. .. Conclusions,

. .. Perspectives, K. Aguilar, M. Jerez, and C. Jiménez, Implementación de tareas de analítica de datos para mejorar la calidad de servicios en redes de comunicaciones, Publicaciones En Ciencias y Tecnología, vol.11, issue.2, pp.63-77, 2017.

J. Aguilar, J. Cordero, and O. Buendía, Specification of the Autonomic Cycles of Learning Analytic Tasks for a Smart Classroom, Journal of Educational Computing Research, 2017.

J. Aguilar, A. Garcès, N. Gallego, J. Gutiérrez, J. Gomez et al., , 2019.

, Autonomic Management Architecture for Multi-HVAC Systems in Smart Buildings, IEEE Access, vol.7, pp.123402-123415


J. Aguilar, M. Jerez, M. Mendonca, and M. Sanchez, MiSCi: Autonomic Reflective Middleware for Smart Cities, Procedings of Technologies and Innovation: Second International Conference, p.241, 2016.


J. Aguilar, M. Mendoça, M. Jerez, and M. Sanchez, Emergencia ontológica basada en análisis de contexto, como servicio para ambientes inteligentes, DYNA Rev.Fac.Nac.Minas, vol.84, pp.28-37, 0200.

J. Aguilar, M. Sanchez, J. Cordero, P. Valdiviezo-díaz, L. Barba-guamán et al., Learning analytics tasks as services in smart classrooms, Universal Access in the Information Society, vol.17, issue.4, pp.693-709, 2017.


J. Aguilar, M. Sanchez, M. Jerez, and M. Mendonca, An Extension of the MiSCi Middleware for Smart Cities Based on Fog Computing, Journal of Information Technology Research, vol.10, issue.4, pp.23-41, 2017.

J. Aguilar, M. Sanchez, P. Vadiviezo, J. Cordero, . 6to et al., Mecanismos de Coordinación en un Salón Inteligente, pp.31-40, 2015.

J. Aguilar, P. Valdiviezo, J. Cordero, and M. Sanchez, Conceptual design of a smart classroom based on multiagent systems, Proceedings on the International Conference on Artificial Intelligence (ICAI), pp.471-477, 2015.

M. Al-ayyoub, Y. Jararweh, M. Daraghmeh, and Q. Althebyan, Multi-agent based dynamic resource provisioning and monitoring for cloud computing systems infrastructure. Cluster Computing, vol.18, pp.919-932, 2015.

M. Amadeo, A. Molinaro, S. Y. Paratore, A. Altomare, A. Giordano et al., A Cloud of Things framework for smart home services based on Information Centric Networking, pp.245-250, 2017.

, Apache CXF. Apache CXF TM : An Open-Source Services Framework, Apache Software-Foundation, 2008.

B. Archimède, M. A. Memon, and K. Ishak, Combining multi-agent model, SOA and ontologies in a distributed and interoperable architecture to manage multisite production projects, International Journal of Computer Integrated Manufacturing, vol.30, issue.8, pp.856-870, 2017.

A. Auger, E. Exposito, and E. Lochin, Survey on Quality of Observation within Sensor Web systems, IET Wireless Sensor Systems, vol.7, issue.6, pp.163-177, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01906765

M. A. Bahrin, M. F. Othman, N. H. Azli, and M. F. Talib, Industry 4.0: A review on industrial automation and robotic, Jurnal Teknologi, pp.137-143, 2016.

J. Bohuslava, J. Martin, and H. Igor, TCP/IP protocol utilisation in process of dynamic control of robotic cell according industry 4.0 concept, IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI), pp.217-000222, 2017.

F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, Fog computing and its role in the internet of things, Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, pp.13-16, 2012.

L. Breiman, Bagging Predictors, Machine Learning, vol.24, pp.123-140, 1996.

L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller et al., API design for machine learning software: Experiences from the scikit-learn project, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00856511

Q. Cao, F. Giustozzi, C. Zanni-merk, F. Beuvron, and C. Reich, Smart Condition Monitoring for Industry 4.0 Manufacturing Processes: An Ontology-Based Approach, Cybernetics and Systems, vol.50, pp.1-15, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02045055


S. Cavalieri, M. G. Salafia, and M. S. Scroppo, Towards interoperability between OPC UA and OCF, Journal of Industrial Information Integration, vol.15, pp.122-137, 2019.

S. E. Celonis, Celonis. Celonis, 2019.

V. Chang and G. Wills, A model to compare cloud and non-cloud storage of Big Data, Future Generation Computer Systems, vol.57, pp.56-76, 2016.


K. Chen, S. Hsu, J. Jhang, and C. Lin, INTERNET OF THINGS SECURITY APPLIANCE (Patent No. United States Patent Application, 2017.

X. Chen, P. Yang, T. Qiu, H. Yin, and J. Ji, IoE-MPP: A mobile portal platform for internet of everything, Journal of Intelligent & Fuzzy Systems, vol.32, issue.4, pp.3069-3080, 2017.

J. Collier, What is Autonomy?, Thèse par articles. Ecoles Doctorales Sciences Exactes et Applications de la Université de PAU et les Pays de l'Adour, vol.20, 2002.

G. Decker, O. Kopp, F. Leymann, and M. Weske, BPEL4Chor: Extending BPEL for Modeling Choreographies, IEEE International Conference on Web Services, pp.296-303, 2007.

D. Consulting, The smart factory, 2017.

A. Derboul, B. I. Hadj, and K. Chafik, Contribution of Industrial Information Systems to Industrial Performance: Case of Industrial Supervision, pp.884-901, 2018.


I. Dr?gan, T. Selea, and T. Forti?, Towards the Integration of a HPC Build System in the Cloud Ecosystem. Complex, Intelligent, and Software Intensive Systems, pp.916-925, 2017.

M. Elattar, V. Wendt, and J. Jasperneite, Communications for Cyber-Physical Systems, Industrial Internet of Things, pp.347-372, 2017.

E. Exposito, Advanced Transport Protocols: Designing the Next Generation, 2013.

E. Exposito and C. Diop, Smart SOA Platforms in Cloud Computing Architectures, 2014.

M. Faheem and V. C. Gungor, Energy efficient and QoS-aware routing protocol for wireless sensor network-based smart, Applied Soft Computing, 2017.

E. Ferrera, R. Rossini, A. J. Baptista, S. Evans, G. G. Hovest et al., Toward Industry 4.0: Efficient and Sustainable Manufacturing Leveraging MAESTRI Total Efficiency Framework. Sustainable Design and Manufacturing, pp.624-633, 2017.

X. Fu, T. Bultan, and J. Su, Analysis of Interacting BPEL Web Services, Proceedings of the 13th International Conference on World Wide Web, pp.621-630, 2004.


M. Fuksa, Methods and Tools for Intelligent ESB, 2014.

J. A. García-coria, J. A. Castellanos-garzón, and J. M. Corchado, Intelligent business processes composition based on multi-agent systems, Expert Systems with Applications, vol.41, issue.4, pp.1189-1205, 2014.


A. Giordano, G. Spezzano, and A. Vinci, Smart Agents and Fog Computing for Smart City Applications. Smart Cities, pp.137-146, 2016.

E. Gökalp, U. ?ener, and P. E. Eren, Development of an Assessment Model for Industry 4.0: Industry 4.0-MM. Software Process Improvement and Capability Determination, pp.128-142, 2017.

J. Goossens and P. Richard, Handbook of Cyber-Physical Systems, Multiprocessor Real-Time Scheduling, 2017.

D. Greenwood, P. Buhler, and A. Reitbauer, Web service discovery and composition using the web service integration gateway, The 2005 IEEE International Conference on E-Technology, pp.789-790, 2005.

D. Greenwood and M. Calisti, Engineering Web service-Agent integration, IEEE International Conference on Systems, Man and Cybernetics, vol.2, pp.1918-1925, 2004.

H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, iFogSim: A Toolkit for Modeling and Simulation of Resource Management Techniques in Internet of Things, Edge and Fog Computing Environments. Software: Practice and Experience, vol.47, pp.1275-1296, 2016.

J. Haupert, X. Klinge, and A. Blocher, CPS-Based Manufacturing with Semantic Object Memories and Service Orchestration for Industrie 4.0 Applications, Industrial Internet of Things, pp.203-229, 2017.

C. Springer,

M. Heiss, A. Oertl, M. Sturm, P. Palensky, S. Vielguth et al., Platforms for industrial cyber-physical systems integration: Contradicting requirements as drivers for innovation, Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES), pp.1-8, 2015.

R. Heldal, P. Pelliccione, U. Eliasson, J. Lantz, J. Derehag et al., Descriptive vs Prescriptive Models in Industry, Proceedings of the ACM/IEEE 19th International Conference on Model Driven Engineering Languages and Systems, pp.216-226, 2016.

E. Hofmann and M. Rüsch, Industry 4.0 and the current status as well as future prospects on logistics, Computers in Industry, vol.89, pp.23-34, 2017.


M. Hollender, Collaborative Process Automation Systems, 2010.

Z. Huang, H. Yu, Z. Peng, and Y. Feng, Planning community energy system in the industry 4.0 era: Achievements, challenges and a potential solution, Renewable and Sustainable Energy Reviews, vol.78, pp.710-721, 2017.


A. Huber and A. Weiss, Developing Human-Robot Interaction for an Industry 4.0 Robot: How Industry Workers Helped to Improve Remote-HRI to Physical-HRI, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, pp.137-138, 2017.

. Ibm, , 2004.

D. Ivanov, B. Sokolov, and M. Ivanova, Schedule coordination in cyber-physical supply networks Industry 4.0. IFAC-PapersOnLine, vol.49, pp.839-844, 2016.

N. Jazdi, Cyber physical systems in the context of Industry 4.0, IEEE International Conference on Automation, Quality and Testing, Robotics, 1-4, 2014.

V. Jirkovský, M. Obitko, and V. Ma?ík, Understanding Data Heterogeneity in the Context of Cyber-Physical Systems Integration, IEEE Transactions on Industrial Informatics, vol.13, issue.2, pp.660-667, 2017.

. Kaggle, Bosch Production Line Performance, 2016.

N. Kang, C. Zhao, J. Li, and J. A. Horst, A Hierarchical structure of key performance indicators for operation management and continuous improvement in production systems, International Journal of Production Research, vol.54, issue.21, pp.6333-6350, 2016.

M. Khan, X. Wu, X. Xu, and W. Dou, Big data challenges and opportunities in the hype of Industry 4.0, IEEE International Conference on Communications (ICC), pp.1-6, 2017.

P. Lalanda, J. A. Mccann, and A. Diaconescu, Autonomic Computing, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00854882

G. Leal, W. Guédria, and H. Panetto, An ontology for interoperability assessment: A systemic approach, Journal of Industrial Information Integration, vol.16, p.100100, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02237124

D. Lee, K. Choi, and H. Kim, Editorial: Smart Devices & Smart Spaces in Wireless Internet of Everything (Wireless-IoE). Wireless Personal Communications, vol.94, pp.145-147, 2017.

J. Lee, B. Bagheri, and H. Kao, A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems, Manufacturing Letters, vol.3, pp.18-23, 2015.

J. Lee, H. Kao, and S. Yang, Service Innovation and Smart Analytics for Industry 4.0 and Big Data Environment, Procedia CIRP, vol.16, pp.3-8, 2014.


G. Lemaitre, D. Oliveira, and C. Aridas, Balanced Bagging Classifier, 2014.

G. Lemaitre, D. Oliveira, and C. Aridas, Balanced Random Forest Classifier, 2014.

P. Le?a?ski, Architecture of Supervisory Systems For Subtractive Manufacturing Processes In Industry 4.0 Based Manufacturing, Journal of Machine Construction and Maintenance, vol.104, pp.59-64, 2017.

D. Li, H. Tang, S. Wang, and C. Liu, A big data enabled load-balancing control for smart manufacturing of, vol.20, pp.1855-1864, 2017.

X. Li, D. Li, J. Wan, A. V. Vasilakos, C. Lai et al., A review of industrial wireless networks in the context of, vol.23, pp.23-41, 2017.

X. Li, D. Li, J. Wan, A. V. Vasilakos, C. Lai et al., A review of industrial wireless networks in the context of, vol.23, pp.23-41, 2017.

Y. Liao, F. Deschamps, E. Loures, F. R. De, and L. F. Ramos, Past, present and future of Industry 4.0-A systematic literature review and research agenda proposal, International Journal of Production Research, vol.55, issue.12, pp.3609-3629, 2017.

H. Liu, H. Ning, Q. Mu, Y. Zheng, J. Zeng et al., A review of the smart world, Future Generation Computer Systems, 2017.

F. Longo, L. Nicoletti, and A. Padovano, Smart operators in industry 4.0: A humancentered approach to enhance operators' capabilities and competencies within the new smart factory context, Computers & Industrial Engineering, vol.113, pp.144-159, 2017.

Y. Lu, Industry 4.0: A survey on technologies, applications and open research issues, Journal of Industrial Information Integration, vol.6, pp.1-10, 2017.

M. C. Lucas-estañ, T. P. Raptis, M. Sepulcre, A. Passarella, C. Regueiro et al., A software defined hierarchical communication and data management architecture for industry 4.0, 14th Annual Conference on Wireless On-Demand Network Systems and Services (WONS), pp.37-44, 2018.


R. Mahmud, R. Kotagiri, and R. Buyya, Fog computing: A taxonomy, survey and future directions, 2018.

L. Malhotra, D. Agarwal, and A. Jaiswal, Virtualization in Cloud Computing, 2014.

A. Mangal and N. Kumar, Using big data to enhance the bosch production line performance: A Kaggle challenge, IEEE International Conference on Big Data (Big Data), pp.2029-2035, 2016.

B. D. Martino, K. Li, L. T. Yang, and A. Esposito, Trends and Strategic Researches in Internet of Everything, Internet of Everything, pp.1-12, 2018.

E. Mezghani, E. Expósito, and K. Drira, A Model-Driven Methodology for the Design of Autonomic and Cognitive IoT-Based Systems: Application to Healthcare, IEEE Transactions on Emerging Topics in Computational Intelligence, vol.1, issue.3, pp.224-234, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01535140

E. Mezghani, E. Expósito, and K. Drira, An Autonomic Cognitive Pattern for Smart IoT-based System Manageability: Application to Comorbidity Management, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01651945

N. Mohamed, J. Al-jaroodi, I. Jawhar, S. Lazarova-molnar, and S. Mahmoud, SmartCityWare: A Service-Oriented Middleware for Cloud and Fog Enabled Smart City Services, IEEE Access, vol.5, pp.17576-17588, 2017.


J. I. Molano, J. M. Lovelle, C. E. Montenegro, J. J. Granados, and R. G. Crespo, Metamodel for integration of Internet of Things, Journal of Ambient Intelligence and Humanized Computing, pp.1-15, 2017.

J. Morgan and G. E. Donnell, Enabling a ubiquitous and cloud manufacturing foundation with field-level service-oriented architecture, International Journal of Computer Integrated Manufacturing, vol.30, issue.4-5, pp.442-458, 2017.


W. Morris, The American Heritage dictionary (2nd college ed), 1982.

A. Napoleone, M. Macchi, and A. Pozzetti, A review on the characteristics of cyberphysical systems for the future smart factories, Journal of Manufacturing Systems, vol.54, pp.305-335, 2020.

J. Nelles, S. Kuz, A. Mertens, and C. Schlick, Human-centered design of assistance systems for production planning and control. The role of the human in Industry 4.0, IEEE International Conference on Industrial Technology (ICIT), pp.2099-2104, 2016.

M. Obitko and V. Jirkovský, Big Data Semantics in Industry 4.0. Industrial Applications of Holonic and Multi-Agent Systems, pp.217-229, 2015.


R. O'brien and H. Ishwaran, A random forests quantile classifier for class imbalanced data, Pattern Recognition, vol.90, pp.232-249, 2019.


F. Orellana and R. Torres, From legacy-based factories to smart factories level 2 according to the industry 4.0, International Journal of Computer Integrated Manufacturing, vol.32, issue.4-5, pp.441-451, 2019.

F. Pacheco, J. Aguilar, C. Rangel, M. Cerrada, and J. Altamiranda, Methodological framework for data Processing based on the data science paradigm, Computing Conference (CLEI), pp.1-12, 2014.

M. Pal, Random forest classifier for remote sensing classification, International Journal of Remote Sensing, vol.26, issue.1, pp.217-222, 2005.


H. Panetto, B. Iung, D. Ivanov, G. Weichhart, and X. Wang, Challenges for the cyber-physical manufacturing enterprises of the future, Annual Reviews in Control, vol.47, pp.200-213, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02012547

M. Parashar and S. Hariri, Autonomic Computing: An Overview, Unconventional Programming Paradigms, pp.257-269, 2005.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, vol.12, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

O. Penas, R. Plateaux, S. Patalano, and M. Hammadi, Multi-scale approach from mechatronic to Cyber-Physical Systems for the design of manufacturing systems, Computers in Industry, vol.86, pp.52-69, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01517427

Z. Peng, B. Xu, A. M. Gates, D. Cui, and W. Lin, A Study of a Multi-Agent Organizational Framework with Virtual Machine Clusters as the Unit of Granularity in Cloud Computing, The Computer Journal, vol.60, issue.7, pp.1032-1043, 2017.

C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, Sensing as a service model for smart cities supported by Internet of Things, Transactions on Emerging Telecommunications Technologies, vol.25, issue.1, pp.81-93, 2014.

R. Pierdicca, E. Frontoni, R. Pollini, M. Trani, and L. Verdini, The Use of Augmented Reality Glasses for the Application in Industry 4.0. Augmented Reality, Virtual Reality, and Computer Graphics, vol.10324, pp.389-401, 2017.

L. Pietrewicz, Coordination in the age of Industry 4.0. Economic and Social Development: Book of Proceedings, pp.264-274, 2019.

A. Pinto-pereira, Towards robustness and self-organization of ESB-based solutions using service life-cycle management, 2014.

, Reference Architectural Model Industrie 4.0 (RAMI4.0)-An Introduction, 2018.

D. Preuveneers and E. Ilie-zudor, The intelligent industry of the future: A survey on emerging trends, research challenges and opportunities in Industry 4.0, Journal of Ambient Intelligence and Smart Environments, vol.9, issue.3, pp.287-298, 2017.


T. M. Python, Welcome to Python.org, 2019.

J. Qin, Y. Liu, and R. Grosvenor, A Categorical Framework of Manufacturing for Industry 4.0 and Beyond, Procedia CIRP, vol.52, pp.173-178, 2016.


M. Qiu, S. Garg, R. Buyya, B. Yu, and S. Hu, Special Issue on Scalable Cyber-Physical Systems, Journal of Parallel and Distributed Computing, vol.103, pp.1-2, 2017.

C. Rangel, F. Pacheco, J. Aguilar, and M. Cerrada, Methodology for detecting the feasibility of using data mining in an organization, Computing Conference (CLEI), XXXIX Latin American, pp.502-513, 2013.

M. Reis and G. Gins, Industrial Process Monitoring in the Big Data, vol.5, pp.1-16, 2017.

A. Richert, M. Shehadeh, S. Müller, S. Schröder, and S. Jeschke, Robotic Workmates -Hybrid Human-Robot-Teams in the Industry 4.0. International Conference on E-Learning, vol.1, 2016.

A. Riel and M. Flatscher, A Design Process Approach to Strategic Production Planning for Industry 4.0. Systems, Software and Services Process Improvement, pp.323-333, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01964597

F. Riggins and T. Keskin, Introduction to Internet of Things: Providing Services Using Smart Devices, Wearables, and Quantified Self Minitrack. Proceedings of the 50th Hawaii International Conference on System Sciences. International Conference on System Sciences, 2017.

R. A. Rojas, E. Rauch, R. Vidoni, and D. T. Matt, Enabling Connectivity of Cyberphysical Production Systems: A Conceptual Framework, Procedia Manufacturing, vol.11, pp.822-829, 2017.

V. Román-ibáñez, A. Jimeno-morenilla, and F. A. Pujol-lópez, Distributed monitoring of heterogeneous robotic cells, International Journal of Computer Integrated Manufacturing, vol.31, issue.12, pp.1205-1219, 2018.

D. Romero, T. Wuest, J. Stahre, and D. Gorecky, Social Factory Architecture: Social Networking Services and Production Scenarios Through the Social Internet of Things, Services and People for the Social Operator 4.0. Advances in Production Management Systems. The Path to Intelligent, Collaborative and Sustainable Manufacturing, pp.265-273, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01666177

P. Roques, MBSE with the ARCADIA Method and the Capella Tool, 8th European Congress on Embedded Real Time Software and Systems, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01258014

, ROS Industrial, 2018.

. Ros-industrial,

D. A. Rossit, F. Tohmé, and M. Frutos, Industry 4.0: Smart Scheduling, International Journal of Production Research, vol.57, issue.12, pp.3802-3813, 2019.


M. Sanchez, J. Aguilar, J. Cordero, and P. Vadiviezo, A Smart Learning Environment based on Cloud Learning, International Journal of Advanced Information Science and Technology, vol.4, issue.7, pp.36-49, 2015.


M. Sanchez, J. Aguilar, J. Cordero, and P. Valdiviezo, Basic Features of a Reflective Middleware for Intelligent Learning Environment in the Cloud (IECL), 2015.

, Asia-Pacific Conference on Computer Aided System Engineering, pp.1-6

M. Sanchez, J. Aguilar, J. Cordero, P. Valdiviezo-díaz, L. Barba-guamán et al., Cloud Computing in Smart Educational Environments: Application in Learning Analytics as Service, New Advances in Information Systems and Technologies, vol.444, pp.993-1002, 2016.

M. Sanchez, J. Aguilar, and E. Exposito, Industry 4.0 Survey and Challenges from a System Integration Perspective, p.12, 2018.
URL : https://hal.archives-ouvertes.fr/tel-02956888

M. Sanchez, J. Aguilar, and E. Exposito, Integración SOA-MAS en Ambientes Inteligentes, DYNA Rev.Fac.Nac.Minas, vol.85, issue.206, pp.268-282, 2018.


M. Sanchez, E. Exposito, and J. Aguilar, Industry 4.0 Survey from a System Integration Perspective, Journal of Computer Integration Manufacturing, 2019.
URL : https://hal.archives-ouvertes.fr/tel-02956888

D. Sanderson, J. C. Chaplin, and S. Ratchev, Conceptual Framework for Ubiquitous Cyber-Physical Assembly Systems in Airframe Assembly??The authors gratefully acknowledge the support provided by UK EPSRC Evolvable Assembly Systems, EP/K018205/1), 2018.

. Ifac-papersonline, , vol.51, pp.417-422


M. Y. Santos, J. O. Sá, C. Costa, J. Galvão, C. Andrade et al., A Big Data Analytics Architecture for Industry 4.0. Recent Advances in Information Systems and Technologies, pp.175-184, 2017.


K. Schwab, La cuarta revolución industrial. Penguin Random House Grupo Editorial España, 2016.

J. Seeger, R. A. Deshmukh, and A. Bröring, Dynamic IoT Choreographies-Managing Discovery, Distribution, Failure and Reconfiguration, 2018.

S. Sengupta, N. Gupta, and V. Naik, Firewall for internet of things, 2017.

M. O. Shafiq, Y. Ding, and D. Fensel, Bridging multi agent systems and web services: Towards interoperability between software agents and semantic web services, Enterprise Distributed Object Computing Conference, pp.85-96, 2006.

S. F. Shaikh, M. T. Ghoneim, G. T. Sevilla, J. M. Nassar, A. M. Hussain et al., Freeform Compliant CMOS Electronic Systems for Internet of Everything Applications, IEEE Transactions on Electron Devices, vol.64, issue.5, pp.1894-1905, 2017.

D. M. Shila, W. Shen, Y. Cheng, X. Tian, and X. S. Shen, AMCloud: Toward a Secure Autonomic Mobile Ad Hoc Cloud Computing System, vol.24, pp.74-81, 2017.

R. Silva, A. D. Rocha, P. Leitao, and J. Barata, IDARTS -Towards intelligent data analysis and real-time supervision for industry 4.0. Computers in Industry, vol.101, pp.138-146, 2018.

L. Singla and P. Agrawal, Bosch Production Line Performance, 2016.

J. A. Soto, F. Tavakolizadeh, and D. Gyulai, An online machine learning framework for early detection of product failures in an Industry 4.0 context, International Journal of Computer Integrated Manufacturing, vol.32, issue.4-5, pp.452-465, 2019.

R. Sterritt and M. Hinchey, Autonomic Computing " Panacea or Poppycock?, Proceedings of the 12th IEEE International Conference and Workshops on Engineering of Computer-Based Systems, pp.535-539, 2005.

F. Strozzi, C. Colicchia, A. Creazza, and C. Noè, Literature review on the 'Smart Factory' concept using bibliometric tools, International Journal of Production Research, vol.55, issue.22, pp.6572-6591, 2017.

K. Suri, A. Cuccuru, J. Cadavid, S. Gérard, W. Gaaloul et al., Model-based Development of Modular Complex Systems for Accomplishing System Integration for Industry 4.0, 5th International Conference on Model-Driven Engineering and Software Development, pp.487-495, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01474906


A. Syberfeldt, O. Danielsson, and P. Gustavsson, Augmented Reality Smart Glasses in the Smart Factory: Product Evaluation Guidelines and Review of Available Products, IEEE Access, vol.5, pp.9118-9130, 2017.

J. Terán, J. Aguilar, and M. Cerrada, Integration in industrial automation based on multi-agent systems using cultural algorithms for optimizing the coordination mechanisms, Computers in Industry, vol.91, pp.11-23, 2017.


A. Tharwat, T. Gaber, A. Ibrahim, and A. E. Hassanien, Linear discriminant analysis: A detailed tutorial, AI Communications, vol.30, issue.2, pp.169-190, 2017.

. The-qt-company, Qt-Cross-platform software development for embedded & desktop, 2019.

M. Tiboni, F. Aggogeri, N. Pellegrini, and C. A. Perani, Smart Modular Architecture for Supervision and Monitoring of a 4.0 Production Plant, Int. J. of Automation Technology, vol.13, issue.2, pp.310-318, 2019.

N. Tran, H. Park, Q. Nguyen, and T. Hoang, Development of a Smart Cyber-Physical Manufacturing, Context. Applied Sciences, vol.9, issue.16, p.3325, 2019.

W. Truszkowski, H. L. Hallock, C. Rouff, J. Karlin, J. Rash et al., Autonomous and Autonomic Systems: With Applications to NASA Intelligent Spacecraft Operations and Exploration Systems: With Applications to NASA Intelligent Spacecraft Operations and Exploration Systems, pp.3-23, 2010.

M. Tu, K. Lim, M. Yang, and M. , IoT-based production logistics and supply chain system -Part 2: IoT-based cyber-physical system: a framework and evaluation, Industrial Management & Data Systems, vol.118, issue.1, pp.96-125, 2018.


L. M. Vaquero, L. Rodero-merino, J. Caceres, and M. Lindner, A Break in the Clouds: Towards a Cloud Definition, SIGCOMM Comput. Commun. Rev, vol.39, issue.1, pp.50-55, 2008.

J. Vizcarrondo, J. Aguilar, E. Exposito, and A. Subias, MAPE-K as a serviceoriented architecture, IEEE Latin America Transactions, vol.15, issue.6, pp.1163-1175, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01872138

J. Vizcarrondo, J. Aguilar, E. Exposito, and A. Subias, ARMISCOM: Autonomic reflective middleware for management service composition, Global Information Infrastructure and Networking Symposium (GIIS), pp.1-8, 2012.


J. Wan, S. Tang, Z. Shu, D. Li, S. Wang et al., Software-Defined Industrial Internet of Things in the Context of Industry 4.0, IEEE Sensors Journal, vol.16, issue.20, pp.7373-7380, 2016.

S. Wang, J. Wan, D. Zhang, D. Li, and C. Zhang, Towards smart factory for industry 4.0: A self-organized multi-agent system with big data based feedback and coordination, Computer Networks, vol.101, pp.158-168, 2016.

S. Wang, J. Wan, D. Zhang, D. Li, and C. Zhang, Towards smart factory for industry 4.0: A self-organized multi-agent system with big data based feedback and coordination, Computer Networks, vol.101, pp.158-168, 2016.

S. Weyer, M. Schmitt, M. Ohmer, and D. Gorecky, Towards Industry 4.0-Standardization as the crucial challenge for highly modular, multi-vendor production systems, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd, vol.48, issue.3, pp.579-584, 2015.

L. D. Xu and L. Duan, Big data for cyber physical systems in industry 4.0: A survey. Enterprise Information Systems, vol.13, pp.148-169, 2019.


L. Xu, W. He, and S. Li, Internet of Things in Industries: A Survey, IEEE Transactions on Industrial Informatics, vol.10, pp.2233-2243, 2014.


Y. Xu, Y. Sun, J. Wan, X. Liu, and Z. Song, Industrial Big Data for Fault Diagnosis: Taxonomy, Review, and Applications, vol.5, pp.138-146, 2017.


L. T. Yang, B. Di-martino, and Q. Zhang, Internet of Everything. Mobile Information Systems, pp.1-3, 2017.

S. Zanero, , 2017.

, Cyber-Physical Systems. Computer, vol.50, issue.4, pp.14-16