D. Abdo, J. Seager, E. Harvey, J. Mcdonald, G. Kendrick et al., Efciently measuring complex sessile epibenthic organisms using a novel photogrammetric technique, Journal of Experimental Marine Biology and Ecology, vol.339, issue.1, p.143, 2006.

F. Adlo, S. Somot, F. Sevault, G. Jordà, R. Aznar et al., Mediterranean Sea response to climate change in an ensemble of twenty rst century scenarios, Climate Dynamics, vol.45, issue.9, pp.2775-2802, 2015.

C. C. Aggarwal, Neural Networks and Deep Learning: A Textbook, vol.59, p.67, 2018.

. Agisoft, Agisoft PhotoScan Memory Requirements, vol.82, 2018.

. Agisoft, Agisoft PhotoScan User Manual -Professional Edition, vol.84, p.151, 2018.

. Agisoft, Useful Tips on Image Capture: How to Get an Image Dataset that Meets PhotoScan Requirements ?, p.82, 2018.

E. A. Agudo-adriani, J. Cappelletto, F. Cavada-blanco, and A. Croquer, Colony geometry and structural complexity of the endangered species Acropora cervicornis partly explains the structure of their associated sh assemblage, PeerJ, vol.4, p.197, 2016.

A. H. Ahmadabadian, S. Robson, J. Boehm, M. Shortis, K. Wenzel et al., , 2013.

, A comparison of dense matching algorithms for scaled surface reconstruction using stereo camera rigs, ISPRS Journal of Photogrammetry and Remote Sensing, vol.78, pp.157-167

L. Airoldi, The e ects of sedimentation on rocky coast assemblages, Oceanography and Marine Biology: an Annual Review, vol.41, p.187, 2003.

Z. Akata, S. Reed, D. Walter, . Honglak-lee, and B. Schiele, Evaluation of output embeddings for ne-grained image classi cation, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.2927-2936, 2015.

M. J. Anderson, A new method for non-parametric multivariate analysis of variance: NON-PARAMETRIC MANOVA FOR ECOLOGY, Austral Ecology, vol.26, issue.1, pp.32-46, 2001.

. Andromède-océanologie, DONIA expert : Cartographie détaillée des habitats marins, p.44, 2014.

. Andromède-océanologie, RECOR: Réseau de Suivi des Récifs Coralligènes, vol.100, p.203, 2018.

. Andromède-océanologie, RECOR: Réseau de Suivi des Récifs Coralligènes, p.166, 2020.

. Andromède-océanologie, TEMPO: Réseau de Suivi des Herbiers à Posidonie, vol.148, p.162, 2020.

M. Anelli, T. Julitta, L. Fallati, P. Galli, M. Rossini et al., Towards new applications of underwater photogrammetry for investigating coral reef morphology and habitat complexity in the Myeik Archipelago, Myanmar. Geocarto International, vol.34, issue.5, pp.459-472, 2019.

A. Antoniou, A. Storkey, and H. Edwards, Data Augmentation Generative Adversarial Networks, 2018.

L. Appolloni, E. Buonocore, G. F. Russo, and P. P. Franzese, The use of remote sensing for monitoring Posidonia oceanica and Marine Protected Areas: A systemic review, Ecological Questions, vol.31, issue.2, p.1, 2020.

C. A. Baldeck, G. P. Asner, R. E. Martin, C. B. Anderson, D. E. Knapp et al., Operational Tree Species Mapping in a Diverse Tropical Forest with Airborne Imaging Spectroscopy, PLOS ONE, vol.10, issue.7, p.118403, 2015.

E. Balestri, F. Cinelli, and C. Lardicci, Spatial variation in Posidonia oceanica structural, morphological and dynamic features in a northwestern Mediterranean coastal area: a multiscale analysis, Marine Ecology Progress Series, vol.250, pp.51-60, 2003.

L. Balles, J. Romero, and P. Hennig, Coupling Adaptive Batch Sizes with Learning Rates, vol.66, pp.1-11, 2017.

E. Ballesteros, Mediterranean coralligenous assemblages: a synthesis of present knowledge, Oceanography and Marine Biology: An Annual Review, vol.44, issue.1, p.178, 2006.

A. D. Barnosky, N. Matzke, S. Tomiya, G. O. Wogan, B. Swartz et al., , 2011.

, Has the Earth's sixth mass extinction already arrived?, Nature, vol.471, issue.7336, pp.51-57

A. Bas, F. Christiansen, B. Öztürk, A. Öztürk, M. Erdogan et al., Marine vessels alter the behaviour of bottlenose dolphins Tursiops truncatus in the Istanbul Strait, Turkey. Endangered Species Research, vol.34, pp.1-14, 2017.

O. Beijbom, P. J. Edmunds, D. I. Kline, B. G. Mitchell, and D. Kriegman, Automated annotation of coral reef survey images, 2012 IEEE Conference on Com, 2012.

, puter Vision and Pattern Recognition (CVPR), vol.95, p.106

O. Beijbom, P. J. Edmunds, C. Roelfsema, J. Smith, D. I. Kline et al., Towards Automated Annotation of Benthic Survey Images: Variability of Human Experts and Operational Modes of Automation, PLOS ONE, vol.10, issue.7, p.188, 2015.

O. Beijbom, T. Treibitz, D. I. Kline, G. Eyal, A. Khen et al., Improving Automated Annotation of Benthic Survey Images Using Wideband Fluorescence, Scienti c Reports, vol.6, issue.1, p.23166, 2016.

C. Bellard, P. Cassey, and T. M. Blackburn, Alien species as a driver of recent extinctions, Biology Letters, vol.12, issue.2, 2016.

R. Berger, E. Henriksson, L. Kautsky, and T. Malm, E ects of lamentous algae and deposited matter on the survival of Fucus vesiculosus L. germlings in the Baltic Sea, Aquatic Ecology, vol.37, pp.1-11, 2003.

C. N. Bianchi, La biocostruzione negli ecosistemi marini e la biologia marina italiana, Biologia Marina Mediterranea, vol.8, 2001.

C. N. Bianchi and C. Morri, RMESUaLTrSine Biodiversity of the Mediterranean Sea: Situation, Problems and Prospects for Future Research, Marine Pollution Bulletin, vol.40, issue.5, 2000.

S. Bianco, R. Cadene, L. Celona, and P. Napoletano, Benchmark Analysis of, 2018.

, Representative Deep Neural Network Architectures, IEEE Access, vol.6, pp.64270-64277

N. L. Bindo, W. W. Cheung, J. G. Kairo, J. Arístegui, V. A. Guinder et al.,

S. Djoundourian, C. Domingues, T. Eddy, S. Endres, A. Fox et al., Changing Ocean, Marine Ecosystems, and Dependent Communities, vol.24, p.25, 2019.

R. Bogue, Underwater robots: a review of technologies and applications, Industrial Robot: An International Journal, vol.42, issue.3, pp.186-191, 2015.

F. Bonin-font, M. M. Campos, and G. O. Codina, Towards Visual Detection, Mapping and Quanti cation of Posidonia Oceanica using a Lightweight AUV, vol.49, p.186, 2016.

R. Borum, J. Duarte, C. M. Krause-jensen, D. Greve, and T. M. , European seagrasses: an introduction to monitoring and management. Monitoring and Managing of European Seagrasses, 2004.

C. Boudouresque, Marine biodiversity in the Mediterranean: status of species, populations and communities. Scienti c Report of Port-Cros National Park, vol.20, p.188, 2004.

C. Boudouresque, G. Bernard, P. Bonhomme, E. Charbonnel, L. L. Diréach et al., Monitoring methods for Posidonia oceanica seagrass meadows in Provence and the French Riviera, Scienti c Report of Port-Cros National Park, vol.22, pp.17-38, 2007.

C. Boudouresque, G. Bernard, P. Bonhomme, E. Charbonnel, G. Diviacco et al., Protection and conservation of Posidonia oceanica meadows. RAMOGE and RAC/SPA, vol.29, p.143, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00808491

C. Boudouresque, G. Bernard, G. Pergent, A. Shili, and M. Verlaque, Regression of Mediterranean seagrasses caused by natural processes and anthropogenic disturbances and stress: a critical review, Botanica Marina, vol.52, issue.5, p.147, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00618626

T. M. Brooks, R. A. Mittermeier, C. G. Mittermeier, G. A. Da-fonseca, A. B. Rylands et al., Habitat Loss and Extinction in the Hotspots of Biodiversity, Conservation Biology, vol.16, issue.4, p.147, 2002.

C. J. Brown, S. J. Smith, P. Lawton, A. , and J. T. , Benthic habitat mapping: A review of progress towards improved understanding of the spatial ecology of the sea oor using acoustic techniques, Estuarine, Coastal and Shelf Science, vol.92, p.37, 2011.

R. Bruintjes, J. Purser, K. A. Everley, S. Mangan, S. D. Simpson et al., Rapid recovery following short-term acoustic disturbance in two sh species, Royal Society Open Science, vol.3, issue.1, p.150686, 2016.

M. Bryson, R. Ferrari, W. Figueira, O. Pizarro, J. Madin et al., Characterization of measurement errors using structure-from-motion and photogrammetry to measure marine habitat structural complexity, Ecology and Evolution, vol.7, issue.15, p.197, 2017.

M. Bryson, M. Johnson-roberson, O. Pizarro, W. , and S. , Automated registration for multi-year robotic surveys of marine benthic habitats, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.3344-3349, 2013.

J. Burns, D. Delparte, R. Gates, and M. Takabayashi, Integrating structure-from-motion photogrammetry with geospatial software as a novel technique for quantifying 3D ecological characteristics of coral reefs, PeerJ, vol.3, p.166, 2015.

J. Burns, D. Delparte, R. D. Gates, and M. Takabayashi, Utilizing underwater threedimensional modeling to enhance ecological and biological studies of coral reefs. ISPRS -International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol.129, p.166, 2015.

J. Burns, D. Delparte, L. Kapono, M. Belt, R. Gates et al., Assessing the impact of acute disturbances on the structure and composition of a coral community using innovative 3D reconstruction techniques, Methods in Oceanography, vol.88, p.197, 2016.

J. H. Burns, A. Fukunaga, K. H. Pascoe, A. Runyan, B. K. Craig et al., 3D Habitat Complexity of Coral Reefs in the Northwestern Hawaiian Islands is Driven by Coral Assemblage Structure. ISPRS -International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol.187, p.192, 2019.

J. Bythell, P. Pan, and J. Lee, Three-dimensional morphometric measurements of reef corals using underwater photogrammetry techniques, Coral Reefs, vol.20, issue.3, p.142, 2001.

M. W. Cadotte, J. Cavender-bares, D. Tilman, and T. H. Oakley, Using Phylogenetic, Functional and Trait Diversity to Understand Patterns of Plant Community Productivity, PLoS ONE, vol.4, issue.5, p.5695, 2009.

S. Calba, V. Maris, and V. Devictor, Measuring and explaining large-scale distribution of functional and phylogenetic diversity in birds: separating ecological drivers from methodological choices, Global Ecology and Biogeography, pp.1-10, 2014.

J. Carlot, A. Rovère, E. Casella, D. Harris, C. Grellet-muñoz et al., Community composition predicts photogrammetry-based structural complexity on coral reefs, Coral Reefs, vol.187, p.192, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02715266

E. Casella, A. Collin, D. Harris, S. Ferse, S. Bejarano et al., Mapping coral reefs using consumer-grade drones and structure from motion photogrammetry techniques, Coral Reefs, vol.36, issue.1, p.168, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01428995

G. Ceballos, P. R. Ehrlich, A. D. Barnosky, A. García, R. M. Pringle et al., , 2015.

, Accelerated modern human-induced species losses: Entering the sixth mass extinction, Science Advances, vol.1, issue.5, p.1400253

R. Chiabrando, F. Lingua, A. Maschio, P. , T. Losè et al., The in uence of ight planning and camera orientation in UAVs photogrammetry. A test area of Rocca San Silvestro (LI), Tuscany. ISPRS -International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol.124, p.141, 2017.

A. K. Chong and P. Stratford, Underwater Digital Stereo-Observation Technique for Red Hydrocoral Study. Photogrammetric Engineering and Remote Sensing, pp.7-123, 2002.

V. Christensen, M. Coll, C. Piroddi, J. Steenbeek, J. Buszowski et al., A century of sh biomass decline in the ocean, Marine Ecology Progress Series, vol.512, pp.155-166, 2014.

S. Christin, E. Hervet, and N. Lecomte, Applications for deep learning in ecology, Methods in Ecology and Evolution, vol.10, issue.10, pp.1632-1644, 2019.

K. Clarke and R. Gorley, PRIMER v6: User Manual/Tutorial. PRIMER-E, p.172, 2006.

S. Clemente, J. Hernández, A. Rodríguez, and A. Brito, Identifying keystone predators and the importance of preserving functional diversity in sublittoral rocky-bottom areas, Marine Ecology Progress Series, vol.413, pp.55-67, 2010.

S. Cocito, S. Sgorbini, A. Peirano, and M. Valle, 3-D reconstruction of biological objects using underwater video technique and image processing, Journal of Experimental Marine Biology and Ecology, vol.297, issue.1, pp.57-70, 2003.

D. J. Coker, S. K. Wilson, and M. S. Pratchett, Importance of live coral habitat for reef shes, Reviews in Fish Biology and Fisheries, vol.24, issue.1, pp.89-126, 2014.

M. Coll, C. Piroddi, C. Albouy, F. Ben-rais-lasram, W. W. Cheung et al., The Mediterranean Sea under siege: spatial overlap between marine biodiversity, cumulative threats and marine reserves: The Mediterranean Sea under siege, Global Ecology and Biogeography, vol.21, issue.4, pp.465-480, 2012.

M. Coll, C. Piroddi, J. Steenbeek, K. Kaschner, F. Ben-rais-lasram et al.,

J. M. Gasol, R. Gertwagen, J. Gil, F. Guilhaumon, K. Kesner-reyes et al.,

D. Mouillot, D. Oro, S. Raicevich, J. Rius-barile, J. I. Saiz-salinas et al., The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats, vol.5, p.11842, 2010.

A. Collin, C. Ramambason, Y. Pastol, E. Casella, A. Rovere et al., Very high resolution mapping of coral reef state using airborne bathymetric LiDAR surface-intensity and drone imagery, International Journal of Remote Sensing, vol.39, issue.17, p.84, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01848266

R. Costanza, R. D'arge, R. De-groot, S. Farber, M. Grasso et al., The value of the world's ecosystem services and natural capital, Nature, vol.387, pp.253-260, 1997.

M. J. Costello, P. Bouchet, G. Boxshall, K. Fauchald, D. Gordon et al., Global Coordination and Standardisation in Marine Biodiversity through the World Register of Marine Species (WoRMS) and Related Databases, PLoS ONE, vol.8, issue.1, p.51629, 2013.

L. A. Courtney, W. S. Fisher, S. Raimondo, L. M. Oliver, and W. P. Davis, Estimating 3-dimensional colony surface area of eld corals, Journal of Experimental Marine Biology and Ecology, vol.351, issue.1-2, p.197, 2007.

. Cpce, Coral Point Count with Excel extensions (CPCe), vol.47, p.170, 2011.

K. R. Crooks, C. L. Burdett, D. M. Theobald, S. R. King, M. Di-marco et al., Quanti cation of habitat fragmentation reveals extinction risk in terrestrial mammals, Proceedings of the National Academy of Sciences, vol.114, issue.29, pp.7635-7640, 2017.

E. S. Darling, N. A. Graham, F. A. Januchowski-hartley, K. L. Nash, M. S. Pratchett et al., Relationships between structural complexity, coral traits, and reef sh assemblages, Coral Reefs, vol.36, issue.2, p.195, 2017.

C. Darwin, On The Origin Of Species, p.24, 1859.

D. Das, S. Avancha, D. Mudigere, K. Vaidynathan, S. Sridharan et al., Distributed Deep Learning Using Synchronous Stochastic Gradient Descent, 2016.

J. De-fauw, J. R. Ledsam, B. Romera-paredes, S. Nikolov, N. Tomasev et al., Clinically applicable deep learning for diagnosis and referral in retinal disease, Nature Medicine, vol.24, pp.1342-1350, 2018.

R. De-groot, L. Brander, S. Van-der-ploeg, R. Costanza, F. Bernard et al., Global estimates of the value 209 of ecosystems and their services in monetary units, Ecosystem Services, vol.1, issue.1, pp.50-61, 2012.

C. B. De-los-santos, D. Krause-jensen, T. Alcoverro, N. Marbà, C. M. Duarte et al.,

J. L. Fournier, J. Montefalcone, M. Pergent, G. Ruiz, J. M. Cabaço et al., Recent trend reversal for declining European seagrass meadows, Nature Communications, vol.10, issue.1, p.3356, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02322885

A. De-montis, B. Martín, E. Ortega, A. Ledda, and V. Serra, Landscape fragmentation in Mediterranean Europe: A comparative approach, Land Use Policy, vol.64, pp.83-94, 2017.

G. De'ath, K. E. Fabricius, H. Sweatman, and M. Puotinen, The 27-year decline of coral cover on the Great Barrier Reef and its causes, Proceedings of the National Academy of Sciences, vol.109, issue.44, pp.17995-17999, 2012.

J. Deng, W. Dong, R. Socher, L. Li, K. Li et al., ImageNet: A Large-Scale Hierarchical Image Database, 2009 IEEE Conference on Computer Vision and Pattern Recognition, vol.58, p.96, 2009.

P. Descamp, F. Holon, L. Ballesta, A. Guilbert, M. Guillot et al., Fast and easy method for seagrass monitoring: Application of acoustic telemetry to precision mapping of Posidonia oceanica beds, Marine Pollution Bulletin, vol.62, issue.2, p.191, 2011.

P. Descamp, G. Pergent, L. Ballesta, and M. Foulquié, Underwater acoustic positioning systems as tool for Posidonia oceanica beds survey, Comptes Rendus Biologies, vol.328, issue.1, p.191, 2005.

J. Deter, P. Descamp, L. Ballesta, P. Boissery, and F. Holon, A preliminary study toward an index based on coralligenous assemblages for the ecological status assessment of Mediterranean French coastal waters, Ecological Indicators, vol.20, p.184, 2012.

J. Deter, P. Descamp, P. Boissery, L. Ballesta, and F. Holon, A rapid photographic method detects depth gradient in coralligenous assemblages, Journal of Experimental Marine Biology and Ecology, vol.95, p.188, 2012.

G. K. Devi, B. Ganasri, and G. Dwarakish, Applications of Remote Sensing in Satellite Oceanography: A Review. Aquatic Procedia, vol.4, pp.579-584, 2015.

S. Diaz and M. Cabido, , 2001.

, Vive la di érence: plant functional diversity matters to ecosystem processes, Trends in Ecology and Evolution, vol.16, issue.11, pp.646-655

R. Dirzo, H. S. Young, M. Galetti, G. Ceballos, N. J. Isaac et al., Defaunation in the Anthropocene, Science, vol.345, issue.6195, pp.401-406, 2014.

J. Donahue, Y. Jia, O. Vinyals, J. Ho-man, N. Zhang et al., DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition, 31st International Conference on Machine Learning, vol.99, p.118, 2014.

M. Dornelas, N. J. Gotelli, B. Mcgill, H. Shimadzu, F. Moyes et al., Assemblage Time Series Reveal Biodiversity Change but Not Systematic Loss, Science, vol.344, issue.6181, pp.296-299, 2014.

A. Doxa, F. Holon, J. Deter, S. Villéger, P. Boissery et al., Mapping biodiversity in three-dimensions challenges marine conservation strategies: The example of coralligenous assemblages in North-Western Mediterranean Sea, Ecological Indicators, vol.61, pp.1042-1054, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01444069

P. Drap, editor, Special Applications of Photogrammetry, vol.88, p.123, 2012.

P. Drap, J. Seinturier, B. Hijazi, D. Merad, J. Boi et al., The ROV 3D Project: Deep-Sea Underwater Survey Using Photogrammetry: Applications for Underwater Archaeology, Journal on Computing and Cultural Heritage, vol.8, issue.4, p.148, 2015.

P. Dustan, O. Doherty, and S. Pardede, Digital Reef Rugosity Estimates Coral Reef Habitat Complexity, PLoS ONE, vol.8, issue.2, p.123, 2013.

C. Emmanouil, Comparison of open source stereo vision algorithms. MSc degree, School of Applied Technology, p.78, 2015.

C. Erbe, R. Dunlop, S. Dolman, H. Slabbekoorn, R. J. Dooling et al., E ects of Noise on Marine Mammals, E ects of Anthropogenic Noise on Animals, vol.66, pp.277-309, 2018.

T. E. Essington, P. E. Moriarty, H. E. Froehlich, E. E. Hodgson, L. E. Koehn et al., Fishing ampli es forage sh population collapses, Proceedings of the National Academy of Sciences, vol.112, issue.21, pp.6648-6652, 2015.

F. Gao, T. Huang, J. Wang, J. Sun, E. Yang et al., Combining Deep Convolutional Neural Network and SVM to SAR Image Target Recognition, 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), vol.99, p.118, 2017.

J. Garrabou and E. Ballesteros, Growth of Mesophyllum alternans and Lithophyllum frondosum (Corallinales, Rhodophyta) in the northwestern Mediterranean, European Journal of Phycology, vol.35, issue.1, pp.1-10, 2000.

Y. Geifman and R. El-yaniv, Selective Classi cation for Deep Neural Networks, 31st Conference on Neural Information Processing Systems, vol.10, p.118, 2017.

F. Giorgi, Climate change hot-spots, Geophysical Research Letters, vol.33, issue.8, p.8707, 2006.

S. Gobert, S. Sartoretto, V. Rico-raimondino, B. Andral, A. Chery et al., Assessment of the ecological status of Mediterranean French coastal waters as required by the Water Framework Directive using the Posidonia oceanica Rapid Easy Index: PREI, Marine Pollution Bulletin, vol.58, issue.11, pp.1727-1733, 2009.

M. González-rivero, O. Beijbom, A. Rodriguez-ramirez, T. Holtrop, Y. González-marrero et al., Scaling up Ecological Measurements of Coral Reefs Using Semi-Automated Field Image Collection and Analysis. Remote Sensing, vol.8, p.30, 2016.

M. González-rivero, P. Bongaerts, O. Beijbom, O. Pizarro, A. Friedman et al., , 2014.

, The Catlin Seaview Survey -kilometre-scale seascape assessment, and monitoring of coral reef ecosystems, vol.24, p.123

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, p.193, 2016.

N. A. Graham, S. Jennings, M. A. Macneil, D. Mouillot, and S. K. Wilson, Predicting climate-driven regime shifts versus rebound potential in coral reefs, Nature, vol.518, issue.7537, p.178, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01841302

N. A. Graham and K. L. Nash, The importance of structural complexity in coral reef ecosystems, Coral Reefs, vol.32, issue.2, p.195, 2013.

S. I. Granshaw, Photogrammetric Terminology: Third Edition. The Photogrammetric Record, vol.31, pp.210-252, 2016.

B. Gratwicke and M. R. Speight, The relationship between sh species richness, abundance and habitat complexity in a range of shallow tropical marine habitats, Journal of Fish Biology, vol.66, issue.3, p.165, 2005.

C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, On Calibration of Modern Neural Networks, vol.109, p.118, 2017.

T. Guo, A. Capra, M. Troyer, A. Gruen, A. J. Brooks et al., Accuracy assessment of underwater photogrammetric three dimensional modelling for coral reefs. ISPRS -International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI, vol.5, p.168, 2016.

L. Gutierrez-heredia, F. Benzoni, E. Murphy, and E. G. Reynaud, End to End Digitisation and Analysis of Three-Dimensional Coral Models, from Communities to Corallites, PLOS ONE, vol.11, issue.2, p.142, 2016.

L. Gutiérrez-heredia, C. D'helft, and E. G. Reynaud, Simple methods for in, 2015.

, teractive 3D modeling, measurements, and digital databases of coral skeletons: Simple methods of coral skeletons, Limnology and Oceanography: Methods, vol.13, issue.4, p.166

P. Haase, J. D. Tonkin, S. Stoll, B. Burkhard, M. Frenzel et al., The next generation of site-based long-term ecological monitoring: Linking essential biodiversity variables and ecosystem integrity. Science of The Total Environment, pp.613-614, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02081188

N. M. Haddad, L. A. Brudvig, J. Clobert, K. F. Davies, A. Gonzalez et al., Habitat fragmentation and its lasting impact on Earth's ecosystems, Science Advances, vol.1, issue.2, p.147, 2015.

B. S. Halpern, M. Frazier, J. Erbach, J. S. Lowndes, F. Micheli et al., Recent pace of change in human impact on the world's ocean, Scienti c Reports, vol.9, issue.1, p.26, 2019.

B. S. Halpern, M. Frazier, J. Potapenko, K. S. Casey, K. Koenig et al., Spatial and temporal changes in cumulative human impacts on the world's ocean, Nature Communications, vol.6, issue.1, p.26, 2015.

B. S. Halpern, S. Walbridge, K. A. Selkoe, C. V. Kappel, F. Micheli et al., A Global Map of Human Impact on Marine Ecosystems, Science, vol.319, issue.5865, p.147, 2008.

A. Harborne, P. Mumby, E. Kennedy, and R. Ferrari, Biotic and multi-scale abiotic controls of habitat quality: their e ect on coral-reef shes, Marine Ecology Progress Series, vol.437, p.165, 2011.

K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol.61, p.95, 2016.

K. He, X. Zhang, S. Ren, and J. Sun, Identity Mappings in Deep Residual Networks, 2016.

, European Conference on Computer Vision (ECCV)

T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie et al., Bag of Tricks for Image Classi cation with Convolutional Neural Networks, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol.62, p.117, 2019.

J. Hedley, C. Roelfsema, I. Chollett, A. Harborne, S. Heron et al., Remote Sensing of Coral Reefs for Monitoring and Management: A Review, Remote Sensing, vol.8, issue.2, p.118, 2016.

C. Heinze, S. Meyer, N. Goris, L. Anderson, R. Steinfeldt et al., The ocean carbon sink -impacts, vulnerabilities and challenges, Earth System Dynamics, vol.6, issue.1, pp.327-358, 2015.

R. Herbei and M. H. Wegkamp, Classi cation with reject option, The Canadian Journal of Statistics, vol.34, issue.4, pp.13-106, 2006.

J. G. Hiddink, S. Jennings, M. Sciberras, C. L. Szostek, K. M. Hughes et al., Global analysis of depletion and recovery of seabed biota after bottom trawling disturbance, Proceedings of the National Academy of Sciences, vol.114, issue.31, pp.8301-8306, 2017.

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, Improving neural networks by preventingco-adaptation of feature detectors, vol.67, pp.1-18, 2012.

O. Hoegh-guldberg, P. J. Mumby, A. J. Hooten, R. S. Steneck, P. Green-eld et al., Coral Reefs Under Rapid Climate Change and Ocean Acidi cation, Science, vol.318, issue.5857, pp.1737-1742, 2007.

J. M. Hoekstra, T. M. Boucher, T. H. Ricketts, and C. Roberts, Confronting a biome crisis: global disparities of habitat loss and protection: Confronting a biome crisis, Ecology Letters, vol.8, issue.1, p.147, 2004.

G. Holmes, Estimating three-dimensional surface areas on coral reefs, Journal of Experimental Marine Biology and Ecology, vol.365, issue.1, p.123, 2008.

F. Holon, P. Boissery, A. Guilbert, E. Freschet, and J. Deter, The impact of 85 years of coastal development on shallow seagrass beds (Posidonia oceanica L. (Delile)) in South Eastern France: A slow but steady loss without recovery, Estuarine, Coastal and Shelf Science, vol.165, p.191, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02390770

F. Holon, G. Marre, V. Parravicini, N. Mouquet, T. Bockel et al., , 2018.

, A predictive model based on multiple coastal anthropogenic pressures explains the degradation status of a marine ecosystem: Implications for management and conservation, Biological Conservation, vol.222, p.187

D. U. Hooper, F. S. Chapin, J. J. Ewel, A. Hector, P. Inchausti et al., E ects of Biodiversity on Ecosystem Functioning: a Consensus of Current Knowledge. Ecological Monographs, vol.75, issue.1, pp.3-35, 2005.

F. J. Huang and Y. Lecun, Large-scale Learning with SVM and Convolutional Nets for Generic Object Categorization, 2006 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.8-99, 2006.

G. Huang, Z. Liu, L. V. Maaten, and K. Q. Weinberger, Densely Connected Convolutional Networks, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol.95, p.118, 2017.

D. H. Hubel and T. N. Wiesel, Receptive elds of single neurones in the cat's striate cortex, The Journal of Physiology, vol.148, issue.3, pp.574-591, 1959.

T. P. Hughes, M. L. Barnes, D. R. Bellwood, J. E. Cinner, G. S. Cumming et al., Coral reefs in the Anthropocene, Nature, vol.546, issue.7656, pp.82-90, 2017.

M. Huh, P. Agrawal, and A. A. Efros, What makes ImageNet good for transfer learning?, 2016.

. Ifremer, MARS 3D: Model for Applications at Regrional Scale, p.171, 2019.

S. Io-e and C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, 2015.

, Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, vol.24, p.191, 2019.

, Climate change 2013: the physical science basis. Summary for Policymakers, Technical Summary and Frequently Asked Questions. Intergovernmental Panel on Climate Change, IPCC, 2013.

B. Ivo?evi?, Y. Han, Y. Cho, and O. Kwon, The use of conservation drones in ecology and wildlife research, Journal of Ecology and Environment, vol.38, issue.1, pp.113-118, 2015.

W. Jetz, M. A. Mcgeoch, R. Guralnick, S. Ferrier, J. Beck et al., Essential biodiversity variables for mapping and monitoring species populations, Nature Ecology and Evolution, vol.3, issue.4, pp.539-551, 2019.

M. P. Johnson, N. J. Frost, M. W. Mosley, M. F. Roberts, and S. J. Hawkins, The areaindependent e ects of habitat complexity on biodiversity vary between regions, Ecology Letters, vol.6, issue.2, pp.126-132, 2003.

M. Johnson-roberson, O. Pizarro, S. B. Williams, and I. Mahon, Generation and visualization of large-scale three-dimensional reconstructions from underwater robotic surveys, Journal of Field Robotics, vol.27, issue.1, p.124, 2010.

S. Katsanevakis, M. Coll, C. Piroddi, J. Steenbeek, F. Ben-rais-lasram et al., Invading the Mediterranean Sea: biodiversity patterns shaped by human activities, Frontiers in Marine Science, vol.1, 2014.

M. Kazhdan, M. Bolitho, and H. Hoppe, Poisson Surface Reconstruction. page 10. The Eurographics Association, p.78, 2006.

N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. Tang, On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima, vol.66, pp.1-16, 2017.

A. King, S. M. Bhandarkar, and B. M. Hopkinson, A Comparison of Deep Learning Methods for Semantic Segmentation of Coral Reef Survey Images, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), vol.96, p.117, 2018.

D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, vol.67, p.107, 2014.

S. Kipson, M. Fourt, N. Teixidó, E. Cebrian, E. Casas et al., Rapid Biodiversity Assessment and Monitoring Method for Highly Diverse Benthic Communities: A Case Study of Mediterranean Coralligenous Outcrops, PLoS ONE, vol.6, issue.11, p.188, 2011.

W. D. Kissling, J. A. Ahumada, A. Bowser, M. Fernandez, N. Fernández et al., Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale, Building global EBVs. Biological Reviews, vol.93, issue.1, pp.600-625, 2018.

C. J. Klein, C. J. Brown, B. S. Halpern, D. B. Segan, J. Mcgowan et al., Shortfalls in the global protected area network at representing marine biodiversity, 2015.

, Scienti c Reports, vol.5, issue.1, p.17539

W. Koedsin, W. Intararuang, R. Ritchie, and A. Huete, An Integrated Field and Remote Sensing Method for Mapping Seagrass Species, Cover, and Biomass in Southern Thailand. Remote Sensing, vol.8, p.148, 2016.

K. E. Kovalenko, S. M. Thomaz, and D. M. Warfe, Habitat complexity: approaches and future directions, Hydrobiologia, vol.685, issue.1, p.165, 2012.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet classi cation with deep convolutional neural networks, Communications of the ACM, vol.60, issue.6, p.95, 2012.

G. Kumar and P. K. Bhatia, A Detailed Review of Feature Extraction in Image Processing Systems, 2014 Fourth International Conference on Advanced Computing and Communication Technologies, pp.5-12, 2014.

M. Kummu, H. De-moel, G. Salvucci, D. Viviroli, P. J. Ward et al., Over the hills and further away from coast: global geospatial patterns of human and environment over the 20th-21st centuries, Environmental Research Letters, vol.11, issue.3, p.34010, 2016.

A. Lavy, G. Eyal, B. Neal, R. Keren, Y. Loya et al., A quick, easy and non-intrusive method for underwater volume and surface area evaluation of benthic organisms by 3D computer modelling, Methods in Ecology and Evolution, vol.6, issue.5, p.142, 2015.

K. L. Law, Plastics in the Marine Environment, Annual Review of Marine Science, vol.9, issue.1, pp.205-229, 2017.

Y. Lecun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol.521, issue.7553, pp.436-444, 2015.

Y. Lecun, L. Bottou, Y. Bengio, and P. Ha-ner, Gradient-Based Learning Applied to Document Recognition, Proceedings of the IEEE, vol.86, issue.11, pp.2278-2324, 1998.

J. Leon, C. M. Roelfsema, M. I. Saunders, and S. R. Phinn, Measuring coral reef terrain roughness using 'Structure-from-Motion' close-range photogrammetry, Geomorphology, vol.242, p.197, 2015.

M. Lhuillier, , 2012.

, Incremental Fusion of Structure-from-Motion and GPS Using Constrained Bundle Adjustments. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.34, pp.2489-2495

G. Li and Y. Yu, , 2016.

, Visual Saliency Detection Based on Multiscale Deep CNN Features. IEEE Transactions on Image Processing, vol.25, p.118

M. Li, M. Soltanolkotabi, and S. Oymak, Gradient Descent with Early Stopping is Provably Robust to Label Noise for Overparameterized Neural Networks, 2019.

L. S. Liebovitch and T. Toth, A fast algorithm to determine fractal dimensions by box counting, Physics Letters A, vol.141, issue.8-9, pp.386-390, 1989.

W. Linder, Digital Photogrammetry, vol.71, p.82, 2016.

J. S. Link and R. A. Watson, Global ecosystem over shing: Clear delineation within real limits to production, Science Advances, vol.5, issue.6, p.474, 2019.

S. Liu, M. Long, J. Wang, J. , and M. I. , Generalized Zero-Shot Learning with Deep Calibration Network, 32nd Conference on Neural Information Processing Systems, p.119, 2018.

C. Lopez-y-royo, G. Casazza, C. Pergent-martini, and G. Pergent, A biotic index using the seagrass Posidonia oceanica (BiPo), to evaluate ecological status of coastal waters, Ecological Indicators, vol.10, issue.2, pp.380-389, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00618672

B. E. Luckhurst and K. Luckhurst, Analysis of the in uence of substrate variables on coral reef sh communities, Marine Biology, vol.49, issue.4, p.165, 1978.

T. Luhmann, S. Robson, S. Kyle, and J. Boehm, Close-range photogrammetry and 3D imaging. De Gruyter textbook, vol.73, p.79, 2014.

P. Luo, X. Wang, W. Shao, and Z. Peng, Towards Understanding Regularization in Batch Normalization, 2019.

S. Luque, N. Pettorelli, P. Vihervaara, and M. Wegmann, Improving biodiversity monitoring using satellite remote sensing to provide solutions towards the 2020 conservation targets, Methods in Ecology and Evolution, vol.9, issue.8, pp.1784-1786, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02607910

R. A. Magris, R. L. Pressey, R. Weeks, and N. C. Ban, Integrating connectivity and climate change into marine conservation planning, Biological Conservation, vol.170, pp.207-221, 2014.

A. E. Magurran, Measuring biological diversity, vol.32, p.170, 2004.

A. Mahmood, M. Bennamoun, S. An, F. Sohel, F. Boussaid et al., Coral classi cation with hybrid feature representations, 2016 IEEE International Conference on Image Processing (ICIP), vol.98, p.117, 2016.

A. Mahmood, M. Bennamoun, S. An, F. Sohel, F. Boussaid et al., Deep Learning for Coral Classi cation, Handbook of Neural Computation, vol.98, p.107, 2017.

T. Manderson, J. Li, N. Dudek, D. Meger, and G. Dudek, Robotic Coral Reef Health Assessment Using Automated Image Analysis, Journal of Field Robotics, vol.34, issue.1, p.97, 2017.

N. Marbà and C. M. Duarte, Interannual changes in seagrass ( Posidonia oceanica ) growth and environmental change in the Spanish Mediterranean littoral zone, Limnology and Oceanography, vol.42, issue.5, pp.800-810, 1997.

N. Marbà, E. Díaz-almela, and C. M. Duarte, Mediterranean seagrass (Posidonia oceanica) loss between 1842 and, Biological Conservation, vol.176, p.162, 2009.

M. S. Marcos, M. N. Soriano, and C. A. Saloma, Classi cation of coral reef images from underwater video using neural networks, Optics Express, vol.13, issue.22, p.8766, 2005.

C. R. Margules and R. L. Pressey, Systematic conservation planning, Nature, 2000.

G. Marre, F. Holon, S. Luque, P. Boissery, and J. Deter, Monitoring Marine Habitats With Photogrammetry: A Cost-E ective, Accurate, Precise and High-Resolution Reconstruction Method, Frontiers in Marine Science, vol.6, p.168, 2019.

D. Masters and C. Luschi, Revisiting Small Batch Training for Deep Neural Networks, 2018.

D. Maturana and S. Scherer, VoxNet: A 3D Convolutional Neural Network for real-time object recognition, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.922-928, 2015.

M. J. Mccarthy, K. E. Colna, M. M. El-mezayen, A. E. Laureano-rosario, P. Méndez-lázaro et al., Satellite Remote Sensing for Coastal Management: A Review of Successful Applications, Environmental Management, vol.60, issue.2, pp.323-339, 2017.

D. J. Mccauley, M. L. Pinsky, S. R. Palumbi, J. A. Estes, F. H. Joyce et al., , 2015.

, Marine defaunation: Animal loss in the global ocean, Science, vol.347, issue.6219, pp.1255641-1255641

B. J. Mcgill, M. Dornelas, N. J. Gotelli, and A. E. Magurran, Fifteen forms of biodiversity trend in the Anthropocene, Trends in Ecology and Evolution, vol.30, issue.2, p.123, 2015.

J. Meager, T. Schlacher, and M. Green, Topographic complexity and landscape temperature patterns create a dynamic habitat structure on a rocky intertidal shore, Marine Ecology Progress Series, vol.428, p.165, 2011.

M. Mehdipour-ghazi, B. Yanikoglu, A. , and E. , Open-set plant identi cation using an ensemble of deep convolutional neural networks. Working notes of CLEF, vol.65, p.99, 2016.

F. Menna, E. Nocerino, and F. Remondino, Optical aberrations in underwater photogrammetry with at and hemispherical dome ports, SPIE Optical Metrology, vol.80, p.124, 2017.

F. Micheli, B. S. Halpern, S. Walbridge, S. Ciriaco, F. Ferretti et al., Cumulative Human Impacts on Mediterranean and Black Sea Marine Ecosystems: Assessing Current Pressures and Opportunities, PLoS ONE, vol.8, issue.12, p.79889, 2013.

M. Milazzo, F. Badalamenti, G. Ceccherelli, and R. Chemello, Boat anchoring on Posidonia oceanica beds in a marine protected area, Journal of Experimental Marine Biology and Ecology, vol.299, issue.1, pp.51-62, 2004.

M. Millenium-ecosystem-assessment, Ecosystem and Human Well-Being: General Synthesis, vol.24, p.191, 2005.

D. Mishkin, N. Sergievskiy, and J. Matas, Systematic evaluation of CNN advances on the ImageNet, Computer Vision and Image Understanding, vol.161, p.119, 2016.

K. Mizuno, A. Asada, Y. Matsumoto, K. Sugimoto, T. Fujii et al., A simple and e cient method for making a high-resolution seagrass map and quanti cation of dugong feeding trail distribution: A eld test at Mayo Bay, Philippines. Ecological Informatics, vol.38, p.186, 2017.

M. Montefalcone, V. Parravicini, M. Vacchi, G. Albertelli, M. Ferrari et al., Human in uence on seagrass habitat fragmentation in NW Mediterranean Sea. Estuarine, Coastal and Shelf Science, vol.86, issue.2, p.147, 2010.

E. J. Moore, Underwater Photogrammetry. The Photogrammetric Record, vol.8, p.156, 1976.

C. Mora, D. P. Tittensor, S. Adl, A. G. Simpson, and B. Worm, How Many Species Are There on Earth and in the Ocean?, PLoS Biology, vol.9, issue.8, p.1001127, 2011.

V. Moschino, F. Riccato, R. Fiorin, N. Nesto, M. Picone et al., Is derelict shing gear impacting the biodiversity of the Northern Adriatic Sea? An answer from unique biogenic reefs, Science of The Total Environment, vol.663, pp.387-399, 2019.

M. Mouchet, F. Guilhaumon, S. Villéger, N. W. Mason, J. Tomasini et al., , 2008.

, Towards a consensus for calculating dendrogram-based functional diversity indices, Oikos, vol.117, issue.5, p.170

L. M. Navarro, N. Fernández, C. Guerra, R. Guralnick, W. D. Kissling et al.,

I. Sousa-pinto, S. Vergara, P. Vihervaara, H. Xu, T. Yahara et al., , 2017.

, Monitoring biodiversity change through e ective global coordination. Current Opinion in Environmental Sustainability, vol.29, pp.158-169

H. Ng, V. D. Nguyen, V. Vonikakis, and S. Winkler, Deep Learning for Emotion Recognition on Small Datasets Using Transfer Learning, 2015.

, ACM on International Conference on Multimodal Interaction (ICMI), p.7

A. Niculescu-mizil and R. Caruana, Predicting good probabilities with supervised learning, Proceedings of the 22nd International Conference on Machine Learning -ICML 2005, pp.625-632, 2005.

I. Nikolov, C. ;. Madsen, E. Fink, A. Moropoulou, M. Hagedorn-saupe et al., Benchmarking Close-range Structure from Motion 3D Reconstruction Software Under Varying Capturing Conditions, Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection, vol.10058, pp.15-26, 2016.

C. Noël, P. Boisery, N. Quelin, V. Raimondino, A. Dinis et al., Cahier Technique du Gestionnaire: Analyse comparée des méthodes de surveillance des herbiers de Posidonies, p.147, 2012.

C. C. O'hara, J. C. Villaseñor-derbez, G. M. Ralph, and B. S. Halpern, Mapping status and conservation of global at-risk marine biodiversity. Conservation Letters, p.12651, 2019.

R. J. Orth, T. J. Carruthers, W. C. Dennison, C. M. Duarte, J. W. Fourqurean et al., A Global Crisis for Seagrass Ecosystems, BioScience, vol.56, issue.12, p.44, 2006.

M. Palma, M. Casado, U. Pantaleo, G. Pavoni, D. Pica et al., SfM-Based Method to Assess Gorgonian Forests (Paramuricea clavata (Cnidaria, Octocorallia)). Remote Sensing, vol.10, p.1154, 2018.

M. Palma, G. Pavoni, U. Pantaleo, M. Rivas-casado, F. Torsani et al., E ective sfm-based methods supporting coralligenous benthic community assessments and monitoring, p.166, 2019.

J. Patiño, F. Guilhaumon, R. J. Whittaker, K. A. Triantis, S. R. Gradstein et al., Accounting for data heterogeneity in patterns of biodiversity: an application of linear mixed e ect models to the oceanic island biogeography of spore-producing plants, Ecography, vol.36, issue.8, pp.904-913, 2013.

H. Peltier, A. Beau-ls, C. Cesarini, W. Dabin, C. Dars et al., Monitoring of Marine Mammal Strandings Along French Coasts Reveals the Importance of Ship Strikes on Large Cetaceans: A Challenge for the European Marine Strategy Framework Directive, Frontiers in Marine Science, vol.6, p.486, 2019.

H. M. Pereira, S. Ferrier, M. Walters, G. N. Geller, R. H. Jongman et al., Essential Biodiversity Variables. Science, vol.339, issue.6117, pp.277-278, 2013.

H. M. Pereira, P. W. Leadley, V. Proença, R. Alkemade, J. P. Scharlemann et al., , 2010.

, Scenarios for Global Biodiversity in the 21st Century, Science, vol.330, issue.6010, pp.1496-1501

F. Perez, S. Avila, and E. Valle, Solo or Ensemble? Choosing a CNN Architecture for Melanoma Classi cation, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.2775-2783, 2019.

G. Pergent, Protocole pour la mise en place d'une surveillance des herbiers de Posidonies, p.147, 2007.

S. Personnic, C. F. Boudouresque, P. Astruch, E. Ballesteros, S. Blouet et al., , 2014.

, An Ecosystem-Based Approach to Assess the Status of a Mediterranean Ecosystem, the Posidonia oceanica Seagrass Meadow, PLoS ONE, vol.9, issue.6, p.98994

O. L. Petchey and K. J. Gaston, Functional diversity (FD), species richness and community composition, Ecology Letters, vol.5, issue.3, pp.402-411, 2002.

N. Pettorelli, M. Wegmann, A. Skidmore, S. Mucher, T. P. Dawson et al., Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions, Remote Sensing in Ecology and Conservation, vol.2, issue.3, pp.122-131, 2016.

S. L. Pimm, C. N. Jenkins, R. Abell, T. M. Brooks, J. L. Gittleman et al., The biodiversity of species and their rates of extinction, distribution, and protection, Science, vol.344, issue.6187, pp.1246752-1246752, 2014.

O. Pizarro, A. Friedman, M. Bryson, S. B. Williams, and J. Madin, A simple, fast, and repeatable survey method for underwater visual 3D benthic mapping and monitoring, Ecology and Evolution, vol.7, issue.6, p.197, 2017.

J. Pollio, Applications of Underwater Photogrammetry. Naval Oceanographic O ce, vol.88, p.123, 1968.

E. S. Poloczanska, M. T. Burrows, C. J. Brown, J. García-molinos, B. S. Halpern et al., , 2016.

, Responses of Marine Organisms to Climate Change across Oceans, Frontiers in Marine Science, vol.3

M. Pratchett, K. Anderson, M. Hoogenboom, E. Widman, A. Baird et al., Spatial, Temporal and Taxonomic Variation in Coral Growth-Implications for the Structure and Function of Coral Reef Ecosystems, Oceanography and Marine Biology, pp.215-296, 2015.

L. Prechelt, Early Stopping -But When?, Neural Networks: Tricks of the Trade, vol.1524, p.68, 1998.

D. M. Price, K. Robert, A. Callaway, C. Lo-lacono, R. A. Hall et al., , 2019.

, Using 3D photogrammetry from ROV video to quantify cold-water coral reef structural complexity and investigate its in uence on biodiversity and community assemblage, Coral Reefs, vol.38, issue.5, p.195

R. Pu and S. Bell, Mapping seagrass coverage and spatial patterns with high spatial resolution IKONOS imagery, International Journal of Applied Earth Observation and Geoinformation, vol.54, pp.145-158, 2017.

S. J. Purkis, Remote Sensing Tropical Coral Reefs: The View from Above, Annual Review of Marine Science, vol.10, issue.1, pp.149-168, 2018.

P. Py?ek and D. M. Richardson, Invasive Species, Environmental Change and Management, and Health, Annual Review of Environment and Resources, vol.35, issue.1, pp.25-55, 2010.

C. R. Qi, H. Su, K. Mo, and L. J. Guibas, PointNet: Deep Learning on Point Sets for 3D Classi cation and Segmentation, 2016.

. R-core-team, R: A Language and Environment for Statistical Computing, p.155, 2018.

R. J. Raczynski, Accuracy analysis of products obtained from UAV-borne photogrammetry in uenced by various ight parameters, vol.84, p.124, 2017.

V. Raoult, S. Reid-anderson, A. Ferri, and J. Williamson, How Reliable Is Structure from Motion (SfM) over Time and between Observers? A Case Study Using Coral Reef Bommies, 2017.

, Remote Sensing, vol.9, p.125

A. Raphael, Z. Dubinsky, D. Iluz, and N. S. Netanyahu, Neural Network Recognition of Marine Benthos and Corals, Diversity, vol.12, issue.1, p.29, 2020.

W. Rawat and Z. Wang, Deep Convolutional Neural Networks for Image Classi cation: A Comprehensive Review, Neural Computation, vol.29, issue.9, p.95, 2017.

M. L. Reaka-kudla, Biodiversity of Caribbean Coral Reefs, Caribbean Marine Biodiversity, p.25, 2005.

M. J. Rees, A. Jordan, O. F. Price, M. A. Coleman, and A. R. Davis, Abiotic surrogates for temperate rocky reef biodiversity: implications for marine protected areas, Diversity and Distributions, vol.20, issue.3, p.165, 2014.

J. Reichert, J. Schellenberg, P. Schubert, and T. Wilke, 3D scanning as a highly precise, reproducible, and minimally invasive method for surface area and volume measurements of scleractinian corals: 3D scanning for measuring scleractinian corals, Limnology and Oceanography: Methods, vol.14, issue.8, pp.518-526, 2016.

S. F. Rende, A. Irving, T. Bacci, L. Parlagreco, F. Bruno et al., Advances in micro-cartography: A twodimensional photo mosaicing technique for seagrass monitoring, Estuarine, Coastal and Shelf Science, vol.167, p.186, 2015.

W. Renema, D. R. Bellwood, J. C. Braga, K. Brom-eld, R. Hall et al., Hopping Hotspots: Global Shifts in Marine Biodiversity, Science, vol.321, issue.5889, pp.654-657, 2008.

D. Rocchini, S. Luque, N. Pettorelli, L. Bastin, D. Doktor et al., Measuring beta-diversity by remote sensing: A challenge for biodiversity monitoring, Methods in Ecology and Evolution, vol.9, issue.8, pp.1787-1798, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02607100

L. Rokach, Ensemble-based classi ers, Arti cial Intelligence Review, vol.33, pp.1-39, 2010.

I. M. Rosa, H. M. Pereira, S. Ferrier, R. Alkemade, L. A. Acosta et al.,

C. Meyer, L. M. Navarro, C. Nesshöver, H. T. Ngo, K. N. Ninan et al., Multiscale scenarios for nature futures, Nature Ecology and Evolution, vol.1, issue.10, pp.1416-1419, 2017.

J. Royer, M. Nawaf, D. Merad, M. Saccone, O. Bianchimani et al., Photogrammetric Surveys and Geometric Processes to Analyse and Monitor Red Coral Colonies, Journal of Marine Science and Engineering, vol.6, issue.2, p.166, 2018.

D. E. Rumelhart, G. E. Hintont, and R. J. Williams, Learning representations by backpropagating errors, 1986.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh et al., ImageNet Large Scale Visual Recognition Challenge, International Journal of Computer Vision, vol.115, issue.3, pp.211-252, 2015.

J. M. Ruíz, C. Boudouresque, and S. Enríquez, Mediterranean seagrasses, Botanica Marina, vol.52, issue.5, p.147, 2009.

J. C. Sanciangco, K. E. Carpenter, P. J. Etnoyer, and F. Moretzsohn, Habitat Availability and Heterogeneity and the Indo-Paci c Warm Pool as Predictors of Marine Species Richness in the Tropical Indo-Paci c, PLoS ONE, vol.8, issue.2, p.56245, 2013.

S. Sartoretto, Structure et dynamique d'un nouveau type de bioconstruction à Mesophyllum lichenoides (Ellis) Lemoine (Corallinales, Rhodophyta), vol.317, pp.156-160, 1994.

S. Sartoretto, T. Schohn, C. N. Bianchi, C. Morri, J. Garrabou et al., An integrated method to evaluate and monitor the conservation state of coralligenous habitats: The INDEX-COR approach, Marine Pollution Bulletin, vol.120, issue.1-2, p.188, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01541141

S. Sartoretto, M. Verlaque, and J. Laborel, Age of settlement and accumulation rate of submarine "coralligène" (-10 to -60m) of the northwestern Mediterranean Sea; relation to Holocene rise in sea level, Marine Geology, vol.130, p.189, 1996.

C. Savage, P. R. Leavitt, and R. Elmgren, E ects of land use, urbanization, and climate variability on coastal eutrophication in the Baltic Sea, Limnology and Oceanography, vol.55, issue.3, pp.1033-1046, 2010.

N. K. Saxena and A. B. , A Review of Shallow-Water Mapping Systems, Marine Geodesy, vol.22, issue.4, pp.249-257, 1999.

D. S. Schmeller, J. Mihoub, A. Bowser, C. Arvanitidis, M. J. Costello et al., , 2017.

, An operational de nition of essential biodiversity variables, Biodiversity and Conservation, vol.26, issue.12, pp.2967-2972

Q. Schuyler, B. D. Hardesty, C. Wilcox, T. , and K. , Global Analysis of Anthropogenic Debris Ingestion by Sea Turtles: Debris Ingestion by Sea Turtles, Conservation Biology, vol.28, issue.1, p.27, 2013.

F. T. Short and S. Wyllie-echeverria, Natural and human-induced disturbance of seagrasses, Environmental Conserv, vol.21, issue.1, pp.17-27, 1996.

M. Shortis, Calibration Techniques for Accurate Measurements by Underwater Camera Systems, Sensors, vol.15, issue.12, p.168, 2015.

A. Sieber and R. Pyle, A review of the use of closed-circuit rebreathers for scienti c diving, Underwater Technology, vol.29, issue.2, pp.73-78, 2010.

K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, p.61, 2015.

S. D. Simpson, A. N. Radford, S. L. Nedelec, M. C. Ferrari, D. P. Chivers et al., Anthropogenic noise increases sh mortality by predation, Nature Communications, vol.7, issue.1, p.10544, 2016.

C. Small and R. J. Nicholls, A Global Analysis of Human Settlement in Coastal Zones, Journal of Coastal Research, vol.19, issue.3, p.147, 2003.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, Dropout: A Simple Way to Prevent Neural Networks fromOver tting, Journal of Machine Learning Researc, vol.15, pp.1929-1948, 2014.

R. D. Stuart-smith, N. S. Barrett, D. G. Stevenson, and G. J. Edgar, Stability in temperate reef communities over a decadal time scale despite concurrent ocean warming: OCEAN WARMING AND TEMPERATE REEF COMMUNITIES, Global Change Biology, vol.16, issue.1, pp.122-134, 2010.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed et al., Going deeper with convolutions, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol.67, p.95, 2015.

R. C. Team, R: A Language and Environment for Statistical Computing, vol.169, p.172, 2020.

H. Teixeira, T. Berg, L. Uusitalo, K. Furhaupter, A. Heiskanen et al., A Catalogue of Marine Biodiversity Indicators, Frontiers in Marine Science, vol.3, 2016.

G. Telem and S. Filin, Photogrammetric modeling of underwater environments, ISPRS Journal of Photogrammetry and Remote Sensing, vol.65, issue.5, pp.433-444, 2010.

L. Telesca, A. Belluscio, A. Criscoli, G. Ardizzone, E. T. Apostolaki et al., Seagrass meadows (Posidonia oceanica) distribution and trajectories of change, Scienti c Reports, vol.5, issue.1, p.29, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01297197

D. P. Tittensor, Global patterns and predictors of marine biodiversity across taxa, Nature, vol.466, issue.26, p.25, 2010.

D. P. Tittensor, M. Walpole, S. L. Hill, D. G. Boyce, G. L. Britten et al.,

A. R. Crowther, M. J. Dixon, A. Galli, V. Gaveau, R. D. Gregory et al., , 2014.

, Science, vol.346, issue.6206, p.123

K. Topouzelis, D. Makri, N. Stoupas, A. Papakonstantinou, and S. Katsanevakis, , 2018.

, Seagrass mapping in Greek territorial waters using Landsat-8 satellite images, International Journal of Applied Earth Observation and Geoinformation, vol.67, pp.98-113

M. Townsend, K. Davies, N. Hanley, J. E. Hewitt, C. J. Lundquist et al., The Challenge of Implementing the Marine Ecosystem Service Concept, Frontiers in Marine Science, vol.5, p.359, 2018.

D. Traganos and P. Reinartz, Mapping Mediterranean seagrasses with Sentinel-2 imagery, Marine Pollution Bulletin, vol.134, pp.197-209, 2018.

G. Vaglio-laurin, J. Chan, Q. Chen, J. A. Lindsell, D. A. Coomes et al., Biodiversity Mapping in a Tropical West African Forest with Airborne Hyperspectral Data, PLoS ONE, vol.9, issue.6, p.97910, 2014.

L. Valisano, M. Palma, U. Pantaleo, B. Calcinai, and C. Cerrano, Characterization of North-Western Mediterranean coralligenous assemblages by video surveys and evaluation of their structural complexity, Marine Pollution Bulletin, vol.148, pp.134-148, 2019.

. Vdi/vde, Optical 3D measuring systems. Optical systems based on area scanning. VDI/VDE manual on Metrology II, p.128, 2002.

D. Ventura, A. Bonifazi, M. F. Gravina, A. Belluscio, A. et al., Mapping and Classi cation of Ecologically Sensitive Marine Habitats Using Unmanned Aerial Vehicle (UAV) Imagery and Object-Based Image Analysis (OBIA). Remote Sensing, vol.10, p.1331, 2018.

S. Villéger, N. W. Mason, and D. Mouillot, New Multidimensional Functional Diversity Indices for a Multifaceted Framework in Functional Ecology, Ecology, vol.89, issue.8, pp.2290-2301, 2008.

P. Visconti, M. Bakkenes, D. Baisero, T. Brooks, S. H. Butchart et al., Projecting Global Biodiversity Indicators under Future Development Scenarios: Projecting biodiversity indicators, Conservation Letters, vol.9, issue.1, pp.5-13, 2016.

M. Waycott, C. M. Duarte, T. J. Carruthers, R. J. Orth, W. C. Dennison et al., Accelerating loss of seagrasses across the globe threatens coastal ecosystems, Proceedings of the National Academy of Sciences, vol.106, issue.30, p.26, 2009.

T. Wernberg, S. Bennett, R. C. Babcock, T. De-bettignies, K. Cure et al., Climate-driven regime shift of a temperate marine ecosystem, Science, vol.353, issue.6295, pp.169-172, 2016.

T. Wernberg, B. D. Russell, P. J. Moore, S. D. Ling, D. A. Smale et al., Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming, Journal of Experimental Marine Biology and Ecology, vol.400, issue.1-2, pp.7-16, 2011.

C. Wilcox, G. Heathcote, J. Goldberg, R. Gunn, D. Peel et al., Understanding the sources and e ects of abandoned, lost, and discarded shing gear on marine turtles in northern Australia: Sources and E ects of Ghost Nets, Conservation Biology, vol.29, issue.1, pp.198-206, 2015.

C. Wilcox, E. Van-sebille, and B. D. Hardesty, Threat of plastic pollution to seabirds is global, pervasive, and increasing, Proceedings of the National Academy of Sciences, vol.112, p.27, 2015.

I. D. Williams, C. S. Couch, O. Beijbom, T. A. Oliver, B. Vargas-angel et al., Leveraging Automated Image Analysis Tools to Transform Our Capacity to Assess Status and Trends of Coral Reefs, Frontiers in Marine Science, vol.6, p.96, 2019.

S. C. Willis, K. O. Winemiller, and H. Lopez-fernandez, Habitat structural complexity and morphological diversity of sh assemblages in a Neotropical oodplain river, Oecologia, vol.142, issue.2, p.195, 2005.

D. Wilson and T. R. Martinez, The general ine ciency of batch training for gradient descent learning, Neural Networks, vol.16, issue.10, pp.1429-1451, 2003.

M. C. Wilson, X. Chen, R. T. Corlett, R. K. Didham, P. Ding et al., Habitat fragmentation and biodiversity conservation: key ndings and future challenges, Landscape Ecology, vol.31, issue.2, pp.219-227, 2016.

S. C. Wong, A. Gatt, V. Stamatescu, and M. D. Mcdonnell, Understanding data augmentation for classi cation:when to warp, 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA), 2016.

B. Wo?niak and J. Dera, Light absorption in sea water. Number v. 33 in Atmospheric and oceanographic sciences library, vol.36, p.80, 2007.

R. Yanovski, P. A. Nelson, A. , and A. , Structural Complexity in Coral Reefs: Examination of a Novel Evaluation Tool on Di erent Spatial Scales, Frontiers in Ecology and Evolution, vol.5, 2017.

J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, How transferable are features in deep neural networks?, Advances in neural information processing systems, vol.65, p.96, 2014.

G. C. Young, S. Dey, A. D. Rogers, and D. Exton, Cost and time-e ective method for multi-scale measures of rugosity, fractal dimension, and vector dispersion from coral reef 3D models, PLOS ONE, vol.12, issue.4, p.175341, 2017.

S. Zagoruyko and N. Komodakis, Wide Residual Networks, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01832503

K. J. Zawada, M. Dornelas, and J. S. Madin, Quantifying coral morphology, Coral Reefs, vol.38, issue.6, p.197, 2019.

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, Understanding deep learning requires rethinking generalization, 2017.

B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, Learning Deep Features for Scene Recognition using Places Database, Advances in Neural Information Processing Systems, vol.27, pp.487-495, 2014.

E. Zhou, Z. Cao, Y. , and Q. , Naive-Deep Face Recognition: Touching the Limit of LFW Benchmark or Not, 2015.

A. F. Zuur, Mixed e ects models and extensions in ecology with R. Statistics for biology and health, 2009.

T. References-andersen, J. Carstensen, E. Hernández-garcía, and C. M. Duarte, Ecological thresholds and regime shifts: approaches to identification, Trends Ecol. Evol, vol.24, pp.49-57, 2009.

J. H. Andersen, B. S. Halpern, S. Korpinen, C. Murray, and J. Reker, Baltic Sea biodiversity status vs. cumulative human pressures, Estuar. Coast. Shelf Sci, vol.161, pp.88-92, 2015.

N. C. Ban, H. M. Alidina, and J. A. Ardron, Cumulative impact mapping: advances, relevance and limitations to marine management and conservation, using Canada's Pacific waters as a case study, Mar. Policy, vol.34, pp.876-886, 2010.

C. Bianchi, V. Parravicini, M. Montefalcone, A. Rovere, and C. Morri, The challenge of managing marine biodiversity: a practical toolkit for a cartographic, territorial approach, Diversity, vol.4, pp.419-452, 2012.

J. Borum, C. Duarte, D. Krause-jensen, and T. M. Greve, European Seagrasses: An Introduction to Monitoring and Management (The M & MS Project). (Copenhagen), 2004.

C. F. Boudouresque, G. Bernard, G. Pergent, A. Shili, and M. Verlaque, Regression of Mediterranean seagrasses caused by natural processes and anthropogenic disturbances and stress: a critical review, Bot. Mar, vol.52, pp.395-418, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00618626

C. F. Boudouresque, G. Bernard, P. Bonhomme, E. Charbonnel, G. Diviacco et al., Protection and Conservation of Posidonia oceanica Meadows, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00808491

L. Breiman, Random forests, Mach. Learn, vol.45, pp.5-32, 2001.

T. Breiman, A. Cutler, and D. Classification, , 2013.

S. Cabaço, R. Machás, V. Vieira, and R. Santos, Impacts of urban wastewater discharge on seagrass meadows (Zostera noltii), Estuar. Coast. Shelf Sci, vol.78, pp.1-13, 2008.

C. Campagne, J. Salles, P. Boissery, and J. Deter, The seagrass Posidonia oceanica: ecosystem services identification and economic evaluation of goods and benefits, Mar. Pollut. Bull, vol.97, issue.1-2, pp.391-400, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01221925

A. Catherine, D. Mouillot, N. Escoffier, C. Bernard, and M. Troussellier, Cost effective prediction of the eutrophication status of lakes and reservoirs, Freshw. Biol, vol.55, pp.2425-2435, 2010.

S. D. Connell, M. Fernandes, O. W. Burnell, Z. A. Doubleday, K. J. Griffin et al., Testing for thresholds of ecosystem collapse in seagrass meadows: threshold effect, Conserv. Biol, vol.31, pp.1196-1201, 2017.

D. R. Cutler, T. C. Edwards, K. H. Beard, A. Cutler, K. T. Hess et al., Random forests for classification in ecology, Ecology, vol.88, pp.2783-2792, 2007.

O. Delgado, I. Ruiz, M. Perez, R. Romero, and E. Ballesteros, Effects of fish farming on seagrass (Posidonia oceanica) in a Mediterranean bay: seagrass decline after organic loading cessation, Oceanol. Acta, vol.22, pp.109-117, 1999.

J. Deter, X. Lozupone, A. Inacio, P. Boissery, and F. Holon, Boat anchoring pressure on coastal seabed: quantification and bias estimation using AIS data, Mar. Pollut. Bull, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02390724

D. Digout and . Unep/grid-arendal, DPSIR framework for state of environment reporting, 2005.

C. M. Duarte, The future of seagrass meadows, Environ. Conserv, vol.29, 2002.

C. Folke, S. Carpenter, B. Walker, M. Scheffer, T. Elmqvist et al., Regime shifts, resilience, and biodiversity in ecosystem management, Annu. Rev. Ecol. Evol. Syst, vol.35, pp.557-581, 2004.

S. Giakoumi, B. S. Halpern, L. N. Michel, S. Gobert, M. Sini et al., Towards a framework for assessment and management of cumulative human impacts on marine food webs, Conserv. Biol, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01297195

N. A. Graham, S. Jennings, M. A. Macneil, D. Mouillot, and S. K. Wilson, Predicting climate-driven regime shifts versus rebound potential in coral reefs, Nature, vol.518, pp.94-97, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01841302

C. Gurbisz and W. M. Kemp, Unexpected resurgence of a large submersed plant bed in upper Chesapeake Bay: analysis of time series data, Limnol. Oceanogr, vol.59, pp.482-494, 2014.

B. S. Halpern, S. Walbridge, K. A. Selkoe, C. V. Kappel, F. Micheli et al., A global map of human impact on marine ecosystems, Science, vol.319, pp.948-952, 2008.

J. M. Hoekstra, T. M. Boucher, T. H. Ricketts, and C. Roberts, Confronting a biome crisis: global disparities of habitat loss and protection, Ecol. Lett, vol.8, pp.23-29, 2005.

F. Holon, Interactions entre écosystèmes marins et pressions anthropiques. Applications au suivi et à la gestion des eaux côtières de la mer Méditerranée, 2015.

F. Holon, P. Boissery, . Guilbert, E. Freschet, and J. Deter, The Impact of 85 Years of Coastal Development on Shallow Seagrass Beds (Posidonia oceanica L. (Delile)) in South Eastern France: A Slow but Steady Loss without Recovery, Coastal and Shelf Science, pp.1-9, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02390770

F. Holon, N. Mouquet, P. Boissery, M. Bouchoucha, G. Delaruelle et al., Fine-scale cartography of human impacts along French Mediterranean coasts: a relevant map for the Management of Marine Ecosystems, PLoS One, vol.10, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01921178

P. T. Hughes, Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef, Science, vol.265, pp.1547-1551, 1994.

B. B. Hughes, S. C. Lummis, S. C. Anderson, and K. J. Kroeker, Unexpected resilience of a seagrass system exposed to global stressors, Glob. Chang. Biol, 2017.

J. B. Jackson, M. X. Kirby, W. H. Berger, K. A. Bjorndal, L. W. Botsford et al., Historical overfishing and the recent collapse of coastal ecosystems, Science, vol.293, pp.629-637, 2001.

Z. Jones and F. Linder, Exploratory data analysis using random forests, 73rd Annual MPSA Conference. Presented at the 73rd Annual MPSA Conference, 2015.

G. Jordà, N. Marbà, and C. M. Duarte, Mediterranean seagrass vulnerable to regional climate warming, Nat. Clim. Chang, vol.2, pp.821-824, 2012.

R. Killick, Methods for Changepoint Detection, pp.1-28, 2016.

M. Kuhn, Building predictive models in R using the caret package, J. Stat. Softw, vol.28, pp.1-26, 2008.

J. S. Lefcheck, D. J. Wilcox, R. R. Murphy, S. R. Marion, and R. J. Orth, Multiple F. Holon et al, Biological Conservation, vol.222, pp.125-135, 2017.

, stressors threaten the imperiled coastal foundation species eelgrass (Zostera marina) in Chesapeake Bay, USA. Glob. Chang. Biol, vol.23, pp.3474-3483

A. Liaw and M. Wiener, Classification and regression by randomForest, vol.2, pp.18-22, 2002.

N. Mantua, Methods for detecting regime shifts in large marine ecosystems: a review with approaches applied to North Pacific data, Prog. Oceanogr, vol.60, issue.2-4, pp.165-182, 2004.

N. Marbà and C. M. Duarte, Rhizome elongation and seagrass clonal growth, Mar. Ecol. Prog. Ser, 1998.

N. Marba, C. M. Duarte, J. Cebrian, G. Margarita, B. Olesen et al., Growth and population dynamics of Posidonia oceanica on the Spanish Mediterranean coast: elucidating seagrrass decline, Mar. Ecol. Prog. Ser, vol.137, pp.203-213, 1996.

N. Marbà, E. Díaz-almela, and C. M. Duarte, Mediterranean seagrass (Posidonia oceanica) loss between 1842 and, Biol. Conserv, vol.176, pp.183-190, 2009.

F. Micheli, B. S. Halpern, S. Walbridge, S. Ciriaco, F. Ferretti et al., Cumulative human impacts on mediterranean and black sea marine ecosystems: assessing current pressures and opportunities, PLoS One, vol.8, 2013.

M. Montefalcone, R. Lasagna, C. N. Bianchi, C. Morri, and G. Albertelli, Anchoring damage on Posidonia oceanica meadow cover: a case study in Prelo cove (Ligurian Sea, NW Mediterranean), Chem. Ecol, vol.22, pp.207-217, 2006.

D. Moreno, P. A. Aguilera, and H. Castro, Assessment of the conservation status of seagrass (Posidonia oceanica) meadows: implications for monitoring strategy and the decision-making process, Biol. Conserv, vol.102, issue.01, pp.80-85, 2001.

N. Mouquet, Y. Lagadeuc, V. Devictor, L. Doyen, A. Duputié et al., Predictive ecology in a changing world, J. Appl. Ecol, vol.52, pp.1293-1310, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01180277

E. S. Okudan, V. Demir, E. Kalkan, and S. Ü. Karhan, Anchoring damage on seagrass meadows (Posidonia oceanica (L.) Delile) in Fethiye-Göcek specially protected area (Eastern Mediterranean Sea, Turkey), J. Coast. Res, vol.417, issue.420, 2011.

R. J. Orth, T. J. Carruthers, W. C. Dennison, C. M. Duarte, J. W. Fourqurean et al., A global crisis for seagrass ecosystems, AIBS Bull, vol.56, pp.987-996, 2006.

R. J. Orth, W. C. Dennison, J. S. Lefcheck, C. Gurbisz, M. Hannam et al., Submersed aquatic vegetation in Chesapeake Bay: sentinel species in a changing world, Bioscience, vol.67, pp.698-712, 2017.

R. J. Orth, J. S. Lefcheck, and D. J. Wilcox, Boat propeller scarring of seagrass beds in lower Chesapeake Bay, USA: patterns, causes, recovery, and management, Estuar. Coasts, vol.40, pp.1666-1676, 2017.

V. Parravicini, A. Rovere, P. Vassallo, F. Micheli, M. Montefalcone et al., Understanding relationships between conflicting human uses and coastal ecosystems status: a geospatial modeling approach, Ecol. Indic, vol.19, pp.253-263, 2012.

C. J. Patrick, D. E. Weller, and M. Ryder, The relationship between shoreline armoring and adjacent submerged aquatic vegetation in Chesapeake Bay and nearby Atlantic Coastal Bays, Estuar. Coasts, vol.39, issue.1, pp.158-170, 2016.

G. Pergent, R. Semroud, A. Djellouli, H. Langar, and C. Duarte, Posidonia oceanica [WWW Document]. The IUCN Red List of Threatened Species. Version 2015.2 (URL), 2010.

G. Pergent, H. Bazairi, C. N. Bianchi, C. F. Boudouresque, M. C. Buia et al., Climate change and Mediterranean seagrass meadows: a synopsis for environmental managers, Mediterr. Mar. Sci, vol.15, pp.462-473, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01150098

G. Pergent, C. Pergent-martini, A. Bein, M. Dedeken, P. Oberti et al., Dynamic of Posidonia oceanica seagrass meadows in the northwestern Mediterranean: could climate change be to blame?, C. R. Biol, vol.338, pp.484-493, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01270476

C. Pergent-martini and V. Pasqualini, Seagrass population dynamics before and after the setting up of a wastewater treatment plant, Fourth Int. Seagrass Biol. Workshop, vol.7, pp.405-408, 2000.

C. Pergent-martini, C. F. Boudouresque, V. Pasqualini, and G. Pergent, Impact of fish farming facilities on Posidonia oceanica meadows: a review, Mar. Ecol, vol.27, pp.310-319, 2006.

A. M. Prasad, L. R. Iverson, and A. Liaw, Newer classification and regression tree techniques: bagging and random forests for ecological prediction, Ecosystems, vol.9, pp.181-199, 2006.

, R: A Language and Environment for Statistical Computing. 900051 R Foundation for Statistical Computing, 2014.

C. Savage, P. R. Leavitt, and R. Elmgren, Effects of land use, urbanization, and climate variability on coastal eutrophication in the Baltic Sea, Limnol. Oceanogr, vol.55, pp.1033-1046, 2010.

M. Scheffer, S. Carpenter, J. A. Foley, C. Folke, and B. Walker, Catastrophic shifts in ecosystems, Nature, vol.413, pp.591-596, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02195560

M. Scheffer, J. Bascompte, W. A. Brock, V. Brovkin, S. R. Carpenter et al., Early-warning signals for critical transitions, Nature, vol.461, pp.53-59, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02195562

D. S. Siroky, Navigating random forests and related advances in algorithmic modeling, Stat. Surveys, vol.3, pp.147-163, 2009.

M. Stachowitsch, Research on intact marine ecosystems: a lost era, Mar. Pollut. Bull, vol.46, pp.109-116, 2003.

V. Stelzenmüller, J. Lee, A. South, and S. I. Rogers, Quantifying cumulative impacts of human pressures on the marine environment: a geospatial modelling framework, Mar. Ecol. Prog. Ser, vol.398, pp.19-32, 2010.

F. Tuya, L. Ribeiro-leite, N. Arto-cuesta, J. Coca, R. Haroun et al., Decadal changes in the structure of Cymodocea nodosa seagrass meadows: natural vs. human influences, Estuar. Coast. Shelf Sci, vol.137, pp.41-49, 2013.

, Marine and Coastal Ecosystems and Human Well-being: A Synthesis Report Based on the Findings of the Millennium Ecosystem Assessment, UNEP, 2006.

R. K. Unsworth, B. Williams, B. L. Jones, and L. C. Cullen-unsworth, Rocking the boat: damage to eelgrass by swinging boat moorings, Front. Plant Sci, vol.8, 2017.

M. Vacchi, M. Montefalcone, V. Parravicini, A. Rovere, P. Vassallo et al., Spatial models to support the management of coastal marine ecosystems: a short review of best practices in Liguria, Italy. Mediterr. Mar. Sci, pp.172-180, 2014.

P. M. Vitousek, H. A. Mooney, J. Lubchenco, and J. M. Melillo, Human domination of Earth's ecosystems, Science, vol.278, pp.494-499, 1997.

M. Waycott, C. M. Duarte, T. J. Carruthers, R. J. Orth, W. C. Dennison et al., Accelerating loss of seagrasses across the globe threatens coastal ecosystems, Proc. Natl. Acad. Sci, vol.106, pp.12377-12381, 2009.

D. M. Wilkinson, The disturbing history of intermediate disturbance, Oikos, vol.84, pp.145-147, 1999.

F. Holon, Biological Conservation, vol.222, pp.125-135, 2018.