R. Zak, Development and proliferative capacity of cardiac muscle cells, Circ. Res, vol.35, issue.2, pp.17-26, 1974.

A. Nag, Study of non-muscle cells of the adult mammalian heart: a fine structural analysis and distribution, Cytobios, vol.28, issue.109, pp.41-61, 1980.

Y. Rudy, Molecular basis of cardiac action potential repolarization, Ann. N. Y. Acad. Sci, vol.1123, pp.113-118, 2008.

F. Pettersen, Bioimpedance as a tool in cardiac resyncronisation therapy, 2017.

M. N. Levy and A. J. Pappano, Cardiovascular physiology. Mosby, 2007.

F. Kavaler, V. J. Fisher, and J. H. Stuckey, The Potentiated Contraction and Ventricular 'Contractility', vol.41, pp.592-601, 1965.

A. G. Kléber and Y. Rudy, Basic Mechanisms of Cardiac Impulse Propagation and Associated Arrhythmias, Physiol. Rev, vol.84, issue.2, pp.431-488, 2004.

J. M. De and . Bakker, Slow conduction in the infarcted human heart: 'Zigzag' course of activation, Circulation, vol.88, issue.3, pp.915-926, 1993.

M. J. Janse and A. L. Wit, Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction, Am. Physiol. J, vol.69, issue.4, pp.1049-1168, 1989.

A. De-micheli-serra, P. Iturralde-torres, and R. Izaguirre-Ávila, How electricity was discovered and how it is related to cardiology, Arch. Cardiol. México, vol.82, issue.3, pp.252-259, 2012.

M. Cobb, Exorcizing the animal spirits: Jan Swammerdam on nerve function, Nat. Rev. Neurosci, vol.3, issue.5, pp.395-400, 2002.

L. Galvani and G. Aldini, De Viribus Electricitatis

, Accesserunt Epistolae Ad Animalis Electricitatis Theoriam Pertinentes

A. Volta, On the electricity excited by the mere contact of conducting substances of different kinds, Philos. Trans. R. Soc. London, pp.403-431, 1800.

K. Jelved, A. D. Jackson, and O. Knudsen, Selected Scientific Work of Hans Christian Orsted, 2014.

S. Grimnes, Ø. G. Martinsen, B. , and B. Basics, , 2015.

C. Matteucci, Sur le courant électrique de la grenouille : second mémoire sur l'électricité animale faisant suite à celui sur la torpille, Ann Chim Phys, vol.6, p.1842

A. D. Waller, A demonstration on man of electromotive changes accompanying the heart's beat, J. Physiol, 1887.

A. D. Waller and W. Reid, On the action of the excised mammalian heart, Philos. Trans. R. Soc. B, pp.215-256, 1887.

W. Einthoven, The string galvanometer and the human electrocardiogram, R. Netherlands Acad. Arts Sci. Proc, vol.6, pp.107-115

W. Einthoven, G. Fahr, and A. De-waart, On the direction and manifest size of the variations of potential in the human heart and on the influence of the position of the heart on the form of the electrocardiogram, Am. Heart J, vol.40, issue.2, pp.163-211, 1950.

P. M. Zoll, A. J. Linenthal, . Wi, M. H. Gibson, L. R. Paul et al., Termination of ventricular fibrillation in man by externally applied electric countershock, N. Engl. J. Med, vol.254, issue.16, pp.727-732, 1956.

O. Aquilina, A brief history of cardiac pacing, Images Paediatr. Cardiol, vol.8, issue.2, pp.17-81, 2006.

C. W. Lillehei, V. L. Gott, P. C. Hodges, D. M. Long, and E. E. Bakken, Transistor pacemaker for treatment of complete atrioventricular dissociation, J. Am. Med. Assoc, vol.172, issue.18, pp.76-80, 1960.

R. Elmqvist and A. Senning, An implantable pacemaker for the heart, Med. Electron. Proc. Second Int. Conf. Med. Electron, pp.253-254, 1959.

H. G. Mond, J. R. Helland, K. Stokes, G. A. Bornzin, and R. Mcvenes, The electrodetissue interface: The revolutionary role of steroid-elution, PACE -Pacing Clin. Electrophysiol, vol.37, issue.9, pp.1232-1249, 2014.

A. Kypta, First Autopsy Description of Changes 1 Year After Implantation of a Leadless Cardiac Pacemaker: Unexpected Ingrowth and Severe Chronic Inflammation, Can. J. Cardiol, vol.32, issue.12, 2016.

V. Y. Reddy, Retrieval of the Leadless Cardiac Pacemaker: A Multicenter Experience, Circ. Arrhythmia Electrophysiol, vol.9, issue.12, pp.1-6, 2016.

J. M. Morais, F. Papadimitrakopoulos, and D. J. Burgess, Biomaterials/tissue interactions: Possible solutions to overcome foreign body response, AAPS J, vol.12, issue.2, pp.188-196, 2010.

C. A. Souders, S. L. Bowers, and T. A. Baudino, Cardiac fibroblast: The renaissance cell, Circ. Res, vol.105, issue.12, pp.1164-1176, 2009.

P. Camelliti, T. K. Borg, and P. Kohl, Structural and functional characterisation of cardiac fibroblasts, Cardiovasc. Res, vol.65, issue.1, pp.40-51, 2005.

G. Krenning, E. M. Zeisberg, and R. Kalluri, The origin of fibroblasts and mechanism of cardiac fibrosis, J. Cell. Physiol, vol.225, issue.3, pp.631-638, 2010.

T. A. Baudino, W. Carver, W. Giles, and T. K. Borg, Cardiac fibroblasts: friend or foe?, Am. J. Physiol. Circ. Physiol, vol.291, issue.3, pp.1015-1026, 2006.

R. S. Smith, T. J. Smith, T. M. Blieden, and R. P. Phipps, Fibroblasts as sentinel cells. Synthesis of chemokines and regulation of inflammation, Am. J. Pathol, vol.151, issue.2, pp.317-339, 1997.

M. J. Ivey and M. D. Tallquist, Defining the Cardiac Fibroblast, Circ. J, vol.80, issue.11, pp.2269-2276, 2016.

J. G. Travers, F. A. Kamal, J. Robbins, K. E. Yutzey, and B. C. Blaxall, Cardiac fibrosis: The fibroblast awakens, Circ. Res, vol.118, issue.6, pp.1021-1040, 2016.

R. T. Kendall and C. A. Feghali-bostwick, Fibroblasts in fibrosis: Novel roles and mediators, vol.5, pp.1-14, 2014.

J. Baum and H. S. Duffy, Fibroblasts and Myofibroblasts: What Are We Talking About?, J. Cardiovasc. Pharmacol, vol.57, issue.4, pp.376-379, 2011.

F. A. Van-nieuwenhoven and N. A. Turner, The Role of Cardiac Fibroblasts in the Transition from Inflammation to Fibrosis Following Myocardial Infarction, Vascul. Pharmacol, vol.58, issue.3, pp.182-188, 2013.

J. D. Lajiness and S. J. Conway, The dynamic role of cardiac fibroblasts in development and disease, J. Cardiovasc. Transl. Res, vol.5, issue.6, pp.739-748, 2012.

S. Chacar, N. Farès, P. Bois, and J. F. Faivre, Basic Signaling in Cardiac Fibroblasts, J. Cell. Physiol, vol.232, issue.4, pp.725-730, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01436828

D. Mackenna, S. R. Summerour, and F. J. Villarreal, Role of mechanical factors in modulating cardiac fibroblast function and extracellular matrix synthesis, Cardiovasc. Res, vol.46, issue.2, pp.257-263, 2000.

E. C. Goldsmith, Organization of fibroblasts in the heart, Dev. Dyn, vol.230, issue.4, pp.787-794, 2004.

K. E. Porter and N. A. Turner, Cardiac fibroblasts: At the heart of myocardial remodeling, Pharmacol. Ther, vol.123, issue.2, pp.255-278, 2009.

E. Ongstad and P. Kohl, Fibroblast-Myocyte Coupling in the Heart: Potential Relevance for Therapeutic Interventions, J. Mol. Cell. Cardiol, vol.91, pp.238-246, 2016.

P. Kohl and P. Camelliti, Fibroblast-myocyte connections in the heart, Hear. Rhythm, vol.9, issue.3, pp.461-464, 2012.

W. Chen and N. G. Frangogiannis, Fibroblasts in post-infarction inflammation and cardiac repair, Biochim. Biophys. Acta -Mol. Cell Res, vol.1833, issue.4, pp.945-953, 2013.

M. Kawaguchi, Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury, Circulation, vol.123, issue.6, pp.594-604, 2011.

S. Van-putten, Y. Shafieyan, and B. Hinz, Mechanical control of cardiac myofibroblasts, vol.93, pp.133-142, 2015.

I. A. Darby, B. Laverdet, F. Bonté, and A. Desmoulière, Fibroblasts and myofibroblasts in wound healing, Clin. Cosmet. Investig. Dermatol, pp.301-311, 2014.

J. M. Anderson, A. Rodriguez, and D. T. Chang, Foreign body reaction to biomaterials, Semin. Immunol, vol.20, issue.2, pp.86-100, 2008.

G. Wick, The Immunology of Fibrosis, Annu. Rev. Immunol, vol.31, issue.1, pp.107-135, 2013.

N. G. Frangogiannis, The immune system and cardiac repair, Pharmacol. Res, vol.58, issue.2, pp.88-111, 2008.

M. G. St, N. John-sutton, and . Sharpe, Left ventricular remodeling after myocardial infarction: Pathophysiology and therapy, Circulation, vol.101, issue.25, pp.2981-2988, 2000.

P. Kong, P. Christia, and N. G. Frangogiannis, The Pathogenesis of Cardiac Fibrosis, Cell. Mol. life Sci, vol.71, issue.4, pp.91-103, 2014.

N. G. Frangogiannis, Pathophysiology of myocardial infarction, Compr. Physiol, vol.5, issue.4, pp.1841-1875, 2015.

K. Stokes, J. Anderson, R. Mcvenes, and C. Mcclay, The encapsulation of polyurethane-insulated transvenous cardiac pacemaker leads, Cardiovasc. Pathol, vol.4, issue.3, pp.163-171, 1995.

A. Wrzeszcz, Hydrogel coated and dexamethasone releasing cochlear implants: Quantification of fibrosis in guinea pigs and evaluation of insertion forces in a human cochlea model, J. Biomed. Mater. Res. -Part B Appl. Biomater, vol.103, issue.1, pp.169-178, 2015.

W. and K. Ward, A review of the foreign-body response to subcutaneouslyimplanted devices: the role of macrophages and cytokines in biofouling and fibrosis, J. Diabetes Sci. Technol, vol.2, issue.5, pp.768-77, 2008.

A. Lecomte, Conception and characterization of flexible microelectrodes for implantable neuroprosthetic development, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01417209

C. Newbold, Changes in biphasic electrode impedance with protein adsorption and cell growth, J. Neural Eng, vol.7, issue.5, p.56011, 2010.

A. Bohl, Development of a specially tailored local drug delivery system for the prevention of fibrosis after insertion of cochlear implants into the inner ear, J. Mater. Sci. Mater. Med, vol.23, issue.9, pp.2151-2162, 2012.

D. Schwartzman, I. Chang, J. J. Michele, M. S. Mirotznik, and K. R. Foster, Electrical Impedance Properties of Normal and Chronically Infarcted Left Ventricular Myocardium, J. Interv. Card. Electrophysiol, vol.3, issue.3, pp.213-224, 1999.

J. Picálek and J. Kolafa, Molecular dynamics study of conductivity of ionic liquids: The Kohlrausch law, J. Mol. Liq, vol.134, issue.1-3, pp.29-33, 2007.

S. Gabriel, R. W. Lau, and C. Gabriel, The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz, Phys. Med. Biol, vol.41, issue.11, pp.2251-2269, 1996.

J. Malmivuo, R. Plonsey, P. Bioelectromagnetism, B. Bioelectric, O. Fields et al., , 1995.

R. Plonsey and R. C. Barr, Bioelectricity, a quantitative approach, 2007.

H. P. Schwan, Electrical properties of tissues and cell suspensions: mechanisms and models, Proc. 16th Annu. Int. Conf, pp.70-71, 1994.

C. Gabriel, S. Gabriel, and E. Corthout, The dielectric properties of biological tissues: I. Literature survey, Phys. Med. Biol, vol.41, issue.11, pp.2231-2249, 1996.

S. Gabriel, R. W. Lau, and C. Gabriel, The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues, Phys. Med. Biol, vol.41, issue.11, pp.2271-2293, 1996.

H. P. Schwan and S. Takashima, Electrical Conduction and Dielectric Behavior in Biological Systems, Encycl. Appl. Phys, 2003.

K. S. Cole, Membranes, Ions, and Implulses, 1976.

E. H. Grant, Biological effects of microwaves and radio waves, IEE Proc. A Phys. Sci. Meas. Instrumentation. Manag. Educ. Rev, vol.128, issue.9, pp.602-606, 1981.

D. A. Dean, T. Ramanathan, D. Machado, and R. Sundararajan, Electrical Impedance Spectroscopy Study of Biological Tissues, Bone, vol.23, issue.1, pp.1-7, 2011.

K. S. Cole and R. H. Cole, Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics, J. Chem. Phys, vol.9, issue.4, p.341, 1941.

H. P. Schwan and C. F. Kay, The Conductivity of Living Tissues, Ann. N. Y. Acad. Sci, vol.65, issue.6, pp.1007-1013, 1957.

A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol, vol.117, pp.500-544, 1952.

H. Fricke and S. Morse, The electric resistance and capacity of blood for frequencies between 800 and 4,5 million cycles, J. Gen. Physiol, vol.9, issue.2, pp.153-167, 1925.

H. Fricke, A MATHEMATICAL TREATMENT OF THE ELECTRIC CONDUCTIVITY AND CAPACITY OF DISPERSE SYSTEMS, Phys. Rev, vol.26, issue.5, pp.678-681, 1925.

E. T. Mcadams and J. Jossinet, Tissue impedance: A historical overview, Physiol. Meas, vol.16, issue.3A, 1995.

H. Yoo and C. Van-hoof, Bio-Medical CMOS ICs, 2011.

L. Geddes, Historical evolution of circuit models for the electrode-electrolyte interface, Ann. Biomed. Eng, vol.25, issue.1, pp.1-14, 1997.

D. R. Merrill, M. Bikson, and J. G. Jefferys, Electrical stimulation of excitable tissue: Design of efficacious and safe protocols, J. Neurosci. Methods, vol.141, issue.2, pp.171-198, 2005.

A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2001.

P. Ben-ishai, M. S. Talary, A. Caduff, E. Levy, and Y. Feldman, Electrode polarization in dielectric measurements: a review, Meas. Sci. Technol, vol.24, issue.10, p.102001, 2013.

H. Helmholtz, Studien über Electrische Grenzschichten, Ann. der Phys. und Chemie, vol.7, p.1879

H. Fricke, The theory of electrolytic polarization, London, Edinburgh, Dublin Philos. Mag. J. Sci, vol.14, issue.90, pp.310-318, 1932.

J. R. Macdonald and W. B. Johnson, Impedance Spectroscopy: Emphasizing Solid Materials and Systems, 1987.

H. P. Schwan, Electrode Polarization Impedance and Measurements in Biological Materials, Ann. N. Y. Acad. Sci, vol.148, issue.1, pp.191-209, 1968.

E. Jorge, G. Amorós-figueras, T. García-sánchez, R. Bragós, J. Rosell-ferrer et al., Early detection of acute transmural myocardial ischemia by the phasic systolic-diastolic changes of local tissue electrical impedance, Am. J. Physiol. Circ. Physiol, vol.310, issue.3, pp.436-443, 2016.

M. Min, R. Land, T. Paavle, T. Parve, P. Annus et al., Broadband spectroscopy of dynamic impedances with short chirp pulses, Physiol. Meas, vol.32, issue.7, pp.945-958, 2011.

U. Pliquett, Time-domain based impedance measurement: Strengths and drawbacks, J. Phys. Conf. Ser, vol.434, issue.1, 2013.

T. Sun, S. Gawad, C. Bernabini, N. G. Green, and H. Morgan, Broadband single cell impedance spectroscopy using maximum length sequences: Theoretical analysis and practical considerations, Meas. Sci. Technol, vol.18, issue.9, pp.2859-2868, 2007.

B. Sanchez, G. Vandersteen, R. Bragos, and J. Schoukens, Basics of broadband impedance spectroscopy measurements using periodic excitations, Meas. Sci. Technol, vol.23, issue.10, 2012.

S. Grimnes and Ø. G. Martinsen, Sources of error in tetrapolar impedance measurements on biomaterials and other ionic conductors, J. Phys. D. Appl. Phys, vol.40, issue.1, pp.9-14, 2007.

T. K. Bera, Bioelectrical impedance methods for noninvasive health monitoring: A review, J. Med. Eng, vol.2014, 2014.

D. A. Schoeller, Bioelectrical Impedance Analysis What Does It Measure?, Ann. N. Y. Acad. Sci, vol.904, issue.1, pp.159-162, 2000.

L. W. Pinto, S. V. Gandra, M. D. Alves, I. Gomes, and E. B. Sternick, Bioelectrical impedance analysis of body composition : influence of a newly implanted cardiac device, vol.8, pp.60-65, 2017.

A. P. Hills and N. M. Byrne, Bioelectrical impedance and body composition assessment, Malays. J. Nutr, vol.4, pp.107-112, 1998.

M. Nahvi and B. S. Hoyle, Electrical Impedance Spectroscopy Sensing for Industrial Processes, Sensors J, vol.9, issue.12, pp.1808-1816, 2009.

A. Lasia, Electrochemical Impedance Spectroscopy and its Applications, Mod. Asp. Electrochem, vol.32, pp.143-248, 1999.

M. Olivier and M. Poelman, Use of Electrochemical Impedance Spectroscopy (EIS) for the Evaluation of Electrocoatings Performances, Recent Researches, 2012.

J. Silva, J. P. Marques-de, J. Sá, and . Jossinet, Classification of breast tissue by electrical impedance spectroscopy, Med. Biol. Eng. Comput, vol.38, issue.1, pp.26-30, 2000.

A. Akhavan and F. Rajabipour, Evaluating ion diffusivity of cracked cement paste using electrical impedance spectroscopy, Mater. Struct. Constr, vol.46, issue.5, pp.697-708, 2013.

M. Tiitta and H. Olkkonen, Electrical impedance spectroscopy device for measurement of moisture gradients in wood, Rev. Sci. Instrum, vol.73, issue.8, p.3093, 2002.

S. Mancuso, Measuring Roots, an updated approach, 2012.

S. Ha, Microfluidic Electric Impedance Spectroscopy for

M. Syst, Chem. Life Sci, vol.29, pp.1960-1962, 2012.

A. Alsamuraee and H. Jaafer, Electrochemical impedance spectroscopic evaluation of corrosion protection properties of polyurethane /polyvinyl chloride blend coatings on steel, Am. J. Sci. Ind. Res, vol.2, issue.5, pp.761-768, 2011.

P. M. Gomadam and J. W. Weidner, Analysis of electrochemical impedance spectroscopy in proton exchange membrane fuel cells, Int. J. Energy Res, vol.29, issue.12, pp.1133-1151, 2005.

J. Yu and C. C. Liu, Microfabricated thin film impedance sensor & AC impedance measurements, Sensors, vol.10, issue.6, pp.5845-5858, 2010.

M. Grossi and B. Riccò, Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: A review, J. Sensors Sens. Syst, vol.6, issue.2, pp.303-325, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01579247

H. H. Woltjer, H. J. Bogaard, P. M. De, and . Vries, The technique of impedance cardiography, Eur. Heart J, vol.18, issue.9, pp.1396-1403, 1997.

R. P. Patterson, Fundamentals of Impedance Cardiography, Eng. Med. Biol. Mag, vol.8, issue.1, pp.35-38, 1989.

B. H. Brown, Electrical impedance tomography (EIT): A review, J. Med. Eng. Technol, vol.27, issue.3, pp.97-108, 2003.

T. K. Bera, Noninvasive Electromagnetic Methods for Brain Monitoring: A Technical Review, Intell. Syst. Ref. Libr, vol.74, pp.51-95, 2015.

M. H. Ribeiro, R. W. Santos, L. P. Barra, and F. C. Peters, Simulation study on the determination of cardiac ejection fraction by electrical impedance tomography using a hybrid heuristic approach, J. Med. Imaging Heal. Informatics, vol.4, issue.1, pp.113-121, 2014.

G. Amorós-figueras, E. Jorge, T. García-sánchez, R. Bragós, J. Rosell-ferrer et al., Recognition of Fibrotic Infarct Density by the Pattern of Local Systolic-Diastolic Myocardial Electrical Impedance, Front. Physiol, vol.7, 2016.

S. Park, N. B. Nguyen, A. Pezhouman, and R. Ardehali, Cardiac fibrosis: potential therapeutic targets, Transl. Res, vol.209, pp.121-137, 2019.

M. A. Branch, T. F. Coleman, and Y. Li, A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems*, SIAM J. Sci. Comput, vol.21, issue.1, pp.1-23, 1999.

M. J. Powell, An efficient method for finding the minimum of a function of several variables without calculating derivatives, Comput. J, vol.7, issue.2, pp.155-162, 1964.

. Acea-biosciences, RTCA MP Instrument Operator's Manual, RTCA MP Instrum. Oper. Man, p.14, 2017.

. Xcelligence, Real-Time and Dynamic Monitoring of Cell Proliferation and Viability for Adherent Cells, pp.1-8, 2013.

. Acea-biosciences, Calculation principles of RTCA Software, xCELLigence Syst. Tech. Note, issue.2, 2010.

H. E. Olivey, N. A. Mundell, A. F. Austin, and J. V. Barnett, Transforming growth factor-? stimulates epithelial-mesenchymal transformation in the proepicardium, Dev. Dyn, vol.235, issue.1, pp.50-59, 2006.

N. Guan, J. Deng, T. Li, X. Xu, J. T. Irelan et al., Label-free monitoring of T cell activation by the impedance-based xCELLigence system, Mol. Biosyst, vol.9, issue.5, pp.1035-1043, 2013.

V. V. Petrov, R. H. Fagard, and P. J. Lijnen, Stimulation of collagen production by TGF-beta 1 during differentiation of cardiac fibroblasts to myofibroblasts, Am. J. Hypertens, vol.39, issue.2, pp.285-263, 2002.

T. M. Jayawardena, MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes, Circ. Res, vol.110, issue.11, pp.1465-1473, 2012.

F. Spörl, Real-time monitoring of membrane cholesterol reveals new insights into epidermal differentiation, J. Invest. Dermatol, vol.130, issue.5, pp.1268-1278, 2010.

S. K. Steinbach, Directed differentiation of skin-derived precursors into functional vascular smooth muscle cells, Arterioscler. Thromb. Vasc. Biol, vol.31, issue.12, pp.2938-2948, 2011.

B. Mammadov, N. Karakas, and S. Isik, Comparison of long-term retinoic acid-based neural induction methods of bone marrow human mesenchymal stem cells, Vitr. Cell. Dev. Biol. -Anim, vol.47, issue.7, pp.484-491, 2011.

G. Rajaraman, Optimization and scale-up culture of human endometrial multipotent mesenchymal stromal cells: Potential for clinical application, Tissue Eng. -Part C Methods, vol.19, issue.1, pp.80-92, 2013.

A. H. Kramer, J. Joos-vandewalle, A. L. Edkins, C. L. Frost, and E. Prinsloo, Real-time monitoring of 3T3-L1 preadipocyte differentiation using a commercially available electric cell-substrate impedance sensor system, Biochem. Biophys. Res. Commun, vol.47, issue.5, 2013.

C. K. Nagaraju, Myofibroblast Phenotype and Reversibility of Fibrosis in Patients With End-Stage Heart Failure, J. Am. Coll. Cardiol, vol.73, issue.18, pp.2267-2282, 2019.

H. Zhao, Microengineered in vitro model of cardiac fibrosis through modulating myofibroblast mechanotransduction, Biofabrication, vol.6, issue.4, p.45009, 2014.

G. Yan, Application of Real-Time Cell Electronic Analysis System in Modern Pharmaceutical Evaluation and Analysis, Molecules, vol.23, issue.12, p.3280, 2018.

B. Sanchez, G. Vandersteen, R. Bragos, and J. Schoukens, Basics of broadband impedance spectroscopy measurements using periodic excitations, Meas. Sci. Technol, vol.23, issue.10, 2012.

B. Sanchez, G. Vandersteen, R. Bragos, and J. Schoukens, Optimal multisine excitation design for broadband electrical impedance spectroscopy, Meas. Sci. Technol, vol.22, issue.11, 2011.

S. Nag and N. V. Thakor, Implantable neurotechnologies: electrical stimulation and applications, Med. Biol. Eng. Comput, vol.54, issue.1, pp.63-76, 2016.

J. Castelli, An IC-based controllable stimulator for respiratory muscle stimulation investigations, Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp.1970-1973, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01593374

S. B. Weinstein and P. M. Ebert, Data transmission by frequency-division multiplexing using the Discrete Fourier Transform, IEEE Trans. Commun. Technol, vol.19, issue.5, pp.628-634, 1971.

E. De-roux, Orthogonal Multitone Electrical Impedance Spectroscopy (OMEIS) for the Study of Fibrosis Induced by Active Cardiac Implants, J. Sensors, vol.2019, pp.1-14, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02078281

J. Rother, Crosstalk of cardiomyocytes and fibroblasts in co-cultures, Open Biol, vol.5, issue.6, 2015.

X. Zhao, J. Y. Kwan, K. Yip, P. P. Liu, F. Liu et al., Targeting metabolic dysregulation for fibrosis therapy, Nat. Rev. Drug Discov, 2019.

Z. , Y. , and R. , Rp, Rdc (DC resistance)

, ANNEXE B Graph representing all the impedance measurements on the 6 swine ventricles, performed with the SprintQuattro lead