Security for the internet of things : a bottom-up approach to the secure and standardized internet of things - CNRS - Centre national de la recherche scientifique Accéder directement au contenu
Thèse Année : 2019

Security for the internet of things : a bottom-up approach to the secure and standardized internet of things

Sécurité pour l'internet des objets : une approche des bas en haut pour un internet des objets sécurisé et normalisé

Résumé

The rapid expansion of the IoT has unleashed a tidal wave of cheap Internet-connected hardware. Formany of these products, security was merely an afterthought. Due to their advanced sensing and actuatingfunctionalities, poorly-secured IoT devices endanger the privacy and safety of their users.While the IoT contains hardware with varying capabilities, in this work, we primarily focus on the constrainedIoT. The restrictions on energy, computational power, and memory limit not only the processingcapabilities of the devices but also their capacity to protect their data and users from attacks. To secure theIoT, we need several building blocks. We structure them in a bottom-up fashion where each block providessecurity services to the next one.The first cornerstone of the secure IoT relies on hardware-enforced mechanisms. Various security features,such as secure boot, remote attestation, and over-the-air updates, rely heavily on its support. Sincehardware security is often expensive and cannot be applied to legacy systems, we alternatively discusssoftware-only attestation. It provides a trust anchor to remote systems that lack hardware support. In thesetting of remote attestation, device identification is paramount. Hence, we dedicated a part of this work tothe study of physical device identifiers and their reliability.The IoT hardware also frequently provides support for the second building block: cryptography. Itis used abundantly by all the other security mechanisms, and recently much research has focussed onlightweight cryptographic algorithms. We studied the performance of the recent lightweight cryptographicalgorithms on constrained hardware.A third core element for the security of the IoT is the capacity of its networking stack to protect the communications.We demonstrate that several optimization techniques expose vulnerabilities. For example,we show how to set up a covert channel by exploiting the tolerance of the Bluetooth LE protocol towardsthe naturally occurring clock drift. It is also possible to mount a denial-of-service attack that leverages theexpensive network join phase. As a defense, we designed an algorithm that almost completely alleviates theoverhead of network joining.The last building block we consider is security architectures for the IoT. They guide the secure integrationof the IoT with the traditional Internet. We studied the IETF proposal concerning the constrainedauthentication and authorization framework, and we propose two adaptations that aim to improve its security.Finally, the deployment of the IETF architecture heavily depends on the security of the underlying communicationprotocols. In the future, the IoT will mainly use the object security paradigm to secure datain flight. However, until these protocols are widely supported, many IoT products will rely on traditionalsecurity protocols, i.e., TLS and DTLS. For this reason, we conducted a performance study of the most criticalpart of the protocols: the handshake phase. We conclude that while the DTLS handshake uses fewerpackets to establish the shared secret, TLS outperforms DTLS in lossy networks.
La rapide expansion du marché de l’IoT a permis de relier de plus en plus de matériels bon marché àl’Internet. Pour bon nombre de ces objets, la sécurité ne constitue pas une priorité. En raison de leursfonctionnalités avancées de détection et de manipulation, ces produits IoT mal sécurisés mettent en dangerla vie privée et la sécurité de leurs utilisateurs.Bien que l’IoT englobe des objets connectés de capacités variables, dans ces travaux, nous nous concentronssur les équipements contraints en énergie, en ressources mémoires, et à faible puissance de calcul.Ces restrictions limitent non seulement la possibilité de traitements, mais aussi la capacité à protéger lesdonnées et les utilisateurs. Afin de sécuriser l’IoT, nous identifions plusieurs éléments de bases permettantde fournir des services de sécurité sur l’ensemble d’un équipement.L’implémentation des mécanismes de sécurité au niveau matériel constitue un premier pilier pourl’IoT sécurisé. Diverses fonctions, telles que le démarrage sécurisé, l’attestation à distance et les mises àjour "over-the-air", dépendent en effet fortement de son support. Comme l’implémentation de la sécuritématérielle est souvent coûteuse et ne peut être appliquée aux systèmes existants, nous étudions l’attestationpurement logicielle. Cette méthode fournit une racine de confiance aux systèmes distants qui ne supportentpas la sécurité au niveau matériel. Dans le cadre de l’attestation à distance, l’identification de l’appareilest primordiale. Une partie de ce travail est donc consacrée à l’étude des identificateurs physiques desdispositifs et de leur fiabilité.L’IoT sécurisé repose sur un deuxième élément clé: la cryptographie. Cette dernière est abondammentutilisée par tous les autres mécanismes de sécurité et largement étudiée. Nous étudions les performancesdes algorithmes cryptographiques récents pour les dispositifs contraints.Un troisième élément central pour sécuriser l’IoT est la capacité de la pile protocolaire à sécuriser lescommunications. Nous montrons par exemple qu’il est possible d’exploiter la tolérance du BLE à la dérived’horloge pour établir un canal couvert. D’autre part, il est possible de monter une attaque de déni deservice en exploitant les phases énergivores du réseau, notamment la phase d’attache. Nous proposonsdans ces travaux un algorithme défensif qui réduit quasiment à néant les surcoûts liés à la connexion auréseau.Les architectures de sécurité constituent le dernier pilier pour la sécurité de l’IoT. Elles permettent eneffet de guider le déploiement d’un IoT sécurisé à grande échelle. Après avoir étudié la proposition de l’IETFde schéma d’authentification et d’autorisation pour l’IoT, nous proposons deux pistes d’amélioration de lasécurité.Enfin, la mise en place d’une architecture de sécurité implique le choix du protocole. Dans le contextedes réseaux contraints énergétiquement, le critère déterminant sera la consommation. Même si, àl’avenir, l’IoT utilisera principalement le paradigme d’objets sécurisés pour protéger les données, tant queces derniers ne seront pas largement supportés, de nombreux produits IoT s’appuieront sur les protocolesde sécurité traditionnels tels que TLS et DTLS. C’est pourquoi nous réalisons une étude de performance surla partie la plus critique de ces protocoles : l’établissement du secret partagé. Nous montrons que, mêmesi le "handshake" DTLS utilise moins de paquets pour établir le secret partagé, TLS obtient des meilleursrésultats dans les réseaux avec pertes.
Fichier principal
Vignette du fichier
CLAEYS_2019_diffusion.pdf (7.69 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-02948567 , version 1 (24-09-2020)

Identifiants

  • HAL Id : tel-02948567 , version 1

Citer

Timothy Claeys. Security for the internet of things : a bottom-up approach to the secure and standardized internet of things. Computers and Society [cs.CY]. Université Grenoble Alpes, 2019. English. ⟨NNT : 2019GREAM062⟩. ⟨tel-02948567⟩
441 Consultations
808 Téléchargements

Partager

Gmail Facebook X LinkedIn More