L. Packer, E. H. Witt, and H. J. Tritschler, Alpha-lipoic acid as a biological antioxidant, Free Radic, Biol. Med, vol.19, pp.227-250, 1995.

L. M. Román-pintos, G. Villegas-rivera, A. D. Rodríguez-carrizalez, A. G. Miranda-díaz, and E. G. Cardona-muñoz, Diabetic polyneuropathy in type 2 diabetes mellitus: inflammation, oxidative stress, and mitochondrial function, J. Diabetes Res, vol.2016, p.3425617, 2016.

J. A. Mayr, R. G. Feichtinger, F. Tort, A. Ribes, and W. Sperl, Lipoic acid biosynthesis defects, J. Inherit. Metab. Dis, vol.37, pp.553-563, 2014.

R. M. Cicchillo, L. Tu, J. A. Stromberg, L. M. Hoffart, C. Krebs et al., Escherichia coli quinolinate synthetase does indeed harbor a, J. Am. Chem. Soc, vol.127, pp.7310-7311, 2005.

R. , Function and biogenesis of iron-sulphur proteins, Nature, vol.460, pp.831-838, 2009.

B. J. Landgraf, E. L. Mccarthy, and S. J. Booker, Radical S-adenosylmethionine enzymes in human health and disease, Annu. Rev. Biochem, vol.85, pp.485-514, 2016.

A. Sheftel, O. Stehling, and R. Lill, Iron-sulfur proteins in health and disease, Trends Endocrinol. Metab, vol.21, pp.302-314, 2010.

L. K. Beilschmidt and H. M. Puccio, Mammalian Fe-S cluster biogenesis and its implication in disease, Biochimie, vol.100, pp.48-60, 2014.

N. Maio and T. A. Rouault, Iron-sulfur cluster biogenesis in mammalian cells: new insights into the molecular mechanisms of cluster delivery, Biochim. Biophys. Acta, vol.2015, pp.1493-1512, 1853.

V. D. Paul and R. Lill, SnapShot: eukaryotic Fe-S protein biogenesis, Cell Metab, vol.20, pp.384-384, 2014.

A. D. Sheftel, C. Wilbrecht, O. Stehling, B. Niggemeyer, H. Elsässer et al., The human mitochondrial ISCA1, ISCA2, and IBA57 proteins are required for, Mol. Biol. Cell, vol.23, pp.1157-1166, 2012.

J. M. Cameron, A. Janer, V. Levandovskiy, N. Mackay, T. A. Rouault et al., Mutations in iron-sulfur cluster scaffold genes NFU1 and BOLA3 cause a fatal deficiency of multiple respiratory chain and 2-oxoacid dehydrogenase enzymes, Am. J. Hum. Genet, vol.89, pp.486-495, 2011.

U. Ahting, J. A. Mayr, A. V. Vanlander, S. A. Hardy, S. Santra et al., Clinical, biochemical, and genetic spectrum of seven patients with NFU1 deficiency, Front. Genet, vol.6, 2015.

N. Bolar, A. V. Vanlander, C. Wilbrecht, N. Van-der-aa, J. Smet et al., Mutation of the iron-sulfur cluster assembly gene IBA57 causes severe myopathy and encephalopathy, Hum. Mol. Genet, vol.22, pp.2590-2602, 2013.

Z. N. Al-hassnan, M. Al-dosary, M. Alfadhel, E. A. Faqeih, M. Alsagob et al., ISCA2 mutation causes infantile neurodegenerative mitochondrial disorder, J. Med. Genet, vol.52, pp.186-194, 2015.

P. R. Baker, M. W. Friederich, M. A. Swanson, T. Shaikh, K. Bhattacharya et al., Variant nonketotic hyperglycinemia is caused by mutations in LIAS, BOLA3 and the novel gene GLRX5, Brain, vol.137, issue.2, pp.366-379, 2014.

T. B. Haack, B. Rolinski, B. Haberberger, F. Zimmermann, J. Schum et al., Homozygous missense mutation in BOLA3 causes multiple mitochondrial dysfunctions syndrome in two siblings, J. Inherit. Metab. Dis, vol.36, pp.55-62, 2013.

F. Tort, X. Ferrer-cortès, M. Thió, A. Navarro-sastre, L. Matalonga et al., Mutations in the lipoyltransferase LIPT1 gene cause a fatal disease associated with a specific lipoylation defect of the 2-ketoacid dehydrogenase complexes, Hum. Mol. Genet, vol.23, pp.1907-1915, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01859368

Y. Soreze, A. Boutron, F. Habarou, C. Barnerias, L. Nonnenmacher et al., Mutations in human lipoyltransferase gene LIPT1 cause a Leigh disease with secondary deficiency for pyruvate and alpha-ketoglutarate dehydrogenase, Orphanet J. Rare Dis, vol.8, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00938361

F. Habarou, Y. Hamel, C. Grisel, A. Boutron, A. Delahodde et al., Encephalopathy, combined deficiency of alpha-ketoacid dehydrogenases and hyperglycinemia associated with LIPT2 mutations : a novel lipoic acid biosynthesis defect, J. Inherit. Metab. Dis, vol.38, p.48, 2015.

F. Habarou, Y. Hamel, T. B. Haack, R. G. Feichtinger, E. Lebigot et al., Biallelic mutations in LIPT2 cause a mitochondrial lipoylation defect associated with severe neonatal encephalopathy, Am. J. Hum. Genet, issue.17, pp.30279-30282, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02281951

A. Shukla, M. Hebbar, A. Srivastava, R. Kadavigere, P. Upadhyai et al., Homozygous p.(Glu87Lys) variant in ISCA1 is associated with a multiple mitochondrial dysfunctions syndrome, J. Hum. Genet, 2017.

F. Tort, X. Ferrer-cortes, and A. Ribes, Differential diagnosis of lipoic acid synthesis defects, J. Inherit. Metab. Dis, vol.39, pp.781-793, 2016.

M. Nizon, A. Boutron, N. Boddaert, A. Slama, H. Delpech et al., Leukoencephalopathy with cysts and hyperglycinemia may result from NFU1 deficiency, Mitochondrion, vol.15, pp.59-64, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02181366

A. Imbard, A. Boutron, C. Vequaud, M. Zater, P. De-lonlay et al., Molecular characterization of 82 patients with pyruvate dehydrogenase complex deficiency. Structural implications of novel amino acid substitutions in E1 protein, Mol. Genet. Metab, vol.104, pp.507-516, 2011.

P. Rustin, D. Chretien, T. Bourgeron, B. Gérard, A. Rötig et al., Biochemical and molecular investigations in respiratory chain deficiencies, Clin. Chim. Acta, vol.228, pp.35-51, 1994.

D. Chretien, P. Bénit, M. Chol, S. Lebon, A. Rötig et al., Assay of mitochondrial respiratory chain complex I in human lymphocytes and cultured skin fibroblasts, Biochem. Biophys. Res. Commun, vol.301, pp.222-224, 2003.

J. Drapier and J. B. Hibbs, Aconitases: a class of metalloproteins highly sensitive to nitric oxide synthesis, Methods Enzymol, vol.3, pp.26-36, 1996.

M. Kelly-aubert, S. Trudel, J. Fritsch, T. Nguyen-khoa, M. Baudouin-legros et al., GSH monoethyl ester rescues mitochondrial defects in cystic fibrosis models, Hum. Mol. Genet, vol.20, pp.2745-2759, 2011.

S. Hescot, A. Slama, A. Lombès, A. Paci, H. Remy et al., Mitotane alters mitochondrial respiratory chain activity by inducing cytochrome c oxidase defect in human adrenocortical cells, Endocr. Relat. Cancer, vol.20, pp.371-381, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00817795

J. T. Den-dunnen, R. Dalgleish, D. R. Maglott, R. K. Hart, M. S. Greenblatt et al., HGVS recommendations for the description of sequence variants: 2016 update, Hum. Mutat, vol.37, pp.564-569, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02438000

B. Guillon, A. Bulteau, M. Wattenhofer-donzé, S. Schmucker, B. Friguet et al., Frataxin deficiency causes upregulation of mitochondrial Lon and ClpP proteases and severe loss of mitochondrial Fe-S proteins, FEBS J, vol.276, pp.1036-1047, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00365808

H. J. Forman, H. Zhang, and A. Rinna, Glutathione: overview of its protective roles, measurement, and biosynthesis, Mol. Asp. Med, vol.30, pp.1-12, 2009.

D. R. Crooks, M. C. Ghosh, R. G. Haller, W. H. Tong, and T. A. Rouault, Posttranslational stability of the heme biosynthetic enzyme ferrochelatase is dependent on iron availability and intact iron-sulfur cluster assembly machinery, Blood, vol.115, pp.860-869, 2010.

R. Spiegel, A. Saada, J. Halvardson, D. Soiferman, A. Shaag et al., Deleterious mutation in FDX1L gene is associated with a novel mitochondrial muscle myopathy, Eur. J. Hum. Genet, vol.22, pp.902-906, 2014.

V. Taché, L. Bivina, S. White, J. Gregg, J. Deignan et al., Lipoyltransferase 1 gene defect resulting in fatal lactic acidosis in two siblings, Case Rep, Obstet. Gynecol, vol.2016, p.6520148, 2016.

O. V. Lushchak, M. Piroddi, F. Galli, and V. I. Lushchak, Aconitase post-translational modification as a key in linkage between Krebs cycle, iron homeostasis, redox signaling, and metabolism of reactive oxygen species, Redox Rep, vol.19, pp.8-15, 2014.

D. Feng, A. Witkowski, and S. Smith, Down-regulation of mitochondrial acyl carrier protein in mammalian cells compromises protein lipoylation and respiratory complex I and results in cell death, J. Biol. Chem, vol.284, pp.11436-11445, 2009.

P. Arivazhagan, K. Ramanathan, and C. Panneerselvam, Effect of DL-alpha-lipoic acid on mitochondrial enzymes in aged rats, Chem. Biol. Interact, vol.138, p.29, 2001.

J. K. Hiltunen, M. S. Schonauer, K. J. Autio, T. M. Mittelmeier, A. J. Kastaniotis et al., Mitochondrial fatty acid synthesis type II: more than just fatty acids, J. Biol. Chem, vol.284, pp.9011-9015, 2009.

A. Melber, U. Na, A. Vashisht, B. D. Weiler, R. Lill et al., Role of Nfu1 and Bol3 in iron-sulfur cluster transfer to mitochondrial clients, elife, 2016.

A. Rötig, P. De-lonlay, D. Chretien, F. Foury, M. Koenig et al., Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia, Nat. Genet, vol.17, pp.215-217, 1997.

S. C. Lim, M. Friemel, J. E. Marum, E. J. Tucker, D. L. Bruno et al., Mutations in LYRM4, encoding iron-sulfur cluster biogenesis factor ISD11, cause deficiency of multiple respiratory chain complexes, Hum. Mol. Genet, vol.22, pp.4460-4473, 2013.

M. A. Uzarska, V. Nasta, B. D. Weiler, F. Spantgar, S. Ciofi-baffoni et al., Mitochondrial Bol1 and Bol3 function as assembly factors for specific ironsulfur proteins, 2016.

C. Gelling, I. W. Dawes, N. Richhardt, R. Lill, and U. Mühlenhoff, Mitochondrial Iba57p is required for Fe/S cluster formation on aconitase and activation of radical SAM enzymes, Mol. Cell. Biol, vol.28, pp.1851-1861, 2008.

W. Tong, G. N. Jameson, B. H. Huynh, and T. A. Rouault, Subcellular compartmentalization of human Nfu, an iron-sulfur cluster scaffold protein, and its ability to assemble a, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.9762-9767, 2003.

K. Cai, G. Liu, R. O. Frederick, R. Xiao, G. T. Montelione et al., Structural/ functional properties of human NFU1, an intermediate [4Fe-4S] carrier in human mitochondrial iron-sulfur cluster biogenesis, Structure, vol.24, pp.2080-2091, 2016.

O. Stehling and R. Lill, The role of mitochondria in cellular iron-sulfur protein biogenesis: mechanisms, connected processes, and diseases, Cold Spring Harb, Perspect. Med, vol.3, p.29, 2013.

F. Invernizzi, A. Ardissone, E. Lamantea, B. Garavaglia, M. Zeviani et al., Cavitating leukoencephalopathy with multiple mitochondrial dysfunction syndrome and NFU1 mutations, Front. Genet, vol.5, 2014.

X. Ferrer-cortès, J. Narbona, N. Bujan, L. Matalonga, M. Toro et al., A leaky splicing mutation in NFU1 is associated with a particular biochemical phenotype. Consequences for the diagnosis, Mitochondrion, vol.26, pp.72-80, 2016.

F. Debray, C. Stümpfig, A. V. Vanlander, V. Dideberg, C. Josse et al., Mutation of the iron-sulfur cluster assembly gene IBA57 causes fatal infantile leukodystrophy, J. Inherit. Metab. Dis, vol.38, pp.1147-1153, 2015.

A. Lossos, C. Stümpfig, G. Stevanin, M. Gaussen, B. Zimmerman et al., Fe/S protein assembly gene IBA57 mutation causes hereditary spastic paraplegia, Neurology, vol.84, pp.659-667, 2015.

U. Ahting, B. Rolinski, T. B. Haack, J. A. Mayr, B. Alhaddad et al., FeS cluster biogenesis defect in a patient with mutations in ISCA2, J. Inherit. Metab. Dis, vol.38, p.218, 2015.

D. Brancaccio, A. Gallo, M. Mikolajczyk, K. Zovo, P. Palumaa et al., Formation of [4Fe-4S] clusters in the mitochondrial iron-sulfur cluster assembly machinery, J. Am. Chem. Soc, vol.136, pp.16240-16250, 2014.

L. K. Beilschmidt, S. Ollagnier-de-choudens, M. Fournier, I. Sanakis, M. Hograindleur et al., ISCA1 is essential for mitochondrial Fe4S4 biogenesis in vivo, Nat. Commun, vol.8, p.15124, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01535806

A. Torraco, A. Ardissone, F. Invernizzi, T. Rizza, G. Fiermonte et al., Novel mutations in IBA57 are associated with leukodystrophy and variable clinical phenotypes, J. Neurol, vol.264, pp.102-111, 2017.

, Quatorze cultures de fibroblastes de patients portant un déficit en FDX1L, IBA57, ISCA1, ISCA2, BOLA3, NFU1, LIPT1 et LIPT2 ont été caractérisés

. Au and . Mayr, plusieurs patients présentant un déficit dans les protéines LIAS (n=4), LIPT1 (n=2), BOLA3 (n=6), IBA57 (n=15), ISCA2 (n=6) et NFU1 (n=22) avaient été rapportés, 2011.

. Soreze, , 2011.

A. Bolar, , 2013.

. Al-hassnan, , 2015.

. Navarro-sastre, , 2011.

. Ahting, Au cours de mon travail, trois patients avec un déficit en LIPT2, dont celui que j'ai étudié, ont été décrits (Habarou et al. 2017), et six patients avec un déficit en ISCA1, 2015.

. De-mon-Étude-;-shukla, Torraco et al, 2017.

, Les protéines IBA57, ISCA1, ISCA2, BOLA3 et NFU1 coopèrent dans la voie de maturation des protéines

. L'étude-de-protéines-mitochondriales, dans les cellules de patients avec un déficit en IBA57, ISCA1, ISCA2, BOLA3 ou NFU1 permet d'évaluer le positionnement de ces cinq protéines dans la voie de maturation des protéines Fe

S. La, ferrochélatase et la protéine Rieske du complexe III sont les protéines

, il y a l'aconitase mitochondriale, la LIAS, la sous-unité SDHB du complexe II (qui porte également un centre

, In cellulo, une diminution de la protéine Rieske est observée dans des cellules HeLa déplétées en ISCA1 ou ISCA2 (Sheftel et al. 2012) bien que ce résultat ne soit pas retrouvé par une autre équipe dans les cellules HeLa déplétées en ISCA1 (Torraco et al, différentes études rapportent des déficits de la protéine Rieske, in cellulo ou in vivo, mais les résultats sont controversés, 2018.

C. , Dans mon étude, aucune diminution significative de la protéine Rieske n'est présente dans les fibroblastes des patients avec un déficit en IBA57, ISCA1, ISCA2 BOLA3 ou NFU1 et l'activité du complexe III était maintenue. L'ensemble de ces résultats suggère que ces protéines impliquées dans la maturation des protéines Fe-S ne sont pas dédiées à la maturation de la protéine Rieske chez les mammifères, qui pourrait être le rôle de la protéine LYRM7 (Sánchez et al. 2013). La diminution très modérée de la ferrochélatase que j'ai observée chez le patient ISCA1 n'a pas été retrouvée chez d'autres patients ISCA1 (Torraco et al. 2018) ni dans les cellules HeLa déplétées en ISCA1 (Sheftel et al. 2012), ) tandis qu'elle n'était pas diminuée dans celles de deux autres patients NFU1 (Ferrer-Cortès et al. 2012) ou de patients IBA57, 2011.

A. , , 2018.

. Sheftel, ] mitochondriales mais l'ensemble des différentes études in vitro et chez des patients déficitaires en IBA57, ISCA1, ISCA2, BOLA3 et NFU1 n'ont pas encore précisé le positionnement de chacune de ces protéines dans cette voie. ISCA1, ISCA2 et IBA57 ont été, à l'origine, considérées comme des protéines partenaires dans la maturation des protéines à centre, Les protéines IBA57, ISCA1, ISCA2, BOLA3 et NFU1 sont donc impliquées, et probablement dédiées, à la maturation des protéines, 2012.

;. Le-centre and . Brancaccio, Cependant, une seconde équipe a proposé que seule ISCA2 pourrait interagir avec GLRX5, que ISCA1 aurait un rôle central dans la maturation des protéines, 2014.

. Enfin, une quatrième étude a émis l'hypothèse qu'un homodimère ISCA1-ISCA1 ou un hétérodimère ISCA1-ISCA2 interagirait avec la protéine GLRX5 pour extraire son centre, 2017.

. Beilschmidt, Cette dernière hypothèse est confortée par les résultats obtenus chez les patients ISCA2 et IBA57 (mon étude et, 2017.

, lesquels un déficit de l'une des deux protéines induit la diminution quantitative de REFERENCES BIBLIOGRAPHIQUES

K. Abbas, S. Riquier, and J. C. Drapier, Peroxiredoxins and sulfiredoxin at the crossroads of the NO and H 2O2 signaling pathways, Methods in Enzymology, vol.527, pp.113-128, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00856898

R. Acín-pérez, Respiratory active mitochondrial supercomplexes, Molecular cell, vol.32, issue.4, pp.529-568, 2008.

V. Adam-vizi, Production of Reactive Oxygen Species in Brain Mitochondria: Contribution by Electron Transport Chain and Non-Electron Transport Chain Sources, Antioxidants & Redox Signaling, vol.7, issue.9, pp.1140-1149, 2005.

A. C. Adam, The Nfs1 interacting protein Isd11 has an essential role in Fe/S cluster biogenesis in mitochondria, EMBO Journal, vol.25, issue.1, pp.174-183, 2006.

J. N. Agar, Modular organization and identification of a mononuclear ironbinding site within the NifU protein, JBIC Journal of Biological Inorganic Chemistry, vol.5, issue.2, pp.167-177, 2000.

U. Ahting, Clinical, biochemical, and genetic spectrum of seven patients with NFU1 deficiency, Frontiers in genetics, vol.6, p.123, 2015.

A. Bolar and N. , Mutation of the iron-sulfur cluster assembly gene IBA57 causes severe myopathy and encephalopathy, Human molecular genetics, vol.22, issue.13, pp.2590-602, 2013.

Z. N. Al-hassnan, ISCA2 mutation causes infantile neurodegenerative mitochondrial disorder, Journal of medical genetics, vol.52, issue.3, pp.186-94, 2015.

J. T. Alaimo, Loss-of-function mutations in ISCA2 disrupt 4Fe-4S cluster machinery and cause a fatal leukodystrophy with hyperglycinemia and mtDNA depletion, Human Mutation, vol.39, issue.4, pp.537-549, 2018.

M. Alfadhel, Further delineation of the phenotypic spectrum of ISCA2 defect: A report of ten new cases, European Journal of Paediatric Neurology, vol.22, issue.1, pp.46-55, 2018.

C. L. Alston, The genetics and pathology of mitochondrial disease, Journal of Pathology, issue.2, pp.236-250, 2017.

J. M. Archibald, Endosymbiosis and Eukaryotic Cell Evolution, Current Biology, vol.25, pp.911-921, 2015.

P. Arivazhagan, K. Ramanathan, and C. Panneerselvam, Effect of DL-alphalipoic acid on mitochondrial enzymes in aged rats, Chemico-biological interactions, vol.138, issue.2, pp.189-98, 2001.

C. T. Armstrong, J. L. Anderson, and R. M. Denton, Studies on the regulation of the human E1 subunit of the 2-oxoglutarate dehydrogenase complex, including the identification of a novel calcium-binding site, Biochemical Journal, vol.459, issue.2, pp.369-381, 2014.

P. R. Baker, Variant non ketotic hyperglycinemia is caused by mutations in LIAS, BOLA3 and the novel gene GLRX5, Brain : a journal of neurology, vol.137, pp.366-79, 2014.

L. Banci, Proceedings of the National Academy of Sciences of the United States of America, vol.111, pp.6203-6211, 2014.

D. P. Barupala, Synthesis, delivery and regulation of eukaryotic heme and Fe-S cluster cofactors, Archives of Biochemistry and Biophysics, vol.592, pp.60-75, 2016.

L. K. Beilschmidt, ISCA1 is essential for mitochondrial Fe4S4 biogenesis in vivo, Nature Communications, vol.8, p.15124, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01535806

L. K. Beilschmidt and H. M. Puccio, Mammalian Fe-S cluster biogenesis and its implication in disease, Biochimie, vol.100, pp.48-60, 2014.

I. Belhadj-slimen, Reactive oxygen species, heat stress and oxidativeinduced mitochondrial damage. A review, International Journal of Hyperthermia, vol.30, issue.7, pp.513-523, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-02019182

M. T. Boniecki, Structure and functional dynamics of the mitochondrial Fe/S cluster synthesis complex, Nature Communications, vol.8, issue.1, p.1287, 2017.

D. Brancaccio, 4S] cluster assembly in mitochondria and its impairment by copper, Journal of the American Chemical Society, vol.139, issue.2, pp.719-730, 2017.

D. Brancaccio, Formation of [4Fe-4S] clusters in the mitochondrial ironsulfur cluster assembly machinery, Journal of the American Chemical Society, vol.136, issue.46, pp.16240-50, 2014.

J. J. Braymer and R. Lill, Iron-sulfur cluster biogenesis and trafficking in mitochondria, Journal of Biological Chemistry, vol.292, issue.31, pp.12754-12763, 2017.

D. K. Bricker, A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans, Science, issue.6090, pp.96-100, 2012.

S. Brody, Mitochondrial acyl carrier protein is involved in lipoic acid synthesis in Saccharomyces cerevisiae, FEBS letters, vol.408, issue.2, pp.217-237, 1997.

K. Bych, The iron-sulphur protein Ind1 is required for effective complex I assembly, The EMBO journal, vol.27, issue.12, pp.1736-1782, 2008.

K. Cai, Human Mitochondrial Ferredoxin 1 (FDX1) and Ferredoxin 2 (FDX2) Both Bind Cysteine Desulfurase and Donate Electrons for Iron-Sulfur Cluster Biosynthesis, Biochemistry, vol.56, issue.3, pp.487-499, 2017.

K. Cai, Interactions of iron-bound frataxin with ISCU and ferredoxin on the cysteine desulfurase complex leading to Fe-S cluster assembly, Journal of Inorganic Biochemistry, vol.183, pp.107-123, 2018.

K. Cai, Structural/Functional Properties of Human NFU1, an Intermediate [4Fe-4S] Carrier in Human Mitochondrial Iron-Sulfur Cluster Biogenesis, Structure, vol.24, issue.12, pp.2080-91, 2016.

S. E. Calvo, High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency, Nature genetics, vol.42, issue.10, pp.851-859, 2010.

C. Camaschella, The human counterpart of zebrafish shiraz shows sideroblastic-like microcytic anemia and iron overload, Blood, vol.110, issue.4, pp.1353-58, 2007.

J. M. Cameron, Mutations in iron-sulfur cluster scaffold genes NFU1 and BOLA3 cause a fatal deficiency of multiple respiratory chain and 2-oxoacid dehydrogenase enzymes, American journal of human genetics, vol.89, issue.4, pp.486-95, 2011.

G. Cecchini, Function and Structure of Complex II of the Respiratory Chain, Annual Review of Biochemistry, vol.72, issue.1, pp.77-109, 2003.

A. Chacinska, Importing mitochondrial proteins: machineries and mechanisms, Cell, vol.138, issue.4, pp.628-672, 2009.

B. Chance, H. Sies, and A. Boveris, Hydroperoxide metabolism in mammalian organs, Physiological Reviews, vol.59, issue.3, pp.527-605, 1979.

H. T. Chng, Distribution study of orally administered lipoic acid in rat brain tissues, Brain Research, pp.80-86, 2009.

Q. H. Christensen and J. E. Cronan, Lipoic Acid Synthesis: A New Family of Octanoyltransferases Generally Annotated as Lipoate Protein Ligases, Biochemistry, vol.49, issue.46, pp.10024-10060, 2010.

S. Ciofi-baffoni, V. Nasta, and L. Banci, Protein networks in the maturation of human iron-sulfur proteins, Metallomics, vol.10, issue.1, pp.49-72, 2018.

K. L. Colabroy and T. P. Begley, Tryptophan Catabolism : Identification and Characterization of a New Degradative Pathway, Journal of bateriology, vol.187, issue.22, pp.7866-7875, 2005.

F. Colin, Mammalian Frataxin Controls Sulfur Production and Iron Entry during de Novo Fe 4 S 4 Cluster Assembly, Journal of the American Chemical Society, vol.135, issue.2, pp.733-773, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01054359

J. Couturier, The roles of glutaredoxins ligating Fe-S clusters: Sensing, transfer or repair functions?, Biochimica et Biophysica Acta -Molecular Cell Research, issue.6, pp.1513-1540, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01521788

I. Cózar-castellano, hIscA: a protein implicated in the biogenesis of ironsulfur clusters, Biochimica et biophysica acta, vol.1700, issue.2, pp.179-88, 2004.

J. C. Crack and N. E. Le-brun, Redox-sensing iron-sulfur cluster regulators, Antioxidants & Redox Signaling, pp.2017-7369, 2017.

J. E. Cronan, The structure of lipoyl synthase, a remarkable enzyme that performs the last step of an extraordinary biosynthetic pathway, The Biochemical journal, vol.464, issue.1, pp.1-3, 2014.

J. E. Cronan, X. Zhao, and Y. Jiang, Function, Attachment and Synthesis of Lipoic Acid in Escherichia coli, Advances in microbial physiology, pp.103-149, 2005.

C. Dallabona, LYRM7 mutations cause a multifocal cavitating leukoencephalopathy with distinct MRI appearance, Brain, vol.139, issue.3, pp.782-94, 2016.

K. Danhauser, DHTKD1 mutations cause 2-aminoadipic and 2-oxoadipic aciduria, American Journal of Human Genetics, vol.91, issue.6, pp.1082-1089, 2012.

F. Debray, Mutation of the iron-sulfur cluster assembly gene IBA57 causes fatal infantile leukodystrophy, Journal of inherited metabolic disease, vol.38, issue.6, pp.1147-53, 2015.

M. Dizdaroglu and P. Jaruga, Mechanisms of free radical-induced damage to DNA, Free Radical Research, vol.46, issue.4, pp.382-419, 2012.

R. Dutkiewicz and M. Nowak, Molecular chaperones involved in mitochondrial iron-sulfur protein biogenesis, Journal of Biological Inorganic Chemistry, vol.23, issue.4, pp.569-79, 2018.

J. Fang, Site specific phosphorylation of cytochrome c oxidase subunits I, IVi1 and Vb in rabbit hearts subjected to ischemia/reperfusion, FEBS letters, vol.581, issue.7, pp.1302-1312, 2007.

S. M. Farhan, Exome sequencing identifies NFS1 deficiency in a novel Fe-S cluster disease, infantile mitochondrial complex II/III deficiency, Molecular Genetics & Genomic Medicine, vol.2, issue.1, pp.73-80, 2014.

M. Fedorova, R. C. Bollineni, and R. Hoffmann, Protein carbonylation as a major hallmark of oxidative damage: Update of analytical strategies, Mass Spectrometry Reviews, vol.33, issue.2, pp.79-97, 2014.

I. Ferecatu, Dysfunction in the mitochondrial Fe-S assembly machinery leads to formation of the chemoresistant truncated VDAC1 isoform without HIF-1? activation, PLOS ONE, vol.13, issue.3, p.194782, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01873520

I. Ferecatu, The diabetes drug target MitoNEET governs a novel trafficking pathway to rebuild an Fe-S cluster into cytosolic aconitase/iron regulatory protein 1, The Journal of biological chemistry, vol.289, issue.41, pp.28070-86, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01873509

-. Fernandez, E. Izarra, and M. Zeviani, Mitochondrial complex III Rieske Fe-S protein processing and assembly, Cell Cycle, vol.17, issue.6, pp.681-688, 2018.

X. Ferrer-cortès, A leaky splicing mutation in NFU1 is associated with a particular biochemical phenotype. Consequences for the diagnosis, vol.26, pp.72-80, 2016.

X. Ferrer-cortès, Protein expression profiles in patients carrying NFU1 mutations. Contribution to the pathophysiology of the disease, Journal of inherited metabolic disease, vol.36, issue.5, pp.841-848, 2012.

J. O. Fuss, Emerging critical roles of Fe-S clusters in DNA replication and repair, Biochimica et Biophysica Acta -Molecular Cell Research, issue.6, pp.1253-71, 2015.

B. Galy, Iron regulatory proteins secure mitochondrial iron sufficiency and function, Cell Metabolism, vol.12, issue.2, pp.194-201, 2010.

C. Gelling, Mitochondrial Iba57p is required for Fe/S cluster formation on aconitase and activation of radical SAM enzymes, Molecular and cellular biology, vol.28, issue.5, pp.1851-61, 2008.

M. L. Genova, Is supercomplex organization of the respiratory chain required for optimal electron transfer activity?, Biochimica et Biophysica Acta -Bioenergetics, vol.1777, issue.7-8, pp.740-746, 2008.

M. L. Genova and G. Lenaz, Functional role of mitochondrial respiratory supercomplexes, Biochimica et biophysica acta, vol.1837, issue.4, pp.427-470, 2014.

D. Ghezzi, SDHAF1, encoding a LYR complex-II specific assembly factor, is mutated in SDH-defective infantile leukoencephalopathy, Nature Genetics, issue.6, pp.654-660, 2009.

E. Gnandt, The multitude of iron-sulfur clusters in respiratory complex I, Biochimica et Biophysica Acta -Bioenergetics, vol.1857, issue.8, pp.1068-72, 2016.

M. Golinelli-cohen and C. Bouton, Fe-S Proteins Acting as Redox Switch: New Key Actors of Cellular Adaptive Responses, Current Chemical Biology, vol.11, pp.1-19, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01873512

S. Gourdoupis, IBA57 Recruits ISCA2 to Form a [2Fe-2S] Cluster-Mediated Complex, Journal of the American Chemical Society, vol.140, issue.43, pp.14401-14413, 2018.

D. E. Green, Purification and properties of the lipoate protein ligase of Escherichia coli, The Biochemical journal, vol.309, pp.853-62, 1995.

J. Gu, The architecture of the mammalian respirasome, Nature, vol.537, issue.7622, pp.1-16, 2016.

S. Guerrero-castillo, The Assembly Pathway of Mitochondrial Respiratory Chain Complex I, Cell Metabolism, vol.25, issue.1, pp.128-167, 2017.

J. Guo, Reengineering of the human pyruvate dehydrogenase complex: from disintegration to highly active agglomerates, The Biochemical journal, vol.474, issue.5, pp.865-75, 2017.

R. Guo, Architecture of Human Mitochondrial Respiratory Megacomplex I2III2IV2, Cell, vol.170, issue.6, pp.1247-1257, 2017.

J. Gurgel-giannetti, A novel complex neurological phenotype due to a homozygous mutation in FDX2, Brain, issue.8, pp.2289-98, 2018.

T. B. Haack, Homozygous missense mutation in BOLA3 causes multiple mitochondrial dysfunctions syndrome in two siblings, Journal of inherited metabolic disease, vol.36, issue.1, pp.55-62, 2013.

F. Habarou, Biallelic mutations in LIPT2 cause a mitochondrial lipoylation defect associated with severe neonatal encephalopathy, American journal of human genetics, vol.101, issue.2, pp.283-90, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02281951

K. Hamanaka, Expanding the phenotype of IBA57 mutations: related leukodystrophy can remain asymptomatic, Journal of Human Genetics, vol.63, pp.1223-1232, 2018.

M. Hempel, LYRM7 -associated complex III deficiency: A clinical, molecular genetic, MR tomographic, and biochemical study, vol.37, pp.55-61, 2017.

S. Hezaveh, A. Zeng, and U. Jandt, Full Enzyme Complex Simulation: Interactions in Human Pyruvate Dehydrogenase Complex, Journal of chemical information and modeling, vol.58, issue.2, pp.362-371, 2018.

J. K. Hiltunen, Mitochondrial fatty acid synthesis type II: more than just fatty acids, The Journal of biological chemistry, vol.284, issue.14, pp.9011-9016, 2009.

J. Hirst, Mitochondrial complex I. Annual review of biochemistry, vol.82, pp.551-75, 2013.

J. A. Imlay, Iron-sulphur clusters and the problem with oxygen, Molecular Microbiology, vol.59, issue.4, pp.1073-82, 2006.

F. Invernizzi, A Homozygous Mutation in LYRM7/MZM1L Associated with Early Onset Encephalopathy, Lactic Acidosis, and Severe Reduction of Mitochondrial Complex III Activity, Human Mutation, vol.34, issue.12, pp.1619-1641, 2013.

F. Invernizzi, Cavitating leukoencephalopathy with multiple mitochondrial dysfunction syndrome and NFU1 mutations, Frontiers in Genetics, vol.5, p.412, 2014.

A. Ishiyama, IBA57 mutations abrogate iron-sulfur cluster assembly leading to cavitating leukoencephalopathy, Neurology Genetics, vol.3, issue.5, p.184, 2017.

S. Iwata, Complete Structure of the 11-Subunit Bovine Mitochondrial Cytochrome bc 1 Complex, Science, vol.281, issue.5373, pp.64-71, 1998.

W. Jeong, Role of sulfiredoxin as a regulator of peroxiredoxin function and regulation of its expression, Free Radical Biology and Medicine, vol.53, issue.3, pp.447-56, 2012.

D. Jin, Novel NFU1 Variants Induced MMDS Behaved as Special Leukodystrophy in Chinese Sufferers, Journal of Molecular Neuroscience, vol.62, issue.2, pp.255-61, 2017.

D. C. Johnson, Structure, function, and formation of biological iron-sulfur clusters. Annual review of biochemistry, vol.74, pp.247-81, 2005.

B. Kadenbach and M. Hüttemann, The subunit composition and function of mammalian cytochrome c oxidase. Mitochondrion, 24, pp.64-76, 2015.

Y. Kanamaru, The Phosphorylation-Dependent Regulation of Mitochondrial Proteins in Stress Responses, Journal of Signal Transduction, pp.1-12, 2012.

A. J. Kastaniotis, Mitochondrial fatty acid synthesis, fatty acids and mitochondrial physiology, Biochimica et Biophysica Acta (BBA) -Molecular and Cell Biology of Lipids, vol.1862, issue.1, pp.39-48, 2017.

A. Kaut, Isa1p is a component of the mitochondrial machinery for maturation of cellular iron-sulfur proteins and requires conserved cysteine residues for function, Journal of Biological Chemistry, vol.275, issue.21, pp.15955-61, 2000.

S. H. Kevelam, NUBPL mutations in patients with complex I deficiency and a distinct MRI pattern, Neurology, vol.80, issue.17, pp.1577-83, 2013.

M. I. Khan, Simultaneous Determination of the Endogenous Free ?-Lipoic Acid and Dihydrolipoic Acid in Human Plasma and Erythrocytes by RP-HPLC with Electrochemical Detection, Chromatographia, vol.73, issue.9, pp.929-968, 2011.

G. Kispal, The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins, The EMBO journal, vol.18, issue.14, pp.3981-3990, 1999.

A. J. Kowaltowski, Mitochondria and reactive oxygen species, Free Radical Biology and Medicine, vol.47, issue.4, pp.333-376, 2009.

L. S. Kremer, Severe respiratory complex III defect prevents liver adaptation to prolonged fasting, Journal of Hepatology, vol.65, issue.2, pp.377-85, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01321215

S. Kure, Chromosomal localization, structure, single-nucleotide polymorphisms, and expression of the human H-protein gene of the glycine cleavage system ( GCSH ), a candidate gene for nonketotic hyperglycinemia, Journal of Human Genetics, vol.46, issue.7, pp.378-84, 2001.

P. Lanciano, Molecular mechanisms of superoxide production by complex III: A bacterial versus human mitochondrial comparative case study, Biochimica et Biophysica Acta -Bioenergetics, vol.1827, pp.1332-1341, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01631833

T. Land and T. A. Rouault, Targeting of a human iron-sulfur cluster assembly enzyme, nifs, to different subcellular compartments is regulated through alternative AUG utilization, Molecular Cell, vol.2, issue.6, pp.807-822, 1998.

B. J. Landgraf, E. L. Mccarthy, and S. J. Booker, Radical S-Adenosylmethionine Enzymes in Human Health and Disease. Annual review of biochemistry, vol.85, pp.485-514, 2016.

D. J. Lane, A. M. Merlot, and D. R. Richardson, The lure of a LYR: The logistics of iron sulfur cluster delivery, Cell metabolism, vol.19, issue.3, pp.348-50, 2014.

H. Lauble, Crystal structures of aconitase with isocitrate and nitroisocitrate bound, Biochemistry, issue.10, pp.2735-2783, 1992.

C. Laurent, Dramatic Increase in Oxidative Stress in Carbon-Irradiated Normal Human Skin Fibroblasts, PLoS ONE, vol.8, issue.12, p.85158, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02024618

G. Lenaz and M. L. Genova, Structure and Organization of Mitochondrial Respiratory Complexes: A New Understanding of an Old Subject, Antioxidants & Redox Signaling, vol.12, issue.8, pp.961-1008, 2010.

J. Li and J. A. Cowan, Glutathione-coordinated [2Fe-2S] cluster: a viable physiological substrate for mitochondrial ABCB7 transport, Chemical Communications, vol.51, issue.12, pp.2253-2258, 2015.

R. Lill, Mechanisms of iron-sulfur protein maturation in mitochondria, cytosol and nucleus of eukaryotes, Biochimica et biophysica acta, issue.7, pp.652-67, 2006.

R. Lill, The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism, Biochimica et biophysica acta, vol.1823, issue.9, pp.1491-508, 2012.

S. C. Lim, Mutations in LYRM4, encoding iron-sulfur cluster biogenesis factor ISD11, cause deficiency of multiple respiratory chain complexes, Human molecular genetics, vol.22, issue.22, pp.4460-73, 2013.

M. T. Lin and M. F. Beal, Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases, Nature, vol.443, issue.7113, pp.787-95, 2006.

G. Liu, Functional Analysis of GLRX5 Mutants Reveals Distinct Functionalities of GLRX5 Protein, Journal of cellular biochemistry, vol.117, issue.1, pp.207-224, 2016.

G. Liu, Heterozygous missense mutations in the GLRX5 gene cause sideroblastic anemia in a Chinese patient, Blood, vol.124, issue.17, pp.2750-2751, 2014.

M. Liu, Phenotypic spectrum of mutations in IBA57, a candidate gene for cavitating leukoencephalopathy, Clinical Genetics, vol.93, issue.2, pp.235-241, 2018.

Y. Liu, G. Fiskum, and D. Schubert, Generation of reactive oxygen species by the mitochondrial electron transport chain, Journal of neurochemistry, vol.80, issue.5, pp.780-787, 2002.

A. Lossos, Fe/S protein assembly gene IBA57 mutation causes hereditary spastic paraplegia, Neurology, vol.84, issue.7, pp.659-67, 2015.

N. Maio, Cochaperone binding to LYR motifs confers specificity of iron sulfur cluster delivery, Cell metabolism, vol.19, issue.3, pp.445-57, 2014.

N. Maio, Disease-causing SDHAF1 mutations impair transfer of Fe-S clusters to SDHB, Cell Metabolism, vol.23, issue.2, pp.292-302, 2016.

N. Maio and T. A. Rouault, Iron-sulfur cluster biogenesis in mammalian cells: New insights into the molecular mechanisms of cluster delivery, Biochimica et biophysica acta, issue.6, pp.1493-512, 2015.

J. A. Mayr, Lipoic acid biosynthesis defects, Journal of inherited metabolic disease, vol.37, issue.4, pp.553-63, 2014.

J. A. Mayr, Lipoic acid synthetase deficiency causes neonatal-onset epilepsy, defective mitochondrial energy metabolism, and glycine elevation, American journal of human genetics, vol.89, issue.6, pp.792-799, 2011.

E. L. Mccarthy and S. J. Booker, Destruction and reformation of an iron-sulfur cluster during catalysis by lipoyl synthase, Science, vol.358, issue.6361, pp.373-380, 2017.

A. E. Medlock, Identification of the Mitochondrial Heme Metabolism Complex M. Liesa, vol.10, p.135896, 2015.

A. Melber, Role of Nfu1 and Bol3 in iron-sulfur cluster transfer to mitochondrial clients. eLife, vol.5, p.15991, 2016.

F. Michel, Biomarqueurs de la peroxydation lipidique: Aspects analytiques, Annales de Biologie Clinique, vol.66, issue.6, pp.605-625, 2008.

F. Mochel and R. G. Haller, , 2009.

U. Mühlenhoff, Components involved in assembly and dislocation of iron-sulfur clusters on the scaffold protein Isu1p, The EMBO Journal, vol.22, issue.18, pp.4815-4840, 2003.

M. P. Murphy, How mitochondria produce reactive oxygen species, Biochemical Journal, vol.417, issue.1, pp.1-13, 2009.

V. Nasta, Structural insights into the molecular function of human, Biochimica et Biophysica Acta (BBA) -General Subjects, issue.8, pp.2119-2150, 2017.

A. Navarro-sastre, A fatal mitochondrial disease is associated with defective NFU1 function in the maturation of a subset of mitochondrial Fe-S proteins, American journal of human genetics, vol.89, issue.5, pp.656-67, 2011.

A. Nickel, M. Kohlhaas, and C. Maack, Mitochondrial reactive oxygen species production and elimination, Journal of Molecular and Cellular Cardiology, vol.73, pp.26-33, 2014.

R. Nilsson, Discovery of genes essential for heme biosynthesis through large-scale gene expression analysis, Cell metabolism, vol.10, issue.2, pp.119-149, 2009.

M. Nishioka, An infant case of diffuse cerebrospinal lesions and cardiomyopathy caused by a BOLA3 mutation, Brain and Development, vol.40, issue.6, pp.484-492, 2018.

M. Nizon, Leukoencephalopathy with cysts and hyperglycinemia may result from NFU1 deficiency. Mitochondrion, 15, pp.59-64, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02181366

È. Obis, Frataxin deficiency in neonatal rat ventricular myocytes targets mitochondria and lipid metabolism, Free Radical Biology and Medicine, vol.73, pp.21-33, 2014.

L. Packer and E. Cadenas, Lipoic acid: energy metabolism and redox regulation of transcription and cell signaling, Journal of Clinical Biochemistry and Nutrition, vol.48, issue.1, pp.26-32, 2010.

L. Packer, E. H. Witt, and H. J. Tritschler, Alpha-lipoic acid as a biological antioxidant, Free Radical Biology and Medicine, vol.19, issue.2, pp.227-50, 1995.

M. Pandolfo, Friedreich Ataxia, Archives of neurology, vol.65, issue.10, pp.1297-303, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01887941

P. N. Paradkar, Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2, Molecular and cellular biology, vol.29, issue.4, pp.1007-1023, 2009.

A. Parent, Mammalian frataxin directly enhances sulfur transfer of NFS1 persulfide to both ISCU and free thiols, Nature Communications, p.6, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01111365

M. S. Patel, The pyruvate dehydrogenase complexes: Structure-based function and regulation, Journal of Biological Chemistry, vol.289, issue.24, pp.16615-16638, 2014.

V. D. Paul and R. Lill, SnapShot: eukaryotic Fe-S protein biogenesis, Cell metabolism, vol.20, issue.2, pp.384-384, 2014.

W. Pelzer, Mitochondrial Isa2p plays a crucial role in the maturation of cellular iron-sulfur proteins, FEBS Letters, vol.476, issue.3, pp.134-143, 2000.

S. G. Rhee, Overview on Peroxiredoxin, Molecules and Cells, vol.39, issue.1, pp.1-5, 2016.

P. R. Rich, Mitochondrial cytochrome c oxidase: catalysis, coupling and controversies, Biochemical Society Transactions, vol.45, issue.3, pp.813-842, 2017.

J. D. Robin, Isolation and immortalization of patient-derived cell lines from muscle biopsy for disease modeling, Journal of visualized experiments : JoVE, issue.95, p.52307, 2015.

L. Rochette, Direct and indirect antioxidant properties of ?-lipoic acid and therapeutic potential, Molecular Nutrition & Food Research, vol.57, issue.1, pp.114-139, 2013.

T. A. Rouault, Biogenesis of iron-sulfur clusters in mammalian cells: new insights and relevance to human disease, Disease models & mechanisms, vol.5, issue.2, pp.155-64, 2012.

B. Royer-bertrand, Mutations in the heat-shock protein A9 (HSPA9) gene cause the EVEN-PLUS syndrome of congenital malformations and skeletal dysplasia, Scientific Reports, vol.5, p.17154, 2015.

J. Rudolf, The DNA Repair Helicases XPD and FancJ Have Essential Iron-Sulfur Domains, Molecular Cell, vol.23, issue.6, pp.801-809, 2006.

P. Rustin, Biochemical and molecular investigations in respiratory chain deficiencies, Clinica chimica acta; international journal of clinical chemistry, vol.228, issue.1, pp.35-51, 1994.

E. Sánchez, LYRM7/MZM1L is a UQCRFS1 chaperone involved in the last steps of mitochondrial Complex III assembly in human cells, Biochimica et Biophysica Acta (BBA) -Bioenergetics, vol.1827, issue.3, pp.285-93, 2013.

L. A. Sánchez, Iba57p participates in maturation of a [2Fe-2S]-cluster Rieske protein and in formation of supercomplexes III/IV of Saccharomyces cerevisiae electron transport chain, 2018.

K. Sato, Glycine cleavage system in astrocytes, Brain Research, vol.567, issue.1, pp.64-70, 1991.

H. Schägger and K. Pfeiffer, The Ratio of Oxidative Phosphorylation Complexes I-V in Bovine Heart Mitochondria and the Composition of Respiratory Chain Supercomplexes, Journal of Biological Chemistry, vol.276, issue.41, pp.37861-37868, 2001.

B. Schilke, Evidence for a conserved system for iron metabolism in the mitochondria of Saccharomyces cerevisiae, Proceedings of the National Academy of Sciences of the United States of America, vol.96, pp.10206-10217, 1999.

K. Schmitz-abe, Congenital sideroblastic anemia due to mutations in the mitochondrial HSP70 homologue HSPA9, Blood, vol.126, issue.25, pp.2734-2742, 2015.

M. S. Schonauer, Intersection of RNA Processing and the Type II Fatty Acid Synthesis Pathway in Yeast Mitochondria, Molecular and Cellular Biology, vol.28, issue.21, pp.6646-57, 2008.

M. S. Schonauer, Lipoic acid synthesis and attachment in yeast mitochondria, The Journal of biological chemistry, vol.284, issue.35, pp.23234-23276, 2009.

A. Seyda, A novel syndrome affecting multiple mitochondrial functions, located by microcell-mediated transfer to chromosome 2p14-2p13, American journal of human genetics, vol.68, issue.2, pp.386-96, 2001.

K. P. Shay, Alpha-lipoic acid as a dietary supplement: Molecular mechanisms and therapeutic potential, Biochimica et Biophysica Acta -General Subjects, issue.10, pp.1149-60, 2009.

A. Sheftel, O. Stehling, and R. Lill, Iron-sulfur proteins in health and disease, Trends in endocrinology and metabolism, vol.21, issue.5, pp.302-316, 2010.

A. D. Sheftel, Human ind1, an iron-sulfur cluster assembly factor for respiratory complex I, Molecular and cellular biology, vol.29, issue.22, pp.6059-73, 2009.

A. D. Sheftel, Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis, Proceedings of the National Academy of Sciences, vol.107, issue.26, pp.11775-11780, 2010.

A. D. Sheftel, The human mitochondrial ISCA1, ISCA2, and IBA57 proteins are required for, Molecular biology of the cell, vol.23, issue.7, pp.1157-66, 2012.

C. Shi, ?-Lipoic acid protects against the cytotoxicity and oxidative stress induced by cadmium in HepG2 cells through regeneration of glutathione by glutathione reductase via Nrf2/ARE signaling pathway, Environmental Toxicology and Pharmacology, vol.45, pp.274-81, 2016.

Y. Shi, Both human ferredoxins 1 and 2 and ferredoxin reductase are important for iron-sulfur cluster biogenesis, Biochimica et Biophysica Acta (BBA) -Molecular Cell Research, vol.1823, issue.2, pp.484-92, 2012.

A. Shukla, Homozygous p.(Glu87Lys) variant in ISCA1 is associated with a multiple mitochondrial dysfunctions syndrome, Journal of Human Genetics, vol.62, issue.7, pp.723-730, 2017.

A. Shukla, P. Kaur, and K. Girisha, Report of the Third Family with Multiple Mitochondrial Dysfunctions Syndrome 5 Caused by the Founder Variant p.(Glu87Lys) in ISCA1, Journal of Pediatric Genetics, issue.03, pp.130-133, 2018.

A. Solmonson and R. J. Deberardinis, Lipoic acid metabolism and mitochondrial redox regulation, Journal of Biological Chemistry, vol.293, issue.20, pp.7522-7552, 2018.

Y. Soreze, Mutations in human lipoyltransferase gene LIPT1 cause a Leigh disease with secondary deficiency for pyruvate and alpha-ketoglutarate dehydrogenase, Orphanet journal of rare diseases, vol.8, p.192, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00938361

R. Spiegel, Deleterious mutation in FDX1L gene is associated with a novel mitochondrial muscle myopathy, European journal of human genetics : EJHG, vol.22, issue.7, pp.902-908, 2014.

S. Srinivasan, Oxidative stress induced mitochondrial protein kinase A mediates cytochrome c oxidase dysfunction, PLoS One, vol.8, issue.10, p.77129, 2013.

V. Srinivasan, A. J. Pierik, and R. Lill, Crystal structures of nucleotide-free and glutathione-bound mitochondrial ABC transporter Atm1, Science, vol.343, issue.6175, pp.1137-1177, 2014.

D. A. Stroud, Accessory subunits are integral for assembly and function of human mitochondrial complex i, Nature, vol.538, issue.7623, pp.123-129, 2016.

L. Stryer, J. Berg, and J. Tymoczko, Biochimie, cinquième édition. Flammarion, 2003.

J. H. Suh, Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid, Proceedings of the National Academy of Sciences, vol.101, issue.10, pp.3381-3387, 2004.

F. Sun, Crystal structure of mitochondrial respiratory membrane protein Complex II, Cell, vol.121, issue.7, pp.1043-57, 2005.

J. W. Taanman, Human cytochrome c oxidase: structure, function, and deficiency, Journal of bioenergetics and biomembranes, vol.29, issue.2, pp.151-63, 1997.

V. Taché, Lipoyltransferase 1 Gene Defect Resulting in Fatal Lactic Acidosis in Two Siblings, Case Reports in Obstetrics and Gynecology, pp.1-4, 2016.

O. Tirosh, Redox regulation of mitochondrial permeability transition: Effects of uncoupler, lipoic acid and its positively charged analog LA-plus and selenium, BioFactors, pp.297-306, 2003.

I. Toldo, Neonatal mitochondrial leukoencephalopathy with brain and spinal involvement and high lactate: expanding the phenotype of ISCA2 gene mutations, Metabolic Brain Disease, vol.33, pp.805-817, 2018.

D. Tonduti, New spastic paraplegia phenotype associated to mutation of NFU1, Orphanet journal of rare diseases, vol.10, p.13, 2015.

W. Tong, Subcellular compartmentalization of human Nfu, an ironsulfur cluster scaffold protein, and its ability to assemble a, vol.100, pp.9762-9769, 2003.

A. Torraco, ISCA1 Mutation In A Patient With Infantile-Onset Leukodystrophy Causes Defects In Mitochondrial, Proteins. Human Molecular Genetics, vol.27, issue.15, pp.2739-54, 2018.

A. Torraco, Novel mutations in IBA57 are associated with leukodystrophy and variable clinical phenotypes, Journal of Neurology, vol.264, issue.1, pp.102-113, 2017.

F. Tort, Mutations in the lipoyltransferase LIPT1 gene cause a fatal disease associated with a specific lipoylation defect of the 2-ketoacid dehydrogenase complexes, Human molecular genetics, vol.23, issue.7, pp.1907-1922, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01859368

Y. Tsurusaki, Novel compound heterozygous LIAS mutations cause glycine encephalopathy, Journal of Human Genetics, vol.60, issue.10, pp.631-636, 2015.

M. A. Uzarska, Mitochondrial Bol1 and Bol3 function as assembly factors for specific iron-sulfur proteins, p.5, 2016.

M. A. Uzarska, The mitochondrial Hsp70 chaperone Ssq1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation, Molecular biology of the cell, vol.24, issue.12, pp.1830-1871, 2013.

M. P. Valdecantos, Vitamin C, resveratrol and lipoic acid actions on isolated rat liver mitochondria: all antioxidants but different, Redox Report, vol.15, issue.5, pp.207-223, 2010.

P. Venditti, L. Di-stefano, and S. Di-meo, Mitochondrial metabolism of reactive oxygen species, Mitochondrion, vol.13, issue.2, pp.71-82, 2013.

H. Venselaar, Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces, BMC bioinformatics, vol.11, issue.1, p.548, 2010.

A. Vernay, MitoNEET-dependent formation of intermitochondrial junctions, Proceedings of the National Academy of Sciences, p.201706643, 2017.

S. Vijayakrishnan, Solution structure and characterisation of the human pyruvate dehydrogenase complex core assembly, Journal of molecular biology, vol.399, issue.1, pp.71-93, 2010.

K. R. Vinothkumar, J. Zhu, and J. Hirst, Architecture of mammalian respiratory complex I, Nature, vol.515, issue.7525, pp.80-84, 2014.

D. Voet and J. G. Voet, BIOCHEMISTRY SECOND EDI, 1995.

C. Wachnowsky, I. Fidai, and J. A. Cowan, Iron-sulfur cluster biosynthesis and trafficking-impact on human disease conditions, Metallomics, vol.10, issue.1, pp.9-29, 2018.

T. Wai and T. Langer, Mitochondrial Dynamics and Metabolic Regulation, Trends in Endocrinology & Metabolism, vol.27, issue.2, pp.105-122, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02391015

B. E. Weiner, An iron-sulfur cluster in the C-terminal domain of the p58 subunit of human DNA primase, The Journal of biological chemistry, vol.282, issue.46, pp.33444-51, 2007.

N. Wiedemann, Essential role of Isd11 in mitochondrial iron-sulfur cluster synthesis on Isu scaffold proteins, The EMBO journal, vol.25, issue.1, pp.184-95, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00136402

P. Willems, BOLA1 is an aerobic protein that prevents mitochondrial morphology changes induced by glutathione depletion, Antioxidants & redox signaling, vol.18, issue.2, pp.129-167, 2013.

A. Witkowski, A. K. Joshi, and S. Smith, Coupling of the de novo fatty acid biosynthesis and lipoylation pathways in mammalian mitochondria, The Journal of biological chemistry, vol.282, issue.19, pp.14178-85, 2007.

I. Wittig, Supercomplexes and subcomplexes of mitochondrial oxidative phosphorylation, Biochimica et Biophysica Acta (BBA) -Bioenergetics, vol.1757, issue.9, pp.1066-72, 2006.

V. Yankovskaya, Architecture of Succinate Dehydrogenase and Reactive Oxygen Species Generation, Science, vol.299, issue.5607, pp.700-704, 2003.

H. Ye and T. A. Rouault, Human iron-sulfur cluster assembly, cellular iron homeostasis, and disease, Biochemistry, vol.49, issue.24, pp.4945-56, 2010.

X. Yi and N. Maeda, Endogenous production of lipoic acid is essential for mouse development, Molecular and cellular biology, vol.25, issue.18, pp.8387-92, 2005.

R. J. Youle and A. M. Van-der-bliek, Mitochondrial fission, fusion, and stress, Science, issue.6098, pp.1062-1067, 2012.

T. Yu, Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species, Cardiovascular research, vol.79, issue.2, pp.341-51, 2008.

A. Zay, Glycine cleavage enzyme complex: Molecular cloning and expression of the H-protein cDNA from cultured human skin fibroblasts, Biochemistry and Cell Biology, vol.89, issue.3, pp.299-307, 2011.

N. Zemirli, E. Morel, and D. Molino, Mitochondrial Dynamics in Basal and Stressful Conditions, International Journal of Molecular Sciences, vol.19, issue.2, p.564, 2018.

L. Zheng, Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis, Proceedings of the National Academy of Sciences of the United States of America, vol.90, pp.2754-2762, 1993.

J. Zhu, K. R. Vinothkumar, and J. Hirst, Structure of mammalian respiratory complex I, Nature, vol.536, issue.7616, pp.354-362, 2016.

D. B. Zorov, M. Juhaszova, and S. J. Sollott, Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release, Physiological Reviews, vol.94, issue.3, pp.909-950, 2014.