngl | - + Tn+1 | s 3.82
|:y;:| S (Yn, Tn) " 777—;-1 S P:_H ( )

where h is partitioned as in (3.67), and where 7, 5 € R, Note that, by Propo-
sition 3.7.3 and Assumptions vi) and vii) on the sequence (7,), we can choose o, t;
respectively small and large enough such that

2
lim inf E[[[7,||” [ #a]15, (9) —2 imsup E[|| 01w (7)o | Z) L, () > 5
(3.83)
This inequality will be important in the end of our proof. Let t be in the interior
of Iy, and let y = (y~,y™") be in a neighborhood of 0. Make the variable change
(") = (u™,u*) with

where w is the function defined in the statement of Proposition 3.7.3, and let

W(uf,qu,t) = h+(y,t) —o1w(y ,t)h™ (y,t) — dw(y,t)
=h"((u",u" +w(u,t)),1)
—drw(u, t)h ((u,ut +w(u,t)),t) — dew(u,t).

By Proposition 3.7.3 and Lemma 3.7.2, it holds that W(u™,0,t)

= (0. Moreover,
W (u~,-,t) € C! by the assumptions on h. Therefore, writing y(r) = (v, rut +
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w(u~,t)) for r € [0,1], and using the decomposition (3.67), we get that

1
W(u™,ut,t) = f W (u™,rut t)ut dr
0

— Ayt
+ fol <515+(y(7‘)7t) [I;] — drw(u™,t)d1e (y(r), 1) [I;D utdr.

We can also write y(r) = (y~, 7yt + (1 —r)w(y~,t)). Recalling that w(0,¢) = 0 and
that ||0yw(y~,t)| is bounded on R?" x I, we get by the mean value inequality that
lw(y=,t)|| < C|ly~ || where C > 0 is a constant. Thus, ||y(r)|| < (1+C) ||ly||. More-
over, £(y,t) = Q te(Qy, t) for |y| < o. Thus, we get by (3.13) that ||d1e(y(r), t)|| —
0 as (y,t) — (0,00) uniformly in r € [0,1]. Using again the boundedness of
|61w(-, )|, we eventually obtain that

W ,u",t) = (A" + Ay, t)) u™, with lim Ay, t) =0.
(y,t)—(0,00)
On the event E),, assume that n > p, and write

+
n

U :y;_w(y;77—n); u;:yna

(see Equation (3.82)). Choosing a— > 0 small enough so that the gap condi-
tion (3.65) is satisfied with m = 2, we have by Taylor’s expansion

W(Ypy 1> Tnt1) = W > Tn) = WYy 1> Tt 1) — WYy s Tnt1) + WYy s Tat1) — 0 (Y, Tn)

= Aw(y, , Tn+1)(yr:+1 —Yn ) T Yns102w(Yy, , Tn) + €nt1 + Ejm-l )

with |lepll < sup || w(y ™ )| |vies — v I »
Y €lYn Yni1]

and lep ]| < sup Hagw(yﬁﬂ')H%%H-

TE[Tn,Tn+1

Using this equation, we obtain

ut = = Wy ud ) + g (0 — G1w(yy, T 1)l 41)
+ T+l (ﬁZH — d1w(y, , Tn-i—l)ﬁ;url) — €n4l — GZH
+ Yn+1 (alw@/;? T’rl) - alw(:Ur:? 7_77»4‘1)) h™~ (yTH Tn) )
which leads to

U:{H = U; + Yn+1 (A+ + A(ynﬂ'n)) U;{ + Yn+1Mn+1 + Yn+1Pn+1, (3.84)

with Mn+1 = ﬁ;—&-l - alw(y;7 Tn)ﬁ;—i-l and

v
€ + €
_ o+ — ~ n+1 n+1
Pn+1 = Ppy1 — alw(yann)pn+1 - ]]"7n+1>0 Yni1

n+

+ (5171}(31;7 Tn) - alw(y;a 7_n+1)) h~ (ym Tn) . (3'85)
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To finish the proof, it remains to check that the noise sequence satisfies the
assumptions of Proposition 3.7.4 on the event A, = E, N[y, — 0]. In the remainder,
C’ will indicate some positive constant which can change from an inequality to
another one.

First, we verify that Y, [pn]|? < o0 on A, by controlling each one of the terms
of pn. Combining the boundedness of djw(-,-) with the summability assump-
tion >, [ fn+1]?1z,ew < 400 as., we immediately obtain on A, that Y, |5}, —

O10(Yyy , Tn) P oq |* < 400 given our choice of o. Moreover, it holds that (||€?L+1||/7n+1)2 <
C’~2 1 by invoking Proposition 3.7.3. In addition, using the boundedness of dfw(:, -),
we can write

!

C 4
< ﬂ%HJ>0‘§‘*”yn+1“ynH
n+1

2
€n+1

1
Yn+1>0
" Tn+1

4 ~ 4 ~ 4
< Oyt (1w 7o) 17+ e[|+ [ 5na 1) -

A coupling argument (see [Brandiére & Duflo 1996, p. 401|) shows that we can sim-

plify the condition

limsup B[ 7,11 % | Zn]ls,ew < 0 to E[|nns1]* | Fnll.,ew < C'. The latter condi-

tion implies that E[1a, >}, ¥2,1 [17n+1 1] < >0 C'72 1, and therefore >, 72, 7 |* Iy, <
+o0 a.s. As a consequence, noticing also the boundedness of (h(yn, 7)) and (p,) on

2

Ap, we deduce that 3, 1, >0 |
last term of p,. By the mean value inequality, we obtain that

< +00 on A,. We now briefly control the

[(@vw(y ) = Oy, Tns1)) B (s )|
< At sup || G201w(y ™, )| |27 (Yn, )| < C'ymst
Yyt

where the last inequality stems from Proposition 3.7.3-Equation (3.80) together
with the boundedness of the sequence (h(yn,7,)). In view of Equation (3.85) and
the above estimates, we deduce that Y, |pn+1/*14, < 400 a.s. on A,.

We verify the remaining conditions on the noise sequence (7). We can easily re-
mark that E[#,+1|%n] = 0 and ||7jnt1]] < O |n+1] on A,. Hence, lim sup E[|[7n41[* | Zn]ls,emw <
0. The last condition, meaning that the noise is exciting enough, stems from noting
that

o _ o _ 2
2 lim inf E[||7, 11| | Fn]la, = lim 1anE[H17;r+1 H |Fn]la,
. _ 2
— 2lim sup E[H&lw(yn , Tn)nn+1|| EZ3Ive
5 )
where we used our choice of o, and Equation (3.83).

Noticing that [y, — 0] < [A(yn, ™) — 0], we can now apply Proposition 3.7.4
to the sequence (u;}) (see Equation (3.84)) with A = A, to obtain

P (A 0 [uf — 0]) =P (Ap A [y — 0] A [A(yn, ) — 0]) = 0.
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We now show that [y, — 0] < [u,;} — 0], which amounts to prove that w(y,,, 7,) —
0 given y, — 0. To that end, upon noting that w(0,-) = 0 and that dyw(-,-) is
bounded, it suffices to apply the mean value inequality, writing :

lw(yp s Tl = |w(yy , m0) — w(0, )] < (sup) lorw(y =, O v, | < Kly,, |-
Yyt

We have shown so far that P(A,) = 0. Since y,, = Q" 'z, and [y, — 0] Upen Ep:
we finally obtain that

Plzn — 0] = Ply, — 0] =P (U([yn — 0] n Ep)> =P (U Ap> — 0.
peN peN

Theorem 3.4.1 is proven.

3.7.3 Proofs for Section 3.4.2.1
3.7.3.1 Proof of Lemma 3.4.2

The matrix D coincides with Vg (24), where the function g is defined in (3.20).
As such, its expression is immediate. Recalling that py,S(2x) — goove = 0, we get

[ p(t)S(2) — q(t)v — P V.S (x4) (2 — 24) + qoo (v — V)
g(z,t) = D(z — 2z,) = | h(O)VF(z) —r(t)m — hO?VQF(x*)(x - Ti) + Toom
“m ((u e)E - (v + s)ﬁ)

—q(t) + geo 0 (P(t) =) VS(za) | [0 — v,
— 0 roo = 1(t)  (h(t) — hes) V2F (24) m
m 3 0 0 T — Tx
| 2(vite)2

p(t)(S(x) = S(xs) — VS(24) (2 — 4))

h(t)(VF(z) — V2F(2.)(z — z.)) p(t)S(z.) —a(t)vs

+ 0
_ 1 1 V—Vs
MO\ 7o ™ Vore T 2iore) 0

_|_

>

e(z,t) + c(t).

Under the assumptions made, it is easy to see that the function e(z,¢) has the
properties required in the statement of Theorem 3.4.1.

3.7.3.2 Proof of Theorem 3.4.3

Consider the matrix D defined in the statement of Lemma 3.4.2. A spectral analysis
of this matrix as regards its eigenvalues with positive real parts is done in the
following lemma.

Lemma 3.7.5. Let D be the matriz provided in the statement of Lemma 5.4.2.
Each eigenvalue ¢ of the matriz D such that RC > 0 is real, and its algebraic and
geometric multiplicities are equal. Moreover, there is a one-to-one correspondence
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p between these eigenvalues and the negative eigenvalues of V%VQF(CC*)V%. Let
d* be the dimension of the eigenspace of VéVQF(l'*)V% that is associated with its
negative eigenvalues, let
w1
W = : e R x4

W+

be a matriz which rows are independent eigenvectors ofV%VQF(x*)V% that generate
this eigenspace, and denote as Br < 0 the eigenvalue associated with wy. Then, the
rows of the rank d*-matrix

A* = |0geca, WV, —ding(re + o (B))WV 3 | e RT X

generate the left eigenspace of D, the row k being an eigenvector for the eigenvalue

o (Br)-

Proof. 1t is obvious that the block lower-triangular matrix D has d eigenvalues equal
to —qo and 2d eigenvalues which are those of the sub-matrix

-V 0 ’
Given A € C, we obtain by standard manipulations involving determinants that
det(D—)\) = det(A\(rop + A) + hoo VV2EF (7)) = det(A(ro + A) + hoo VEV2F(2,)V 2).

Denoting as {@c}g:l the eigenvalues of hooV%VQF(x*)V% counting the multiplici-
ties, we obtain from the last equation that the eigenvalues of D are the solutions of
the second order equations

N4roA+B=0, k=1,....,d.

The product of the roots of such an equation is 8, and their sum is —ro, < 0.
Thus, denoting as (1 and (i 2 these roots, it is easy to see that if 3; > 0, then
RCk.1, RCr2 < 0, while if B < 0, then both (j; are real, and only one of them is
positive. Thus, we have so far shown that the eigenvalues of D which real parts are
positive are themselves real, and there is a one-to-one map ¢ from the set of positive
eigenvalues of D to the set of negative eigenvalues of ViViF (x*)V%. Moreover, the
algebraic multiplicity of the eigenvalue ¢ > 0 of D is equal to the multiplicity of
¢(Q)-

Let us now turn to the left (row) eigenvectors of D that correspond to these
eigenvalues. To that end, we shall solve the equation

uD = (u  with u = [0,uy,uz], wu1oe R (3.86)
for a given eigenvalue ¢ > 0 of D. Developing this equation, we get

—rooup — upV = Cur,  hooui V2F(2,) = Cus.
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L~ _1 - 1.
If we now write @7 = w1V ™2 and %y = uV 2, this system becomes

D=

iy — iy = Cliy, oot VEV2F(2,)V2 = Cilg,

or, equivalently,

fo = —(rop + ()1, i (g2 + ool + hOOV%VQF(:c*)V%) —0,

which shows that a1 is a left eigenvector of ViV2F (x*)V% associated with the
eigenvalue p(¢). What’s more, assume that r is the multiplicity of ¢(¢), and, without
generality loss, that the submatrix W, . made of the first r rows of W generates the
left eigenspace of ¢(¢). Then, the matrix

(Orca WoVE (o + QW V3|

is a r-rank matrix which rows are independent left eigenvectors that generate the
left eigenspace of D for the eigenvalue (. In particular, the algebraic and geometric
multiplicities of this eigenvalue are equal. The same argument can be applied to the
other positive eigenvalues of D. O

We now have all the elements to prove Theorem 3.4.3. Recall Equation (3.14):

Zn+l = Zn T ’Yn-i-lb(zna Tn) + Yn+1Mn+1 + Yn+1Pn+1,

where b(z,t) = g(z,t) —c(t) = D(z—2.) +e(z,t) and p, = c¢(Th—1) + pn. With these
same notations, we check that Assumptions i)-vi) in the statement of Theorem 3.4.1
are satisfied. The function e(z,t) satisfies Assumptions i)-iv) by Lemma 3.4.2.
We now verify that the sequence (p,) fulfills Assumption v). First, observe that
> lle(m)|? < oo under Assumption 3.4.3-i). Then, we control the second term (gy,).
After straightforward derivations, one can show the existence of a positive constant
C' (depending only on ¢ and a neighborhood W of z,) such that

|5n+117 Lo < Clma = mnsa|* + onsr = val*) Lspem - (3.87)

Using the boundedness of the sequences (hy,) and (ry,) together with the update rule
of m,, and Assumption 3.4.3-iii), there exists a positive constant C’ independent of
n (which may change from an inequality to another) such that

E [“mn - mn-&-lHQ]lanW] < 772L+1C/E [(1 + E¢ [va(xm‘f)nz])ﬂzneW] < C,%%H-l .
(3.88)
A similar result holds for E [[|vn, — vn41]?1.,ew] following the same arguments.
In view of Egs. (3.87)-(3.88) and the assumption >, 72, < +c0, it holds that
E [, 1on+1]?1s.6w] < +00. Therefore, Y., [ pni1[*1z,emw < +00 a.s., which com-
pletes our verification of condition v) of Theorem 3.4.1. Assumption vi) follows
from condition 3.4.3-i17). Finally, let us make Assumption vii) of Theorem 3.4.1

B*] where BT has d* rows,

more explicit. Partitioning the matrix Q! as Q! = {
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Lemma 3.7.5 shows that the row spaces of BT and A* are the same, which implies
that Assumption vii) can be rewritten equivalently as E[||[ AT 1] | Zn]ls, e =
1, cw. By inspecting the form of 7, provided by Equation (3.28) (written as a
column vector), one can readily check that Assumption 3.4.3-iv) implies Assump-
tion vii) of Theorem 3.4.1 for a small enough neighborhood W, using the continuity
of the covariance matrix V%Eg(Vf(x, §) —VFE(x))(Vf(z,&) — VF(x))TV% when x

1S near Zy.

3.7.4 Proof of Theorem 3.4.4

As mentioned in Section 3.4.2.2; the proof of Theorem 3.4.4 is almost identical to
the one of Theorem 3.4.3. We point out the main differences here. In Lemma 3.4.2,

R 2
replace D by D = [—Old ooV OF(ac*)] and set ¢(t) = 0. Then, in Lemma 3.7.5,

replace the matrix V/2V2F (z,)V1/2 by the Hessian V2F(z,).






CHAPTER 4

Constant step stochastic
approximation involving the
Clarke subdifferentials of non
smooth functions

4.1 Introduction

In this chapter, we study the asymptotic behavior of the constant step Stochastic
Gradient Descent (SGD) when the objective function is neither differentiable nor
convex. Given an integer d > 1 and a probability space (Z,.7, i), let f: R? x = —
R, (x,s) — f(z,s) be a function which is assumed to be locally Lipschitz, generally
non-differentiable and non-convex in the variable z, and p-integrable in the variable
s. The goal is to find a local minimum, or at least a critical point of the function
F(z) = §f(z,s) u(ds) = Ef(z,-), i.e., a point z, such that 0 € 0F (z.), where 0F is
the so-called Clarke subdifferential of F'. It is assumed that the function f is available
to the observer along with a sequence of independent Z-valued random variables
(&k)ken on some probability space with the same probability law p. The function
F itself is assumed unknown due to, e.g., the difficulty of computing the integral
Ef(x,-). Such non-smooth and non-convex problems are frequently encountered in
the field of statistical learning. For instance this type of problem arises in the study
of neural networks when the activation function is non-smooth, which is the case of
the commonly used ReLLU function.

We say that a sequence of random variables (2, )neny on R? is a SGD sequence
with step size v > 0 if, with probability one,

Tn+l = Tp — Iva(l'na £n+1) (4'1>

for every n such that the function f(-,&,+1) is differentiable at point x,, where
Vf(xn,&ns1) represents the gradient w.r.t. the variable x,. When f(-,&,41) is
non-differentiable at x,, the update equation z,, — x,11 is left undefined. The
practioner is free to choose the value of x,,,1 according to a predetermined selection
policy. Typically, a reasonable choice is to select x,,41 in the set x,, — ¥ f(zn, Ent1),
where 0f(x,s) represents the Clarke subdifferential of the function f(-,s) at the
point x. When such a policy is used, the resulting sequence will be referred to as
a Clarke-SGD sequence. A second option used by practioners is to compute the
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derivative using the automatic differentiation provided in popular API’s such as
Tensorflow, PyTorch, etc. i.e., for all n,

Tn+l = Tn — ’Yaf(,’gn+1)($n) (42)

where ay, stands for the output of the automatic differentiation applied to a function
h. We refer to such a sequence as an autograd sequence. This approach is useful
when f(-,s) is a composition of matrix multiplications and non-linear activation
functions, of the form

f(@,8) = lloWrop1(Wp—1---01(W1Xy))), Y5) , (4.3)

where x = (W1, -+, Wp) are the weights of the network represented by a finite se-
quence of L matrices, o1, , 0, are vector-valued functions, X is a feature vector,
Ys is a label and £(,-) is some loss function. In such a case, the automatic differ-
entiation is computed using the chain rule of function differentiation, by means of
the celebrated backpropagation algorithm. When the mappings o1,--- , 01, 4(+,Ys)
are differentiable, the chain rule indeed applies and the output coincides with the
gradient. However, the chain rule fails in case of non-differentiable functions. The
properties of the map a; are studied in the recent work [Bolte & Pauwels 2019].
In general, ap(z) may not be an element of the Clarke-subdifferential oh(x). It
can even happen that ap(z) # Vh(x) at some points x where h is differentiable.
However, the set of such peculiar points is proved to be Lebesgue negligible. As a
consequence, if the initial point zq is chosen random according to some density w.r.t.
the Lebesgue measure, an autograd sequence can be shown to be a SGD sequence
in the sense of Equation (4.1) under some conditions.

The aim of this chapter is to analyze the asymptotic behavior of SGD sequences
in the case where the step 7 is constant.

About the literature. In two recent papers [Majewski et al. 2018] and [Davis et al. 2020],
a closely related algorithm is analyzed under the assumption that the step size is
vanishing, i.e., v is replaced with a sequence () that tends to zero as n — o0.
From a theoretical point of view, the vanishing step size is convenient because, un-
der various assumptions, it allows to demonstrate the almost sure convergence of
the iterates x,, to the set

Z2zeR: 0edF(2)) (4.4)

of critical points of F. However, in practical applications such as neural nets, a
vanishing step size is rarely used because of slow convergence issues. In most com-
putational frameworks, a possibly small but nevertheless constant step size is used
by default. The price to pay is that the iterates are no longer expected to converge
almost surely to the set Z but to fluctuate in the vicinity of Z as n is large. In this
chapter, we aim at establishing a result of the type

Ve >0, limsupP(d(zy,2Z) >¢e) — 0, (4.5)

n—00 710
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where d is the Euclidean distance between x,, and the set Z. Although this result is
weaker than in the vanishing step case, constant step stochastic algorithms can reach

a neighborhood of Z faster than their decreasing step analogues, which is an impor-

tant advantage in the applications where the accuracy of the estimates is not essen-

tial. Moreover, in practice they are able to cope with non stationary or slowly chang-

ing environments which are frequently encountered in signal processing, and possibly

track a changing set of solutions [Benveniste et al. 1990, Kushner & Yin 2003].

The second difference between the present chapter and the papers [Majewski et al. 2018|

and [Davis et al. 2020] lies in the algorithm under study. In [Majewski et al. 2018,

Davis et al. 2020], the iterates are supposed to satisfy the inclusion

Tptl — T
T I o) (16)
Yn41
for all n, where (n,,) is a martingale increment noise w.r.t. the filtration (o(xo, &1, ..., &n))n>1-

Under the assumption that v, — 0 as n — 00, the authors of [Majewski et al. 2018,
Davis et al. 2020] prove that almost surely, the continuous time linearly interpolated
process constructed from a sequence (x,) satisfying (4.6) is a so-called asymptotic
pseudotrajectory [Benaim et al. 2005] of the Differential Inclusion (DI)

x(t) € —OF(x(t)), (4.7)

that will be defined on R} = [0, 00). Heuristically, this means that a sequence (z,,)
satisfying (4.6) shadows a solution to (4.7) as n tends to infinity. This result is
one of the key ingredients to establish the almost sure convergence of x, to the set
Z. Unfortunately, a SGD sequence does not satisfy the condition (4.6) in general
(setting apart the fact that « is constant). To be more precise, consider a Clarke-
SGD sequence as defined above. For all n, xp41 = 2, — v0f(xpn,&n+1), which in
turn implies

1’114—1,}/7_% € —Eaf(l’n, ) + Mn+1

where (n,) is a martingale increment noise sequence, and where Edf(x, .) repre-
sents the set-valued expectation §0f(x,s)du(s). The above inclusion is analogous
to (4.6) in the case where 0F (z) = E0f(z,-) for all x i.e., if one can interchange the
expectation E and the Clarke subdifferential operator ¢. Although the interchange
holds if e.g., the functions f(-, s) are convex (in which case df(z,s) would coincide
with the classical convex subdifferential), one has in general JEf(z, ) < Edf(z,-)
and the inclusion can be strict [Clarke et al. 1998, Proposition 2.2.2]. As a conse-
quence, a Clarke-SGD sequence does not admit the oracle form (4.6) in general. For
such a sequence, the corresponding DI reads

() e —Eaf(x(t), .), (4.8)

but unfortunately, the flow of this DI may contain spurious equilibria (an example
is provided in this chapter). In [Majewski et al. 2018] the authors restrict their
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analysis to regular functions [Clarke et al. 1998, §2.4|, for which the interchange of
the expectation and the subdifferentiation applies. However, this assumption can
be restrictive, since a function as simple as —|z| is not regular at the critical point
Zero.

A second example where the oracle form Equation (4.6) does not hold is given
by autograd sequences. Such an example is studied in [Bolte & Pauwels 2019], as-
suming that the step size is vanishing and that £ takes its values over a finite set. It
is proved that, the autograd sequence is an almost sure asymptotic pseudotrajectory
of the DI @(t) € —D(x(t)), for some set-valued map D which is shown to be a con-
servative field with I’ as a potential. Properties of conservative fields are studied in
[Bolte & Pauwels 2019|. In particular, it is proved that D = {V f} Lebesgue almost
everywhere. Despite this property, the DI z(¢) € —D(xz(t)) substantially differs from
(4.7). In particular, the set of equilibria may be strictly larger than the set Z of
critical points of F'.

Contributions

e We analyze the SGD algorithm (4.1) in the non-smooth, non-convex setting,
under realistic assumptions: the step size is assumed to be constant along the
iterations, and we neither assume the regularity of the functions involved, nor
the knowledge of an oracle of dF as in (4.6). Our assumptions encompass
Clarke SGD sequences and autograd sequences as special cases.

e Under mild conditions, we prove that when the initialization x¢ is randomly
chosen with a density, all SGD sequences coincide almost surely, irrespective
to the particular selection policy used at the points of non-differentiability.
In this case, x,, almost never hits a non-differentiable point of f(-,&,+1) and
Equation (4.1) actually holds for all n. Moreover, we prove that

Tp+1 — Tn

~y = _VF(xn) + M+,

where (7,,) is a martingale difference sequence, and VF(x,) is the true gra-
dient of F' at xz,. This argument allows to bypass the oracle assumption of
[Majewski et al. 2018, Davis et al. 2020].

e We establish that the continuous process obtained by piecewise affine interpo-
lation of (x,) is a weak asymptotic pseudotrajectory of the DI (4.7). In other
words, the interpolated process converges in probability to the set of solu-
tions to the DI, as v — 0, for the metric of uniform convergence on compact
intervals.

e We establish the long run convergence of the iterates x,, to the set Z of Clarke
critical points of F', in the sense of Equation (4.5). This result holds under
two main assumptions. First, it assumed that F admits a chain rule, which
is satisfied for instance if F' is a so-called tame function. Second, we assume
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a standard drift condition on the Markov chain (4.1). Finally, we provide
verifiable conditions of the functions f(-,s) under which the drift condition
holds.

e In many practical situations, the drift conditions alluded to above are not
satisfied. To circumvent this issue, we analyze a projected version of the SGD
algorithm, which is similar in its principle to the well-known projected gradient
algorithm in the classical stochastic approximation theory.

Chapter organization

Section 4.2 recalls some known facts about Clarke subdifferentials, conservative fields
and differential inclusions. In Section 4.3, we study the elementary properties of
almost-everywhere gradient functions, defined as the functions ¢(z, s) which coincide
with V f(x, s) almost everywhere. Practical examples are provided. In Section 4.4,
we study the elementary properties of SGD sequences. Section 4.5 establishes the
convergence in probability of the interpolated process to the set of solutions to the
DI. In Section 4.6, we establish the long run convergence of the iterates to the set of
Clarke critical points. Section 4.7 is devoted to the projected subgradient algorithm.
The proofs are found in Section 4.8.

4.2 Preliminaries

4.2.1 Notations

If v,1/ are two measures on some measurable space (2, F), v « v/ means that v
is absolutely continuous w.r.t. v. The v-completion of % is defined as the sigma-
algebra consisting of the sets S <  such that there exist A,Be .% with Ac Sc B
and v(B\A) = 0. For these sets, v(S5) = v(A).

If E is a metric space, we denote by Z(F) the Borel sigma field on E. Let d be
an integer. We denote by M (R?) the set of probability measures on %(R?) and by
M (R%) 2 {ve M(RY) : {|z|v(dz) < c0}. We denote as A? the Lebesgue measure
on R?. When the dimension is clear from the context, we denote as X this Lebesgue
measure. For a subset I  R?, we denote by

Maps(K) 2 {ve M(RY) : v « X and supp(v) c K},

where supp(v) represents the support of v.

If P is a Markov kernel on R? and ¢ : R — R is a measurable function, Pg
represents the function on RY — R given by Pg(z) = {P(z,dy)g(y), whenever
the integral is well-defined. For every measure 7 € M(R?), we denote by mP the
measure given by 7P = {m(dz)P(z,-). We use the notation 7(g) = { g dm whenever
the integral is well-defined.

For every z € R%, r > 0, B(z,r) is the open Euclidean ball with center x and
radius r. The notation 1 4 stands for the indicator function of a set A, equal to one
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on that set and to zero otherwise. The notation A€ represents the complementary
set of a set A and cl(A) its closure.

4.2.2 Clarke Subdifferential and Conservative Fields

In this section we briefly review some recent results of [Bolte & Pauwels 2019]. A
set-valued map D : R? = R? is called a conservative field, if for each x € R?, D(x) is
a nonempty and compact subset of R?, D has a closed graph, and for each absolutely
continuous a: [0,1] — R?, with a(0) = a(1), it holds that:

1
dt = dt=0.
[ min, o= e i)

We say that a function F': R¢ — R is a potential for the conservative field D if for
every € R? and every absolutely continuous a: [0,1] — R?, with a(0) = 0 and

a(l) =z,
1
F(z) = F(0) —i—f min {a(t),v)dt. (4.9)
0 veD(a(t))
In this case, such a function F' is locally Lipschitz continuous, and for every abso-
lutely continuous curve a : [0,1] — R?, the function ¢ — F(a(t)) satisfies for almost
every t € [0,1],
d

S Flat) = @a(t)y (e Dla(t)),

that is to say, F' admits a “chain rule” [Bolte & Pauwels 2019, Lemma 2|. Moreover,
by [Bolte & Pauwels 2019, Theorem 1|, it holds that D = {VF'} Lebesgue almost
everywhere.

We say that a function F' is path differentiable if there exists a conservative field
D such that F' is a potential for D. If F is path differentiable, then the Clarke
subdifferential 0F is a conservative field for the potential F' [Bolte & Pauwels 2019,
Corollary 2]. Another useful example of a conservative field for composite functions
is the automatic differentiation field [Bolte & Pauwels 2019, Section 5|. A broad
class of functions used in optimization are path differentiable, e.g. any convex,
concave, regular or tame.

4.3 Almost-Everywhere Gradient Functions

4.3.1 Definition

Let (2, 7, u) be a probability space, where the o-field .7 is p-complete. Let d > 0
be an integer. Consider a function f : R? x = — R. We denote by A 2 {(x,s) €
RIxZ : xe Dy(.s)} the set of points (z,s) s.t. f(-,s) is differentiable at x. We
denote by V f(x, s) the gradient of f(-,s) at z, whenever it exists.

The following technical lemma, which proof is provided in Section 4.8.1, is es-
sential.
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Lemma 4.3.1. Assume that f is B(R?) ® .7 -measurable and that f(-,s) is contin-
uous for every s € E. Then Ay € B(RY) @ 7, and the function ¢ : R x = — R?
defined as

Vf(x,s) if (xz,5)e Ay

_ 4.1
vo(x,s) { 0 otherwise, 10

is B(RY) ® T -measurable. Moreover, if f(-,s) is locally Lipschitz continuous for
every s € 2, then (A® p)(Ag) = 0.

Thanks to this lemma, the following definition makes sense.

Definition 4.3.1. Assume that f(-, s) is locally Lipschitz continuous for every s € =.
A function ¢ : R x E — R? is called an almost everywhere (a.e.)-gradient of f if
=V A® p-almost everywhere.

By Lemma 4.3.1, we observe that a.e.-gradients exist, since (A ® p)(A%) = 0.
Note that in Definition 4.3.1, we do not assume that ¢ is Z(RY) ® 7 /%(R%)-
measurable. The reason is that this property is not always easy to check on practical
examples. However, if one denotes by Z(R%) ® 7 the A®u completion of the o-field
#(RY) ® 7, an immediate consequence of Lemma 4.3.1 is that any a.e.-gradient of
[ is a B(RY) ® 7 /B (R%)-measurable function.

4.3.2 Examples

Lazy gradient function. The function ¢y given by Equation (4.10) is an a.e.
gradient function.

Clarke gradient function. We shall refer to as a Clarke gradient function as any
function ¢(x, s) such that

{np(a:,s) =V f(x,s)if (z,s) € Ay,

4.11
o(x,s) € df(x,s) otherwise. (4.11)

Note that the inclusion ¢(z,s) € df(x,s) obviously holds for all (x,s) € R? x E,
because V f(x,s) is an element of 0f(x,s) when the former exists. However, con-
versely, a function ¥ (x, s) € df(x, s) does not necessarily satisfy ¢ (z, s) = Vf(x, s)
if (z,s) € Ay (see the footnote!). By construction, a Clarke gradient function is an
a.e. gradient function.

Selections of conservative fields.

Proposition 4.3.2. Assume that for every s € =, f(-,s) is locally Lipschitz, path
differentiable, and is a potential of some conservative field Dy : R* = R, Consider
a function ¢ : R x = — R which is B(RY) @ T /B(R?) measurable and satisfies
©(x,5) € Dy(z) for all (z,5) € R x E. Then, ¢ is an a.e. gradient function for f.

'Tf a locally Lipschitz function g is differentiable at a point x, we have {Vg(z)} < dg(x) but the
inclusion could be strict (the two sets are equal if g is regular at z): for example, g(z) = z* sin(1/x)
is s.t. Vg(0) = 0 and dg(0) = [—1,1]. There even exist functions for which the set of z s.t.
{Vg(z)} < 0g(x) is a set of full measure (see [Lebourg 1979, Proposition 1.9]).
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Proof. Define A 2 {(z,s) s.t. p(z,s) # Vf(x,s)}. Applying Fubini’s theorem we
have:

| @) = [ [1aeraouts) - o.

where the last equality comes from the fact that for every s, Dy = {V f(-,s)} M-a.e.
[Bolte & Pauwels 2019, Theorem 1]. O

We provide below an application of Proposition 4.3.2.

Autograd function. Consider Equation (4.3), which represents a loss of a neu-
ral network. Although f is just a composition of some simple functions, a direct
calculation of the gradient (if it exists) may be tedious. Automatic differentiation
deals with such functions by recursively applying the chain rule to the components
of f. More formally consider a function f : R — R that can be written as a
closed formula of simple functions, mathematically speaking this means that we
can represent f by a directed graph. This graph (with ¢ > d vertices) is defined
through a set-valued function parents(i)  {1,...,7 — 1}, a directed edge in this
setting will be j — i with j € parents(i). Associate to each vertex a simple func-
tion g;: RIParents()l _, R oiven an input z = (z1,...,24) € R we recursively
define x; = gi((7;)jeparents(i)) for i > d and finally f(z) = =z, For instance,
if f is a cross entropy loss of a neural network, with activation functions being
ReLu or sigmoid functions, then g; are some compositions of simple functions log,
exp, H%’ norms and piecewise polynomial functions, all being path differentiable
[Bolte & Pauwels 2019, section 6], [Davis et al. 2020, Section 5.2|. Automatic dif-
ferentiation libraries calculate the gradient of f by successively applying the chain
rule (in the sense (g1 0 g2)' = (g} © g2)g5) to the simple functions g;. While the
chain rule is no longer valid in a nonsmooth setting (see e.g. [Kakade & Lee 2018]),
it is shown in [Bolte & Pauwels 2019, Section 5| that when the simple functions are
path-differentiable, the output of automatic differentiation (e.g. autograd in Py-
Torch ([Paszke et al. 2017])) is a selection of some conservative field D for f. We
refer to [Bolte & Pauwels 2019] for a more detailed account. We denote by af(x)
the output of automatic differentiation of a function f at some point x.

Assume that = = N and for each s € E, f(+,s) is defined through a recursive
graph of path differentiable functions (in the machine learning paradigm f(-, s) will
represent the loss related to one data point, while F(-) is the average loss). By
Proposition 4.3.2, the map (z,s) = a4 (z) is an a.e. gradient function for f.

4.4 SGD Sequences

4.4.1 Definition

Given a probability measure v on Z(R?), define the probability space (Q,.7,P") as
Q=RIx=N 7 = BRYH)® TN and P = v ® u®. We denote by (0, (&n)nen+)
the canonical process on Q — R? i.e., writing an elementary event in the space Q
as w = (wn)neN, we set zo(w) = wp and &, (w) = wy, for each n > 1. Under P”, xg
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is a R%valued random variable with the probability distribution v, and the process
(&n)nen# is an independent and identically distributed (i.i.d.) process such that the
distribution of &1 is p, and xg and (&,) are independent. We denote by .Z the
AR M®N—completion of .

Let f:R% x Z — R be a Z(R?%) ® .7 /%(R)-measurable function.

Definition 4.4.1. Assume that f(-, s) is locally Lipschitz continuous for every s € =.
A sequence (Tn)pen+ of functions on Q — R is called an SGD sequence for f with
the step v > 0 if there exists an a.e.-gradient ¢ of f such that

Tni1 = Tn — Y2 (Tn, Eng1) (Vn = 0).

4.4.2 All SGD Sequences Are Almost Surely Equal

Consider the SGD sequence

Tpt1 = Tn — Y20 (Tn, Ent1), (4.12)

generated by the lazy a.e. gradient ¢g. Denote by P : R? x B(R?Y) — [0,1] the
kernel of the homogeneous Markov process defined by this equation, which exists
thanks to the Z(R?) ® .7-measurability of ¢g. This kernel is defined by the fact
that its action on a measurable function ¢ : R — R, , denoted as Pyg(-), is

Pro(e) = [ gl = 20w, 5)) n(ds). (4.13)
Define I' as the set of all steps v > 0 such that P, maps M (Rd) into itself:
T2 {y¢e(0,+%) : ¥pe Mus(RY), pPy « A}.

Proposition 4.4.1. Consider v € T' and v € Mys(R?). Then, each SGD sequence
(z,) with the step v is F /B(RHEN -measurable. Moreover, for any two SGD se-
quences (xy,) and (x),) with the step vy, it holds that P¥ [(xy,) # (x],)] = 0. Finally,
the probability distribution of x,, under P is Lebesque-absolutely continuous for each
neN.

Note that PV « A ® u®N since v « X. Thus, the probability P [(z,) # (/)] is
well-defined as an integral w.r.t. A ® u®N.

Proof. Let (x,) be the lazy SGD sequence given by (4.12). Given an a.e. gradient
@, define the SGD sequence (z,) as zg = %o, 2Zn+1 = 2n — YP(2n, Ens1) for n = 0.
The sequence (z,,) is .#/%(R?)®N-measurable thanks to Lemma 4.3.1. Moreover,
applying recursively the property that pP, « A when p « A, we obtain that the
distribution of x,, is absolutely continuous for each n € N.

To establish the proposition, it suffices to show that z, is .% /%(R?)-measurable
for each n € N, and that P[z, # x,] = 0, which results in particular in the
absolute continuity of the distribution of z,. We shall prove these two properties by
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induction on n. They are trivial for n = 0. Assume they are true for n. Recall that
Znt1 = 2n — YV (Zn, Ens1) if (2n,&nv1) € A, where A € B(R4) ® 7 is such that
(A®u)(A%) =0, and zp11 = Tn — YV f(Zn, §ns1) La, 6 1)en,- The set B = {w e
Q : zpt1 # Tpg1) satisfies B € By u By, where

Bi={weQ:z,#x,} and Bo={weQ: (z,,&41) ¢ A}

By induction, B; € .# and PY(B;) = 0. By the aforementioned properties of A,
the .Z-measurability of z,, and the absolute continuity of its distribution, we also
obtain that By € % and P¥(By) = 0. Thus, B € .% and P(B) = 0, and since z,,11

is % -measurable, z,,1 is % -measurable. O

Proposition 4.4.1 means that the SGD sequence does not depend on the specific
a.e. gradient used by the practioner, provided that the law of xy has a density and
~v € I'. Let us make this last assumption clearer. Consider for instance d = 1 and
suppose that f(x,s) = 0.522 for all s. If ¥ = 1, the SGD sequence 41 = T, — YT,
satisfies 1 = 0 for any initial point and thus, does not admit a density, whereas
for any other value of v, x,, has a density for all n, provided that xg has a density.
Otherwise stated, I' = R;\{1} in this example.

It is desirable to ensure that I' contains almost all the points of Ry. The next
proposition shows that this will be the case under mild conditions. The proof is
given in 4.8.2.

Proposition 4.4.2. Assume that for p—almost every s € =, the function f(-,s)
satisfies the property that at A\—almost every point of R%, there is a neighborhood of
this point on which it is C*. Then, I'° is Lebesque negligible.

This assumption holds true as soon as for p-almost all s, f(-, s) is tame, since
in this case R? can be partitioned in manifolds on each of which f(-,s) is C?
([Bolte et al. 2007]), and therefore f(-,s) is C? (in the classical sense) on the union
of manifolds of full dimension, and therefore almost everywhere.

4.4.3 SGD as a Robbins-Monro Algorithm

We make the following assumption on the function f : R% x & — R.

Assumption 4.4.1. i) There exists a measurable function k : R? x 2 - Ry
s.t. for each x € R, (k(z,s) u(ds) < oo and there exists e > 0 for which

Vy,z € B(l‘,é‘), Vs e Ev ‘f(yvs) - f(zﬂg)’ < /ﬂ?(.’IJ,S)Hy— ZH

ii) There exists x € R such that f(x,-) is p-integrable.

By this assumption, f(z,-) is u-integrable for each 2 € R%, and the function

F:RESR, 20— Jf(z, s) u(ds) (4.14)



4.5. Dynamical Behavior 95

is locally Lipschitz on R?. We denote by Z the set of (Clarke) critical points of F,
as defined in Equation (4.4).

Let (%n)n=0 be the filtration %, = o(xo,&1,...,&,). We denote by E, =
E[-|.Z,] the conditional expectation w.r.t. .%,, where .%,, stands for the A ® u"-
completion of .Z,.

Theorem 4.4.3. Let Assumption 4.4.1 holds true. Consider v € T" and v €
Maps(RY) A My (R?). Let (2 )nen+ be a SGD sequence for f with the step . Then,
for every n € N, it holds P”-a.c. that

i) F, f(-,&u+1) and f(,s) (for p-almost every s) are differentiable at x,.

i) Tni1 = Tn — YV (0, Enr1).
iii) Eplznt1] = zn — YV F(25).

Theorem 4.4.3 is important because it shows that P-a.e., the SGD sequence
(xy,) verifies

Tn+1 = Tn — VVF(:CTL) + YMn+1

for some random sequence (7,) which is a martingale difference sequence adapted
to (Fn).

4.5 Dynamical Behavior

4.5.1 Assumptions and Result

In this section we prove that the SGD sequence (z;,)pen (which is by Theorem 4.4.3,
under the stated assumptions, unique) closely follows a trajectory of a solution to
the DI (4.7) as the step size v tends to zero. To state the main result of this section,
we need to strengthen Assumption 4.4.1.

Assumption 4.5.1. The function k of Assumption 4.4.1 satisfies:
i) There exists a constant K >0 s.t. {k(x,s) u(ds) < K(1+ |z||) for all z.
ii) For each compact set K = R%, supyex § k(z, 5)?u(ds) < 0.

The first point guarantees the existence of global solutions to (4.7) starting from
any initial point (see Section 2.2.2).

Assumption 4.5.2. The closure of I' contains 0.

By Proposition 4.4.2, Assumption 4.5.2 is mild. It holds for instance if every
f(-,s) is a tame function.

We recall that S_sp(A) is the set of solutions to (4.7) that start from any point
in the set A < RY.
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Theorem 4.5.1. Let Assumptions 4.4.1-4.5.2 hold true. Let {(x}))nen* : v € (0,70]}
be a collection of SGD sequences of steps v € (0,79]. Denote by X7 the piecewise
affine interpolated process

XNt) = ap + /vy —n)(@p —23) (VL€ [ny, (n+1)y)).

Then, for every compact set KK  R?,

Ve >0, lim sup P (de(X7,S_sr(K)) >¢) | =0,
77:19 vEMqps (K)

where the distance d¢ is defined in (2.2). Moreover, the family of distributions
{PY(x7) "1 i v e Mys(K),0 < < 70,7 €T} is tight.

The proof is given in Section 4.8.4.

Theorem 4.5.1 implies that the interpolated process X7 converges in probability
as 7 — 0 to the set of solutions to (4.7). Moreover, the convergence is uniform
w.r.t. to the choice of the initial distribution v in the set of absolutely continuous
measures supported by a given compact set.

4.5.2 Importance of the Randomization of x

In this paragraph, we discuss the case where xg is no longer random, but set to
an arbitrary point in R%. In this case, there is no longer any guarantee that the
iterates x,, only hit the points where a gradient exist. We focus on the case where
(xy,) is a Clarke-SGD sequence of the form (4.11), where the function ¢ is assumed
B(RYH®.7 /2 (RY) measurable for simplicity. By Assumption 4.4.1, it is not difficult
to see that o(z,-) is p-integrable for all € R? and, denoting by E(yp(z,-)) the
corresponding integral w.r.t. p, we can rewrite the iterates under the form:

Tnt1 = Tn — YE@(Zp, ) + Y01,

where 7,11 = E[o(zn, )] —@(2n, Ent1) is a martingale difference sequence for the fil-
tration (.%#,). Obviously, Ep(z,-) € E0f(z,-). As said in the introduction, we need
Ep(z,-) to belong to 0F(z) in order to make sure that the algorithm trajectory
shadows the DI x(t) € —0F (x(t)). Unfortunately, the inclusion 0F (z) < Edf(z,-)
can be strict, which can result in the fact that the DI x(t) € —Edf(x(¢),-) gener-
ates spurious trajectories that converge to spurious zeroes. The following example,
which can be easily adapted to an arbitrary dimension, shows a case where this
phenomenon happens.

Example 4.5.1. Take a finite probability space = = {1,2} and p({1}) = u({2}) =
1/2. Let f(z,1) = 22l,<0 and f(x,2) = 2x1,>9. We have F(x) = x, and therefore
OF(0) = {1}, whereas 0f(0,1) = 0f(0,2) = [0,2] and therefore 3f(0, s)u(ds) =
[0,1]. We see that 0 € EOf(0,-) while 0 ¢ 0F(0). Furthermore, the trajectory defined

on R, as
1—t fortel0,1]
= =1
0-{y A -
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is a solution to the DI x(t) € —Edf(x(t),-), but not to the DI x(t) € —0F (x(t)).

Example 4.5.2. Consider the same setting as in the previous example. Consider a
stochastic gradient algorithm of the form (4.1), initialized at x¢ = 0 with @ such that
©(0,1) = p(0,2) = 0. Then, the iterates x;, are identically zero. This shows that the
stochastic gradient descent may converge to a non critical point of F'. Theorem 4.5.1
may fail unless a random initial point is chosen.

4.6 Long Run Convergence

4.6.1 Assumptions and Result

As discussed in the introduction, the SGD sequence (z,) is not expected to con-
verge in probability to Z when the step is constant. Instead, we shall establish the
convergence (4.5). The “long run” convergence referred to here is understood in this
sense.

In all this section, we shall focus on the lazy SGD sequences described by Equa-
tion (4.12). This incurs no loss of generality, since any two SGD sequences are equal
P¥-a.e. by Proposition 4.4.1 as long as v « A. Our starting point is to see the process
() and as a Markov process which kernel P, is defined by Equation (4.13). Our
first task is to establish the ergodicity of this Markov process under the convenient
assumptions. Namely, we show that P, has a unique invariant probability measure
Ty, B.€., Ty Py = 7y, and that | P)(z,-) — my[Tv — 0 as n — oo for each = € RY,
where | - |1v is the total variation norm. Further, we need to show that the family
of invariant distributions {777}76(0’70] for a certain vy > 0 is tight. The long run
behavior referred to above is then intimately connected with the properties of the
accumulation points of this family as v — 0. To study these properties, we get back
to the DI x € —0F(x) (we recall that a concise account of the notions relative to
this dynamical system and needed in this chapter is provided in Section 2.2.2). The
crucial point here is to show, with the help of Theorem 4.5.1, that the accumula-
tion points of {7} as v — 0 are invariant measures for the set-valued flow induced
by the DI. In its original form, this idea dates back to the work of Has’minskii
|[Has'minskii 1963|. We observe here that while the notion of invariant measure for
a single-valued semiflow induced by, say, an ordinary differential equation, is classi-
cal, it is probably less known in the case of a set-valued differential inclusion. We
borrow it from the work of Roth and Sandholm [Roth & Sandholm 2013].

Having shown that the accumulation points of {m,} are invariant for the DI x €
—0F (x), the final step of the proof is to make use of Poincaré’s recurrence theorem,
that asserts that the invariant measures of a semiflow are supported by the so-called
Birkhoff center of this semiflow (again, a set-valued version of Poincaré’s recurrence
theorem is provided in [Aubin et al. 1991, Faure & Roth 2013]). To establish the
convergence (4.5), it remains to show that the Birkhoff center of the DI x € —0F(x)
coincides with zer 0F. The natural assumption that ensures the identity of these
two sets will be that F' admits a chain rule [Clarke et al. 1998, Bolte et al. 2007,
Davis et al. 2020].
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Our assumption regarding the behavior of the Markov kernel P, reads as follows.

Assumption 4.6.1. There exist measurable functions V : R — [0,4+0), p: RY —
[0,4+00), a: (0,+0) — (0,+0) and a constant C = 0 s.t. the following holds for
every v € I' n (0,7].

i) There exists R > 0 and a positive Borel measure p on R% (R, p possibly de-
pending on ) such that

Va e cl(B(0, R)), VA€ BRY), P,(z,A) = p(A).

ii) supg(B(o,r)) V < © and infp g r)c p > 0. Moreover, for every x € R4,

PV (z) < V(z) — a(y)p() + Ca) Lz <r- (4.15)

iit) The function p(x) converges to infinity as |z| — oo.

Assumptions of this type are frequently encountered in the field of Markov chains.
Assumption 4.6.1-(i)) states that cl(B(0, R)) is a so-called small set for the kernel
P,, and Assumption 4.6.1-(ii)) is a standard drift assumption. Taken together,
they ensure that the kernel P, is a so-called Harris-recurrent kernel, that it admits
a unique invariant probability distribution 7, and finally, that this kernel is ergodic
in the sense that || Py(x, ) —7y|Tv — 0 as n — o0 (see [Meyn & Tweedie 2009]). The
introduction of the factors a(vy) and Ca(y) in Equation (4.15) guarantees moreover
the tightness of the family {7} e(0,10]-

In Section 4.6.2, we provide sufficient and verifiable conditions ensuring the
validity of Assumption 4.6.1 for P,.

As announced above, we also need:

Assumption 4.6.2. The function F defined by (4.14) admits a chain rule, namely,
for any absolutely continuous curve z : Ry — R, for almost all t > 0, Yv €

OF(2(t)), (v, 2(t)) = (Fo2)'(t).

Assumption 4.6.2 is satisfied as soon as F' is path-differentiable, for instance when
F is either convex, regular, Whitney stratifiable or tame (see [Bolte & Pauwels 2019,
Proposition 1Jand [Bolte et al. 2007, Davis et al. 2020]).

Theorem 4.6.1. Let Assumptions 4.4.1-4.5.2 and 4.6.1-4.6.2 hold true. Let {(x))nen=
v € (0,7]} be a collection of SGD sequences of step-size . Then, the set Z =
{x:0€ 0F(x)} is nonempty and for all v € Mys(R?) and all € > 0,

limsupP” (d(z], Z) > ) — 0. (4.16)
n—00 ’sz“o
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4.6.2 The Validity of Assumption 4.6.1

In this paragraph, we provide sufficient conditions under which Assumption 4.6.1
hold true. A simple way to ensure the truth of Assumption 4.6.1-(i)) is to add a
small random perturbation to the function pg(z, s). Formally, we modify algorithms
described by Equation (4.12) and (4.18), and write

Tp+1 = Tnp — ’7800(17n,§n+1) + Yen+1

where (e,) is a sequence of centered i.i.d. random variables of law ¢, independent
from {zg, (£,)}, and such that the distribution of e; ~ p has a continuous and
positive density on R?. The Gaussian case €; ~ N(0,al;) where a > 0 is some
small variance is of course a typical example of such a perturbation.

Consider now a fixed v and denote by P the Markov kernel induced by the
modified equation.

Proposition 4.6.2. Let Assumption 4.5.1 hold true. Then, for each R > 0, there
exists € > 0 such that

Va e cl(B(0,R)), VA e B(RY), Pz, A) = e A(An cl(B(0,1))),
Thus, Assumption 4.6.1-(i)) is satisfied for P.
We now turn to the assumptions 4.6.1-(ii)) and 4.6.1-(iii)).

Proposition 4.6.3. Assume that there exists R = 0, C' > 0, and a measurable
function B : = — Ry such that the following conditions hold:

i) For every s € 2, the function f(-, s) is differentiable outside the ball c1(B(0, R)).
Moreover, for each z,2' ¢ cl(B(0, R)), [V f(x,s) = Vf(a',s)| < B(s)|x— 2|
and § B%du < 0.

ii) For all x ¢ cl(B(0, R)), §[Vf(x,5)[*u(ds) < C(1 + |VF(x)[?).
iv) Function F is lower bounded i.e., inf F > —o0.

Then, it holds that

PyF(x)

A

F(x) = y(1 = vK)1j3=2r|VF(2)|> + ¥ K1y =2r + VK Ljzj<or (4.17)

for some constant K > 0. In particular, Assumptions 4.6.1-(i1)) and 4.6.1-(iii)) hold
true.

We finally observe that this proposition can be easily adapted to the case where
the kernel P, is replaced with the kernel P of Proposition 4.6.2.
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4.7 The Projected Subgradient Algorithm

In many practical settings, the conditions of Proposition 4.6.3 that ensure the truth
of Assumptions 4.6.1-(ii)) and 4.6.1-(iii)) are not satisfied. This is for instance
the case when the function f is described by Equation (4.3) with the mappings o
at the right hand side of this equation being all equal to the ReLU function. In
such situations, it is often pertinent to replace the SGD sequence with a projected
version of the algorithm. Given an a.e.-gradient ¢ of the function f and a non empty
compact and convex set I = R%, a projected SGD sequence (x%’c) is given by the

recursion

Ty = To, xZLfl = HK(Z';YL’K - ’7%0(1'?{Ka §n+1)), (4.18)

where I stands for a Euclidean projection onto K. Our purpose is to generalize
Theorem 4.5.1 to this situation. This generalization is not immediate for several
reasons. First, the projection step is likely to introduce spurious local minima. As
far as the iterates (4.18) are concerned, the role of differential inclusion (4.7) is now
played by the differential inclusion:

x(t) € —OF(x(t)) — Nic(x(t)), (4.19)

where N (x) stands the normal cone of K at point x. The set of equilibria of the
above differential inclusion coincides with the set

Ze:={zeR?: 0e—0F(z) — Nc(z)},

which we shall refer to as the set of Karush-Kuhn-Tucker points. A second theo-
retical difficulty is related to the fact that Proposition 4.4.1 does no longer hold.
Indeed, it can happen zg has a density, but the next iterates :UZ’K don’t. The reason
is that xn’lc generally has a non zero probability to be in the (Lebesgue negligible)
border of K, that is, cI(K)\int(K), where cl(K) and int(K) respectively stand for
the closure and the interior of K.

We shall focus here on the case where K = cl(B(0,r)) with » > 0. We shall use
II,, 2", N, as shorthand notations for I, 2, and Njc respectively. In this case
No(z) = {0} if ||z]| < r, Np(z) = {Az: XA =0} if ||z]| = r and N, (z) = & otherwise.

We make the following assumption.

Assumption 4.7.1. For every x € R, the law of wo(x, €), where & ~ p, is absolutely
continuous relatively to Lebesgue.

Assumption 4.7.1 is much stronger than Assumption 4.5.2. Indeed, it implies
that the distribution of z;;" — vy (2", &u41) is always Lebesgue-absolutely contin-
uous. It is useful to note though that Assumption 4.7.1 holds upon adding at each
step a small random perturbation to g as in Section 4.6.2 above.

In order to state our first result in this framework, we need to introduce some
new notations. We let S(r) := {x : ||z|| = r,z € R%} be the sphere of radius r. By
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[Folland 2013, Theorem 2.49], there is a unique measure? p; on S(1) such that for
any positive function f: R? — R, we have:

f F(@)A(de) = J M reerto@ontar). (4.20)
o Jsq

We define the measure g, on S(r) as o,(A) = 01(A/r) for each Borel set A < S(r).
We denote as M" the set of measures v = v + 19, where v1 € My and vo K 9.
For a set C = R? we define M"(C) as the measures in M" that are supported on C.
Notice that Mas(C) < M"(C).

The next proposition, which is proven in the same way as Proposition 4.4.1,
shows that for almost every r» > 0, all projected SGD sequences are almost surely
equal.

Proposition 4.7.1. Let Assumption 4.7.1 hold true. Then, for almost every r > 0,
Yv e M", each projected SGD sequence (x,,") is F | B(RDEN -measurable. Moreover,
for any two projected SGD sequences (x,y") and (y5"), it holds that P* [(z") # (yn")] =
0. Finally, under PV, for every n € N, the probability distribution of x," is in M".

By Proposition 4.7.1 we can focus on the lazy projected SGD sequence:

CUZLL =1L (2" — ypo (2", Ent1)) - (4.21)
We define its associated kernel
Prg(a) = [ 911G = (e, 9)n(ds). (1.22)

The next two theorems are analogous to Theorems 4.4.3 and 4.5.1.

Theorem 4.7.2. Let Assumptions 4.4.1 and 4.7.1 hold. Then for almost every
r>0,YveM", for every n € N it holds P"-a.e.

i) F, f(-,6n41) and f(-,8) (for p-a.e. s) are differentiable at z;,".

i) xpiy € oy’ = AV (@ &) — YN (W (2" — AV f (", &ne1)))-
Theorem 4.7.3. Let Assumptions 4.4.1-4.5.1 and 4.7.1 hold true. Denote X" the
piecewise affine interpolated process:

XTPI(t) = 2" + (t/y —n)(zfy —2y")  (Vte [ny, (n+1)7)).
Then, for almost every r > 0, for every compact set KK < cl(B(0,r)),
Ve >0, lim [ sup P (de(X"",S_or-n,.(K))>¢)| =0.
770 \ veMr(K)

Moreover, for any o > 0, the family of distributions {P(x")~! :v e M"(K),0 <
v <0} is tight.

2As it is clear from Equation (4.20) we can see (A, 01) as a polar coordinates representation of
the Lebesgue measure A%,
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We compare Theorems 4.4.3 and 4.5.1. First, because of the projection step
(and with the help of Assumption 4.7.1), the law of the n-th iterate is no longer
in Myps, but in M". Second, the continuous counterpart of Equation (4.18) is now
the differential inclusion (4.19) Note that, if the solutions of the DI (4.7) that start
from KC all lie in cl(B(0,7)), then the set of these solutions coincides with the set of
solutions of the DI (4.19) that start from K.

The analysis of the convergence of the iterates in the "long run" is greatly sim-
plified by the introduction of the projection step. Compared to Assumption 4.6.1,
we only assume the existence of a small set for PJ, the drift condition of the form
4.6.1-(ii))—(iil)) is then automatically satisfied, thanks to the projection step (see
Section 4.8.5).

Assumption 4.7.2. There is R > 0 and vy > 0 such that for every v € (0,~0] there
is py such that Assumption 4.6.1-(i)) hold for (R, p,) (note that R is independent

of v here).

As shown in Section 4.6.2; Assumption 4.7.2 holds upon adding to g a small
random perturbation.

Theorem 4.7.4. Let Assumptions 4.4.1-4.5.1 and 4.6.2—4.7.2 hold. Let {(x" )pens :
v € (0,70]} be a collection of projected SGD sequences of step-size v. Then, for al-
most every 0 < r < R, the set Z, = {x: 0 € 0F(x) + N;(x)} is nonempty and for
allve M" and all e > 0,

limsup P” (d(z)", Z,) > ¢) — 0. (4.23)

n—00 y—0

Theorem 4.7.4 is analogous to Theorem 4.6.1. Notice that, since My, < M",
xo can still be initialized under a Lebesgue-absolutely continuous measure. On the
other hand, as explained in the beginning of this section, due to the projection step,
the iterates, instead of converging to Z, are now converging to the set of Karush-
Kuhn-Tucker points related to the DI (4.19).

4.8 Proofs

4.8.1 Proof of Lemma 4.3.1
By definition, (z, s) € Ay means that there exists d, € R? (the gradient) s.t. f(z +
h,s) = f(x,s) + {dgz, h) + o(]|h]|). That is to say (z, s) belongs to the set:

ﬂ U ﬂ {(y,s) : ‘f(y * h’s) —|ﬂ(|y, S) _<dw’h>‘ < 5} . (4.24)

€eQ 0eQ 0<||h||<s

In addition, using that f(-,s) is continuous, the above set is unchanged if the inner
intersection over 0 < ||h|| < 0 is replaced by an intersection over the h s.t. 0 <
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|h|| < 6 and having rational coordinates i.e., h € Q?. Define:

~-NUNU N {(mjs):‘f(x+h,s)—|’£|(’x,s)—<d,h>‘<€+5,}

€’eQ deQ? e€Q 6eQ 0<||h||<d
heQd

(4.25)
By construction, A’f is a measurable set. We prove that A’f = Ay. Consider
(x,s) € Ay and let d, be the gradient of f(-,s) at . By (4.24) for all € € Q, there
is a § € Q such that:

(x,s) €

N {[ferratwa-dn )

h
h<d,heQd

For any ¢ > 0, choose d’ € Q? such that ||d —d,|| < ¢'. Using the previous
inclusion, for all e, there exists therefore § € Q s.t.

QI (LSRR (ER R

(z,s) € .

h<8,heQd

which means Ay = A’ To show the converse, consider (z,s) € A Let (¢}) be a
positive sequence of rationals converging to zero. By definition, for every k, there
exists di € Q¢ s.t. for all ¢, there exists dx(¢), s.t. for all (rational) h < & (e),

’f(ﬂﬁ +h,s) = f(z,5) _<dk>h>‘

<e+e). (4.26)
h

Moreover, one may choose di(g) < dp(¢). Inspecting first the inequality (4.26) for
k = 0, we easily obtain that the quantity M is bounded uniformly in
h st. 0 < |h| < do(e). Using this observation and again Equation (4.26), this in
turn implies that (dj) is a bounded sequence. There exists d € R? and s.t. dy — d
along some extracted subsequence. Now consider € > 0 and choose k such that
ldi, — d|| < § and €}, < 5. For all h < d;(g/2),

f(x+h75)_f($75)_<dvh>‘ < ’f(l‘+h,8)—f($,8)—<dk,h>
h = h

This means that d is the gradient of f(-,s) at z, hence A’f < Ay. Hence, the first
point of the Lemma 4.3.1 is proved.

+||d—dg|| <€

Denoting as e; the i" canonical vector of R?, the i**-component [pg]; in R? of
the function ¢ is given as

flx +te;, s) — f(x,s)
t

and the measurability of g follows from the measurability of f and the measurability

[900(;(;73)]2' :%E;% ]lAf(x7S)7

of 1a,.

Fi;ally, assume that f(-,s) is locally Lipschitz continuous for every s € E.
From Rademacher’s theorem [Clarke et al. 1998, Ch. 3|, f(-, s) is almost everywhere
differentiable, which reads §(1 — 1a,(z,s))A\(dz) = 0. Using Fubini’s theorem,
Spaxz(l—1a,(z,5)) A(dx) ® p(ds) = 0, and the last point is proved.
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4.8.2 Proof of Proposition 4.4.2

The idea of the proof is to show that for almost every v and s we have that g ,(z) :=
(x =V f(z,5))1a,(z,s) is almost everywhere a local diffeomorphism.

In order to prove that we define for each (z,s) € R? x Z the pseudo-hessian
H(z,s) e R4 as

_ (Vf(x+tej,s)la,(z +tej,s) — Vf(z,s) e
H(x,s)i; = limsup ;
t—0

as(z,8).

Since it is a limit of measurable functions, H is B(R?) ® 7 measurable, and
if f(-,s) is two times differentiable at = then H(z,s) is just the ordinary hessian.
Now we define I(z, s,v) = det(yH(x,s) —Id) if every entry in H(x, s) is finite, and
I(x,5,7) = 1 otherwise, it is a B(R?) ® 7 ® B(R. ) measurable function (as a sum of
two measurable functions). By the inverse function theorem we have that if f(-, s)
is C? at z and if det(yH(x, s) —Id) # 0, then g5, (-) is a local diffeomorphism at z.
Therefore I(x, s,7) # 0 implies either the latter or f(-,s) is not C? at x (or both).
Let A4, A! denote Lebesgue measures respectively on R? and R, we have by Fubini’s
theorem:

j L0571 0A () © pr(ds) ® N (dy) = j M@ p({(x,s) : Uz, 5,7) = DAL (d)

~ [ [ [ tiamp-o¥ @nriceincas)
=0

where the last equality comes from the fact that for (z,s) fixed I(x,s,v) = 0 only
if 1/ is in the spectrum of H(x, s) which is finite. Therefore we have a I' a set of
full measure in R, such that for v € I' we have A\ ® u({(z, s) : I(x,s,7) = 0}) = 0.
Once again applying Fubini’s theorem we get that for almost every s € = we have
{z : gs~(-) is a local diffeomorphism at z}) is of A%-full measure (since for each s,
f(-,x) is almost everywhere C?). Finally, for A c R% v e T and v € My,(R?), we
have

vPy(A) = v @ p({(,5) : gsq(2) € A}Y) S M@ p({(x,5) : gsq(2) € A}),
and by Fubini’s theorem,
N @u({(2,5) g (8) € AP = [ N({a + g2 (0) € ADu(ds)
= f)\d({x : gs~(z) € A and f(-,5) is C* at x})u(ds)
= J)\d({x : gs~(z) € A and g, (-) is a local diffeomorphism at x})u(ds) .

Now by separability of R? there is a countable family of open neighborhoods (V;);en
such that for any open set O we have O = UjEJ Vj. The set of x where g(-,s,7) is
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a local diffeomorphism is an open set, hence

{z:gs,(x) € Aand gs,(-) is a local diffeomorphism at =} = UVzm{m D gs~(z) € A}

el
Since an image of a null set by a diffeomorphism is a null set we have
M{z:gs () e A} n Vi) =0.

Hence, vP,(A) = 0, which proves our claim.

4.8.3 Proof of Theorem 4.4.3

Take v « A and a SGD sequence (2,)nen, let S; < R? be the set of 2 for which
Vf(x,s) exists for pu- almost every s, i.e.,

s 2 {x eR? : Lu —1a,(z,5)) p(ds) = 0} .

When Assumption 4.4.1 holds, Rademacher’s theorem, lemma 4.3.1 and Fubini’s
theorem imply that S; € Z(R%) and A(R¥\S;) = 0. Hence, for p-a.e. s we have
f(-,s) differentiable at xg, and since & ~ pu, f(-,&1) is differentiable at xy. Now
by Rademacher’s theorem again, the set Sy = R? where F is differentiable satisfies
ARHNSs) = 0, therefore F is differentiable at z. Moreover, with probability one zg
is in S1 N Sy. Define A(x) = {seZ:(r,s) ¢ Ay}. By Assumption 4.4.1, |V f(z, )|
is p-integrable. Moreover, for all z € S; N Sy and all v € R?

¢ f Vf(,5)1a, (2, 5) ul(ds), v) = L\A(z;w(x,s),vm(ds)

o . f(fL'+t’U,S)—f(l‘,S)
B fE\A(z) te%%lﬂo t M(dS)
_ te]}g}}io JE f(CC + tvvst) — f(xa 5) ,U,(dS)
F —F
-, S o

where the interchange between the limit and the integral follows from Assump-

tion 4.4.1 and the dominated convergence theorem. Hence, VF(x) = {V f(x,s)1a,(z, s) pu(ds)
for all x € S; nSy. Now denote by v, the law of x,,. Since we assumed that vy « A,

it holds that P”(zp € S1 n S2) = 1. Therefore, with probability one,

x1 = x11g, A5, (20) = (®0 — YV f(x0,£1)) L5, A5, (20) = 20 — YV f (20, 1) -

Thus, 1 is integrable whenever xg is integrable, and Eo(x1) = 20 — YV F(x0). Since
by Assumption vy € A we can iterate our argument for xs and then for all x,, and
the conclusions of Theorem 4.4.3 follow.
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4.8.4 Proof of Theorem 4.5.1

We want to apply |Bianchi et al. 2019, Theorem 5.1.], and therefore verify its as-
sumptions |Bianchi et al. 2019, Assumption RM]. In order to fall in its setting we

first need to rewrite our kernel in a more appropriate way. As 0F takes nonempty
compact values, it admits a measurable selection ¢(x) € 0F (x) [Aliprantis & Border 2006,
Lemma 18.2 and Corollary 18.15]. Take v € T', a SGD sequence (z,) and notice that

by Theorem 4.4.3 it is P¥ almost surely always in D n S, where S is the set of x
where V f(z,s) exists for u-a.e. s. Therefore its Markov kernel can be equivalently
defined as:

Pl(2,9) £ Ippas, (@) Py(2,9) + Lippns, ) (2)g(z — ye()) .

Now we can apply [Bianchi et al. 2019, Theorem 5.1.] with i (s, z) = —(1ppns, (z)VF(z)+

Lppns)e(T)p(z)) (note that it is independent of s) and we have h(z,s) € H(z,s) =

H(x) = —0F (x). As we show next, [Bianchi et al. 2019, Assumption RM] now eas-

ily follows.

First, it is immediate from the general properties of the Clarke subdifferential that
the set-valued map —dF is proper and uppersemicontinuous with convex and com-
pact values, hence the assumption (iii) of [Bianchi et al. 2019, Assumption RM].
Assumption (ii) is immediate by the uppersemicontinuity of —0F. Moreover, we
obtain from Assumption 4.5.1 that there exists a constant K > 0 such that

[0F ()] < K (1 + ||z])-

Thus, S_sr is defined on the whole RY, and S_p is closed in (C(Ry,R%), d) (see
[Aubin & Cellina 1984]), hence assumption (v). Finally, assumption (vi) comes from
Assumption 4.5.1.

We remark that although, [Bianchi et al. 2019, Theorem 5.1| deals with a family
of measures (P*)4eic, the proofs remain unchanged when we consider (P”),ep,, . (k)-

4.8.5 Proof of Theorems 4.6.1 and 4.7.4

Both theorems are proved in the same way. In the following @), will denote either
Py and in this case H will denote —0F', or Qy = P; and H = —0F — N,.. The proof
will be done in three steps:

e Lemma 4.8.2: (), has a unique invariant probability distribution =, with
Ty € My if Q, = P, and 7, € M" otherwise, moreover Q) is ergodic in the
sense of the Total Variation norm.

e Lemma 4.8.3: The family {m,}¢(0,1,] is tight.

’70]

e Proposition 4.8.4: The accumulation points of {my},¢(
variant for the DI x € H(x).

0,7] & 7 — 0 are in-
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Before stating Lemma 4.8.2, we recall a general result on Markov processes. Let
Q : R? x B(RY) — [0,1] be a Markov kernel on R%. A set B < R? is said to be
a small-set for the kernel @ if there exists a positive measure p on R? such that
Q(z,A) = p(A) for each Ae B(RY), € B.

Proposition 4.8.1. Assume that B is a small set for Q. Furthermore, assume
that there exists a measurable function W : R? — [0,00) that is defined on R? and
bounded on B, and a real number b = 0, such that

QW <W —1+blp. (4.27)

Then, Q admits a unique invariant probability distribution w, and moreover, the
ergodicity result
Ve eR?, |Q"(z,) — 7| ry —— (4.28)

n—00

holds true.

Indeed, by [Meyn & Tweedie 2009, Theorem 11.3.4], the kernel @ is a so-called
positive Harris recurrent, meaning among others that it has a unique invariant
probability distribution. Moreover, @ is aperiodic, hence the convergence (4.28), as
shown by, e.g., [Meyn & Tweedie 2009, Theorem 13.0.1].

Lemma 4.8.2. Assume that either Assumptions 4.6.1-(i)) 4.6.1-(i1)) hold if Q, =
Py or Assumption 4.7.2 holds and r < R if Q = PJ, then for every v € (0,70], the
kernel Q~ admits a unique invariant measure 7. Moreover,

Vze R, |QY(x,") —— 0. (4.29)

- 7T’YH TV oo

Finally, if Q = Py, assumptions of Theorem 4.4.3 hold true and v € I' then m, is
absolutely continuous w.r.t. the Lebesgue measure. If Qo = PJ and assumptions of
Theorem 4.7.2 hold true, then m, € M".

Proof. By the inequality (4.15), the kernel P, satisfies an inequality of the type (4.27),
namely, P,V <V — a(y)f + Ca(y) 1|y <r, for some 6,C > 0. Similarly, under As-
sumption 4.7.2 and r < R, we have that for every z € cl(B(0,7)):

Pl(z, A) = Py (2,11, (A)) = p,(I1;1(A)),

T

that is to say cl(B(0,7)) is a small set for PJ. Inequality of the type Assump-
tion 4.6.1-(ii))—(iii)) then hold for e.g. C' =17, a(y) =1, V = [[z] + r1|,>, and
p = llz].

Consider the case where @, = P, to prove that 7, is absolutely continuous w.r.t.
the Lebesgue measure, consider a A-null set A. By the convergence (4.29), we obtain
that for any z € R, P} (x,A) — m\(A). Now take v « A\. By Proposition 4.4.1, we
have that vP}' « A. Hence, by the dominated convergence theorem,

0=vP}(A) = JPV"(x, Ay (dx) — JWV(A)I/(dx) =7y (A).

If @y = PJ we obtain the same result with the help of Proposition 4.7.1. O
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Lemma 4.8.3. Let either Assumptions 4.6.1-(1)) — 4.6.1-(iii)) hold if Q, = P, or
Assumption 4.7.2 hold and r < R if Q- = PJ. Let my be the invariant distribution
of Q~. Then, the family {m : v € (0,70]} is tight.

Proof. If Q, = PJ then the family 7, is supported by cI(B(0,7)) and is, therefore,
tight. Otherwise we iterate (4.15), to obtain:

DAV <Y RV —aly) Y Qfp+ C(n+ a(v).
k=0

k=0 k=0

Therefore, since 0 < QsV < 400 we have:

a(y) Z Qﬁp <SV+Cn+1)a(y).
k=0

For a fixed M > 0 we will bound now 7 (pA M). Since , is an invariant distribution
for @, we have 7T7P,”yC = m,. Hence, we have:

my(pA M) = ZT{ZYQ (pAM)< p/\M
1=

”v([muvmm*c} AM)

Letting n — 400, by the dominated convergence theorem we obtain 7y (p A M) <
7y (C' A M). And therefore by monotone convergence theorem ., (p) < C'.

Fix now £ > 0, there is a K > 0 such that % < ¢, and by coercivity of p there is
r > 0 such that:

m(lel > 1) < 7 > K) < -

where the last bound comes from Markov’s inequality. This concludes the proof. [

The next proposition will show that any accumulation point of 7, is an invariant
measure for the set-valued flow induced by the DI x(¢) € H(x(t)), first we introduce
some definitions. Define the shift operator ©; : C(Ry,RY) — C(R;,R?) by ©4(z) =
x(t + -), and the projection operator py : C(Ry,R?) — R by po(z) = x(0). Then,
we have the following definition (see [Roth & Sandholm 2013] for details):

Definition 4.8.1. We say that m € M(R?) is an invariant distribution for the flow
induced by the DI x(t) € H(x(t)), if there is v € M(C(Ry,R%)), such that:

i) suppv € Sy(R9),
i) vO; ! =

iii) vpyt = .
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Proposition 4.8.4. Let Assumptions 4.4.1-4.5.2 and 4.6.1 hold true. Denote by
7y the unique invariant distribution of P,. Let (v,) be a sequence on (0,v] NI s.t.
Yn — 0 and m,, converges narrowly to some probability measure w. Then, 7 is an
invariant distribution for the flow induced by x(t) € —0F (x(t)).

Stmilarly, under Assumptions 4.4.1-4.5.1 and 4.7.1-4.7.2, for r < R, denoting
T the unique invariant distribution of FZ, if my, — m, then w is an invariant
distribution for the flow induced by x(t) € —0F (x(t)) — Ny(x(t)).

Proof. Consider the case where @), = P,. The proof essentially follows [Bianchi et al. 2019,
section 7.]. Fix an ¢ > 0 and write m, instead of m,, for simplicity. By Lemma 4.8.3
we have a compact K such that 7,(K) > 1 — &, we thus can define the conditional

n(AnK
measures 72 (A) := Wﬂ(n(?{) ). Moreover, we have 75 € My (K), therefore we can

apply Theorem 4.5.1 and get that there is a compact set C of C'(R™,R?) such that
P™n AmXZHC) = 1 —e. Now we have

P () = | B (m(da) > | P (mfda) 3 m(KOPHE (),

hence

P X H(C) 2, ()P XS H(C) = (1 - ¢)?.
Since ¢ is arbitrary this proves the tightness of v, := P™n» ’%X;nl. Take 7, — 7 and
vp — v e M(C(Ry,R%)). We now prove that v is an invariant distribution for the
flow induced by the DI associated to —0F (see Definition 4.8.1.)
We have 7, = v,p, ! by continuity of py. Thus, 7 = upy !, Therefore, we have (iii)
of Definition 4.8.1. Let n > 0. By weak convergence of vy,

v({x e C(Ry,RY) : d(x,S_op(RY) < n}) = limnsup vn({z e C(R,RY) 1 d(x,S_or(RY) < n})

and

vallw € C(RL,RY : d(z, S_or(RY) < 1)) > va({a € C(RL,RY : d(z, S_or (K)) < 1))
> wn(K)]P”Tﬁ(n”" (d(X™,S_sr(K)) <n)
> (1= &)P™n 2 (d(X™,S_ap(K)) < n).

The last term converges to 1—¢, by Theorem 4.5.1, and by weak convergence we have
v({r e C(Ry,RY) : d(x,S_or(RY)) = n}) = (1—¢), now letting n — 0, by monotone
convergence we have v(S_sr(R?))) = 1 — & which proves (i) of Definition 4.8.1.
Finally, the second point of Definition 4.8.1 is shown just like in [Bianchi et al. 2019,
section 7.].

The proof of the case @)y = P is substantially the same under straightforward
adaptations. O

After some definitions we recall an important result about the support of a
flow-invariant measure. The limit set Ly of a function f € C(Ry,R?) is

Ly = () F([t, ),

t=0
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and the limit set Lg,(,) of a point a € R? for Sy is

Lsy(a) = U L.

x€SH(a)

A point a € R? is said Sy-recurrent if a € Ls,,(a)- The Birkhoff center BCs,, of Sy is
the closure of the set of its recurrent points:

BCs,, = {a eERL : a€ LSH(Q)}.

In [Faure & Roth 2013] (see also [Aubin et al. 1991]), a version of Poincaré’s recur-
rence theorem, well-suited for our set-valued evolution systems, was provided:

Proposition 4.8.5. Fach invariant measure for Sy is supported by BCs,,.

With the help of Proposition 4.8.5 we can finally prove Theorem 4.6.1.
Proof. Take y €T, e > 0 and (z) an associated SGD sequence. We have by (4.28):

limsup P [dist(z], Z) > €] = 7, ({z e R : d(2, Z2) > €}).
n—:0o0
Now take any sequence v; — 0 with ; € I', and 7., the associated invariant distri-
bution, we know from Lemmas 4.8.3-4.8.4 that we can extract a subsequence such
that m,, — m, with 7 an invariant measure for the evolution system S_sr. Therefore
by weak convergence we have:

zEToo 7, ({z e R : d(z, Z2) > 2¢}) < EIJP T ({z € R : d(z, 2) > €})
t(freR?: d(z, 2) > €}),

where the last line comes from the Portmanteau theorem. We show that suppw < S,
and therefore the last term is equal to zero, which concludes the proof. To that end,
we make use of Proposition 4.8.5, that shows that each invariant measure of S_jp
is supported by BCs__,.. Thus, it remains to show that BCs_,, = Z (which at the
same time will ensure us that Z is nonempty). It is obvious that Z < BCs__,.. To
show the reverse inclusion, take a € Ls_,, (q)- Then, there exists a solution x to the
differential inclusion such that x(0) = a and a € Ly. But under Assumption 4.6.2 it
holds ([Davis et al. 2020, lemma 5.2|) that |x(¢)| = ||6oF (x(t))| almost everywhere,
and, moreover,

V>0, F(x(t)—F f 180 F (x(u)) 2.

Therefore x(t) = a for each ¢ > 0, thus, a € S. Observing that Z is a closed set
(since OF is graph-closed, see [Clarke et al. 1998, Proposition 2.1.5]), we obtain that
BCs_,, = Z.

Similarly, take 7; — 0 and and (z,"") the associated projected SGD sequences.
After an extraction we get that m,, — 7, with 7 an invariant measure for the flow
S_sr—_n, and:
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lim lim sup P” [dist(z)i", Z,) > 2¢] < 7({z € R? : d(, Z,) > €}).

7i—0 npnooo

Taking a € Ls_,,._, (), and x a solution to the associated differential inclusion
with x(0) = a, we get under Assumption 4.6.2 [Davis et al. 2020, Lemma 6.3.] that
%(¢)|] = min{||v]| : v € F(x(t)) + Ny (x(t))}, and moreover,

t
¥t =0, F(x(t)) — F(x(0)) = L % ()| du .

That is to say x(t) = a and a € Z,, which finishes the proof. O

4.8.6 Proof of Proposition 4.6.2

Denote as p the probability distribution of the random variable ye;. By assumption,
p has a continuous density that is positive at each point of R?. We denote as f
this density. Let 6, be the probability distribution of the random variable Z =
x — ypo(x,&1), which is the image of p by the function z — vyp(x,-). Our purpose
is to show that

Je > 0, Vo € cl(B(0, R)), VA € BRY), (0,Qp) [Z + vm1 € A] = e AM(Ancl(B(0,1))).

Given L > 0, we have by Assumption 4.5.1 and Markov’s inequality that there exists
a constant K > 0 such that

K

02 [Z ¢ cl(B(0, L)] < 7 (1 + [])-

Thus, taking L large enough, we obtain that Vx € cl(B(0, R)), 0, [Z ¢ cl(B(0,L))] <
1/2. Moreover, we can always choose € > 0 is such a way that f(u) > 2 for u €
cl(B(0, L +1)), by the continuity and the positivity of f on the compact cl(B(0, L+
1)). Thus,

(0. @ p)[Z +ym € A] = jdufRd (dv) f(u — v)

. fAmcl au f(u - v)

cl(B(0

> 2 f du J 0, (dv)
Ancl(B(0,1)) cl(B(0,L))

= e AMAncl(B(0,1))).

4.8.7 Proof of Proposition 4.6.3

By Lebourg’s mean value theorem [Clarke et al. 1998, Theorem 2.4], for each n € N,
there exists a,, € [0, 1] and ¢, € OF (up) With up, = 2p—an YV f (20, Ens1) 1a, (Tn, §ntr),
such that

F(rpy1) = F(z,) — '7<Cnavf(33n7§n+l)>]lAf (Tn,Ent1),
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and the proof of this theorem (see [Clarke et al. 1998, Theorem 2.4| again) shows
that u, can be chosen measurably as a function of (z,,&,+1)-

In the following, for the ease of readability, we make use of shorthand (and abu-
sive) notations of the type 1,=or(VF (), ) to refer to (VF(z),---) if |z| > 2R
and to zero if not. We also denote V f(xy,,&n+1) as V f4+1 to shorten the equations.
We write

F($n+1) = F(wn) - FYHHanSQR<Cm vfn+1>]1Af (xn7§n+1)
—Ven 528G — VF(20), V fni1) = YLz, 528V F (2n), V fri1).
We shall prove that

EnF(2n11) < F(2n) = V1o, 528 VF (@0)|* + YK 1jg, <2

# 2K o (0 IVF D ([ 195 )P () + [ 197001 utas))
(4.30)

where the constant K > 0 is an absolute finite constant that can change from line
to line in the derivations below. To that end, we write

F(zn+1) = F(zn) = 71z, <28 jun | <8 Cns Vint 1)1, (Tn, §nt1)
= Yz <2 L up > RG> V Frr1)LA, (%0, Env1)
=Yz, 1528 ju, |<RSGn — VE(2r), V frs1)
= Yz >2R  un > RV EF (un) = VF(20), V fry1)
= Yz 52V F(2), V fr11) (4.31)

We start with the second term at the right hand side of this inequality. Noting from
Assumption 4.5.1 that

Vju,|<rlCnll < sup 0F(z)] < sup Jllaf(fv,S)lu(dS) < sup fﬂ(%S)u(dS) < K,

lzl<R lzl<r lzl<r

we have

Yz j<2R L jun | <r|{Cns VI (T, Enr1 )| < YK L, j<2r ]V fatal,

and by integrating with respect to &,,11 and using Assumption 4.5.1 again, we get
that

YLjon|<2REn[Lju, |<rKCns V fnt1)La, (0, €ns1)|] < YK Ly, |<2R- (4.32)

Using Assumption 4.5.1, the next term at the right hand side of (4.31) can be
bounded as

YLz <2R Ljun|>RICGns V fns1)1A  (Tns Env1)]

< Ve, <2RYjun|>RIVE (un)[ [V fri1]

< Ve, j<2r K (1A 20| + AV fata]) [V frsa]
<YK g, 1<2r (1 + |V fura] + VIV frs1]?)
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which leads to

71\|zn ||<2RETL[]lHun |\>R|<<na vfn+1>1Af (xna §n+1) |] < ’YK]lH:anéﬂ% (4'33)

by using Assumption 4.5.1.
We tackle the next term at the right hand side of (4.31). Fix a z. ¢ cl(B(0, R)).
By our assumptions it holds that each x ¢ cl(B(0, R)),

IVf(@, )| < IVF (s 9)] + B(s) |z — 2] < B'(s) (L + [,

where 3/(+) is square integrable thanks to Assumption 4.5.1. Since

0 ¢]

| BsPutas) = | ulg() = E) dt < on,
0

it holds that u[B'(-) = 1/t ] = 01-0(t?). Using triangle inequality, we get that

Lz, >2R Y junj<r = Ljzn|>2R 20 —anV far1|<R S Lzn|>2R Y| fu i1 |2 (Jon] - R) /Y
<1

< ]lHamH>2R]lﬁl(£n+1)> |zn|-R

2 1 R .
@+ Ten) jon|>2R B'(En+1)=51am)

Using this result, we write

KLy =20  ju < |V frt1]
K’Y]len”>2RHan+1 || lﬂ,(gnJrl)

Yz >2R L jun <R I{Cns V frt1)] <
<

__R___
2“v(1+2R)

Consequently,

/
YLz > 2REn [ Ljun | <rl{Cns VFns DI S VK15, 528 (J IV f(2n, )| M(ds))l 2#[3(') > K /4]'/?

/2
< Vzmwszq \\Vf(xn,s)\l2u(ds))l :
(4.34)

Similarly,

Vg, |>2R L jun | <RIV E (@0), V )] S VK L, =2l VE (@) [ IV fas1 L, )

R )
Z I 012R)

thus,

1/2
VLo, 1528En [Lju, | <rlCVF (@n), Vs D] < K1, 520 VF (20)] (J I f (n, 5)|2 ds) )

(4.35)
We have that VF' is Lipschitz outside cl(B(0, R)). Thus, the next to last term at
the right hand side of (4.31) satisfies

V=28 Ljun)> RICVF (un) = VF(20), V frui1)] < ¥ K1, 528V far],
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and we get that

Vg 528 L jun) > REn [V F (un) = VE(20), V fas )] < VK1, 228 J IV f (@, 5)[2pa(ds).

(4.36)
Finally, we have

— Vg 52REn [(VF(€0), V fry )] = =71 o, 528 VF (22) . (4.37)
Inequalities (4.32)—(4.37) lead to (4.30).
Using Assumption (iii) of Proposition 4.6.3, Inequality (4.30) leads to Inequal-
ity (4.17). The validity of Assumptions 4.6.1-(ii)) and 4.6.1-(iii)) can then be checked
easily.

4.8.8 Proof of Proposition 4.7.1

The next Lemma is the key ingredient in the proofs of Section 4.7.

Lemma 4.8.6. Assume that f(-,s) is locally Lipschitz continuous for every s € E.
Then for \' @ A ® p-almost all (r,z,s) with r > 0, it holds that (IL.(z),s) € Ay.
For \' ® M-almost all (r,x) with r > 0, it holds that 11, (z) € D.

Proof. Our first aim is to show that
J 15 (T, (), 5) X' (dr) ® A(dz) @ p(dls) = 0. (4.38)
First, note by Fubini’s theorem that

0= J]IA?‘ (z,5) X (dz) @ pu(ds) = f J Lac (r8, s)ri o1 (dF) p@A(ds x dr),
’ EXR+ S(l)

(4.39)
that is to say, o({0 : (r6,s) € As}) = 0 for p® A! almost every (s,r) with r > 0.
Decompose Equation (4.38) as

f 18 (I (2), 5) AL (dr) @ A(da) @ u(dls)

= f]l”mzr]lA; (I, (), s) )\l(dr)®)\d(dx)®,u(ds)+f Ljz)<rlas (z,5) M (dr)@A\Y(dz)@u(ds).

Since for each s, f(,s) is differentiable almost everywhere, we have by Fubini’s
theorem:

f Ljof<rlag (z,5) M (dr) @ A\ (dz) ® p(ds) = 0.

Similarly,

| Lot (11,2, 5) AL () @ XY ) @ ()
~ [ty (75.5) @) © X () @ u(a)

= f J f L= dac (170, 5) (X4 Lo(d) p @ A(ds x dr) A1(dr)
Ry JExR, Js(1) !

:0,
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with the last equality coming from Equation (4.39). Hence (4.38). The second
statement can be proven along similar lines. O

Consider r > 0 such that the conclusion of Lemma 4.8.6 hold. Then the al-
most sure equality of all projected SGD sequence is proven in the same way as
in Proposition 4.4.1. We can therefore consider the lazy projected SGD sequence

vy = IL(xh" — ypo(zh” €ns1)). By Assumption 4.7.1 the law of :cn+1/2 =
" — ypo(xy", €nr1) is Lebesgue-absolutely continuous. Take A a borel set of
RY such that A\(A) = g,(A) = 0. Then

P(a)) € A) < P(]7, € A) +P | r 2 Cary:

n+1/2”
The first term is equal to zero by Lebesgue-absolutely continuity of the law of 2 +1 Jor
For the second term we write:
A\ i = [0 1a0peanN @) = [ e (AN @) = 0,

T

which finishes the proof.

4.8.9 Proof of Theorems 4.7.2 and 4.7.3

Noting that the law of 2" — v (2", €nt1) is Lebesgue-absolutely continuous by
Assumption 4.7.1, the first point of Theorem 4.7.2 comes from Lemma 4.8.6. The
second point comes upon noticing that I, (z) — z € —N,.(II.(z)).

Theorem 4.7.3 is proved in the same way as Theorem 4.5.1, by applying |Bianchi et al. 2019,
Theorem 5.1.| with h(s,z) = —=VF(x) — 1/v(x — vV f(z,s) =, (z — vV f(z,s))) €
—VF(z) = Ny(x — 9V f(z,s)) and H(x) = H(s,x) = —0F (z) — N,(z).






CHAPTER 5
Stochastic subgradient descent
escapes active strict saddles

5.1 Introduction

Stochastic approximation algorithms that operate on non-convex and non-smooth
functions have recently attracted a great deal of attention, owing to their numerous
applications in machine learning and in high-dimensional statistics. The archetype
of such algorithms is the so-called Stochastic Subgradient Descent (SGD), which
reads as follows. Given a locally Lipschitz function f : R — R which is not
necessarily smooth nor convex, the R valued sequence (z,,) of iterates generated
by such an algorithm satisfy the inclusion

Tn+1 € Ty — ’Ynaf<xn) + YnMn+1, (51)

where the set—valued function 0f is the so-called Clarke subdifferential of f, the
sequence () is a sequence of positive step sizes converging to zero, and 7,41 is
a zero-mean random vector on R? which presence is typically due to the partial
knowledge of df by the designer. It is desired that (z,) converges to the set of local
minimizers of the function f.

Before delving into the subject of convergence towards minimizers, let us first
consider the set Z := {x € R? : 0 € df(z)} of Clarke critical points of f, which
is generally larger than the set of minimizers, in the non-convex case. In order
to ensure the convergence of (z,) to Z, the sole local Lipschitz property of f is
not enough (see [Daniilidis & Drusvyatskiy 2019] for a counterexample), and some
form of structure for the function f is required. Since the work of Bolte et.al.
[Bolte et al. 2007| in optimization theory, it is well known that the so-called defin-
able on an o-minimal structure (henceforth definable) functions, which belong to
the family of Whitney stratifiable functions (cf. Section 2.4), is relevant for the con-
vergence analysis of (x,) and beyond. This class of functions is general enough so as
to contain all the functions that are practically used in machine learning, statistics,
or applied optimization. In this framework, the almost sure convergence of (x,) to
Z was established by Davis et.al. in [Davis et al. 2020]. Another work in the same
line is [Majewski et al. 2018|. Bolte and Pauwels [Bolte & Pauwels 2019] generalize
the algorithm (5.1) by replacing ¢f with an arbitrary so-called conservative field.
The constant step size regime ~,, = v is considered in [Bianchi et al. 2021a].

Thanks to these contributions, the convergence of (x,,) to the set Z is now well
understood. However, as said above, Z is in general strictly larger than the set of
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minimizers, and can contain “spurious” points such as local maximizers or saddle
points. The issue of the non-convergence of the sequence given by (5.1) towards
spurious critical points is therefore crucial. The present chapter investigates this
issue.

Before getting into the core of our subject, it is useful to make a quick overview
of the results devoted to the avoidance of spurious critical points by the iterative
algorithms. The rich literature on this subject has been almost entirely devoted to
the smooth setting. In this framework, the research has followed two main axes:

e The noisy case, where the analogue of the sequence (7,) in the smooth ver-
sion of Algorithm (5.1) is non zero. Here, the seminal works of Peman-
tle |[Pemantle 1990] and Brandiére and Duflo [Brandiére & Duflo 1996] allow
to establish the non-convergence of the Stochastic Gradient Descent (and,
more generally, of Robbins-Monro algorithms) to a certain type of spurious
critical points, sometimes referred to as traps or strict saddle. A critical point
of a smooth function f is called a trap if the Hessian matrix of f at this point
admits at least one negative eigenvalue. With probability one, the sequence
(z,,) cannot converge to a trap, provided that the projection of the random
perturbation 7, onto the eigenspace of corresponding to the negative eigenval-
ues of the Hessian matrix (henceforth, eigenspace of negative curvature) has
a non vanishing variance.

e The noiseless case where 7, = 0, studied for smooth functions by [Lee et al. 2016].
Here the authors show that for Lebesgue almost all initialization points, the
algorithm with constant step will avoid the traps.

While both of these approaches rely on the center-stable invariant manifold theorem
which finds its roots in the work of Poincaré, they are different in spirit. Indeed,
in |Lee et al. 2016] the trap avoidance is due to the random initialization of the
algorithm, whereas in [Brandiére & Duflo 1996, Pemantle 1990], it is due to the
inherent stochasticity brought by the sequence (n;,).

We now get back to the non-smooth case. Here, the only paper that tackles
the problem of the spurious points avoidance is, up to our knowledge, the recent
contribution [Davis & Drusvyatskiy 2021] of Davis and Drusvyatskiy. The spurious
points that were considered in this reference are the so-called active strict saddles.
Informally, a critical point is an active strict saddle if it lies on a manifold M such
that i) f varies sharply outside of M, ii) the restriction of f to M is smooth, and iii)
the Riemannian Hessian of f on M has at least one negative eigenvalue. For instance,
the function f: R? - R, (y, z) — |2| — y* admits the point (0,0) as an active strict
saddle with M = R x {0}, and the restriction of f to M is the function fas(y,0) =
—y2, which obviously has a second-order negative curvature. In this setting, and
assuming that f is weakly convex, the article [Davis & Drusvyatskiy 2021| focuses
on the noiseless case, and study variants of the (implicit) prozimal point algorithm
rather than the (explicit) subgradient descent. Similarly to [Lee et al. 2016], they
show that for Lebesgue almost every initialization point, different versions of the
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proximal algorithm avoid active strict saddles with probability one. Such a result is
possible due to the fact that proximal methods implicitly run a gradient descent on
a smoothened version of f - the Moreau envelope.

Contrary to [Davis & Drusvyatskiy 2021], the algorithm (5.1) studied in this
chapter is explicit, meaning that it does not require the computation of a proxi-
mal operator associated with the non-smooth function. In this situation, the sole
randomization of the initial point is not sufficient to expect an avoidance of active
strict saddles. Here, in the same line as [Pemantle 1990, Brandiére & Duflo 1996],
our analysis strongly relies on the presence of the additive random perturbation 7,.

In the framework of definable functions, we investigate the problem of the avoid-
ance of the active strict saddle points. Our approach goes as follows. First, we need
to show that the iterates (z,,) converge sufficiently fast to M, thanks to the sharp-
ness of f outside this manifold. To that end, we first rely on the fact that when f
is definable, its graph always admits a so-called Verdier stratification, which is per-
haps less known than the Whitney stratification, and is a refinement of the latter
[Loi 1998|. The key advantage of the Verdier over the Whitney stratification lies in a
Lipschitz-like condition on the (Riemannian) gradients of f on two adjacent stratas,
which is established in the chapter. Our second tool is an assumption that we term
as the angle condition. Roughly, this assumption provides a lower bound on the
inner product between the subgradients of f at x and the normal direction from M
to x when the point x is near M. The angle condition allow to control the distance
between the iterate x,, of Algorithm (5.1) and the manifold M. As the restriction fas
of f to M is smooth, the projected iterates, using the Verdier stratification property,
are shown to follow a dynamics which is similar to a (smooth) Stochastic Gradient
Descent, up to a residual term induced by the projection step. In that sense, the
avoidance of active strict saddles in the non-smooth setting follows from the avoid-
ance of traps in the smooth setting, as established in [Brandiére & Duflo 1996]. We
show that the strict saddle is avoided under the assumption that the (conditional)
noise covariance matrix has a non zero projection on the subspace with negative
curvature associated with fy; near the active strict saddle.

Before pursuing, it is important to discuss the matter of the genericity of the
assumptions that we just outlined. First, since our avoidance results are restricted
to the active strict saddles, the question of the presence of critical points that are
neither local minima nor active strict saddles is immediately raised. Actually, this
question was considered in [Drusvyatskiy et al. 2016, Davis & Drusvyatskiy 2021].
It is established there that if f is definable and weakly convex, then for Lebesgue
almost all vectors u € R, the function f,(z) 2 f(z) — (u, z) admits a finite num-
ber of Clarke critical points, and that each of these points is either an active strict
saddle or a local minimizer. In that sense, in the class of definable weakly con-
vex functions, spurious critical points generically coincide with active strict saddles.
We also need to inspect the generality of the Verdier and the angle conditions. In
Theorem 5.3.2 below, we show that these assumptions are automatically satisfied
when f is weakly convex. From these considerations, we conclude that generically
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in the sense of |Drusvyatskiy et al. 2016, Davis & Drusvyatskiy 2021], the SGD al-
gorithm (5.1) converges to a local minimum when f is a weakly convex function,
assuming that the noise is omnidirectional enough at the strict saddles. We empha-
size the fact that, while the genericity of the active strict saddles is established in
the above sense for weakly convex functions, no assumption on weak convexity is
made for our avoidance of traps result.

Let us summarize the contributions of this chapter:

e Firstly, we bring to the fore the fact that definable functions admit stratifica-
tions of the Verdier type. These are more refined than the Whitney stratifica-
tions which were popularized in the optimization literature by [Bolte et al. 2007].
While such stratifications are well-known in the literature on o-minimal struc-
tures |Loi 1998], up to our knowledge, they have not been used yet in the
field of non smooth optimization. To illustrate their interest in this field,
we study the properties of the Verdier stratifiable functions as regards their
Clarke subdifferentials. Specifically, we refine the so-called projection formula
(see [Bolte et al. 2007, Proposition 4] and Lemma 2.4.10 below) to the case of
definable, locally Lipschitz continuous functions by establishing a Lipschitz-
like condition on the (Riemannian) gradients of two adjacent stratas.

e With the help of the Verdier and the angle conditions, we show that the SGD
avoids the active strict saddles if the noise 7, is omnidirectional enough.

The chapter is organized as follows. In Section 5.2 we fix the notations and
prove the reinforced projection formula stated in Theorem 5.2.1. In Section 5.3,
we discuss the notion of an active strict saddle. After recalling some results of
[Davis & Drusvyatskiy 2021|, we introduce the Verdier and angle conditions. We
also discuss the genericity of the these conditions, in the class of weakly convex
functions. In Section 5.4, we state the main result of this chapter, namely, the
avoidance of active strict saddles. Section 5.5 is devoted to the proofs.

5.2 Preliminaries

Notations. Let d > 1 be an integer. Given a set S < R%, S denotes the closure
of S, and conv(S) and conv(S) respectively denote the convex hull and the closed
convex hull of S. The distance to S is denoted as dist(x, S) := inf{|y — z| : y € S}.
If E < R?is a vector space, we denote by P the d x d orthogonal projection matrix
onto E. We say that a function f : RY — R is weakly convex if there is p > 0 such
that the function g(x) := f(x) + p||z||* is convex. For two sequences (ay), (by), we
write a,, = b, if liminf Z—: > 0. With this notation a,, ~ b, means a, = b, and
bp 2 ap. For r > 0, B(0,r) denotes the open ball of radius 7.

Throughout this chapter, C' and C’” will refer to positive constants that can
change from line to line and from one statement to another.
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5.2.1 Reinforced projection formula

The following theorem, which we believe to be of independent interest, is the first
main result of this chapter. It is an improvement of the projection formula of
[Bolte & Pauwels 2019| (see Lemma 2.4.10) when the definable function is locally
Lipschitz continuous.

Theorem 5.2.1 (Reinforced projection formula). Let f : R? — R be a definable,
locally Lipschitz continuous function. Let p be a positive integer. There is (X;), a
definable Verdier CP stratification of R, such that for each y € X; and each X such
that X; n X; # &, there is C,§ > 0, such that for any two points y' € B(y,8) n X;,
xz € B(y,0) n Xj,

| Pryx, (Vi £ (@) = V£ W)

and, moreover, for any x € B(y,d) n X{ and any v € 0f(z),

<Cllz . (52)

<Cllz—y| . (5.3)

|Pr,x.(0) = VxS ()

Proof. In this proof C’ > 0 will denote some constant that can change from line to
line. Consider (S;) and (X;) as in Lemma 2.4.10. We claim that for any index j
and z € X, we have T, ryS; = {(h,{(Vx,f(x),h)) : h € T, X;}. Indeed, consider
(hayhy) € Ty f(0)S; and a CP curve c: (—¢,¢) s.t. ¢(0) = (hg, hy). Consider a C?
function F' that agrees with f on X, then (c.(t),cf(t)) = (ca(t), F(cz(t))) and we
have ¢;(0) = h; and ¢;(0) = (VF(x), hy) = (Vx, f(z), hs).

Consider (5]) a Verdier stratification of Graph(f) compatible with (S;). Then
the projection of S} onto its first d coordinates, that we denote X/, is still a sub-
manifold s.t. fis CP on X;. Consider (y, f(y)) € S;, S} a neighboring strata and
C, ¢ as in Equation (2.10). Denote by L the Lipschitz constant of f on B(y,d) and

0 = LLH. Then, for every x € B(y, '), we have:

1y, f(v) = (&, f@))| < AT+ L) [ly — 2] <6,

that is to say (x, f(x)) € B((y, f(y)),9).

Consider y' € X/ nB(y,d'), x € X;nB(y,d) and hy € T,y X/ with ||h,|| = 1. We
have that (hy,(Vx/f(y'), hy)) € T(yy £(y))S; and by the Verdier’s condition there is
hy € TIXJ/- s.t.

Hclh (hy’><ngf(y/), hy’>) - (hx,<VfX;(x)7 hx>)H <C(L+1) Hx _ y/H ’
where ¢, = H(hyl’<vX{f(y,>7 hy’>)” < C'. Therefore,

)

[y — enhall < €'l o

and

[T @) = Vs f () )

< [V xo @) by =t
<C'z =y,

o |enC s £ (@), B = (Vs £ By

|
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which proves the first statement.

Now, one can choose C,§ such that Inequality (5.2) holds uniformly on all of
the stratas XJ‘ that are neighboring X/. Consider a sequence z,, — x such that (z,)
lies in the stratas of full dimension (which implies that f is differentiable at z,,)
and Vf(z,) — v, for n large enough we will have that z,, € B(y,d) and, therefore,

| Pry (V) = Vo (0)
that
combination of such v, the second statement is proved. O

< C'||lzn, — ¢/||. Hence, passing to the limit, we have

Pr,x,(v) = Vx, f(¥)]| < Clly’ — z||. Since any element of df(z) is a convex

5.3 Active strict saddles

In this section, f : R — R is supposed to be a locally Lipschitz continuous function.
We recall the definition Z := {z € R?: 0 e of(z)}.

5.3.1 Definition and Existing Results

Let p = 2 be an integer.

Definition 5.3.1 (Active manifold, [Lewis 2002]). Consider z* € Z. A set M < RY
is called a CP active manifold around z*, if there is a neighborhood U of z* such
that the following holds.

i) Smoothness condition: M nU is a CP submanifold and f is CP on M nU.

ii) Sharpness condition:

inf{||v|| : vedf(x),zeUn M} >0.

Definition 5.3.2 (Active strict saddle). We say’ that a point x* € Z is an active
strict saddle (of order p) if there exists a CP active manifold M around x*, and a
vector w € Tpx M, such that Vpr f(z*) = 0 and Hyp(z*)(w) <O0.

We say that f satisfies the active strict saddle property (of order p), if it has a finite
number of Clarke critical points, and each of these points is either an active strict
saddle of order p or a local minimizer .

In the special case of a smooth function f, the space M = R? is trivially an
active manifold around any critical point z* of f. If z* is moreover a trap in the
sense provided in the introduction (i.e., the Hessian matrix of f at z* admits a
negative eigenvalue), then z* is trivially an active strict saddle. Hence, the smooth
setting can be handled as a special case.

The archetype of an active strict saddle is given by the following example.

!The definition of active strict saddles provided in [Davis & Drusvyatskiy 2021] involves the no-
tion of parabolic subderivatives. In this paper, we found convenient to use the equivalent Definition
5.3.2, which is closer in spirit to notions of differential geometry.
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Example 5.3.1. The point (0,0) is an active strict saddle of the function f : R? —
R given by f(y,2) = —y? + |z|. Indeed,

{(_2:%1)} lfz > 07
0f((y:2)) = 4 {(=2y, 1)} if 2 < 0,
{—2y} x [-1,1] otherwise ,

and the set M = R x {0} is a C? active manifold. Moreover, Vs f((y,0)) = (—2y,0)
and H ¢ ar(0)((1,0)) = —2, which proves the statement.

While the definition of an active strict saddle might seem peculiar at first glance,
the following proposition of Davis and Drusvyatskiy shows that a generic definable
and weakly convex function satisfies a strict saddle property. The proof is grounded
in the work of |[Drusvyatskiy et al. 2016].

Proposition 5.3.1 (|Davis & Drusvyatskiy 2021, Theorem 2.9]). Assume that f is
definable and weakly convex. Define f,(z) := f(z) —(u,x), for every u € R?. Then,
for every p = 2 and for Lebesque-almost every u € R, f, has the active strict saddle
property of order p.

It is worth noting that the result of [Davis & Drusvyatskiy 2021, Theorem 2.9]
is in fact a bit stronger than Proposition 5.3.1, because it states moreover that for
almost all u, the cardinality of the set of Clarke critical points of f, is upper bounded
by a finite constant which depends only on f.

One can wonder if Proposition 5.3.1 may still hold if f is definable and locally
Lipschitz, but not weakly convex. The answer is negative, as shown by the following
example.

Example 5.3.2. Let f : R? — R be defined as f(y,z) = —|y| + |z|. Then for any
u € B(0,1), (0,0) is a critical point for f,, but is neither a local minimum nor an
active strict saddle.

5.3.2 Verdier and Angle Conditions

On the top of the items i-ii) of Definition 5.3.1, we introduce the following useful
conditions.

Definition 5.3.3. Let M be a C! active manifold around some x* € Z. We say that
M satisfies the Verdier condition and the angle condition, if the following conditions
hold respectively.

iit) Verdier condition. There is a neighborhood U of x* and C = 0, such that
for everyye M nU and every x € U,

|1Pr,ae(v) =V f)|| < Cllz —yll, Yvedf(z).
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iv) Angle condition. For every a > 0, there is 5 > 0 and a neighborhood U of

x*, such that for every x € U,

f(@)=f(Pu(2)) 2 allz = Pu(z)]| = (v,a2=Pu(x)) = flle = Pu(@)], Yvedf(z).

Definition 5.3.4. An active strict saddle x™* is said to satisfy the Verdier and angle
conditions, if the active manifold M in Definition 5.3.2 satisfies the Verdier and
angle conditions. The function f is said to satisfy the active strict saddle property
of order p with the Verdier and angle conditions, if it satisfies the active strict saddle
property of order p and if every active strict saddle satisfies the Verdier and angle
conditions.

The Verdier condition merely states that M is one of the stratas of the Verdier
stratification of Theorem 5.2.1 The purpose of the angle condition is to relate, close
to M, the linear growth of the function f and the lower boundedness of the inner
product between the subgradients of f at x and the normal direction to M. The
latter will allow us to prove that the iterates of SGD converge to M fast enough.

Remark 20. Let M be an active manifold around x*. As it will be clear from
the proof of Theorem 5.3.2, when f is weakly convex, M always satisfies the angle
condition. Otherwise stated, the angle condition is simply true in case of weakly
convex functions. However, as the following example shows, one is able to find
many natural examples of functions which are not weakly conver, and yet satisfy
this condition.

Example 5.3.3. The function f : R? — R given by f(y,2) = —y?—|z| is not weakly
convex. Its unique Clarke critical point (0,0) is an active strict saddle, satisfying
the Verdier and the angle conditions.

Example 5.3.3 shows that the Verdier and angle conditions can be satisfied with
no need for f to be weakly convex. Nevertheless, more can be said when this
assumption holds. The following theorem strengthen the genericity result of Propo-
sition 5.3.1 by establishing that the active strict saddle property with the Verdier
and angle conditions is satisfied by a generic definable and weakly convex function.
We recall the notation f,(z) = f(z) — (u, x).

Theorem 5.3.2. Assume that f : R — R is a definable, weakly convex function.
For every p = 2, and for Lebesque-almost every u € RY, f, satisfies the active strict
saddle property of order p with the Verdier and angle conditions.

Proof. Let {X1,..., Xy} be the CP Verdier stratification from Theorem 5.2.1. Upon
noticing that in the proof of [Drusvyatskiy et al. 2016, Corollary 4.8 and Theorem
4.16] the active manifold 2 can be chosen adapted to {Xi, ..., Xz}, the existence of
an active manifold with a Verdier condition follows from [Davis & Drusvyatskiy 2021,

®The name active manifold follows the work of [Davis & Drusvyatskiy 2021], while in
[Drusvyatskiy et al. 2016] they are called identifiable manifolds.
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Theorem 2.9, Appendix A]. For the angle condition note that by weak convexity of
f there is p = 0 such that:

F(Prr(@)) = f(x) = (o, Pu(x) —a) = plle = Pu(a)||* Voedf(a).
Therefore, if f(x) = f(Pu(z)) + a|| Py (x) — x|, then:

Voe dof(z), (v.a—Pu(2))>allz — Pu()| - plle — Pu(z)|* .
Taking U a neighborhood of £* close enough to zero, we see that the angle condition

is satisfied. O

5.4 Avoidance of Active Strict Saddles

Let f : RY — R be a locally Lipschitz continuous function. On a probability space
(2, A,P), consider a random variable 2y and random sequences (v,), (7,) on R<
Define the iterates:

Tntl = Tn — YnUn + Yallntl (5.4)

where () is a deterministic sequence of positive numbers. Let (.%,,) be a filtration
on (2, A,P).

Assumption 5.4.1.
i) The function f is path differentiable.
ii) For every n, v, € 0f(xy).
iii) The sequences (vy), (nn) are adapted to (Fy,), and xo is Fo-measurable.

iv) There are constants c1,co >0 and « € (1/2,1] s.t. for all n € N:

Consider a point z* € Z.

Assumption 5.4.2. The point x* is an active strict saddle of order 4 satisfying the
Verdier and angle conditions.

Since H s (z*) is a quadratic form we can write down R? = E-@®E*, where E~
(respectively ET) is the vector space spanned by the eigenvectors of the associated
symmetric bilinear form that have negative (respectively nonnegative eigenvalues).
Note that by results of Section 2.3 we have that £~ < T,«M and by Assump-
tion 5.4.2 we have that dim £~ > 1.

Assumption 5.4.3. The following holds almost surely on the event [z, — z*].

i) E[nn+1|yn] =0, for all n.
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i1) T Sup E[[| 7 1]|* | Fn] < +0.
i) Denote m,, ,, the projection of n,41 onto E~. We have:

liminf]E[Hn;HH |-Zn] >0

The following theorem is the main result of this chapter.
Theorem 5.4.1. Let Assumptions 5.4.1-5.4.3 hold. Then P(z, — z*) = 0.

Combining Theorem 5.4.1 with the results of Section 5.3.2 we obtain that, under
appropriate assumptions, the SGD on a generic definable, weakly convex function
converges to a local minimizer. We state this result in the following corollary.

Corollary 5.4.2. Let Assumptions 5.4.1 and 5.4.2 hold. Assume that f has the
active strict saddle property of order 4 with the Verdier and angle conditions. More-
over, assume that almost surely the following holds.

Z.) E[nn+1|g\n] =0, for all n.
ii) For every C' > 0,

lim sup E[[[ 941 ]* [ Zn] Ljan <o < +00.

i) For all w € R1\{0},

lim inf E[|{w, np41)| | #n] > 0.

Then, almost surely, the sequence (xy,) is either unbounded, or converges to a local
minimizer of f.

5.5 Proof of Theorem 5.4.1

From now on, we assume without restriction that z* = 0. Thus, V;f(0) = 0, and
there exists a vector w € ToM such that H ¢ (0)(w) < 0.

The general idea of the proof of Theorem 5.4.1 is that on the event [z, — 0],
the function P is defined for all large n, enabling us to write x,, = y, + z, for
these n, where y, = Pys(zy,). The iterates (y,) can then be written under the form
of a standard smooth Robbins-Monro algorithm for which the trap avoidance can be
established by the technique of Brandiére and Duflo [Brandiére & Duflo 1996]. In
this setting, the remainders z, will be shown to be small enough so as not to alter
fundamentally the approach of [Brandiére & Duflo 1996].

Let us provide more details on our proof. We first show that on [x,, — 0], there
is an integer ng such that for all all n > ng, the norms ||x,|| are small, and moreover,

Vv € 8f(xn), <U7 Zn> 2 HZTLH . (55>



5.5. Proof of Theorem 5.4.1 127

This will be the object of Proposition 5.5.3 below. The idea is to show that for these
n, it holds that f(x,) — f(yn) 2 ||2n||, and then, to use the angle condition (iv)) of
Definition 5.3.3.

Let us temporarily assume that ng is deterministic, and work on n = ng. Keeping
Inequality (5.5) aside for further use, the next step is to make a Taylor development
of Yyn+1 = Pp(wp+1) around x,,. This leads to

Pyg(an+1) = Par () + Ipy (20) (@1 = 20) + Oens1 — zal)

= Prr(@n) + Jpy (Yn) (@ns1 = @n) + Ol|zns1 = zal®) + Ozl 2ns1 — @all),

where we used the Lipschitz continuity of the Jacobian matrix function Jp,,(-).
Using Equation (5.4), we rewrite the last display as

Yn+1 = Yn—"nJ Py (yn)vn+7nJP1w (yn)nn+1+77210(1+”77n+1H2)+’YHO(HZHH (1+”77n+1H))'

Now, Lemma 2.3.2 shows that Jp,, (y,) coincides with the linear operator Pr, as.
Furthermore, the Verdier condition (iii)) of Definition 5.3.3 asserts that Pr, ns(vn) =
Vi f(yn) + O(]|znl|). Altogether, we obtain the Robbins-Monro iteration

Yt = Yn= 00 F )00 Py 117017200+ 01 ) 3O 20l (11 1)

(5.6)
Had we not have the last term v,O(||zn]| (1 + ||7n+1]])) at the right hand side, the
approach of Brandiére and Duflo would have been enough to obtain the noncon-
vergence of y, to zero under our assumptions on the noise. The presence of this
term requires us to weaken a bit their conditions. This will be done in Propo-
sition 5.5.1. In the case of Equation (5.6), this proposition asserts that the trap
avoidance remains true if

o6}
Y uE |zl = O(xn)

where
+0o0
Xn ‘= Z 71’2-
=n

This is where Inequality (5.5) comes into play to establish this bound.

So far, we have assumed abusively that the moment ng after which ||z, || is small
and (5.5) is satisfied is deterministic. To deal with this issue, in Section 5.5.2, on an
arbitrary large event A, we construct a sequence (y,) that is (for n large enough)
equal to (Pp(xy)) on An[z, — 0] and satisfies an equation of the form (5.6) almost
surely. Proposition 5.5.1 will allow us to prove that P([z, — 0] n A) < P([y, —
0]) = 0 and since the event A is arbitrary large, this will prove Theorem 5.4.1.

5.5.1 Preliminary: Avoidance of Traps in the Smooth Case

The following proposition is nearly a quote of Brandiére and Duflo’s theorem [Brandiére & Duflo 1996,
Theorem 1|. As discussed below, we alleviate some hypotheses of [Brandiére & Duflo 1996].
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To state this proposition recall that, by a standard result from linear algebra,
for a matrix H € R¥4, there is a decomposition R = AT @ A~ such that AT, A~
are stable by H and the eigenvalues of H|,- (respectively H|y+) have eigenvalues
with negative (respectively nonpositive) real parts. Recall that for a smooth map
D :R% - R? we denote Jp its jacobian and that x,, := Zfin 'yiz.

Proposition 5.5.1. Let (2, A, P) be a probability space, (%) a filtration and (v,) a
sequence of deterministic nonnegative step sizes such that Y, v, = +0 and Y, fy,% <
+c0. Let d be an integer and D : R® — R? be such that D(0) = 0 and there is a
netghborhood of 0 such that on it D is continuously differentiable, with Lipschitz
continuous Jacobian. Consider the R?—valued stochastic process (yy) given by

Yn+1 = Yn — 'VnD(yn) + Ynln+1 + YnOn+1 + YnOn+1, (5'7>

where Yo is Fo-measurable and the sequences (7)), (0n) and (0y) are (Fy,)-adapted.
Assume that A=, the vector space associated to the eigenvectors of Jp(0) that have
negative real parts, is of positive dimension. Denote 1), | the projection of 7,1 on
A~ and assume that on the event [y, — 0] the following almost surely holds.

i) For all n, E[fy41|-Fn] = 0.

i) limsup E [Hﬁnﬂu“(%] < +0.
iii) iminf E [||7, | -#n] > 0.

i) Y lowsal® < +oo.

v) We have that:

+00
E lﬂ[yn—w] D illginll| = O(xn).

i=n

Then P([yn — 0]) = 0.

Proposition 5.5.1 is similar to [Brandiére & Duflo 1996, Theorem 1], except for
the presence of the sequence (9,). As the proof is mainly an adaptation of the
proof of [Brandiére & Duflo 1996, Theorem 1|, we provide a sketch of proof in the
appendix.

5.5.2 Application to Algorithm (5.4)

To apply the results of the preceding section we need, first, to find a candidate for
D, this is the purpose of the next lemma. Its proof readily follows from results of
Section 2.3.

Lemma 5.5.2. Let Assumption 5.4.2 hold and let r > 0 be such that Py : B(0,7) —
M is well defined and is C° and that there is a C* function F : B(0,7) — R that
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agrees with f on M ~ B(0,r). Then, the function F o Py is C® on B(0,r) and for
y€ M n B(0,r), we have:

V(F o Py)(y) =Vuf(y).

Moreover, for w e R%:
Hpar (0)(w) = W' VA(F o Py

By Tietze’s extension theorem the function V(F o Py) : B(0,7) — R? can be
extended to a bounded continuous function D : R? — R? that we shall use in the

remainder of the chapter.
For r > 0 such that Py, is well defined on B(0,r), and for C' > 0, denote

V.(C)={ze B(0,r) :Yve df(x),{v,x — Py(x)) = C|x— Py(x)|}.

The next proposition is a key element in our proof. To not interrupt our expo-
sition its proof is provided in Section 5.5.3.

Proposition 5.5.3. Let Assumptions 5.4.1-5.4.3 hold. There is 5,71 > 0, such
that for every r < r1, almost surely on the event [x,, — 0], x,, € V,.(B) for all n large
enough.

In the remainder, we fix 5,71 > 0 as those provided by the previous proposition.
We let U be the neighborhood around zero that verify conditions of Definition 5.3.3.
In the following, we choose 7 < r1 such that Py is C® on B(0,7), and B(0,r) = U.
The value of r, while always satisfying these requirements, will be adjusted in the

course of the proof.

Firstly, to reduce technical issues, we notice that as in [Brandiére & Duflo 1996,
Section 1.2] to prove Theorem 5.4.1 we can actually replace Assumption 5.4.3 by the
following, more easy to handle, assumption. The notation E,[-] stands for E[-|.%,].

Assumption 5.5.1. Almost surely, the sequence (n,) is such that Ep[n,41] = 0
and there is A, B > 0 such that for all n € N, we have:

En[lns1]l'] < B

and
E”[HU;HH] = A.

Given an integer N > 0, we define the probability event
An =[Vn >N, z, € V.(B)].

Note that the sequence of events (Ay) is increasing for the inclusion. Furthermore,
Proposition 5.5.3 shows that

[ee}
[, — 0] c JQOAN = lim Ay.
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Thus,

Plz, — 0] = P[[zy, —» 0] nlimAyx] = lim P[[z, — 0] n An].

N—o0

Consequently, given an arbitrary § > 0, there is an integer N(J) > 0 such that
P [[zn — 0] 0 An(s)] = P2 — 0] — 6. (5.8)
For an integer N = 0, define the stopping time
v = inf{n > N, z, ¢ V. (3)},

with inf &J = o0, and recall from the definition of r that for N < n < 7y, the
projection Pys(z,) is well-defined. Define recursively the process () ),>ny_1 as
follows: y%q =0,

Pyr(zy) if N <n<7pn,

N .
Yn = Y YA_1 — V1D 1) + V1P (YA ) if 1 = T,
YN 1 = Yn1D(Y 1) + Yn—17m, otherwise,
and let
zy = (0 — yi)f)lmm for n > N.

Observe that yY and z2 are both .%,-measurable for all n > N. To establish
Theorem 5.4.1, we shall show that for each N > 0,

]P[y,ff . ] —0. (5.9)

n—o0

Indeed, on the event Ay s), it holds that y,ﬁv(‘” = Pyr(zy,) for n = N(9), thus,

[z — 0] N Ans)] © [[yévw) - 0] N AN(&)] :

Consequently, with the convergence (5.9) at hand, we get from Inequality (5.8) that
Pz, — 0] < ¢. Since J is arbitrary, we obtain that P[z,, — 0] = 0.
In the remainder of this section, N > 0 is a fixed integer.

Proposition 5.5.4. Let Assumptions 5.4.1-5.4.2 and 5.5.1 hold. Then, the se-
quence (yN)n=n satisfies the recursion:

N N N ~N N ~N
Yni1 = Yn — nDPWn ) + Mnllnt1 + Mnlns1 + Ynlnit >

where the random sequences (il Ju=n, (0N )n=n, and (8Y )n=n are adapted to (F,).
Moreover, there is C' > 0 such that for alln = N,

i) HQQ[H” < C'Yn(l + H77n+1‘|2)]17'1v>n+1-

i) |[enia |l < Cllz]] 4+ sl
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- - 4
iii) Eniyy =0, and By, |75 || < C.
We furthermore have:

iv) The subspace E~ defined before Assumption 5.4.3 coincides with the eigenspace
of the matriz Jp(0) corresponding to its negative eigenvalues.

v) On the event [yl — 0], it holds that liminf, E, ||Pg-72, || > 0.
To prove this proposition, the following result will be needed.

Lemma 5.5.5. For r small enough, there is C > 0 such that for x,x' € B(0,r1), we
have:

y, — Y= JPM(y)(ﬂfl - :U) + Rl(ll?,a?/,y) + RQ(CC,SU/) ;
where y',y = Py (x'), Py(x), and where ||Ry(z, 2", y)|| < C||2' — x| ||z — y||, and
| Ro(z,2")|| < C'|la’ — ).

Proof. Since Py is C? near zero, there is ¢ > 0 such that t — Py(z + (2 — 2)) is
C? on (—¢,1 + ¢). Hence, by Taylor’s theorem, we have
y/ —y=Jpy (x)(x/ - l’) + R2(x/’ l’) )

with ||Ra(2/, 2)|| < C |2’ — x|, where C is a bound on the second derivatives of
Py. Similarly, since Py is C2%, z +— Jp,, () is Lipschitz continuous. Therefore, for
some C > 0, ||Jp,, (z) — Jp,, (y)|| < C ||z — y||, which finishes the proof. O

Proof of Proposition 5.5.4. Letting n > N, we write

y7]1V+1 = PM($n+1)]lTN>n+1+(y7]lV - 'ynD(yéV)) Lry<n+1+7n (JPM (yjlv)]lTN:nJrl + HTNsnnnJrl) )

accepting the small notational abuse in the expression Py (2n+1)1ry>n+1, since the
projection might not be defined when the indicator is zero. Similar abuses will also
be made in the derivations below.

Using Lemma 5.5.5 and Equation (5.4), we obtain

Unr1 = (Un + Ipy U0 ) (@na1 = 20)) Loysntt + Y0ni1 + Ylnt
+ (%JZV - /VnD(yyjy)) ]lTN<n+1 + Tn (JPM (yq]‘Lv):H-TN:n+1 + HTNSnUnJrl)
= (' = M Pas U )on + TPy (U )n41) Lry>nst + m0ns1 + MG
+ (yr]zv - VnD(yr]y)) Lry<n+1 + 7 (']PM (yrjzv)]lTN=n+1 + I[TN<7ZTI7Z+1) )
where ¢, and ([, ; are .Z,,1-measurable, and satisfy with the notations of Lemma 5.5.5

16 ll = 9 1R @y g, 9| Lrysnet < Ot lznss — @l |20 || < CQlImnl) [[20]]

(in the last inequality, we used that ||v,|| is bounded on [Ty > n]), and
Hé’r]:[ﬂH = Y [1Ro(@ns i) || Loy >t

< 0%71 |Tns1 — $n||2 Lry>n+1

< 07n<1 + |’777L+1H2)]]‘TN>71«+1'
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Using Lemma 2.3.2 in conjunction with the Verdier condition (iii)) of Definition 5.3.3,
we also have

JPM (y»r]LV)'Un]lTN>n+l = PTyNM(Un)]lTN>n+1 = va(erzv)]lTN>n+1+g7{LV+1 = D(yg)ﬂm>n+1+5g+1a

where (Y | is .%,+1-measurable, and satisfies

Xt < Cllan = o | Lrymnin < I
Gathering these expressions, we get

N -
yrjzv+1 = yerV - VnD(yfzv) + Ynlnt1 + YnOn+1 + YnOn+1,

where

i1 = (Ley=ndpy (U) + Lry<n) N1, and (5.10)
Onv1 = G + G-
The assertions 1)) and ii)) of the statement are obtained from what precedes.

The noise 177]1\[ is obviously %, —measurable. Moreover, Enﬁfzv 1 = Osince 1, >nJp), (yé\’ )+

1-y<n is F,—measurable. The last bound in iii)) follows from Assumption 5.5.1.

TNX
Assertion iv)) follows from Lemma 5.5.2.

To establish v)), we write

H(ﬁr]zv-q-l)_H = HPE_JPM (yiv)ﬁnHH ]]‘TN>TL + HPE—nnJrlH ]lTNSn
= HPE*nn-i-lH - HPE* JPM(yr]y)nn+1 - PE*nn-&-lH IL‘FN>TL‘

On the event [yY —,, 0], it holds that Jp,, (y)) —n Jo. By Lemma 2.3.2, Jg is the
orthogonal projection on ToM, thus, limy~_, o Pe-Jp, (yN) = Pp-. Consequently,
we obtain on the event [yY —,, 0]:
limninfEn H(ﬁ,]yﬂ)*H > limninfEn |741]] — lim sup (HPEprM(yéV) — Pe-|| En 741l
n
> limninfEn Hn;rl H

>0,

and by Assumption 5.5.1. Proposition 5.5.4 is proven. O

Proposition 5.5.6. Let Assumptions 5.4.1-5.4.2 and 5.5.1 hold true. Then, there
1s C' > 0 such that
2

E, HzéVHHQ < HZiLVHZ — Yn (r — C> Hz,]LVHQ + C”yTQL7 and

En [lzdall” < |01 = (26 = On) |2 + €2
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Proof. We shall use the notation
Py = =y

which enables us to write z,JLV = pév Ly<ry-
We start with the development

HZT]LV+1H2 = HPQIHHQ Lnti<ry
< ¥ Ty = o1 = 28 + 2| Lncr

= |25 + 2¢@ns1 — @n, 2> — 20Ny =y 2 + [6Ne1 = Y| Ty
(5.11)

We now deal separately with each of the three rightmost terms in the last expression.
We first show that

2
Enl(Yns1 = Yn 20 )l < C |20 || + Oz (5.12)
By Proposition 5.5.4,
Walr = yn' sz > = (=D yn) + i1 + Ong1 + s 2 )-

’rn ’rn

more, we get from Equation (5.10) that

We have (D(y2), 2> = (Vp f(y)),zN) = 0 since Vyf(yl) € Ty~ M. Further-

1n<TNﬁr]y+1 = ]]-n<TNJPM (yyjlv)nn+1 = ILn<erPTyNM(nn+1)

by Lemma 2.3.2, thus, (7Y, ;,2)") = 0. As a consequence,

K= 2 < [P+l 0Ner + 8 ) < v N P4 2m (| 0N |+
From Proposition 5.5.4 again, we have
E, HQnN+1H2 < C’YnEn(l + ||77n+1||2)]lTN>n+1 < C’YnEn(l + ||77n+1||2) < C’Yna

and ) ) )
Ep, H@]:LIH < CHzr]zVH (1+E, ||77n+1||2) <C HZszVH :

Inequality (5.12) is obtained by combining these inequalities.
We next show succinctly that

E, Hpr]yﬂ - ngQ Ln<ry < C’Y?L. (5.13)
Indeed,

Hp7]¥+1 _p7]:IH2 :H-n<TN = H:EnJrl — Tn — (y7J-LV+1 - y7]:[)H2 ]ln<TN

< C92 (loall® + a2 + [ D@ + 785 | + HloNoal” + 18N ]1*) Tnery
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and the result follows by standard calculations making use of the results of Propo-
sition 5.5.4.

We finally deal with the term {(z,.1 — n,2) ). Since E,n,.1 = 0, we have
EnlTni1 — T, 2 = —ynlvp, 2)). Observing that x, € V,.(8) when 2z}’ # 0, we
obtain from the very definition of the set V,.(53) that

IE':n<$n-|-1 - w’mzrjzv> < _’Ynﬁ HZT]lVH :

Getting back to Inequality (5.11), and using this result in conjunction with the
inequalities (5.12) and (5.13), we obtain that

B a2l < o+ O o = 28 2] + €2
Since @, € B(0,7) on the event [n < 7y], it holds that |[2)'| < r and thus,

Hz,ﬁv Hz <r Hz,ﬁv H This leads at once to the inequalities in the statement of the

proposition. ]

Corollary 5.5.7. Under the assumptions of the previous proposition, there is C > 0
such that

0
D uE Y] < Cxa
i=n

form = N.

The proof of this corollary makes use of a technical result which is attributed to
[Chung 1954|. Its proof can be found in, e.g., [Bravo et al. 2018]:

Lemma 5.5.8 (Lemma D.2 in [Bravo et al. 2018|). Let (a,) be a nonnegative se-
quence such that for all n large enough,

P
an+1<an<1_>+ @

np npta’

where p € (0,1], ¢ > 0, and P,Q > 0. It is further assumed that P > q if p = 1.
Then, there exists C > 0 such that

- C
Uy X m
Proof of Corollary 5.5.7. Let C > 0 be the constant provided in the statement of
Proposition 5.5.6. Choose 7 > 0 small enough so that 23r~! — C > 0. Replacing 7,
in this statement with the bounds on this step size provided by Assumption 5.4.1—
(iv)), we get from the first inequality in Proposition 5.5.6
2 c (28 2 cC
E |-V, < (1 _a (r _ c)) E )] + 25

nOé

We apply the previous lemma with a, = E Hzflv HQ, after adjusting » > 0 when
needed in order that all the conditions in the statement of this lemma are satisfied.
We get that there exists a constant C’ > 0 such that

Cl

2
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Let £ > 0 be an integer. Telescoping the second inequality stated by Proposi-
tion 5.5.6 from n + k back to n, we get

, ) n+k—1 n+k—1
B2’ <E[X|" - @8-0r) 3 B[ +C X A2,
i=n i=n
which implies that
n+k—1 9 n+k—1 C! n+k—1
@o-cn 3 Bl <E|N e Y < Cac Y g2
i=n i=n i=n

Making k — o0, we obtain that
- N
(26 —-Cr) i_gn’yiE |2 || < v + Cxnp-

To complete the proof, it remains to notice that since v, ~ n=% with « € (1/2,1],
it holds that y, ~ n'™2® > n=. O

Theorem 5.4.1: end of the proof. We now have all the elements to establish
the identity (5.9), proving Theorem 5.4.1. For this, notice that,for every N > 0,
by Proposition 5.5.4, ¥ satisfies an equation of the form Equation (5.7). The as-
sumption of Proposition 5.5.1 on the sequence (7},,) are satisfied by Proposition 5.5.4
and the assumptions on the sequences (g, ), (0,) follow from Assumption 5.5.1 and
Corollary 5.5.7.

Hence, applying Proposition 5.5.1, we obtain that P([y) — 0]) = 0, for all
N = 0. As previously explained, the latter implies that P([z, — 0]) = 0.

To complete the proof of Theorem 5.4.1 it remains to prove Proposition 5.5.3,
which is the purpose of the next section.

5.5.3 Proof of Proposition 5.5.3

The standard way to analyze the convergence of the SGD to the set of Clarke critical
points is by studying its continuous counterpart - the subgradient flow:

x(t) € —0f (x(t)). (5.14)

We say that an absolutely continuous curve x : R; — R is a solution of the differ-
ential inclusion (DI) (5.14) starting at x € R? if x(0) = = and if for almost every
t € Ry, the inclusion (5.14) is verified. We denote S_p¢(x) the set of these solutions.

The idea of the proof of Proposition 5.5.3 goes as follows. For each initial point
x € B(0,rg) with ry > 0 small enough, either all the trajectories of (5.14) issued from
x leave B(0,79) in a fixed time horizon, or f(z) — f(Py(x)) = a ||z — Py(x)||. This
will be the content of the next lemma. Next, we use the well-known fact that the
interpolated process constructed from our iterates (z,) is a so-called Asymptotic
Pseudo Trajectory (APT) of the DI (5.14), as formalized in [Benaim et al. 2005]
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(see also, e.g., [Duchi & Ruan 2018, Schechtman 2021a]). The consequence is that
on the event [z, — 0], necessarily f(zy) — f(Pum(zn)) = a||xn — Pa(zy)| after a
certain finite moment. To complete the proof, it remains to make use of the angle
condition (iv)) of Definition 5.3.3.

Lemma 5.5.9. Let f : RY — R a locally Lipschitz continuous, path differentiable
function. Let M be a C? active manifold for f such that 0 € M, f(0) = 0, and
Varf(0) = 0. Then, there is a, T > 0 and rog > 0 s.t. for every x € S_sp(x), with
x € B(0,79), either x([0,T]) & B(0,79) or f(z) — f(Pu(x)) = al|lz — Py(x)].

Proof. Let r > 0 be such that B(0,r) < U, where U is the neighborhood from Defi-

nition 5.3.1. Since f is C%2 on M nB(0,7) and V; f(0) = 0, there is some constant C

s.t. we have supge (o) |V f(Pa(2))]| < C[[Pp()]|. Denote L the Lipschitz con-

stant of f on B(0,r) and let ¢, be such that inf{||v|| : v e df(x),z € B(0,r)n M} >

cm. Fix rg < min(%,r} and consider x € B(0,79) and x € S_pp(x). Denote
= inf{t : x(t) € M or x(t) ¢ B(0,r9)}. Since f is path differentiable, we have:

inf f@@éﬂﬂm=fwriﬂﬂwMU<ﬂmﬂ%h< sup  f(a) =4t

2'eB(0,r0) 2'eB(0,70)

Hence, if we choose T s.t. 2T > 28UP,rep(0,r) | f(2')], we have t1 < T' and either
x(t1) ¢ B(() r) or x(t1) € M. Assume that x(t1) € M and denote y(t) = Py(x(t))
and z(t) = — y(t). Notice that for almost every ¢t > 0, we have |ly(t)| =
HPT X H L Moreover, by path-differentiability of f we have:

fwuor—ﬂwmﬂ<J:Kva@wmym»Mu

N

[ 19srt@ ) au
<o [ @l 5wl au

1
< LCrot1 < icgntl .

Where the first inequality comes from the fact that f is path differentiable and that

for all u € [0,T1], y(u) € Ty(,yM. Denote o = ﬁ and assume by contradiction that

f(@) = f(Pu(2)) < allz — Par(z)]|. We have:

0= f(x(t1)) — fy(tr)) < f(x) — cots — fly(t1))

2

< J(@) = J5(0) + Tt =t

2

C
<ale = Pyu(@)ll - St

Which implies that ||z — Py ()] = %tl > 2Lt;. On the other hand, we have that
|z(¢)|| = dist(x(t), M). Since the distance function is 1-Lipschitz, we have for almost
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every t = O:
d :
=01 <ol <.
Therefore,
0 = llz(t)ll = 12(0)I] = Lty = [l — Pu(a)|| = Ltx,
which implies that ||z — Pys(x)|| < Lt1, a contradiction. O

Let X : R, — R? be the linearly interpolated process defined as:

l— Z?:o Vi

X(t) = xp, +
() Tn+1

((Ifn+1 —flfn), ifte [Tn77-n+1)7
where 7, = > V-

It is well known that under our assumptions, on the event [z, — 0], X is
an APT for the DI (5.14), as shown in [Benaim et al. 2005, Duchi & Ruan 2018,
Schechtman 2021a]. Namely, for every T' > 0,

sup inf X(t+ h) —x(h)|| —— 0.
he[0,T]X€S—a5 (X(¢)) X ) =Wl t—=+0
Consider o, T and 7y from Lemma 5.5.9. On the event [x,, — 0] let x,, € S_sp(xy)
be such that

sup || X(7n + h) — xn(h
s X ) =

0.

Consider r; < 7¢ such that B(0,71) < U, where U is the neighborhood associated
to a by the angle condition. If for n large enough, x,([0,7]) remains in B(0,7),
then by Lemma 5.5.9 we have:

f(@n) = allen — Pu(zn)ll + f(Par(zn))

which, by the angle condition, implies that there is 5 > 0

(Uny Ty, — Pap(n)) = B ||en — Pau(zn)]| - (5.15)

Otherwise, on the event [z, — 0], there is h,, € [0,T] such that after an extraction
X(7n + hyn) — x, with = ¢ B(0,71). Since the limit points of X are the accumulation
points of the sequence (z,,), this contradicts the fact that =, — 0.

5.6 Sketch of proof of Proposition 5.5.1

We recall that E,[-] denotes E[-|.%,,]. Denote d~ the dimension of A~. Using the
center-stable manifold theorem, the authors of [Brandiére & Duflo 1996, Page 407—
409] construct a sequence (w,)? in R?" such that

Wy, = Wy + YnHpwy + (e + 7“7,1+1 + €en+t1),

where the sequences (wy,), (rn), (17,), (en) are adapted to (.%,) and we have the
inclusion [y, — 0] < [w, — 0]. Moreover, on the event [y, — 0], the following
almost surely holds.

3U} in their notations.
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i) There is H an invertible matrix such that all of the real parts of its eigenvalues
are positive and
H, — H.

ii) The sequence (e,) is such that E,[e,+1] = 0 and

0 < liminfE,[[lens1]?] < limsup By [|lens1]]*] < +o0.

iii) The sequence (r,) is such that 37 ||r;41]|* < +oo.
iv) The sequence (r,) is such that E[1p Y77 i [|r} 1 |] = O(xn).

The only difference with [Brandiére & Duflo 1996] is in the presence of (7], ;) and
the point (iv)).

Using this representation, the avoidance of traps result follows from the following
proposition. The only difference with |Brandiére & Duflo 1996, Proposition 4| is,
once again, in the presence of the sequence (r7},).

Proposition 5.6.1 ([Brandiére & Duflo 1996, Proposition 4]). Let d be an integer,
(Q, A,P) be a probability space, (%) a filtration on it and (w,) be a sequence in RY
verifying:

Wnt1 = Wy + YnHp + Yn(rng1 + r;z-i-l +ent1) (5.16)

where the sequences (wy), (Hy), (rn), (7},)(en) are adapted to (%) and (v,) is a
sequence of positive stepsizes s.t. ;08 v = +0 and Z;;OS ’yf < +o00. Assume that
on an event I' € A we have the following.

i) The sequence (7,) is such that > ;% v = +00 and Y70 v2 < +00.

ii) The sequence (ey,) is such that E,[ent1] = 0 and

0 < liminf B, [|lens1 ] < limsup B, [|lens1[*]Y? < +00.

iii) The sequence (ry,) is such that 3% ||ri1]|* < +00.

iv) The sequence (r},) is such that E[1p 3% vi ||riq||] = O(xn).

7

Let H € R¥™? be a matriz such that all of the real parts of its eigenvalues are positive.
Then, denoting ¥ =T n [w, — 0] n [H, — H], we have P(YT) = 0.

Proof. In this proof C' will denote some absolute constant that can change from line
to line. The proof closely follows the one of [Brandiére & Duflo 1996, Proposition
4]. Asin |Brandiére & Duflo 1996] it is sufficient to prove the proposition in the case
where there A, B, K > 0 such that almost surely E,[e,+1] =0, A < Ep[|len+1]l] <
Eullensl?]V2 < B and 375 i | < K.

We can rewrite Equation (5.16) as:

Wp41 = Wy + 'YnHwn + fYnAnwn + 'Vn(enJrl + Tpy1 + 7“;1_’_1) )
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where A, = H, — H. Let Q be a positive definite symmetric matrix such that
QH + H"Q = 2T, where Z € R%*4 is the identity matrix. Denote U,, = (wl Quw,,)"?.
Following the same calculations as in [Brandiére & Duflo 1996], we obtain that:

1
(Un+1 —Up) = 7w§+1an
n
> ;i <||wnH2 + Wy QAwy + wy Q(ent1 + Ty + rim))
n
> || || 1 _ HQA’RH + rynng(enJrl + TnJFl + r;l—i-l)
Z Tn ||Wn 12 1/2 U ’
)\max )‘mm "

where Amaz, Amin are respectively the maximal and the minimal eigenvalue of Q.
The event T is included in a union of events T, defined as:

1 QA 1 L
vn = p, V12 INE > o2 | 2‘;I;||wn” <1|n ;% il <1 -

mazx min mazx

T,=Tn

Therefore, on Y, there is C' > 0 such that for M > n > p, we have:

M M T /
w; Q(ei1 +7ip1 +774q)
Z%’HWH<CUM+1+C Z%’ nASihs UH as |
=N =n
Hence,
M Qe » 400 +0 ) + 2
(]
| < Ot + 0|32 Qi1 +0<2ﬁ> (Z el ) el
1=n = L=n 1=n
o 2 o 2
w; €41
< C||Up4l” + C sup Z% U,H +Cxn+C Z%HTEHH
2p i=n ¢ =n
el anl

where we used the fact that is bounded. On T, we have that E[||Ups41]%] —

w; QeH—l
)

0. The sequence (ZZ n Vi M>n 1S a square summable martingale difference

sequence. Therefore, by Doob’s maximal inequality:

2 +00
< CE [2 % lleisall?

i=n

2 i wy Q€z+1
3

E | I sup U
(2

MeN

< Cxn -

Finally, on T, we have Z;Oz s Hr; 41 H < 1. Therefore, by assumptions:

2

+00 +00
8| 1, | S | | < [h S il < O
i=n i=n
Hence, there is C' > 0 such that:
+00 2
E | Lr, Y v llwil| | <Cxn. (5.17)
i=n
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On the other hand, following the calculations of [Brandiére & Duflo 1996], on T,

we have:
400

—Wp = Z (Rzl + vi(€ir1 + riz1 + rgﬂ)) , (5.18)
i=p

where we denote R,, = A,w, and for n > p:

R}z = anRn - (B;_ll - B_l)Sna

n

+00
Sn = Z Yi(Ri + €ip1 + rig1 + 7)),
i=n
n
B, = H(1 +yH).
i=p

The idea of the remaining part of the proof is to apply |Brandiére & Duflo 1996,
Theorem A to obtain that the left hand side of Equation 5.18 can be .#,-measurable
only with probability 0. The latter will imply P(Y,) = 0 and since T = UpeN 1),
the proof will be finished. As in the proof [Brandiére & Duflo 1996, one of the
assumptions of [Brandiére & Duflo 1996, Theorem A], to obtain the remaining part
it suffices to have:

+00
£ [ﬂn 2R+ w’éHH] = 0(y/Xn) ; (5.19)

i=n

where the difference with the proof of |[Brandiére & Duflo 1996, Proposition 4] is in
the presence of the term 77, ;. To prove Equation (5.19) we write down:

+o0 too
E [Ilyp Z HRll +7ri1|| | <CE|1ry, sup || Al Z Yi ||wil| | + CE
i=n =n i=n i=n
+o0
v, Sl
=n

By Inequality (5.17) we have:
97 1/2

+00
27 llwil

=n

< CE[1, sup [|A:[*]%/xn

=N

< CE[ly, sup 121?12 E

=N

+00
E []lrp sup | Aql Y i l[will

=N

1=n

(5.20)

< o(xn) -

As noticed in [Brandiére & Duflo 1996] we have >,/ || B, — B; || < +o0. There-
fore,

+00 +0
B [ue, I5i] D) 1874~ B < Oy 3, 1B — B2 = oy, (520

+0
Ly, > ||BiZy = B || 11Si]
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and by assumptions

CXn = O Xn) . (522)

£ [1r, 550

Combining (5.20), (5.21) and (5.22) we obtain Equation (5.19). Hence, we can
apply [Brandiére & Duflo 1996, Theorem A| to obtain that P(Y,) = 0. Since T =
UpEN T, the proof is finished. O







CHAPTER 6

Stochastic subgradient descent on
a generic definable function
converges to a minimizer

6.1 Introduction

Design and analysis of optimization algorithms are usually relying on some kind of
optimality conditions. Canonical examples of such conditions are the second order
sufficiency in nonlinear programming [Nocedal & Wright 2006] and strict comple-
mentarity in semidefinite programming [Alizadeh et al. 1995]. While a specific op-
timization problem might not verify such conditions, a standard way to justify their
ubiquity is that they are in some mathematical sense generic. Formally, given a
class of optimization problems (Q,,) that is parametrized by a set of vectors u € R?,
we say that a condition is generic within this class if it is satisfied for the prob-
lem Q,, for almost every u € R?. Analysis of such a kind dates back at least to
the works of Simon and Saigal [Simon & Saigal 1973| and Spingarn and Rockafellar
[Spingarn & Rockafellar 1979]. In the latter (Q,) are the linear perturbations of
some specific nonlinear programming problem () and it is showed that for almost
every u € R?, the second order sufficiency conditions are indeed necessary in Q..

In the present chapter, in the spirit of [Spingarn & Rockafellar 1979], given a
locally Lipschitz continuous function f : R¢ — R that is not necessarily smooth nor
convex, we analyze the following class of problems:

min f,(z), (Qu)

xeR4

where for u,z € RY, we denote f,(x) := f(x) — {u,z). In this case, the first order
necessary condition for = to be a solution to (Q,,) is that 0 € df,(x), where 0f, ()
is the set of Clarke subgradients of f, at x. Hence, we are interested in the generic
properties of the following class of sets:

{xeRd :0€dfy(x)}, (Zv)

where for each u € R?, Z, (respectively Z) denotes the set of Clarke critical points

of fu (respectively f).
We are specifically interested in the question of genericity from the perspective
of the simplest first order algorithm - the stochastic subgradient descent (SGD):

Tn+1 € Tn — Vnaf(zvn) + YnMn+1 (6'1>
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where (7,,) is a sequence of positive stepsizes and (7,,) is some perturbation sequence
which presence is typically due to a partial knowledge of 0f by the designer. It
is known (see [Davis & Drusvyatskiy 2021, Majewski et al. 2018]) that, under mild
conditions on the sequence (7,,) and the function f, the iterates of the SGD converge
to Z. While the set Z contains local minima it also contains all kinds of spurious
points (e.g. local maxima and saddle points) convergence to which might be highly
undesirable. We are thus interested in describing a generic set of conditions that
ensures the convergence of the SGD to a local minimum.

The first important remark that we should make here is that, in the pursuit of
this path, we must distinguish between the conditions that characterize a generic
Clarke critical point, which are inherent to the class of problems that we analyze,
and the conditions on the perturbation sequence (7, ), which depend on the practical
situation and, to some degree, can be imposed by the designer.

This observation is consistent with the existing analysis of Equation (6.1) in
the smooth setting. In this case, for almost every u € R? (henceforth generic
vector u € R?), every critical point of f, is either a local minimum or a saddle
point (i.e. the Hessian of f, at this point has at least one negative eigenvalue).
The nonconvergence of the SGD to a saddle point (and hence its convergence to a
local minimum on a generic smooth function) was established in [Pemantle 1990,
Brandiére & Duflo 1996] under an assumption that, more or less, requires the lower
boundedness of the (conditional) covariance of (7,). When this type of assumption
is not satisfied, as it happens for e.g. the deterministic gradient descent (1, = 0),
it can indeed be guaranteed by the designer by adding a small perturbation, with
lower bounded covariance, at every step.

Following this discussion, the present chapter consists of two, largely indepen-
dent, parts.

e The first part is devoted to the analysis of the generic properties of Clarke
critical points. Our main result, Theorem 6.2.5, proposes a classification of
the types of points that might appear in (Z,) for a non Lebesgue-null set of
vectors u € R%. An emphasis is put on the conditions that allow the analysis
of the SGD in a neighborhood of a generic critical point.

e The second part of this chapter is devoted to the analysis of the SGD in a
neighborhood of a generic trap, i.e. a Clarke critical point that might appear
in (Z,) for a non Lebesgue-null set of vectors u € R? without being a local
minimum. Specifically, we will present a set of conditions on the sequence (7,,)
that ensure that the iterates of the SGD will avoid a generic trap.

6.1.1 Generic critical points

In our analysis of genericity we restrict ourselves to the case where f, the function
of interest, is definable in an o-minimal structure (henceforth definable). Formally
defined in Section 2.4, the class of such functions encompasses the vast majority of
functions encountered in optimization. It includes every semialgebraic function, the
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exponential, the logarithm as well as any of their compositions. While a definable
function might be nonsmooth the nonsmoothness here appears in a very structured
manner. For instance, a domain of a definable function can be partitioned into a
set of manifolds called stratas such that on each of these stratas the function is
differentiable. Starting from the seminal work of [Bolte et al. 2007], this implicit
smooth structure has allowed a thorough analysis of optimization algorithms in a
definable setting (see e.g. [Attouch et al. 2011, Bolte et al. 2009, Davis et al. 2020,
Bolte et al. 2020a]).

Analysis of the generic properties of (Z,) when f is definable goes back to the
work of [Bolte et al. 2011, Drusvyatskiy et al. 2016] and more recently to [Davis & Drusvyatskiy 2021,
Bianchi et al. 2021b]. The central notion in all of these works is the notion of an
active manifold. Informally, M is an active manifold for a Clarke critical point
x* € M if f varies smoothly on M and sharply outside of it. The importance of this
notion lies in the fact, proved in [Drusvyatskiy et al. 2016]!, that if f is definable,
then for a generic vector u € R?, the number of Clarke critical points of f, is finite
and every one of them lies on an active manifold. Recently, following the ideas
of [Drusvyatskiy et al. 2016, Drusvyatskiy & Lewis 2014], Davis and Drusvyatskiy
[Davis & Drusvyatskiy 2021| have introduced the notion of an active strict saddle:
a Clarke critical point z* of a function f, lying on an active manifold M, such that
far, the restriction of f to M, admits a second order negative curvature at *. They
have shown that if f is weakly convex, then for a generic vector u € R?, every point
in (Z,) is either a local minimum or an active strict saddle. Hence, in the weakly
convex case the following two examples are typical.

Local minimum. In order to be a local minimum a critical point lying on an active
manifold M must be a local minimum of fj;. As an example consider f; : R? - R
be defined as fi(y, z) = y? + |z|. Then z* = (0,0) is a Clarke critical point of fi
and M; = R x {0} is the corresponding active manifold.

Active strict saddle. Consider fs : R? — R defined as fa(y,2) = —y? + |2z|. Then
x* = (0,0) is a Clarke critical point of fo and My = R x {0} is the corresponding
active manifold. Observe that in this case z* is not a local minimum of fo due to
the fact that it is not a local minimum of fy ;.

The reason behind such a simple classification lies in the fact that, from a min-
imization perspective, the behavior of a weakly convex function in a neighborhood
of an active manifold M is dictated by its behavior on M. Examples presented in
Section 6.2 show that such a result does not hold true as soon as the weak convexity
assumption fails. Indeed, in full generality, it is clear that if a critical point z* of
a function f lies on an active manifold M, then the local shape of f (and hence
the type of x*) depends both on the behavior of fj; and on the directions of the
subgradients of f outside of M. Therefore, to obtain a proper classification in this
general case, both of these informations must be taken into account.

This discussion motivates the introduction of a third type of a generic Clarke
critical point: a sharply repulsive critical point. Its formal definition is given in

! Although this result is explicitly stated only for the limiting subgradient.
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Section 6.2 but informally it is a Clarke critical point z* of a function f, lying on
an active manifold M, such that z* is a local minimum of fjs, but there is a region
close to M such that the subgradients of f point towards M. The following example
is typical.
Sharply repulsive critical point. Consider f3 : R?> — R defined as f3(y, z) =
y? — |z|. Then x* = (0,0) is a Clarke critical point of f3 and M3 = R x {0} is the
corresponding active manifold. In this example z* is indeed a local minimum of
J3)m5 but every subgradient outside of Mj is directed towards the active manifold.
Our first result, Theorem 6.2.5, shows that for a definable, locally Lipschitz
continuous function f and for a generic vector u € R?, every critical point of f, is
either a local minimum, an active strict saddle or a sharply repulsive critical point.
Furthermore, we establish that the corresponding active manifolds are satisfying the
Verdier and the angle conditions, introduced in [Bianchi et al. 2021b|. Importance
of these conditions in the analysis of the SGD are discussed in the next section.

6.1.2 The role of the Verdier and the angle conditions

Analyzing the iterates of the SGD in a neighborhood of an active manifold M, it
might be helpful to decompose df into components that are respectively tangent
and normal to M. This technique of proof, developed in [Bianchi et al. 2021b], is
natural when we think about the SGD applied to the previously presented functions
f1, f2, f3. In this case we can decompose the iterates (x,) into a sum of two sequence
(yn), (zn) and notice that the sequence (y,,) (respectively (z,)) represents the iterates
of the SGD applied to the function y — +y? (respectively z ~— =+|z|), where the
respective signs should be obvious from the considered examples. Observe that in
all of these cases (y,) are the SGD iterates of a smooth function, while (z,) are
either converging or diverging from 0 in a very fast manner.

To formalize this type of behavior authors of [Bianchi et al. 2021b| have intro-
duced two additional assumptions on the active manifold M. The first one, the
Verdier condition, states that for x close to M:

Yve df(x), vy~ Vuf(Pu(z))+ O(dist(z, M)),

where Pys(x) is the projection of  onto M, Vs f is the “Riemannian gradient" of
far and wyy is the projection of v along the tangent space of M (see Section 6.2
for a precise statement). A consequence of this condition is that, writing down
(yn) = (Par(zy)), we obtain:

Yn+1 = Yn — ’anMf(yn) + ’771771%1 + ’ynO(dist(a:n, M)) + 0(7721) ) (6'2)

where 77%1 is the projection of 7,41 on the tangent space of M at y,. That is to say,
up to a residual error term, (y,) follows an SGD dynamic on the (smooth) function
It
To motivate the angle condition a following observation was made in [Bianchi et al. 2021b].
Let x* be a Clarke critical point of f lying on an active manifold M. Then, on the



6.1. Introduction 147

event [z, — x*], for n large enough we have:

f(@n) = F(Prr(n)) 2 [lan — Par(zn)] - (6.3)

The angle condition then states that close to M we have:

f@)=f(Pu(z)) 2 |z = Pu(z)| = (v,2—Pu(2)) X [z = Pu(z)l, Voedf(z).

(6.4)
Combining (6.3) with (6.4), we obtain that for n large enough the angle between
the set 0f(zy) and the normal direction to M is lower bounded. The latter allows
to control the residual term in Equation (6.2).

Both of these conditions provide a way to analyze the SGD in a neighborhood
of an active manifold by decomposing the iterates (z,,) into a sum of two sequences:
(yn) = (Pym(xy)) and (z,) = (25, — yn). The angle condition ensures the fact that
dist(xn, M) = ||zn]] — 0 (and hence z, — M) fast enough. Combining this fact
with the Verdier condition, this implies that (y,), up to a residual term, follows an
SGD dynamic on the smooth function fj;.

In Chapter 5 this technique of proof was used to show that, under assumptions
on (n,) similar to [Brandiére & Duflo 1996], the SGD avoid active strict saddles
with probability one. In this chapter we illustrate the interest of the angle condition
in the analysis of the SGD in a neighborhood of a sharply repulsive critical point.

6.1.3 Avoidance of generic traps

The final part of this chapter is devoted to the analysis of the SGD in a neighborhood
of a generic trap. Since the question of the nonconvergence to an active strict
saddle was tackled in [Bianchi et al. 2021b] we focus in this part on the question of
nonconvergence of the SGD to x* € M a sharply repulsive critical point.

Our first result, which requires only very mild, moment assumptions on the
sequence (7y,), is that on the event [z, — x*]|, where z* is a sharply repulsive
critical point, we have that, for n large enough,

fan) = f(a¥),

While the proof of this statement readily follows from Chapter 5 such a result is
interesting. Indeed, it implies that while the iterates (x,) may in theory converge
to x* this happens only if the SGD fails to explore the repulsive region near x*.
In some sense, the algorithm perceive the function f as if z* was indeed its local
minimum.

In a second time, we show that a density-like assumption on (n,,) forces the SGD
to visit the repulsive region near M and will imply the nonconvergence of the SGD
to a sharply repulsive critical point.

The final Section 6.3.3 shows that while such a density-like assumption on (7,)
might not hold, in a standard stochastic approximation model, a way to ensure it
is to add a small perturbation (e.g. a nondegenerate Gaussian) at each iteration of
(6.1). This fact, combined with the results of [Bianchi et al. 2021b] on the avoidance
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of active strict saddles, provides a practical way to avoid generic traps of a definable
function, and, therefore, ensure the convergence of the SGD to a local minimum.

6.1.4 Previous avoidance of traps results and contributions

We finish the introduction by a discussion on diverse avoidance of traps results pre-
viously stated in the literature. In the smooth setting avoidance of saddle points by
the SGD (and more generally by a Robbins-Monroe algorithm) was first addressed
by Brandi¢re and Duflo [Brandiére & Duflo 1996] and Pemantle [Pemantle 1990].
Under a condition that, more or less, requires a lower boundedness of the covariance
of (ny) they have established that the iterates of the SGD avoid saddle points with
probability one. Later on, these results were extended in many ways, we mention
here the nonconvergence to periodic hyperbolic sets by |[Benaim 1999|, the nonau-
tonomous setting [Barakat et al. 2021| and many others [Mertikopoulos et al. 2020b,
Gadat & Gavra 2020]. From another perspective, the authors of [Lee et al. 2016]
have established the nonconvergence to a saddle point of the deterministic gradient
descent under a random initialization. Davis and Drusvyatskiy, in [Davis & Drusvyatskiy 2021],
have presented a first nonconvergence result in the nonsmooth setting. They have in-
troduced the concept of an active strict saddle and similarly to [Lee et al. 2016] have
established that proximal methods avoid active strict saddle under a random ini-
tialization. As mentioned earlier, in our previous work [Bianchi et al. 2021b|, under
the same conditions on the perturbation sequence as in [Brandiére & Duflo 1996],
we have established the nonconvergence of the SGD to an active strict saddle lying
on an active manifold that satisfies a Verdier and an angle conditions.

Finally, shortly after the publication [Bianchi et al. 2021b] and just before the
submission of [Schechtman 2021b|, on which is based the current chapter, a con-
current work [Davis et al. 2021] has appeared. The latter, sharing a lot of similar-
ities with [Bianchi et al. 2021b], analyzes the SGD (and its proximal versions) in
a neighborhood of an active manifold. An avoidance of active strict saddles result
was obtained as well as (local) rates of convergence and asymptotic normality of
the iterates was established. These results support our claim of the importance of
the Verdier and the angle conditions. A major difference with this chapter is that
their proximal aiming condition assume (close to the active manifold) the left hand
side of formula (6.4). Such an assumption rules out functions with downward cusps
such as (y,z) — +y? — |z|, which are treated in [Bianchi et al. 2021b] and in the
present chapter. As a consequence, the question of genericity in [Davis et al. 2021]
is addressed only for the class of Clarke regular functions in which sharply repul-
sive critical points do not exist. In particular, we believe that convergence rates of
a similar kind could be obtained upon replacing the proximal aiming condition of
[Davis et al. 2021] by ours angle condition.

Paper organization. Section 6.2 deals with the generic properties of Clarke
critical points. In Section 6.3 we state an avoidance of traps result and discuss the
convergence of the SGD to minimizers. Section 6.4 is devoted to proofs.

Notations. For z € R? and r > 0, we denote B(z,r) the open ball centered



6.2. Generic critical points 149

of radius 7 centered at z. Given a set S < R? S will denote its closure and S¢
its complementary. The distance to S will be denoted as dist(-, S). We say that
V c S is open in S if there is an open set U < R? such that U n S = V. We say
that H: R? = R? is a set-valued mapping if for each x € R?, H(z) < RY, we denote
Graph(H) = {(x,y) : € dom(H),y € H(z)} its graph. We say that a property holds
locally around x if this property holds on U an open neighborhood of x. We say
that a function f : R — R is weakly convex if there is p > 0 such that f(-) + p |||
is convex.

Given n random variables Xi,..., X, on some probability space, we denote
o(X1,...,X,) the sigma algebra generated by them. The set of borelians of R?
will de denoted as B(RY). Given some probability space on which we have (.%,)
a filtration and X a random variable, we will denote E,[X] = E[X|.#,]. Given a

Rmxn

matrix B € , we will denote BT its transpose.

6.2 Generic critical points

Theorem 6.2.5 of this section classifies generic critical points of a locally Lipschitz
continuous, definable function. A reader who is more interested in our avoidance of
traps result can take Definitions 6.2.1-6.2.4 as granted and jump to Section 6.3. We
recall that for a function f : R? — R and u, x € R?, we denote f,(z) = f(x) —(u, z)
and that, given a manifold M, we denote fj; the restriction of f to M.

To motivate our presentation consider first the case where f : R* — R is C2.
Applying Sard’s theorem to the function x — V f(z), we obtain that the set

{ueR?: 3z e RY Vf(z) = u and the Hessian of f at z is degenerate }

is Lebesgue-null. Hence, for almost every u € R%, the critical points of f,(z) =
f(z) — {u, x) are nondegenerate. This result can be extended to functions defined
on a submanifold.

Proposition 6.2.1 ([Victor 1974, Chapter 7, §7]). Consider M < R% a C? sub-
manifold of dimension greater than 0. Let f : M — R be C%. Then for almost every
u e RY, the critical points of fuinr are nondegenerate.

Remark 21. A function f : M — R? such that every of its critical points is nonde-
generate is called a Morse function. Proposition 6.2.1 shows that Morse functions
always exist. This result can be strengthened to the fact that the set of Morse func-
tions is open and dense in the Whitney C? topology (cf. e.g. [Audin et al. 2014]).
In that sense almost every smooth function on M is Morse.

6.2.1 Active manifolds

The central notion of this work is the notion of an active manifold. It was introduced
by Lewis in [Lewis 2002] and was thoroughly studied in [Drusvyatskiy & Lewis 2014,
Drusvyatskiy & Lewis 2012].
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Definition 6.2.1 (Active manifold). Consider f : R — R a locally Lipschitz con-
tinuous function and x* such that 0 € 0f(x*). For p = 1, we say that M is a CP

active manifold around z* if there is a neighborhood U of x* such that the following
holds.

i) Smoothness. M n U is a CP submanifold and f is C? on M nU.

ii) Sharpness.
inf{|jv|| :ve df(z),zeUn M} >0.

Note that in the preceding definition M can be the whole space R?. As a
consequence any C? function f : R? — R admits R? as an active manifold on any
of its critical point.

The following conditions on an active manifold were introduced in [Bianchi et al. 2021b].
We recall that Pj; denotes the projection onto M and that by Lemma 2.3.2 it is
well defined in the neighborhood of M.

Definition 6.2.2 (Verdier and angle conditions). Let f : R — R be a locally
Lipschitz continuous function. Let M be a C? active manifold around a critical
point x*. We say that M satisfies a Verdier and an angle conditions if the following
holds.

e Verdier condition. There is U a neighborhood of x* and C = 0 such that
forye M nU and x € U, we have:

voe df(z), ||Pr,u(v) = Vuf)|| <Clla—yl.
where Pr,pr s the orthogonal projection onto TyM .

e Angle condition. For every a > 0, there is B > 0 and U, a neighborhood of
x* such that for all x € Uy, we have:

f@)=f(Pu(z)) = alle = Pu(e)| = (v,2=Py(2)) = Bl — Py ()] 7( V)v €of(x).
6.5

In practice an active manifold is an element of the stratification presented in
Theorem 5.2.1. Hence, the Verdier condition is just a transcription of Inequal-
ity (5.3) in this setting. The importance of the angle condition can be grasped from
the following observation made in [Bianchi et al. 2021b].

Proposition 6.2.2 ([Bianchi et al. 2021b, Lemma 7]). Let f : R? — R be path-
differentiable and assume that there is x* € R% a Clarke critical point lying on a
C? active manifold M. There is r,T,a > 0 such that for any v € B(z*,r) and
x € S_pf(x), either x([0,T]) & B(x*,r) or

f(@) = f(Pu(x) + allz = Pu(2)] -
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The preceding lemma shows that the set
{z e B(0,r): f(zx) < f(Pu(x)) + allz — Pu(z)]]} (6.6)

where «a, r are the one of Proposition 6.2.2, can be viewed as a repulsive region for
the subgradient flow. The angle condition ensures the fact that as soon as we are
not in this repulsive region the negative subgradients of f are directed towards M.
This information will help us to show that the iterates of the SGD converge to M
fast enough.

6.2.2 Generic traps

This work focuses on the two following types of Clarke critical points.

Definition 6.2.3 (Active strict saddle [Davis & Drusvyatskiy 2021]). Let f : R —
R be a locally Lipschitz continuous function. We say that a point x* € R% is an
active strict saddle if there is M a C? active manifold around x*, of dimension
greater than 0, and x* is a saddle point for the function fyr.

Definition 6.2.4 (Sharply repulsive critical point). Let f : R — R be a locally
Lipschitz continuous function. We say that a Clarke critical point x* is sharply
repulsive if it lies on an active manifold M such that x* is a local minimum of fur

and 0 € Of (z*)\oL f(z*).

The reason behind the chosen denomination of Definition 6.2.4 comes from the
following proposition. It shows that the active manifold of a sharply repulsive critical
point is always neighbored by a large repulsive region of the form (6.6).

Proposition 6.2.3. Let f : R? — R be a continuous function and z* € R?* such that
0 € df(x™)\Orf(x*). There is C > 0 such that for all ¢ > 0, there is x € B(x*,¢)
such that:

fl@) < f(a®) = Clla* — x| .
If, moreover, x* is a sharply repulsive critical point, lying on a C? active manifold
M, then there is € > 0 such that for all y € B(z*,e) n M and for all ¢, > 0, there
is x € B(y,ey) such that we have:

f(x) < f(Pu(x)) .

If f is weakly convex, then 0rf = df. Hence, such a function does not have
sharply repulsive critical points. As the following proposition shows, in this case, the
notion of an active strict saddle is generic. In its initial version this proposition fol-
lows from the work [Drusvyatskiy et al. 2016] and was proved in [Davis & Drusvyatskiy 2021].
Statements concerning the Verdier and the angle conditions were proved in [Bianchi et al. 2021b].

Proposition 6.2.4 ([Davis & Drusvyatskiy 2021, Theorem 2.9] and [Bianchi et al. 2021b,
Theorem 2|). Let f : R? — R be definable and weakly convex. There is N € N such

that for almost every u € RY, the set (2,) is of cardinality less than N. Moreover,
every such a point lies on an active manifold satisfying the Verdier and the angle
conditions and is either a local minimum or an active strict saddle.
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The reason behind such a simple classification in Proposition 6.2.4 comes from
the fact that under weak convexity a local minimum of fjs is also a local minimum
of the unrestricted function f. As the following example shows this is no longer true
without the weak convexity assumption.

Example 6.2.1. Consider fy : R? — R defined as fi(y,z) = —|y| + |z|. For
u € B(0,1), the point (0,0) is a sharply repulsive critical point lying on the active
manifold My = {(0,0)}.

We are now ready to state the main result of this section which is a generalization
of Proposition 6.2.4 to the non weakly convex case.

Theorem 6.2.5. Let f : R* — R be a locally Lipschitz continuous, definable func-
tion and p = 2. There is N € N such that for almost every u € RY the set (2,) is
of cardinality less than N and every point x}, € Z,, lies on a CP active manifold M
such that the following holds.

i) The manifold M satisfies the Verdier and the angle conditions.

ii) If the dimension of M 1is greater than 0, then z; is a nondegenerate critical
point for the function f, : M — R.

iii) The point z¥ is either a local minimum, an active strict saddle or a sharply
repulsive critical point of f.

6.3 Avoidance of generic traps

6.3.1 Escaping a sharply repulsive critical point

Let f : R - R be a locally Lipschitz continuous function. Let G : R — R? be
a measurable function such that for all z € RY, G(z) € 0f(x), such a “measurable
selection" always exists (cf. [Rockafellar & Wets 1998]).

On a probability space (2,4, P), consider a random variable zp € R? and a
random sequence (1,) € (RN, Define the iterates:

Tp+l = Tn — ’YnG(xn) + i+l = Tn — YnUn + Ynlin+1 (6'7>

where vy, := G(xy,) and () is a deterministic sequence of positive numbers. Let
(:Zn) be a filtration on (92,4, P).

Assumption 6.3.1.
i) The function f is path-differentiable.
ii) The sequence (1) is adapted to (Fy,) and xo is Fo-measurable.

ii1) The sequence (7yy,) is such that 2;08 v = 400, ZLOS 7?2 < 4o and there is

c1,co > 0 such that:

2
c1 < 2” <1+ covn -

Tn+1
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Assumption 6.3.1 is a standard assumption in the field of stochastic approxima-
tion. We notice that the point (iii)) is satisfied by the sequences of the form ~,, = #
for e € (1/2,1].

Recall that E,[-] denotes E[-|.%,,].

Assumption 6.3.2. The sequence (n,) is such that Ep[n,+1] = 0 and for every
C >0, there is K(C') > 0 such that we have:

sup By [|[9n41 111z j<c < K(C).
neN

Assumption 6.3.3. The point x* is a sharply repulsive critical point of f such that
the corresponding active manifold M is C?.

Our first result concerning the behavior of the SGD in the neighborhood of a
sharply repulsive critical point is the following proposition. Its proof is provided in
Section 6.4.2.

Proposition 6.3.1. Let Assumptions 6.8.1-6.3.2 hold. Assume that a point z* € Z
is lying on a C? active manifold. There is o > 0 such that, almost surely on the
event [x, — x*], there is ng € N such that for n = ng, we have:

f(an) 2 allan — Pay(@a)ll + f(Py(2n)) .-

As a consequence, under Assumptions 6.5.1-6.3.3, for n large enough,

f(zn) = f(z7).

A consequence of the preceding theorem is the fact that while the iterates of the
SGD may in theory converge to a sharply repulsive critical point, this happens only
if the sequence (x,,) fails to explore the repulsive region of the form (6.6) neighboring
the active manifold. Without additional assumptions on the perturbation sequence
(M), the following example shows that such behavior is easy to construct. Recall
that f4 : R? — R is defined as f4(y,2) = —|y| + |2|.

Example 6.3.1. Consider z € R and let xg = (yo,20) = (0,2). For n € N, define
Mn = 0 and v, = (0, éﬁ)ﬂnznnw- Then the sequence (xy,) defined by Equation (6.7)
represents the iterates of the SGD applied to fy and x, — (0,0).

The next two assumptions will force the SGD to explore the repulsive region
around z*.

Assumption 6.3.4. For every C' > 0, there is a continuous, positive function
he : RT — R such that for every n € N and any measurable function v : R — R?,
if ||lzn|| < C, then:

V6 >0, Plinst € B(wn)0)|Fn) > f Loon ) @)he(y) dy.
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Assumption 6.3.5. The active manifold from Assumption 6.3.8 satisfies an angle
condition.

Assumption 6.3.4 describes a density-like behavior of the conditional law of
(Mn+1). Indeed, it is satisfied if the conditional laws of (7,+1) are identically dis-
tributed according to some law that has a density relatively to Lebesgue which is
positive at every point. As we show in Section 6.3.3 to enforce this assumption it is
sufficient to add a “nondegenerate" perturbation at each step.

On the other hand, as the following proposition shows, Assumption 6.3.5 allows
to control the speed of convergence of (z,,) towards a sharply repulsive critical point.

Proposition 6.3.2. Let Assumptions 6.3.1-6.5.8 and 6.3.5 hold. There is k > 0
such that on [x,, — x*] the event

[dist(zp, M) < Kkyn]
occurs infinitely often.

Finally, with this result in hand we have that a sharply repulsive critical point
is avoided by the SGD with probability one.

Theorem 6.3.3. Let Assumptions 6.3.1-6.3.5 hold. Then, P([x,, — z*]) = 0.

The proof of Theorem 6.3.3 is slightly technical but conceptually it can be de-
scribed as follows. By Proposition 6.3.2 the iterates are infinitely often located at
a distance less than k7, from the active manifold. Since z* is a sharply repul-
sive critical point, M is neighbored by a repulsive region (6.6). Assumption 6.3.4
then forces the algorithm to recur in this repulsive region, which in turn contradicts
Proposition 6.3.1.

6.3.2 Convergence to minimizers

From the results of Section 6.2 we have that every Clarke critical point of a generic
definable function that is not a minimizer is either a sharply repulsive critical point or
an active strict saddle. Hence, to obtain the convergence of the SGD to minimizers
we need to investigate the question of the avoidance of active strict saddles. As
previously mentioned, this question was tackled in [Bianchi et al. 2021b].

Proposition 6.3.4 ([Bianchi et al. 2021b, Theorem 3|). Let f : R — R be locally
Lipschitz continuous. Consider the iterates (6.7) under Assumptions 6.5.1(1))(ii)).
Assume that * is an active strict saddle lying on a C* active manifold that satisfies
the Verdier and the angles conditions. Furthermore, assume that the following holds.

i) There is c3,cq4 > 0 and € € (1/2,1] such that for all n € N,

C3 Cq
7<7n<7

ne ne’

ii) The sequence (Nn+1) is such that Ey[nn+1] = 0.
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ii) For all w € RN\{0}, we have almost surely:
lim inf E, [|{np41,w)|] > 0,
neN
and on the event [z, — x*]:

sup Ep[[|7n+1[|"] < +o0,
neN

Then P([z, — z*]) = 0.

Notice that the assumption on () of the preceding proposition implies As-
sumption 6.3.1-(iii)). Therefore, combining Proposition 6.3.4 with Theorem 6.3.3,
we obtain that on a generic definable, locally Lipschitz continuous function the SGD
converges to a local minimum. We state this result in the following corollary.

Corollary 6.3.5. Let f : R? — R be locally Lipschitz continuous. Assume that every
of its Clarke critical points is isolated and is either a local minimum, an active strict
saddle or a sharply repulsive critical point with the corresponding active manifolds
being C*-smooth and satisfying the Verdier and the angle conditions. Consider the
iterates (6.7) under Assumptions 6.3.1(1))—(ii)) and 6.3.4. Moreover, assume that
the following almost surely holds.

i) For alln e N, E,[n,+1] = 0.
ii) For every C > 0, there is K(C) > 0 such that:

sup Ep [[[9n41]|*]1Lznj<c < K(C).
neN

iii) There is c3,cqa > 0 and € € (1/2,1] such that for all n € N,

C C
3<<4

ne SIS e

Then, almost surely, the sequence (x,) is either unbounded or converges to a local
minimum of f.

Proof. Let £* be one of the Clarke critical points of f. The only thing that we have
to show is that under Assumption 6.3.4 we have that for all w € R% {0}, almost
surely,

lim %\Inf E,[[<w, mns1)|] > 0.
ne

Consider w € R? and define § = @ Notice that for z € B(w, §) we have |{w, z)| >

2
H’wH2 — Kz —w,w)| = @ Therefore,

2
[[]]

En[|<w, 77n+1>|] = En[|<wa77n+1>mnn+1eB(w,5)] = TP (77n+1 €EB (w, 5) |=¥n)

2
_ Il A
2 K
zeB(w,d)

and the right hand side of this inequality is positive by Assumption 6.3.4. ]
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We finish this section by a discussion on differences in the proofs of Proposi-
tion 6.3.4 and Theorem 6.3.3.
The idea of the proof of Proposition 6.3.4 can be described as follows.

e Using the angle condition, show that the iterates of the SGD converge to M
fast enough.

e Using the Verdier condition, show that the sequence (Pas(zy,)) of the projected
SGD iterates follows a gradient descent on a smooth function f.

e Since x* is an active strict saddle, it is a saddle point of the function f; and,
with some minor adaptations, the nonconvergence follows from the works of
[Brandiére & Duflo 1996, Pemantle 1990] on avoidance of saddle points when
the objective is smooth.

In [Bianchi et al. 2021b] the technique used to prove the first point is similar to
the one used for the proof of Proposition 6.3.2. However, afterwards, the reasons for
the nonconvergence to an active strict saddle are different. Indeed, in Theorem 6.3.3
the SGD avoids a sharply repulsive critical point due to the fact that the iterates
(x,) visits infinitely often a repulsive region of the form (6.6). Such repulsive region
does not necessarily exist in the case of an active strict saddle (think of the function
f2 from the introduction). Hence, the proof of Proposition 6.3.4 heavily relies on
the Verdier condition which is not necessary in our case.

Nevertheless, we notice that if one wants to describe the speed of convergence
to z* lying on an active manifold M such that z* is a local minimum of fj; (e.g. a
sharply repulsive critical point or a local minimum of f), then both of the Verdier
and the angle conditions are useful since, as in [Bianchi et al. 2021b], it can be
established that the iterates will converge promptly to M and the Verdier condition
allows to show that, up to a manageable error term, the sequence (Pys(zy,)) is simply
an SGD sequence applied to a smooth function fjs. It should be possible in that
case to obtain rates of convergence in the spirit of [Mertikopoulos et al. 2020b]. We
defer such considerations to future work.

6.3.3 Validity of Assumption 6.3.4

In this section we present a model that satisfies Assumptions 6.3.1-6.3.2 and show
how to alter it to obtain Assumption 6.3.4. This will provide us with a practical
way to ensure the convergence of the SGD to a minimizer.

We start by a motivational example.

Example 6.3.2. In machine learning we are usually interested to optimize f : R¢ —
R written as an average of N functions:

M=

fla) = 3 fil).

1

i
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Here, N 1is the number of data points and f; is the loss function related to the i-
th data point. In this case a version of the SGD is obtained by choosing, at each
iteration n € N, an index i € {1,..., N} in an uniform manner and updating:

Ip+1l = Tn — 'Yngi(xn) s (68>

where g; : R — R are such that %21{1 gi(x) € of(x). If for allie {1,...,N} are
smooth, concave or weakly convex ©, then we can choose g;(z) € 0fi(x). In this case
Equation (6.8) can be viewed as Equation (6.7) by putting v, = %ZZ]L gi(xy) and
M1 = Gi(Tn) — vn.

In the stochastic approximation litterature (see e.g. [Borkar 2008, Kushner & Yin 2003])
this and more general settings are modelized by a probability space (£, 7, u) and a
measurable function g : R? x £ — R% such that for each z € R?, the function g(z, )
is p-integrable and we have the following:

G(z) = Lg‘l" Su(ds) € of ).

Starting from zg € R?, at each iteration n € N the practitioner samples &, ~ p
in an independent way and update the iterates according to the following rule:
Tpt1 = Tn — Yng(Tn, §nt1) -

We obtain Equation (6.7) by putting v, = G(xy), nn+1 = G(zn) — 9(zn, t1) and
ﬁn = O-(x(]vélv ce. 7£n)

In the context of this model consider a sequence (1)) of i.i.d R%valued random
variables, with n' ~ v s.t. the following holds.

1. For each n € N, n! is independent from .%,.
2. The law v is zero-mean with finite variance.

3. The law v has a continuous density relatively to the Lebesgue measure on R
Moreover, denoting this density k' : R? — R, we have that for each point
reRY hl(z) > 0.

An example of a law that verifies the last two points is e.g. a nondegenerate gaussian.
Starting from a .Zg-measurable point Zo € R?, consider the following algorithm:
Tn4l = Tp — ’Yng(jna §n+1) + 7n771£+1 = Tn — YnUn + Ynlln+1, (6-9)
where ¥, = G(&,,) € 0f (Z) and Tp+1 = By — 9(Tny Ens1) + 041
Proposition 6.3.6. Assume that for every C > 0, there is K(C) > 0 such that:
sup [ 6(,) ~ gl 9) ulds) < K(C).
lzll<C

Then the sequence (Nn+1) satisfies Assumptions 6.3.2 and 6.3.4 relatively to the
filtration Fp, = Fp @ (nt, ..., nk).

20r more generally Clarke regular. For an existence of such an oracle we invite the reader to
consult [Bianchi et al. 2021a].
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The preceding proposition provides a practical way to ensure the convergence of
the SGD to a minimizer. As the following corollary states, if the objective function
is generic, then it suffices to add a small random perturbation at every iteration of
the algorithm.

Corollary 6.3.7. Let f : R* - R be satisfying the assumptions of Corollary 6.3.5.
Consider the iterates of Equation (6.9) and assume that the following holds.

i) For every C > 0, there is K(C) > 0 such that:

sup f 1G(x) - gz, 9)||* p(ds) < K(C).

[zll<C

ii) The law v has a finite fourth order moment.

iii) There is c3,cq > 0 and € € (1/2,1] such that for all n € N:

Then the sequence (&) is either unbounded or converges to a local minimum of f.

6.4 Proofs

We recall that most of the results on o-minimality that are used in this proof are
gathered in Section 2.4. In particular, we will use the notion of first-order formula
and Proposition 2.4.1 without further mentioning.

The proof of Theorem 6.2.5 is based on the following result of Drusvyatskiy, Ioffe
and Lewis [Drusvyatskiy et al. 2016].

Proposition 6.4.1 (|Drusvyatskiy et al. 2016, Theorem 4.7 and Corollary 4.8]).
Consider p = 2 and f : R — R a locally Lipschitz continuous, definable function.
There is N > 0 such that for almost every u, the function f, has at most N Clarke
critical points. Moreover, denoting x such a point, the following holds.

i) There is M a CP active manifold around x; (for the function f,).
ii) There is W,V neighborhoods of respectively w and x}; such that the mapping
w =V (0fu)'(0)
s single valued, CP smooth on W and maps W onto M.

i) If 0 € O fu(wy) and x}, is a local minimum of the function fyar : M — R,
then x? is a local minimum of the unrestricted function f,.
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In [Drusvyatskiy et al. 2016] the preceding proposition was stated for the lim-
iting subgradient drf, (i.e. in Definition 6.2.1 the Clarke subgradient 0f was
replaced by drf and the critical point z¥ was defined as 0 € Jr f,(z*)). How-
ever, the only property that was used for the proof of these points was the fact
that dim Graph(dr f(z)) = d (here dimension is understood in the sense of Defini-
tion 2.4.4). Since by [Drusvyatskiy & Lewis 2010b, Theorem 3.5] dim Graph(df(x)) =
d, Proposition 6.4.1 remains true with our definition.

Let {X1,..., Xk} be the CP stratification from Theorem 5.2.1. The existence
of an active manifold with a Verdier condition follows from Proposition 6.4.1 upon
noticing that in the proof of [Drusvyatskiy et al. 2016, Corollary 4.8| the active
manifold can be chosen compatible with {Xj,..., X;}. To deal with the angle
condition and the nondegeneracy of critical points we consider separately the case
where dim M = 0 and dim M > 0.

First case: dim M = 0. In this case the angle condition follows from the following
result of [Bolte et al. 2009].

Lemma 6.4.2 (|Bolte et al. 2009, Theorem 1 and Proposition 1]). Consider f :
R?Y — R a locally Lipschitz continuous and definable function. For (z,d) € R? x
RY, denote f'(x;d) = limtqow (notice that this limit always exists by
Lemma 2.4.2 and the local Lipschitz continuity of f). We have:

[f(z+d) = f(z) = f'(z + d:d)| = o=(||d]), (6.10)

where o, (||d||) means that O”‘(lgﬁ”) —d-0 0.

Without loss of generality, assume that the critical point x7 is equal to zero and
fu(0) = 0. We have that M = {0} and by Equation (6.10):

|ful@y + @) = fulz) = f@* + z52)| = [fu(z) = fulz;2)] = o([|z]]).
For a > 0, we have:
fu(@) = allz]| = fi(z;z) = ozl + of|[]) -
Therefore, for x close enough to zero:
fulwiw) > 5 ]

Notice that if f, is differentiable at x, then f, (z;x) = (V fu(z), z). Hence, the angle
condition is proved on a point of differentiability.

For the general case, consider v € df,(z). By Proposition 2.1.1 there is k €
N, a sequence (z7,...,z}) — (x,...,2) and a sequence (A1,...,A;) such that
Zi-c:l Ai = 1, for each (i,n) € [1,...,k] x N, f, is differentiable at z]' and v =
limy, 4 o0 Zle AiV fu(xl"). Since at 2 we have f] (' zl") = (V f(al'), z"), we ob-

1%
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tain:
k
(,z)y = lim ; NV fu(@l), z)
k k
= lim_ Zl AV fulal) o)+ lim ; AV fu(z), 2 — 2
o . k " ' k . .
5 nEonoi_Z; Al + ngrgooi; (Y fula), 3 — 2y
> lall
2

where the last inequality is obtain by the triangular inequality, the fact that z}* — x
and that V f(z) is bounded.

Second case: dimM = k > 0. Let u,W,z¥ be as in Proposition 6.4.1. In the
following, without loss of generality, we will assume that u = 0 and W is bounded.
We start by outlining the proof.

e Using Proposition 6.2.1 and the Verdier condition, we show that for almost
every w € W the critical point of f, s are nondegenerate.

e In Lemmas 6.4.3 and 6.4.4 we show that that the dimension of y € M such
that the angle condition is verified in the neighborhood of y is equal to k.

e The preceding point along with Lemma 6.4.5 and the second point of Proposi-
tion 6.4.1 shows that for almost every perturbation w € W, the angle condition
is verified in a neighborhood of z7;.

Since R? is covered by a countable union of such neighborhoods W these three points
will prove Theorem 6.2.5.

To prove the first point of the outline notice that by the Verdier condition the
map from Proposition 6.4.1 is actually equal to:

w—xy €M st Vyfulzh)=0.

Therefore, by Proposition 6.2.1 we have that for almost every w € W the critical
point zy, is nondegenerate for the function fy,a.
To prove the second point denote P, g(x) the first-order formula:

Ywe W,

fuw(@) 2 allz = Py ()] + fu(Pu(2) = (0w, = Pu(x)) = Blle = Pu(@)|,  You € 0fu(),

where, implicitly, in this formula we consider only such z for which Py, (z) is well
defined. The first-order formula “not P, g(x)" can be written as:

Jw € W, Juy, € 0fyw(x) such that:

fu(@) 2 allz — Py ()] + fu(Pu(x)) and (v, 2 — Py (z)) < Bz — Pu(a)]| -
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Or equivalently:

Jw € W, 3v € df(x) such that:
f(x) = f(Pu(z) = allz — Py ()| + (w, 2 — P ()
(v —w,x — Py(x)) < Bllz — Py(z)] -

Fix a > 0 and let A* be the following definable set:
A% ={ye M :VYe > 0,3z € B(y,¢), “not Pay ()"} . (6.11)

The following lemma shows that for a fixed «, for almost every y € M, there is a
neighborhood around y such that the formula P, o holds.

Lemma 6.4.3. We have that dim A® < dim M = k.

Proof. Assume the contrary, by construction A® lies in the boundary of the following
definable set.

Qo :={r ¢ M: “not Py n(z)'}.
Applying Lemma 2.4.9, we obtain a k-dimensional definable set A, § > 0 and a
definable C' map p : A’ x (0,8) — Qq such that Py (p(y,t)) = y and ||p(y,t) —y|| =
t. By the definition of @, this means that for all (y,t) € A" x (0,d) there is v €
of(p(y,t)) and w € W such that

(w—w,py,t) —y) <at <2at < f(p(y,t)) — f(y) —{w,p(y, ) —y).

Fix y € A’ and denote py,(-) = p(y,-). There are two definable selections v(t) €
Of(py(t)) and w(t) € W such that

u(t) —w(t), py(t) —y) < at < 2at < f(py(t) — fy) — w(t), py(t) —yy. (6.12)

Since f is path-differentiable, we have:

Flplnt) — fly) = fo (), oy (1)) du

For ¢ small enough, we have that the expression under the integral is continuous on
(0,¢'). Therefore, by the mean value theorem, for every t € (0,¢), there is u € (0,)
such that

Floy(®) = fy) = tu(u'), py(u")) .
Denote v, = limygv(t) and w, = lim;_ow(t) (these limits exists by the mono-
tonicity lemma and the fact that f is locally Lipschitz continuous). By Lemma 2.4.3
applied to each coordinate of p,(t) — y we have the existence of R, € R? such that

Ry — limt—>0 Py(?—y

= limy—,q py(t). Hence, from Inequality (6.12) we obtain:
(vy = wy, Ry) < o < 20 < vy —wy, Ry ),

which is a contradiction. O
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Denote £ © M the set:

L=()JlveM:3e>0st Yoe By,e), Pas()}. (6.13)
a>0 >0

The second point of the outline comes from the following lemma.
Lemma 6.4.4. The following holds.
i) The set L is definable.

ii) We have that
| @)ynMccL. (6.14)

acQ,a>0
iii) We have that dim(L n M) < k.

Proof. The first statement comes from the fact that the set £ can be written as a
first-order formula. The second statement is immediate from definitions. Finally,
the last statement comes from the fact that we have:

LN M c U A%
aeQ
By Remark 6 the “definable dimension" of a set coincides with its Hausdorff dimen-
sion and by Lemma 6.4.3 we have dim A® < k. Hence, £L°n M is included in a count-

able union of sets of Hausdorff dimension less than k. Therefore, dim £~ M < k.
O

Define S := {(y,w) :ye LN M,w e df(y) n W} and Sy := {we W :3Jye
LN M, (y,w) € S}
Lemma 6.4.5. We have that dim S,, < d.

Proof. For y € L% n M define the set Sy := {w : w € df(y)}. By Theorem 5.2.1
we have that S, < Vs f(y) + Ny M and therefore dim Sy < dimNyM = d — k. By
Lemma 6.4.4 we have that dim £° n M < k. Therefore, applying Proposition 2.4.8,
we obtain that

dimS =dimL°"M + sup dimS, <k+d—-k=d.
yeLen M

Since Sy, is the image of S by the projection on the last d coordinates, applying
Proposition 2.4.8, we obtain dim S, < dim S < d. O

Therefore, for almost every w € W, the set {y € M : we df(y)} = {«} € M :
Vi fuw(xk) = 0} lies in £. By the definition of £ for each y € £ and every o > 0,
there is 8,e > 0 such that for all z € B(y,¢) and w e W,

fuw(@)=fu(Pu(2)) 2 allr = Pyu(2)| = (vw,2=Pu(2)) = Blle = Pu(@)|, Vo € 0fu(z),

which finishes the proof.
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6.4.1 Proof of Proposition 6.2.3

The first statement immediately follows from the definition of the limiting subgra-
dient.

To prove the second statement, without loss of generality, assume that z* = 0.
By contradiction assume that for all € > 0 there is y. € B(0,¢) n M and g, > 0
such that for all x € B(y.,e,.) we have:

f(x) =z f(Pu(z)) .

By Lemma 2.3.3 we have:

f(@) = flye) + f(Pu()) — f(ye)
> f(y:) + (Vs f(ye), P (@) — ye) + O(| Par () — ye||?)
> f(ye) + (VS (ye), x — vy + <V ar f(ge), Par(2) — ) + O(|| Par () — e |1°)

Since f is C? on M, we have:

(Varf(ye), Prr(z) — )

A\

Varf(Pu (), Par(x) — ) = [Varf (Par(2)) = Var f (ye) || | Par () — ]
(Varf(Pu (), Par(x) — ) + O([|2 = yell) | Par (2) — ] -

Notice that Vy f(Pu(z)) € Tp,, () and that by Lemma 2.3.2 for z close enough to
M, we have Py(z) — 2 € Np,, ;M. Therefore, (Vr f(Py(x)), Py (z) — ) = 0 and
we obtain:

F(@) = flye) + Varf (ye), = ye) + llz = Par(@) | O(llye — Par(@)])) + O(1Par (@) — well*) -

Since Py is Lipschitz continuous, we have O(||Pyr(x) — vel|) = O(]|Jx — v:||). Hence,
Vuf(ye) € onf(ye). Since Varf(ye) —y.—0 0, this implies that 0 € dr,f(0), a
contradiction.

6.4.2 Proof of Proposition 6.3.1

Consider the linearly interpolated process X : R, — R? defined as:

t— Zn ~ n n+1
X(t) =Tn + ﬂ(ajn%—l) — Tn, ifte [Z Vi, Z 7@) .

Tnt1 =0 =0

By Assumption 6.3.2 and [Schechtman 2021a, Lemma 1] the sequence (37" Yini+1)
converges on the event [z, — x*]. Hence, from the work of Benaim, Hofbauer and
Sorin [Benaim et al. 2005, Proposition 1.3], on the event [x,, — z*], X is a so-called
asymptotic pseudo trajectory of the subgradient flow (5.14). That is to say, for every
T > 0, by [Benaim et al. 2005, Proposition 4.1] we have that:

sup inf X(t 4+ h) —x(Wl — 0.
hE[O,T]Xes—af(x(t)) H ( ) ( )H 0
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Assume that the statement of the theorem is not true. Choose T, 7, & as in Propo-
sition 6.2.2 and a sequence (zp, ) that converges to z* but f(zn,) < f(Pum(xn,)) +
o ||y, — Pr(zn,)||. Denote t,, = D%+ and x,, a solution in S_s¢(zy,) such
that

inf n.(h) — X(tn, + h)|| = 0.
B [, () = X{ta, + 1) =0

By Proposition 6.2.2 for ng large enough, we have that x,, ([0,T]) ¢ B(z*,r).

Therefore, we can extract a sequence t,; = iy, such that HX(tn;C ) —x*|| = 5. Since

on the event [z, — x*] the limit set of X is equal to x*, this is a contradiction.

6.4.3 Proof of Proposition 6.3.2

In this proof C' will denote some absolute constant that can change from line to line
and from one statement to another. Without loss of generality assume that x* = 0
and f(z*) = 0.

To prove this proposition the following result will be needed.

Lemma 6.4.6 (|Bianchi et al. 2021b, Lemma 5|). Let Assumption 6.5.3 hold. There
is C,r > 0 such that the conclusions of Lemma 2.3.2, with p = 2, are verified on
B(0,71) and, moreover, for any x1,x9 € B(0,r), we have:

lly2 =1 — Pr, (z2 — z1)|| < C'llz1 — 2o||? + C ||lw1 — @a| |21 — 1|

where y1,y2 = Pyr(z1), Prr(x2).

Let a > 0 be the one of Proposition 6.3.1 and let U,, 8 be as in Definition 6.2.2.
Consider 71 as in the preceding lemma and let » > 0 be such that B(0,r) < U, and
r < r1. The value of r, while always satisfying this requirement, will be adjusted in
the course of the proof. Denote

2 = (@n = Pry(n)) Lz, |<r -

Notice that if ||z, < 7, then [|z,|| = dist(zn, M) and z, € Np,, (5,)M.
Consider xk > 0 and for k € N, denote

Ti(K,r,a) = {infn = k : dist(z,, M) < Ky, or ||zp| = r or f(zn) < f(Pr(xn))+a||zn — Par(zn)]} -

By a slight abuse of notations we will denote 7, = 7(k, 7, @) and 2JF = 2p a7, .

The aim of this proof is to show that for any k € N, P(7, = +00) = 0. Since on
the event [x,, — 0], for n large enough, we have ||z, || < rand f(z,) < f(Pum(zn)) +
a ||z — Pa(2y)|| this will implies that dist(z,, M) < k7, happens infinitely often.

To establish this result we study the difference between Hzé’;ﬂf and ||z7¢ 2.
Using the angle condition, we show that for 7, > n, it will decrease at least at a
rate v, ||z7¢||. Since for 7 small enough, ||z7| is much larger than ||27+||* this will

help us to conclude.
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‘We have:

2
2l = 12212 + (2enan = 2n0 200 + lns1 = 20ll?) Lo

— 2 1P + (2@ns1 = Tn, 200 = 2Par(@ns1) = Parlen)s 20> + zns1 = 20l2) Lo
(6.15)

The following lemma bound the last two quantities.
Lemma 6.4.7. There is di,ds > 0 s.t. if 7 was chosen small enough, then:
2B, [[(Par (2n+1) = Par(@n), 2)| 1 lron < di(m [l2al® + 72) Lo

and

E”[Hzn-‘rl - Zn”2]17'k>n < d2%2~b

Proof. To prove the first inequality apply Lemma 6.4.6. On the event [7, > n],
noticing that 2, is orthogonal to Tp, (., )M, we obtain:

KPu(@n41) = Parlen), 20)] < C lonss = all |zl + Cllns = wall zall -
Hence,
Enl[KPa(@n+1) = Par(@n), 20| Lnon < (CEn |[@ns1 = @all® 20l + |21 = 2all [20]?] ) Triom

<C (mliznl? + 22 lznl) Lnon

< C(m ||ZnH2 + ’72)]17'1&”
The second inequality is obtained by writing down:
2
sz;ﬁ_l - Z;kH ]lTk>’VL < C Hwn+1 - an2 117';€>7’L +C HPM(xn-‘rl) - PM(mn)H2 I[’rk>n .

Taking the conditional expectation, we obtain the desired result using Lemma 6.4.6,
Equation (4.1) and Assumption 6.3.2. O

Using the preceding lemma and the angle condition, taking the conditional ex-
pectation on Inequality (6.15), we obtain:

T 2
Enl]| =71 1P) < NI + (i lznll” = 29Com, 20) + (da + d2)32) T

< U221 + (dvvn lzall® = 281 lznl + (d + d2)32) T
Denote 0,, = 2= and 0]k = 0,, .+, .

Tn

Lemma 6.4.8. There is d3,dqy > 0 s.t. if r > 0 was chosen small enough, we have:

En 07511 < 1071 + (ds — da |6 ]) Lry -
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Proof.

2

o |12 n
Enl[| 075 [I7] < 16711 + (— 1617 + —5"=((1 + d1ya) 16l — 281 [16s]| + O +dz))> > -

n+1

Using Assumption 6.3.1, we obtain:

2
;Yn (1 + d1’)/n) <1+ (62 + dl)’}’n + Cle’yTQL.
Tn+1

Hence,

2
071 P18 < 10702 + (2 + a0l + cadin 1012 = 26181 00 ] + i + o) T

< (16711 + ((c2 + di)yn 160l + codiyy 10all = 2¢151) (16l Lo

Note that v, [|0p || Lr>n = ||2n]| Lry>n < r. Hence,

Han-HH ]lTk>’Vl < HHZ}HQ + ((CQ + dl)T + ngl’)/nT — 20151) HHnH ]lrk>n + C(d1 + d2)]l7'k>n .
If r was chosen such that (co + di)r + cadiynr — 2¢181 < 0, then we have:

H%HH 1601% + (di + da — 2151 [|0n]]) Lrgsn »

which is the desired result.
O

Consider ds, d4 from Lemma 6.4.8. If k was chosen greater than %, then from
the preceding lemma we obtain:

167417 + (d3 — da 1674 ) L7

H9n+1H < ‘
<0741 — dsTryon

Hence, for all n > k:
E[|071*] + (n + 1 — k)P(ry = +0),

which implies that P(r, = +00) = 0.

Hence, for any k € N, 73 is almost surely finite. Noticing that by Proposi-
tion 6.3.1, on the event [z, — 0], the events [||xy| > 7] and [f(zn) < f(Pum(zy)) +
a||zn, — Py(zy)||]] happen only a finite number of times, this implies the statement
of Proposition 6.3.2.
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6.4.4 Proof of Theorem 6.3.3

The proof will be done in three steps.

1. Lemma 6.4.9 shows that there is a constant C' such that if dist(x,, M) is of
order of v, then there is z/, such that dist(z],, M) is also of order ~,, and every
point B(z},, Cyy,) is in the repulsive region of the form (6.6).

2. Using Assumption 6.3.4, Lemma 6.4.10 then shows that in such a case the
probability of z, 41 visiting a repulsive region is lower bounded.

3. The preceding point along with Proposition 6.3.2 and Lemma 6.4.11 then
shows that the iterates (x,) visit a repulsive region infinitely often. The latter
is impossible by Proposition 6.3.1.

Without loss of generality, assume that £* = 0. In this section U will be a bounded
neighborhood of zero such that the following holds on U.

i) There is ¢, > 0 s.t. inf{||0f(z)]| : 2 € U n M} = cpy,.
ii) The function Py is C! on U.

iii) The functions f, Py, f o Py are Lipschitz on U, with Lipschitz constants
L7 LTI’7LM~

Lemma 6.4.9. Let Assumption 6.3.3 hold. There is r1 > 0 s.t. B(0,r;) < U, and
forally e B(0,r1) "M, for all § s.t. ||y||+3d < r1, there is x such that the following
holds.

i) [z =yl = 0.
ii) f(z) < f(Pu(x)) — 2.

Moreover, for every such x, denoting &' =
have:

c2.6 / /
ST ) for every ' € B(x,d), we

f@') < f(Pu(a’)).
Proof. Consider r from Proposition 6.2.2 and let 71 < § be such that B(0,r) = U

2

and LrLsup|y i<, IVmf(y)ll < =+ Consider y,¢ as in the lemma. By Proposi-
tion 6.2.3 there is zg € B(y, g) st. f(zo) < f(Pu(zg)). Let x : Ry — R? be in
S_of(zo) and define t,, := inf{t > 0 : ||x(¢)|| = m1}. By Proposition 6.2.2 we have
that ¢, < +o00. For t < ¢,,, we have:

Fx()) < f(x(0) = cpt.

Denoting y(t) = Py(x(t)), for t < t,,, by path-differentiability of f we have:

() = Fy(0)) — jo (Varf (), 96t
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Since |ly(t)|| < L. L, for t < t,,, we have:

02

f(y(0)) < f(y(?)) + LLxt ||S|Tlp IVufll < fly@®)) + Tmt-
yll<r
Therefore, for t < t,,,
2
Fx(1) < F(x(0)) = et < F(y(0)) — et < f(y(1)) — 5t (6.16)

This implies that y(t,,) = Pa(x(tr,)) # x(tr,) and, therefore, ||x(¢,,)|| = r1. Hence,

4]
lwo =yl < 5 <0 <=yl = lIx(t)l = llyll < [Ix(t) =yl -

Since x is continuous, this implies that there is ts € (0,¢,) s.t. ||x(ts) — y|| = ¢.
Denote x = x(ts) and notice that ||x(t5) — zo|| < Lts. Hence,

0
§ = |x(ts) = yll < llzo = yll + [Ix(ts) — @oll < 5 + Lts

Therefore, ts > % and by Inequality (6.16) we have:

02

F(x) < F(Par(a)) 152
02

< F(Pu(a) — 2.

which proves the first statement.
Finally, for 2/ € B(z, "), we have:

f@) < f@) + Lo -
2
< f(Py(x)) — ™ 4 L

4L
/ ! 072715
With our choice of ¢ the last inequality implies that f(z) < f(Pu(2')). O

Lemma 6.4.10. Let Assumptions 6.3.1-6.53.4 hold. Consider k from Proposi-
tion 6.3.2 and r1 from Lemma 6.4.9. For n large enough, there is 0., > 0 such
that:

P([f(@nt1) < f(Prr(@nt))]Fn) Laist(an M) <rvn L) Py (20 —ymvn) <2 Hlenli<ry = rr -

Proof. The set-valued mapping ¥,, : R* = R?, defined as:

2

,0) = {2 i = Pasin =)l = 30 S0) < FPur(e)) = 2
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is closed valued and, by Lemma 6.4.9, for n large enough, it is nonempty on
[ Prr (2 — ¥nvn)|| < 371]. Hence, by [Rockafellar & Wets 1998, Corollary 14.6],
we can ChOOSG/ x] in a measurable way such that !/, € ¥(z,,). Define ¢, : R? — R
as ¢y (z) = mg—;x + vy, and &' = zL(LfifM)L' By Lemma 6.4.9 we have that for all
x' € Bz, yd'):

f@') < f(Pu(a’)).

Denote S* the set {z : f(x) < f(Pum(z))}. On the event [dist(z,, M) < ypk] N
U Prr (2 — Ynvn)|| < 5] 0 [[|zn]] < 71], using Assumption 6.3.4, we have:

P(zns1 € SY|Fn)

(Tn — nUn + Ynlint1 € By, 10')|Fn)

O“

P
P(ynins1 € B(Hf — Zn + ”)’n’Um’Yn5 )|Fn)
P(nn+1 € B(¥n(xn), )| Fn) (6.17)

AR\ AR\

> [ e (@) () du
ueR?

Denote L' = L + 1+ L,L + k. We have:

27, = Par(@n = ynvn) | + 1 Par (20 = ynvn) = Par(@n)ll + [l2n — Par(an) |l

[thn(zn) || < flvnll +
<L+1+L,L+kx=1L".

Tn

Therefore, by Assumption 6.3.4, on the event [dist(zy, M) < Ynk|N[||[Par(zn — ynon)|| <
] 0 [llzn |l < r1] we have:

Plansi € SUF0) > inf  he () f 150,51 (1) du.
o<1+ wa PO

Since h,, is positive and continuous, the infimum in the last inequality is positive,
which finishes the proof. O

To finish the proof of Theorem 6.3.3 we will use the following lemma.

Lemma 6.4.11 ([Borkar 2008, Chapter 4, Lemma 14]). Consider (2, A, P) a proba-
bility space and (%) a filtration. Let (F,), (Hy,) be two sequences of events adapted
to (F,) and assume that there is a constant C > 0 such that:

P(Fn+l|ﬂn):ﬂ-Hn = C
Then
P([Fy, occurs infinitely often]® n [Hy, occurs infinitely often ]) = 0.

By Proposition 6.3.2 we know that on the event [z,, — 0] the event [dist(zy, M) <
Y] O [|Par(zn — ynvn)|| < 371] will happen infinitely often. Therefore, by Lem-
mas 6.4.11 and 6.4.10 the event [f(z,) < f(Pua(z5))] happens infinitely often. By
Proposition 6.3.1 this can happen only with probability zero. Hence, P([z, — 0]) =
0.
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6.4.5 Proof of Proposition 6.3.6

The validity of Assumption 6.3.2 is immediate. To prove Assumption 6.3.4 denote
Q : R? x B(R?) — R, the Markov kernel of 7, 41. For every (z, A) € R x B(R?), it
is defined as:

Q. A) = Plins € Al = 2) = | La(Go) ~ gl 5)uds).

The Markov kernel of 7,41, denoted @, is then defined for every (z, A) e R x B(RY),
as:

Q(z,A) = P(p41 € ATy = ) = f Rdf y 1a(y + 2)Q(z,dy)h(z) dz
z€ ye
~[ | #e-n)QG.dydu.
ueR4 yeRd

Fix C' > 0, notice that if ||Z,| < C, then by Markov’s inequality we have for

a =20,

K(C)
2

>

j Qi dy) = Pl < al ) > 1 —
llyll<a a

Therefore, for a measurable function ¢ : R — R% and C,§ > 0, if ||z,|| < C, then:

~ 1
P(fn11 € B(Y(Zy,),90)|-%n ZJ 1 " w) inf A'(u—vy)du.
(1 € B(¥(Zn),0)|Fn) 3 )., 1B .0 ( )Hyll@/f (u—1y)

A simple exercise shows that the function u — ianme h'(u — y) is continuous
and positive. Hence, Assumption 6.3.4 is verified.
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Equation






CHAPTER 7

Stochastic proximal subgradient
descent oscillates in the vicinity of
its accumulation set

7.1 Introduction

Let d be a positive integer, let X be a nonempty, closed and convex set and let
f,g : R?" - R be two locally Lipschitz functions. In this chapter, we study the
behavior of the stochastic proximal subgradient descent (SPGD):

Tn+1 € pI“OX;?X(l’n — YnUn + '7n77n+1) ) (71>

where proxzfx is the proximal operator for the function g on X’ (see Equation (7.7)
for a definition), (7,) is a sequence of stepsizes, (7),,) is a noise sequence and for each
n € N, vy, is in the set df(x,) of Clarke’s subgradients of f at x,,.

Let Ny(z) be the normal cone of X at z. It is known (see [Davis et al. 2020,
Majewski et al. 2018]) that, under mild conditions on f, g and (7,), every limit
point of (x,,) is included in the set Z := {x : 0 € df(x) + dg(x) + Nx(xz)}. The proof
leans on the seminal paper of Benaim, Hofbauer and Sorin [Benaim et al. 2005] (see
also [Benaim 1999]), which analyzes Equation (7.1) as an Euler-like discretization
of the differential inclusion (DI):

x(t) € =0f (x(t)) — og(x(t)) — Nx (x(£)) - (7.2)

While the sequence (x,) is known to converge to Z, recent work [Rios-Zertuche 2020]
shows that in principle, it might not converge to a unique point. In [Rios-Zertuche 2020,
Section 2| Rios-Zertuche considers the deterministic subgradient descent (that is to
say g = 0, X = R? 75, = 0) and constructs f, which verifies main assumptions
of nonsmooth optimization (such as Whitney stratifiability or Kurdyka-fLojasiewicz
inequality) but the limit set of (z,,) is equal to Z = {z : ||z|| = 1}. This encourages
a more precise study of Equation (7.1).

In [Bolte et al. 2020b| the authors, using the theory of closed measures, show
that in the case of the deterministic subgradient descent the convergence to Z arises
in a structured manner. First, they prove that if x,y are two distinct accumulation
points of (x,), then the time that the iterates spend to get from a neighborhood
of x to a neighborhood of y goes to infinity. Second, in a first approximation their
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results imply that if x is an accumulation point of (z,), then

Z?:l ViviﬂmieB(x,zs)
Z?:l Vi]lxieB(x,é) n—+w0

0,

(see [Bolte et al. 2020b, Theorem 7| or Section 7.3 for a precise statement). Intu-
itively speaking, this means that even if x,, — zg = > 7v; does not converge, on
average, the drift coming from the subgradients compensate itself and vanishes at in-
finity. This behavior captures an oscillation phenomenon of the iterates around the
critical set. Results of this type show a strong stability property of the deterministic
subgradient descent.

In practical settings, when the function f is either unknown or computation of
its gradient is expensive, the deterministic gradient descent is often replaced by its
stochastic version, in many cases, this may lead to a faster convergence (see e.g.
[Bottou et al. 2018]). Proximal methods, on the other hand, along with the regu-
larizer function g, are widely used to regularize the initial problem of minimizing f.
Depending on the choice of g, we can, for instance, preserve the boundedness of the
iterates [Duchi & Ruan 2018] or promote the sparsity of solutions [Tibshirani 1996].
It is therefore interesting to establish stability results of the type [Bolte et al. 2020b]
for the SPGD.

In this chapter we investigate further the questions of oscillations of the SPGD.
Our contributions are threefold. First, we show that the time spent by the SPGD to
move from one accumulation point to another goes to infinity. Second, we establish
an oscillation-type behavior of the drift. These two results extend [Bolte et al. 2020b,
Theorem 7.] to a stochastic and a proximal setting. Finally, our technique of proof
doesn’t rely on the theory of closed measures used in [Bolte et al. 2020b] but is build
upon the classical work of Benaim, Hofbauer and Sorin [Benaim et al. 2005]. We
feel that this approach gives a simpler proof and allows us to treat the deterministic,
the stochastic and the proximal cases in a unified manner.

Chapter organization. In Section 7.2, we recall some known facts about the
DI (7.2) and its Lyapounov function. Our main results are given in Section 7.3.
Section 7.4 is devoted to proofs.

7.2 Preliminaries

7.2.1 Notations

For S c R? we denote clS its closure and conv S its closed convex hull. For a
function F : R - R, we denote VF its gradient. Constants will usually be denoted
as C,C1,Csy. .., they can change from line to line. For a sequence (x,), we denote
acc{z,} its set of accumulation points. The space of continuous functions from R
to R? will be denoted as C(Ry, Rd), we endow this set with d¢ the metric of uniform
convergence on compact intervals (see Section 2.2.1). Given a convex set X < RY,
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the normal cone of X is a set valued map Ny : R? =3 R, defined as:
Ny(z) ={v:{v,y —x) <0,Vye X}. (7.3)

For each z € X, Nx(r) is a closed convex subset of RY.

7.2.2 A Lyapounov function for the differential inclusion

We recall that a locally Lipschitz function f : R — R is path differentiable if for
any a.c. curve x : [0,1] — R?, for almost every ¢ € [0, 1]:

(Fox)(t) = (w0, %(t)) Vo e af(x(b)). (7.4)

By |Bolte & Pauwels 2019, Proposition 2|, every convex, concave, semialgebraic or
definable function is path differentiable. Moreover, if another function g: R — R
is path differentiable, then f + g is also path differentiable [Bolte & Pauwels 2019,
Corollary 4]. From a similar point of view, if X' is a convex set, then for any a.c.
curve x : [0,1] — R?, for almost every t € [0,1]:

(0, x> =0 Yoe N(x(t)). (7.5)

Consider now f, g : R* — R path differentiable, X < R? a convex set and x a solution
to the DI (7.2). Using Equation (7.4) and (7.5) and the fact that o(f +¢g) < df + 09,

we obtain
(f+m&@%%f+w&®»——£ﬂ%wwdw (7.6)

This implies that (f + ¢)(x(t)) < (f + ¢g)(x(0)) if x(0) ¢ Z. In other words, f + g is
a strict Lyapounov function for the DI (7.2).

7.3 Main results

Consider (€2, Z,P) a probability space and (n,,) a sequence of random variables with
values in R?. Define proxg P R? =3 RY, the proximal operator for g on X with a

step 7:
. 1
proxlx(x) = argmin{g(y) + o ly —z||*}. (7.7)
yeX Y
We study Equation (7.1) under the following assumptions.
Assumption 7.3.1.
i) The set X is a closed convex subset of RZ.

i) The functions f,g: R* — R are locally Lipschitz continuous.

iti) There is a filtration (% )nen, such that (ny,) is a martingale difference sequence
adapted to it, and x, is F, measurable for every n € N.

0 = +oo0.

w) The sequence of stepsizes () is nonnegative and such that Y
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Note that if g is nonconvex, proxgvx(:p) is a set in RY. Assumption 7.3.1-(iii))
then implicitly states that x,41 is chosen in a measurable manner, such a choice
is always possible (see e.g. [Davis et al. 2020]). By |Rockafellar & Wets 1998, 10.2
and 10.10], we can rewrite Equation (7.1) as:

Totl = Tn = Yn(Vn + 0§ + 05 ) + Tnllns1 (7.8)
where vf, € dg(xp4+1) and v;¥ € Ny (zn41).
Assumption 7.3.2.
i) Almost surely, sup,, ||z || < +o0.

ii) There is q = 2 such that

+00

Z VT2 < o, (7.9)
i=0

and, for any compact set K  RY,

SugE[HnnHHq Lo,ex|Zn] < +0. (7.10)

ne

Assumptions of this type are standard in the field of stochastic approximation.
Assumption 7.3.2-(i)) prevent the algorithm to diverge. Note that it is superfluous
if X is compact. Otherwise it can be obtained by a proper choice of the regularizer
g (see [Duchi & Ruan 2018]).

Let 7, = >, ;7 be the discrete time of the algorithm. Define the linearly
interpolated process X € C(R4, R?) by:

t—r
X(t) = @y + —py1 for 7, << Tpy1.
Yrn+1

Following [Benaim et al. 2005] we will show that X is an APT of the DI (7.2). The
next two assumptions ensure us that f + ¢ will be a Lyapounov function for the
DI (7.2).

Assumption 7.3.3. The functions f and g are path differentiable.

Assumption 7.3.4. The set of Clarke critical values {f(x) + g(z) : x € Z} has an
empty interior.

Assumption 7.3.4 is a classical Sard-type condition. It ensures the fact that if
x is a solution to the DI (7.2), with x(0) € Z, then x is constant. As established
in [Bolte et al. 2007], it is satisfied as soon as f,g and X are definable.

The next two propositions are not new and can be found in one way or another in
e.g. [Davis et al. 2020, Bolte & Pauwels 2019, Majewski et al. 2018, Bolte et al. 2020b].
Nevertheless, since our set of assumptions is slightly different and their proof is a
simple application of Section 2.2.2, for completeness, we include it in Section 7.4.1.
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Proposition 7.3.1. Let Assumptions 7.3.1 and 7.3.2 hold, then the family (X(t +
V)¢=o is relatively compact. Moreover, if a sequence t, — 4+ and x € C(Ry,R?) is
such that do(X(ty, + -),x) — 0, then x is a solution to the DI (7.2).

Proposition 7.3.2. Under Assumptions 7.3.1-7.3.4, the set acc{x,} is included in
Z and f + g is constant on acc{zy}.

The next theorem tells us that even if acc{z,} is not a single point, the time
that it takes to (z,) to go from one accumulation point to another goes to infinity.
This is an extension of |Bolte et al. 2020b, Theorem 6.1), Theorem 7.1)|, to the best
of our knowledge this result is new in a stochastic and proximal setting.

Theorem 7.3.3. Let Assumptions 7.8.1-7.3.4 hold. Let x,y be two distinct points
in acc{x,}. Consider two sequences n;,nj, with n; < nj, such that x,, — = and
Tn; = y. Then 7, — T, — +00.

Under Assumptions 7.3.1-7.3.3, the same result is true if (f+g)(z) < (f+9)(y).

As it is shown in |Rios-Zertuche 2020], it is possible that acc{z,} is not reduced
to a unique point. Nevertheless, Theorem 7.3.3 implies that the "nonconvergence"
happens in a very slow manner. Asymptotically, the time spent by the algorithm to
move from one accumulation point to another goes to infinity.

We now investigate the question of oscillations. Given U,V two open sets, such
that clU < V, we will call I = [n1,n2] a maximal interval related to U, V' if the set
X2 = {Zny, Tny41,- -, Ty} is such that X2 < V, X2 n U # & and either x,, 1
Or Tp,+1 is not in V. The next two results are an extension of [Bolte et al. 2020b,
Theorem 7| to a stochastic setting.

Theorem 7.3.4 (Long intervals). Let Assumptions 7.3.1-7.3.4 hold. Consider x €
acc{xn} and U,V two neighborhoods of x such that clU < V. For i € N, denote
I; = [n14,n2;] a sequence of distinct maximal intervals related to U,V . Then, either
one of I; is unbounded or T,,, — Tp,;, — +0.

Theorem 7.3.5 (Oscillation compensation). Let Assumptions 7.3.1-7.3.4 hold, and
fix U, V and I; as in Theorem 7.3.4. Denote A =] I;, then

Y vilvi + 0 + viX)]lA(x,;)
Dy vila(a) n—+a0

Theorem 7.3.5 gives an intuitive explanation of why Theorem 7.3.3 holds. In-
deed, while the drift coming from one iteration v; + v{ + viX might not go to zero

0. (7.11)

(as it happens for such a simple example as f(z) = ||z||, g = 0 and X = R?), on
average, it compensates itself. Theorem 7.3.3 and 7.3.5 suggest that the algorithm
oscillates around its accumulation set, while the center of these oscillations moves
in acc{z,} with a vanishing speed.

Let us finish with a remark on the Equation (7.11). At first sight, maximal in-
tervals in Theorem 7.3.5 and Theorem 7.3.4 may seem artificial. A more satisfactory
result would be

2 vi(vi + vf +vF) Ty (x0)
Yiic1vilu (@) n—>-+a0

0, (7.12)
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where U is an open neighborhood of an accumulation point x. Looking at the proof
of Theorem 7.3.5, to obtain Equation (7.12), we could think of defining maximal
intervals as I; = [n1i,n2;] such that {x,,,,...,Tn,} < U and xp,,—1,Zny,+1 ¢ U.
Unfortunately, for this type of intervals we dont have an equivalent of Theorem 7.3.4,
i.e. it may very well be that the quantity 7,,, — 7,,, is bounded. Actually, it is not
very hard to show, that for the function from [Rios-Zertuche 2020, Section 2|, there
are z, U such that Equation (7.12) is false.

Nevertheless, as explained in [Bolte et al. 2020b|, Equation (7.11) is a good ap-
proximation of Equation (7.12). Indeed, apply Theorem 7.3.5 with U and V = U?,
where U® = {y e R?: 3z € U, ||z — y|| < §}, then, as an approximation, we have

lim lim 2y Vi1 (vi + vf + v) La(w:) ~ lim Sy Vi (vi + v + o)Ly ()
§—0n—+w0 Z?:l 'yHlI[A(aci) n—+o Z?:l fyi+1lU(:Bi>

7.4 Proofs

In the following we will denote x,,1/2 = Tn, — YnUn + YnMn+1 and

N(T,n) =inf{j >=nst. 7, — 1, > T}. (7.13)

7.4.1 Proof of Proposition 7.3.1 and 7.3.2

To put ourselves in the context of Section 2.2.2 we need to alter the map —df —dg —
Ny in a way that it verifies assumptions of Propositions 2.2.2 and 2.2.3. While this
section is slightly technical, conceptually, we just find a set-valued map G verifying
assumptions of Proposition 2.2.3 and s.t. x,4+1 € G(x,). This is done using the
Lipschitz continuity of f, g and the boundedness of (x,). A convinced reader may
want to skip to Section 7.4.2.

We start with two technical lemmas.

Lemma 7.4.1. Under Assumptions 7.3.1 and 7.5.2, almost surely, for every T > 0,

we have:
J
Z ViTli+1

i=n

lim sup
"0 n<G<N(Ton)

—0. (7.14)

As a consequence, the sequence (Han/QH) s almost surely bounded.

Proof. Indeed, since almost surely sup ||z, | < +00, for each 6 > 0, there is C' > 0
s.t. if we denote A = {Vn € N||z,|| < C}, then P(A) > 1 — . Define 7,41 =
N1z, <> then Elf,11]1%,] = 0 and sup,en E[||n41|7] < +o0. Hence, by

0.
n—+0o0

Since 0 is arbitrary, Equation (7.14) follows. O

[Benaim 1999, Proposition 4.2, we have sup,<;<n(rn) sz:n ’ymiHH

Lemma 7.4.2. Let Assumptions 7.5.1 and 7.3.2 hold. Let A € = be a probability
one set on which (v,) and (T,11/2) are bounded, and let C' be a random variable s.t.
|xn|] < C and C is finite valued on A. Then for each w € A, there are two globally
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Lipschitz functions g, f : R% —> R and a bounded set-valued map Ny R RY st
in Equation (7.8) we have v, (w) € 0f (xn(w)), vi(w) € 8§(znr1(w)) and v¥ (w) €
NX(xn+1(w))'

Moreover, if x is a solution to the DI:

X(t) € =0f (x(t) — 0g(x(t)) — Na(x(1)) (7.15)
and that x remains in B(0,C) n X, then x is a solution to the DI (7.2).
Finally, denoting Z = {x : 0 € 0f(z) + dg(x) + Nx(z)}, we have the equality
ZnB(0,C) =2Zn B(0,0).
Proof. Let Tlgy1 : RY — R be the projection on B(0,C + 1). Define f(x) =
f(Mey1(x)), g(z) = g(e41(x)). By construction, we have that v, € df(z,) and
v, € 0g(xn+1) and that v, vy, are bounded by L, Lj the Lipschitz constants of f
and g. Hence, since x, /3 is bounded, there is Cy s.t. sup{vafH :n e N} < Cs.
Defining Ny (z) = {v : ||| < max(Cy, Ly, Lg),v € Iy (x)}, where ILy is a projection
on X, proves the first claim. The two other statements immediately follow from our
construction. 0

We say that an a.c. curve x : Ry — R% is a perturbed solution to the DI (7.15) if
there is p : R, — R, and a locally integrable function b : R, — R% s.t. for almost
every t = 0, we have:

x(t) = p(t) € =0f*D (x(t) = 05°D (x(1)) = N3 (x(1))
where H(z) = {v e H(y) : ||y — z|| < 6}, limy_ 4 b(t) = 0 and for every T > 0, we
lim sup

have: e
+
f p(u)
t=00<h<T || Jt

If x is a bounded perturbed solution to (7.15), then by [Benaim et al. 2005, Theorem
4.2] it is also an APT of (7.15). Thus, to prove Proposition 7.3.1 it remains to show
that X is a perturbed solution to the DI (7.15).

For t € [7(n),7(n + 1)), we define p(t) = np+1 and b(t) = ||zp+1 — xn||. The
condition on p immediately follows from Lemma 7.4.1. The condition on b follows

du=0.

from the following lemma.

Lemma 7.4.3. Under Assumptions 7.3.1 and 7.3.2, almost surely, we have that
0.

lns1 = 2l ——

Proof. By Lemma 7.4.1, we have that Han/Q — an —— 0. Moreover, we have:

n—+00
1 2 1 2
9(Tn1) + E Hxn+1 - xn+1/2” < g(wn) + m Hl'n - l'n-i-l/QH .
Therefore,
1 9 1
W [Zn+1 — Zoll” < g(Tn+1) — 9(7n) — —(Tnt1 — Tn, Tn — $n+1/2>
n n

< ||$n+1 - -TnH (Lg +
n

[E —xn+1/2|!)



180 Chapter 7. Oscillations of the SPGD

and
Hxn—&-l - xn” < Tnlg + Hxn - xn—i—l/QH )
which finishes the proof. O

To finish the proof of Proposition 7.3.1 consider t,, — +00 and x s.t. d¢(X(t, +
-),x) — 0. Then, by [Benaim et al. 2005, Theorem 4.2|, x is a solution to the
DI (7.15), moreover, it remains in B(0,C) n X, therefore, it is also a solution to the
DI (7.2).

For the proof of Proposition 7.3.2, notice that f + g is path differentiable (as

a composition of path differentiable functions). Then, in the same way as in Sec-
tion 7.2.2, we have that f + § is a strict Lyapounov function for the DI (7.15) and
for the set Z. Since acc{x,} = Lx < cl B(0,C), by Proposition 2.2.3 we have that
Lx © Z nclB(0,C)  Z, and that f + g is constant on acc{z,}.
Remark 22. Strictly speaking, following [Benaim et al. 2005/, a perturbed solution
to the DI is of the form x(t) — p(t) € HP®(x(t)), where H = —0f — 8§ — Nx.
Nevertheless, the proof of [Benaim et al. 2005, Theorem 4.2] goes through with our
definition.

7.4.2 Proof of Theorem 7.3.3

Lemma 7.4.4. Let Assumptions 7.3.1- 7.3.3 hold, let 7, be a positive sequence,
with 7, — +0, and x s.t. X(1, +-) = x, then

(f +9)(x(h)) < (f +9)(x(0)), VheR,. (7.16)

Moreover, if for some h = 0, (f + g)(x(h)) = (f + ¢)(x(0)), then x(h') = x(0) for
every h' € [0, h]. If additionally Assumption 7.3.4 holds, then:

x(h) =x(0), VheR,. (7.17)

Proof. By Proposition 7.3.1, x is a solution to the DI (7.2), and the first result fol-
lows by Equation (7.6).
Under Assumption 7.3.4, we have that x(R;) < acc{z,} < Z, hence, by Proposi-

tion 7.3.2, we have that (f + g) ox is constant. Using Assumption 7.3.3, we have for
all he Ry,

h
0= (f + ) (x(h) — (f + 9)(x(0)) = —fo I%(w) |2 dus (7.18)

This implies that Sg [x(w)]|* du = 0. Hence, x(h) = 0 for almost every h € [0,T] and
we obtain Equation (7.17).
O

Suppose that there is 7' > 0 such that 7,,; —7,, < T. The sequence X(7(n;)+-) is
relatively compact, and after extraction it converges to x a solution to (7.2). Extract
once again to have Tn; — Tn; — h. Then

X(7(n;)) = X(r(ni)) = x(h) =x(0) =y — =,

and we obtain a contradiction with Lemma 7.4.4.
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7.4.3 Proof of Theorem 7.3.4

The next lemma is the key ingredient for the proofs of Theorem 7.3.4 and Theo-
rem 7.3.5.

Lemma 7.4.5. Under Assumptions 7.8.1-7.3./, we have

—0.
n—+000

Z Yi(vi +vf + o)

i=n

sup
n<j<N(T,n)

Proof. Suppose that we have € > 0 and two sequences ng and ny < jr < N(T,ng),
such that for nj large enough:

Jk

Z vi(vi + vf + o)

1=ng

> €.

This implies:

Lj, — Ty, + Z YiNi+1|| > € -

i:nk

Extract a sequence such that X(7,, +-) converges to x and 7, — 7, — h, with h <
Then z;, — x(7") and z,, — x(0), but [[x(7") —x(0)|| = ¢ which is impossible by
Lemma (7.4.4). O

Suppose that no I; is unbounded, then we can choose n; € I; = [n1;, n2;] such
that x,, € U. Since x,,,,, is in V¢, after extraction x,, — y1 and x,,,, — Y2, with
Y2 # Y1, MOTEover:

Tngivr = Tng = Tnoip < Trngs — Tnyg - (7-19)

By Theorem 7.3.3, the first term of this inequality tends to infinity.

7.4.4 Proof of Theorem 7.3.5
Take I; as in Theorem 7.3.4, and Ay = (J;<y Ii- Define

uy = an _ Z 0'71(7)1 +1) + v )]lAN<$z)
by i:O 0 Yilay ()

Then,

an + 2050 vi(vi +of + o)1, ()
by + Zi=0 %]llNH ($l)

Fix € > 0, by Lemma 7.4.5, there is ng such that, for ny > ng and jr < N(T,ny),

HZZ Vi (v + v +v H e. Decompose I; = [ny;,ng] = U1<k<Ki[akivaki+l]v

with a1; = ny; and agip1 = min{N (T, ag;), n2;}. We obtain:

aN + De<rcy Zj‘fg,j; Yi(vi + v + v¥)
DN + Dk i Vi

anN + (KN){-:
Sy 4+ (Ky - DT

UN+1 = (720)

UN+1 =
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By Theorem 7.3.4, we have that Ky — +00 and, therefore, for N large enough:

an +2(Ky — 1)e
bN—i-(KN—l)T .

UN+1 S

Hence, by induction:

an +2e S0 AT E 1)
by + T S0 7 (K — 1)

UN+j <

Therefore, imuy < QT—E Since ¢ is arbitrary, this finishes the proof.
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