K. Jerabkova and I. Sumara, Cullin 3, a cellular scripter of the non-proteolytic ubiquitin code, Semin Cell Dev Biol, issue.18, pp.30033-30041, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02370983

K. Jerabkova, Y. Liao, S. Fournane, C. Kleiss, M. Durik et al., Radislav Sedlacek and Izabela Sumara: Deubiquitinating enzyme UCHL3 controls genome segregation in human cells

M. Peralta, K. Jerabkova, *. , T. Lucchesi, *. et al., Intraflagellar transport complex B proteins regulate the Hippo effector Yap1 during cardiogenesis

J. Ziak, R. Weissova, *. , K. Je?ábková, *. et al., EMBO Reports

, France Poster presentation: Cell Signaling and Cancer Therapy, Chromosome segregation and structure: Cold Spring Harbor, 2017, USA Poster presentation: LMB-IGBMC Symposium, 2018.

K. N. Swatek and D. Komander, Ubiquitin modifications, Cell Res, vol.26, pp.399-422, 2016.

G. Meroni and G. Diez-roux, TRIM/RBCC, a novel class of 'single protein RING finger' E3 ubiquitin ligases, BioEssays News Rev. Mol. Cell. Dev. Biol, vol.27, pp.1147-1157, 2005.

S. Kano, N. Miyajima, S. Fukuda, and S. Hatakeyama, Tripartite motif protein 32 facilitates cell growth and migration via degradation of Abl-interactor 2, Cancer Res, vol.68, pp.5572-5580, 2008.

M. Watanabe, T. Tsukiyama, and S. Hatakeyama, TRIM31 interacts with p52(Shc) and inhibits Src-induced anchorage-independent growth, Biochem. Biophys. Res. Commun, vol.388, pp.422-427, 2009.

Y. Masuda, TRIM29 regulates the assembly of DNA repair proteins into damaged chromatin, Nat. Commun, vol.6, p.7299, 2015.

T. Sato, F. Okumura, T. Ariga, and S. Hatakeyama, TRIM6 interacts with Myc and maintains the pluripotency of mouse embryonic stem cells, J. Cell Sci, vol.125, pp.1544-1555, 2012.

K. Jensen, C. Shiels, and P. S. Freemont, PML protein isoforms and the RBCC/TRIM motif, Oncogene, vol.20, pp.7223-7233, 2001.

P. D. Uchil, B. D. Quinlan, W. Chan, J. M. Luna, and W. Mothes, TRIM E3 ligases interfere with early and late stages of the retroviral life cycle, PLoS Pathog, vol.4, p.16, 2008.

M. Stremlau, The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys, Nature, vol.427, pp.848-853, 2004.

S. N. Chen, Human molecular genetic and functional studies identify TRIM63, encoding Muscle RING Finger Protein 1, as a novel gene for human hypertrophic cardiomyopathy, Circ. Res, vol.111, pp.907-919, 2012.

M. Arra, The M694V variant of the familial Mediterranean fever gene is associated with sporadic early-onset Alzheimer's disease in an Italian population sample, Dement. Geriatr. Cogn. Disord, vol.23, pp.55-59, 2007.

A. Trockenbacher, MID1, mutated in Opitz syndrome, encodes an ubiquitin ligase that targets phosphatase 2A for degradation, Nat. Genet, vol.29, pp.287-294, 2001.

W. Tsai, TRIM24 links a non-canonical histone signature to breast cancer, Nature, vol.468, pp.927-932, 2010.

B. Herquel, Transcription cofactors TRIM24, TRIM28, and TRIM33 associate to form regulatory complexes that suppress murine hepatocellular carcinoma, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.8212-8217, 2011.

E. A. Nigg, Mitotic kinases as regulators of cell division and its checkpoints, Nat. Rev. Mol. Cell Biol, vol.2, p.21, 2001.

D. Komander, M. J. Clague, and S. Urbé, Breaking the chains: structure and function of the deubiquitinases, Nat. Rev. Mol. Cell Biol, vol.10, pp.550-563, 2009.

K. Luo, A phosphorylation-deubiquitination cascade regulates the BRCA2-RAD51 axis in homologous recombination, Genes Dev, vol.30, pp.2581-2595, 2016.

C. Liao, UCHL3 Regulates Topoisomerase-Induced Chromosomal Break Repair by Controlling TDP1 Proteostasis, Cell Rep, vol.23, pp.3352-3365, 2018.

M. Wu, LUBAC controls chromosome alignment by targeting CENP-E to attached kinetochores, Nat. Commun, vol.10, 2019.

Y. Kim, A. J. Holland, W. Lan, and D. W. Cleveland, Aurora kinases and protein phosphatase 1 mediate chromosome congression through regulation of CENP-E, Cell, vol.142, pp.444-455, 2010.

G. Goldstein, Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells, Proc. Natl. Acad. Sci. U. S. A, vol.72, pp.11-15, 1975.

N. A. Kulak, G. Pichler, I. Paron, N. Nagaraj, and M. Mann, Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells, Nat. Methods, vol.11, pp.319-324, 2014.

Y. Kimura and K. Tanaka, Regulatory mechanisms involved in the control of ubiquitin homeostasis, J. Biochem. (Tokyo), vol.147, pp.793-798, 2010.

C. P. Grou, M. P. Pinto, A. V. Mendes, P. Domingues, and J. E. Azevedo, The de novo synthesis of ubiquitin: identification of deubiquitinases acting on ubiquitin precursors, Sci. Rep, vol.5, p.12836, 2015.

P. M. Handley, M. Mueckler, N. R. Siegel, A. Ciechanover, and A. L. Schwartz, Molecular cloning, sequence, and tissue distribution of the human ubiquitin-activating enzyme E1, Proc. Natl. Acad. Sci. U. S. A, vol.88, pp.258-262, 1991.

Y. Chiu, Q. Sun, and Z. J. Chen, E1-L2 Activates Both Ubiquitin and FAT10, Mol. Cell, vol.27, pp.1014-1023, 2007.

J. Jin, X. Li, S. P. Gygi, and J. W. Harper, Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging, Nature, vol.447, pp.1135-1138, 2007.

M. D. Stewart, T. Ritterhoff, R. E. Klevit, and P. Brzovic, E2 enzymes: more than just middle men, Cell Res, vol.26, pp.423-440, 2016.

W. Li, Genome-Wide and Functional Annotation of Human E3 Ubiquitin Ligases Identifies MULAN, a Mitochondrial E3 that Regulates the Organelle's Dynamics and Signaling, PLoS ONE, vol.3, 2008.

C. E. Berndsen and C. Wolberger, New insights into ubiquitin E3 ligase mechanism, Nat. Struct. Mol. Biol, vol.21, pp.301-307, 2014.

C. Williams, M. Berg, . Van-den, R. R. Sprenger, and B. Distel, A Conserved Cysteine Is Essential for Pex4p-dependent Ubiquitination of the Peroxisomal Import Receptor Pex5p, J. Biol. Chem, vol.282, pp.22534-22543, 2007.

K. Skieterska, P. Rondou, B. Lintermans, and K. Van-craenenbroeck, KLHL12 Promotes Non-Lysine Ubiquitination of the Dopamine Receptors D4.2 and D4.4, but Not of the ADHD-Associated D4.7 Variant, PLOS ONE, vol.10, p.145654, 2015.

G. S. Mcdowell, R. Kucerova, and A. Philpott, Non-canonical ubiquitylation of the proneural protein Ngn2 occurs in both Xenopus embryos and mammalian cells, Biochem. Biophys. Res. Commun, vol.400, pp.655-660, 2010.

M. H. Tatham, A. Plechanovová, E. G. Jaffray, H. Salmen, and R. T. Hay, Ube2W conjugates ubiquitin to ?-amino groups of protein N-termini, Biochem. J, vol.453, pp.137-145, 2013.

M. A. Nakasone, N. Livnat-levanon, M. H. Glickman, R. E. Cohen, and D. Fushman, Mixed-linkage ubiquitin chains send mixed messages, Struct. Lond. Engl, vol.21, pp.727-740, 1993.

H. Meyer and M. Rape, Enhanced protein degradation by branched ubiquitin chains, Cell, vol.157, pp.910-921, 2014.

D. L. Swaney, R. A. Rodríguez-mias, and J. Villén, Phosphorylation of ubiquitin at Ser65 affects its polymerization, targets, and proteome-wide turnover, EMBO Rep, vol.16, pp.1131-1144, 2015.

F. Koyano, Ubiquitin is phosphorylated by PINK1 to activate parkin, Nature, vol.510, pp.162-166, 2014.

F. Ohtake, Ubiquitin acetylation inhibits polyubiquitin chain elongation, EMBO Rep, vol.16, pp.192-201, 2015.

J. Qiu, Ubiquitination independent of E1 and E2 enzymes by bacterial effectors, Nature, vol.533, p.120, 2016.

M. H. Tatham, I. Matic, M. Mann, and R. T. Hay, Comparative Proteomic Analysis Identifies a Role for SUMO in Protein Quality Control, Sci. Signal, vol.4, pp.4-4, 2011.

V. Kirkin and I. Dikic, Role of ubiquitin-and Ubl-binding proteins in cell signaling, Curr. Opin. Cell Biol, vol.19, pp.199-205, 2007.

K. Husnjak and I. Dikic, Ubiquitin-Binding Proteins: Decoders of Ubiquitin-Mediated Cellular Functions, Annu. Rev. Biochem, vol.81, pp.291-322, 2012.

J. Spence, S. Sadis, A. L. Haas, and D. Finley, A ubiquitin mutant with specific defects in DNA repair and multiubiquitination, Mol. Cell. Biol, vol.15, pp.1265-1273, 1995.

V. Chau, A multiubiquitin chain is confined to specific lysine in a targeted shortlived protein, Science, vol.243, pp.1576-1583, 1989.

Z. Lu and T. Hunter, Ubiquitylation and proteasomal degradation of the p21(Cip1), p27(Kip1) and p57(Kip2) CDK inhibitors, Cell Cycle Georget. Tex, vol.9, pp.2342-2352, 2010.

K. Klotz, SCF(Fbxw7/hCdc4) targets cyclin E2 for ubiquitin-dependent proteolysis, Exp. Cell Res, vol.315, pp.1832-1839, 2009.

C. Lindon and J. Pines, Ordered proteolysis in anaphase inactivates Plk1 to contribute to proper mitotic exit in human cells, J. Cell Biol, vol.164, pp.233-241, 2004.

M. J. Pinto, J. R. Pedro, R. O. Costa, and R. D. Almeida, Visualizing K48 Ubiquitination during Presynaptic Formation By Ubiquitination-Induced Fluorescence Complementation (UiFC), Front. Mol. Neurosci, vol.9, p.43, 2016.

C. Cui, Dynamic ubiquitylation of Sox2 regulates proteostasis and governs neural progenitor cell differentiation, Nat. Commun, vol.9, p.4648, 2018.

F. A. Mallette and S. Richard, K48-linked ubiquitination and protein degradation regulate 53BP1 recruitment at DNA damage sites, Cell Res, vol.22, pp.1221-1223, 2012.

L. Jin, A. Williamson, S. Banerjee, I. Philipp, and M. Rape, Mechanism of Ubiquitin-Chain Formation by the Human Anaphase-Promoting Complex, Cell, vol.133, pp.653-665, 2008.

M. L. Matsumoto, K11-Linked Polyubiquitination in Cell Cycle Control Revealed by a K11 Linkage-Specific Antibody, Mol. Cell, vol.39, pp.477-484, 2010.

E. B. Dammer, Polyubiquitin linkage profiles in three models of proteolytic stress suggest the etiology of Alzheimer disease, J. Biol. Chem, vol.286, pp.10457-10465, 2011.

S. C. Boutet, M. Disatnik, L. S. Chan, K. Iori, and T. A. Rando, Regulation of Pax3 by proteasomal degradation of monoubiquitinated protein in skeletal muscle progenitors, Cell, vol.130, pp.349-362, 2007.

Y. Kravtsova-ivantsiv, S. Cohen, and A. Ciechanover, Modification by Single Ubiquitin Moieties Rather Than Polyubiquitination Is Sufficient for Proteasomal Processing of the p105 NF-?B Precursor, Mol. Cell, vol.33, pp.496-504, 2009.

N. V. Dimova, APC/C-mediated multiple monoubiquitination provides an alternative degradation signal for cyclin B1, Nat. Cell Biol, vol.14, pp.168-176, 2012.

L. M. Duncan, Lysine-63-linked ubiquitination is required for endolysosomal degradation of class I molecules, EMBO J, vol.25, pp.1635-1645, 2006.

L. Zhang, M. Xu, E. Scotti, Z. J. Chen, and P. Tontonoz, Both K63 and K48 ubiquitin linkages signal lysosomal degradation of the LDL receptor, J. Lipid Res, vol.54, pp.1410-1420, 2013.

A. Ordureau, Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy, Proc. Natl. Acad. Sci, vol.112, pp.6637-6642, 2015.

P. Bellare, A role for ubiquitin in the spliceosome assembly pathway, Nat. Struct. Mol. Biol, vol.15, pp.444-451, 2008.

J. Spence, Cell cycle-regulated modification of the ribosome by a variant multiubiquitin chain, Cell, vol.102, pp.67-76, 2000.

E. Lauwers, C. Jacob, and B. André, K63-linked ubiquitin chains as a specific signal for protein sorting into the multivesicular body pathway, J. Cell Biol, vol.185, pp.493-502, 2009.

H. Tanno, T. Yamaguchi, E. Goto, S. Ishido, and M. Komada, The Ankrd 13 family of UIM-bearing proteins regulates EGF receptor endocytosis from the plasma membrane, Mol. Biol. Cell, vol.23, pp.1343-1353, 2012.

L. Deng, Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain, Cell, vol.103, pp.351-361, 2000.

S. Adhikary, The Ubiquitin Ligase HectH9 Regulates Transcriptional Activation by Myc and Is Essential for Tumor Cell Proliferation, Cell, vol.123, pp.409-421, 2005.

R. M. Hofmann and C. M. Pickart, Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair, Cell, vol.96, pp.645-653, 1999.

P. Liu, K63-linked polyubiquitin chains bind to DNA to facilitate DNA damage repair, Sci. Signal, vol.11, 2018.

B. Sobhian, RAP80 Targets BRCA1 to Specific Ubiquitin Structures at DNA Damage Sites, Science, vol.316, pp.1198-1202, 2007.

M. J. Clague, C. Heride, and S. Urbé, The demographics of the ubiquitin system, Trends Cell Biol, vol.25, pp.417-426, 2015.

S. Maerki, The Cul3-KLHL21 E3 ubiquitin ligase targets Aurora B to midzone microtubules in anaphase and is required for cytokinesis, J. Cell Biol, vol.187, pp.791-800, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02371103

Y. Su, Monoubiquitination of Filamin B Regulates Vascular Endothelial Growth Factor-Mediated Trafficking of Histone Deacetylase 7, Mol. Cell. Biol, vol.33, pp.1546-1560, 2013.

A. T. Sasaki, Ubiquitination of K-Ras enhances activation and facilitates binding to select downstream effectors, Sci. Signal, vol.4, p.13, 2011.

R. Pavri, Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II, Cell, vol.125, pp.703-717, 2006.

M. Pan, G. Peng, W. Hung, and S. Lin, Monoubiquitination of H2AX protein regulates DNA damage response signaling, J. Biol. Chem, vol.286, pp.28599-28607, 2011.

S. Chen, Histone H2B monoubiquitination is a critical epigenetic switch for the regulation of autophagy, Nucleic Acids Res, vol.45, pp.1144-1158, 2017.

K. Rittinger and F. Ikeda, Linear ubiquitin chains: enzymes, mechanisms and biology, Open Biol, vol.7, 2017.

S. Rahighi, Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation, Cell, vol.136, pp.1098-1109, 2009.

F. Tokunaga, Involvement of linear polyubiquitylation of NEMO in NF-?B activation, Nat. Cell Biol, vol.11, pp.123-132, 2009.

Y. Tang, Linear ubiquitination of cFLIP induced by LUBAC contributes to TNFainduced apoptosis, J. Biol. Chem. jbc.RA118, p.5449, 2018.

L. Taraborrelli, LUBAC prevents lethal dermatitis by inhibiting cell death induced by TNF, TRAIL and CD95L, Nat. Commun, vol.9, p.3910, 2018.

S. M. Nijman, A Genomic and Functional Inventory of Deubiquitinating Enzymes, Cell, vol.123, pp.773-786, 2005.

T. E. Mevissen and D. Komander, Mechanisms of Deubiquitinase Specificity and Regulation, Annu. Rev. Biochem, vol.86, pp.159-192, 2017.

S. A. Abdul-rehman, MINDY-1 Is a Member of an Evolutionarily Conserved and Structurally Distinct New Family of Deubiquitinating Enzymes, Mol. Cell, vol.63, pp.146-155, 2016.

L. Gong, T. Kamitani, S. Millas, and E. T. Yeh, Identification of a novel isopeptidase with dual specificity for ubiquitin-and NEDD8-conjugated proteins, J. Biol. Chem, vol.275, pp.14212-14216, 2000.

H. Wada, K. Kito, L. S. Caskey, E. T. Yeh, and T. Kamitani, Cleavage of the C-Terminus of NEDD8 by UCH-L3, Biochem. Biophys. Res. Commun, vol.251, pp.688-692, 1998.

G. A. Cope, Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1, Science, vol.298, pp.608-611, 2002.

A. C. Faesen, The Differential Modulation of USP Activity by Internal Regulatory Domains, Interactors and Eight Ubiquitin Chain Types, Chem. Biol, vol.18, pp.1550-1561, 2011.

T. E. Mevissen, OTU Deubiquitinases Reveal Mechanisms of Linkage Specificity and Enable Ubiquitin Chain Restriction Analysis, Cell, vol.154, pp.169-184, 2013.

A. Bremm, S. M. Freund, and D. Komander, Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne, Nat. Struct. Mol. Biol, vol.17, pp.939-947, 2010.

S. Virdee, Y. Ye, D. P. Nguyen, D. Komander, and J. W. Chin, Engineered diubiquitin synthesis reveals Lys29-isopeptide specificity of an OTU deubiquitinase, Nat. Chem. Biol, vol.6, pp.750-757, 2010.

Y. Sato, Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains, Nature, vol.455, pp.358-362, 2008.

J. Mccullough, M. J. Clague, and S. Urbé, AMSH is an endosome-associated ubiquitin isopeptidase, J. Cell Biol, vol.166, pp.487-492, 2004.

Y. A. Kristariyanto, S. A. Abdul-rehman, S. Weidlich, A. Knebel, and Y. Kulathu, A single MIU motif of MINDY-1 recognizes K48-linked polyubiquitin chains, EMBO Rep, vol.18, pp.392-402, 2017.

C. Liao, UCHL3 Regulates Topoisomerase-Induced Chromosomal Break Repair by Controlling TDP1 Proteostasis, Cell Rep, vol.23, pp.3352-3365, 2018.

Y. Ye, Polyubiquitin binding and cross-reactivity in the USP domain deubiquitinase USP21, EMBO Rep, vol.12, pp.350-357, 2011.

M. K. Hospenthal, S. M. Freund, and D. Komander, Assembly, analysis and architecture of atypical ubiquitin chains, Nat. Struct. Mol. Biol, vol.20, pp.555-565, 2013.

T. Wauer, Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis, EMBO J, vol.34, pp.307-325, 2015.

B. Lee, USP14 deubiquitinates proteasome-bound substrates that are ubiquitinated at multiple sites, Nature, vol.532, pp.398-401, 2016.

R. Verma, Role of Rpn11 Metalloprotease in Deubiquitination and Degradation by the 26S Proteasome, Science, vol.298, pp.611-615, 2002.

T. Huang, Z. Shen, B. P. Sleckman, and J. K. Tyler, The histone chaperone ASF1 regulates the activation of ATM and DNA-PKcs in response to DNA double-strand breaks, Cell Cycle, vol.17, pp.1413-1424, 2018.

E. A. Nam and D. Cortez, ATR signalling: more than meeting at the fork, Biochem. J, vol.436, pp.527-536, 2011.

J. Yuan, K. Luo, L. Zhang, J. C. Cheville, and Z. Lou, USP10 regulates p53 localization and stability by deubiquitinating p53, Cell, vol.140, pp.384-396, 2010.

J. Ke, USP11 regulates p53 stability by deubiquitinating p53, J. Zhejiang Univ. Sci. B, vol.15, pp.1032-1038, 2014.

J. Luo, OTUD5 regulates p53 stability by deubiquitinating p53, vol.8, p.77682, 2013.

W. Flemming and . Zellsubstanz, , 1882.

C. J. Harrison, &. Allen, T. D. Britch, M. Harris, and R. High-resolution, SCANNING ELECTRON MICROSCOPY OF HUMAN METAPHASE CHROMOSOMES, vol.14, 1982.

T. Hirano and T. J. Mitchison, A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro, Cell, vol.79, pp.449-458, 1994.

P. Batty and D. W. Gerlich, Mitotic Chromosome Mechanics: How Cells Segregate Their Genome, Trends Cell Biol, 2019.

K. Kimura, M. Hirano, R. Kobayashi, and T. Hirano, Phosphorylation and activation of 13S condensin by Cdc2 in vitro, Science, vol.282, pp.487-490, 1998.

T. Terakawa, The condensin complex is a mechanochemical motor that translocates along DNA, Science, vol.358, pp.672-676, 2017.

J. H. Gibcus, A pathway for mitotic chromosome formation, Science, vol.359, p.6135, 2018.

Y. G. Strukov and A. S. Belmont, Mitotic Chromosome Structure: Reproducibility of Folding and Symmetry between Sister Chromatids, Biophys. J, vol.96, pp.1617-1628, 2009.

D. F. Hudson, P. Vagnarelli, R. Gassmann, and W. C. Earnshaw, Condensin Is Required for Nonhistone Protein Assembly and Structural Integrity of Vertebrate Mitotic Chromosomes, Dev. Cell, vol.5, pp.323-336, 2003.

D. J. Clarke, R. T. Johnson, and C. S. Downes, Topoisomerase II inhibition prevents anaphase chromatid segregation in mammalian cells independently of the generation of DNA strand breaks, J. Cell Sci, vol.105, pp.563-569, 1993.

A. Losada, M. Hirano, and T. Hirano, Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis, Genes Dev, vol.16, pp.3004-3016, 2002.

I. Sumara, The dissociation of cohesin from chromosomes in prophase is regulated by Polo-like kinase, Mol. Cell, vol.9, pp.515-525, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02371160

R. D. Silva, Absence of the Spindle Assembly Checkpoint Restores Mitotic Fidelity upon Loss of Sister Chromatid Cohesion, Curr. Biol, vol.28, pp.2837-2844, 2018.

F. A. Steiner and S. Henikoff, Holocentromeres are dispersed point centromeres localized at transcription factor hotspots, vol.3, p.2025, 2014.

D. P. Melters, Elastic and Rigidified CENP-A Nucleosomes govern Centromeric Chromatin Plasticity, p.392787, 2018.

C. L. Rieder, The structure of the cold-stable kinetochore fiber in metaphase PtK1 cells, Chromosoma, vol.84, pp.145-158, 1981.

E. V. Howman, Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice, Proc. Natl. Acad. Sci. U. S. A, vol.97, pp.1148-1153, 2000.

C. W. Carroll, K. J. Milks, and A. F. Straight, Dual recognition of CENP-A nucleosomes is required for centromere assembly, J. Cell Biol, vol.189, pp.1143-1155, 2010.

T. Hori, CCAN Makes Multiple Contacts with Centromeric DNA to Provide Distinct Pathways to the Outer Kinetochore, Cell, vol.135, pp.1039-1052, 2008.

I. M. Cheeseman, J. S. Chappie, E. M. Wilson-kubalek, and A. Desai, The conserved KMN network constitutes the core microtubule-binding site of the kinetochore, Cell, vol.127, pp.983-997, 2006.

R. R. Wei, J. Al-bassam, and S. C. Harrison, The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment, Nat. Struct. Mol. Biol, vol.14, pp.54-59, 2007.

F. R. Putkey, Unstable Kinetochore-Microtubule Capture and Chromosomal Instability Following Deletion of CENP-E, Dev. Cell, vol.3, pp.351-365, 2002.

S. L. Kline-smith, A. Khodjakov, P. Hergert, and C. E. Walczak, Depletion of Centromeric MCAK Leads to Chromosome Congression and Segregation Defects Due to Improper Kinetochore Attachments, Mol. Biol. Cell, vol.15, pp.1146-1159, 2004.

S. Lawo, M. Hasegan, G. D. Gupta, and L. Pelletier, Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material, Nat. Cell Biol, vol.14, pp.1148-1158, 2012.

M. Moritz, M. B. Braunfeld, J. W. Sedat, B. Alberts, and D. A. Agard, Microtubule nucleation by ?-tubulin-containing rings in the centrosome, Nature, vol.378, pp.638-640, 1995.

B. H. Kwok, J. G. Yang, and T. M. Kapoor, The rate of bipolar spindle assembly depends on the microtubule-gliding velocity of the mitotic kinesin Eg5, Curr. Biol. CB, vol.14, pp.1783-1788, 2004.

D. G. Booth, F. E. Hood, I. A. Prior, and S. J. Royle, A TACC3/ch-TOG/clathrin complex stabilises kinetochore fibres by inter-microtubule bridging, EMBO J, vol.30, pp.906-919, 2011.

S. J. Royle, N. A. Bright, and L. Lagnado, Clathrin is required for the function of the mitotic spindle, Nature, vol.434, pp.1152-1157, 2005.

F. M. Nixon, The mesh is a network of microtubule connectors that stabilizes individual kinetochore fibers of the mitotic spindle, vol.4

C. L. Rieder, Kinetochore fiber formation in animal somatic cells: dueling mechanisms come to a draw, Chromosoma, vol.114, pp.310-318, 2005.

A. Khodjakov, L. Copenagle, M. B. Gordon, D. A. Compton, and T. M. Kapoor, Minus-end capture of preformed kinetochore fibers contributes to spindle morphogenesis, J. Cell Biol, vol.160, pp.671-683, 2003.

H. Maiato, C. L. Rieder, and A. Khodjakov, Kinetochore-driven formation of kinetochore fibers contributes to spindle assembly during animal mitosis, J. Cell Biol, vol.167, pp.831-840, 2004.

J. M. Deutsch and I. P. Lewis, Motor function in interpolar microtubules during metaphase, J. Theor. Biol, vol.370, pp.1-10, 2015.

L. Tao, A Homotetrameric Kinesin-5, KLP61F, Bundles Microtubules and Antagonizes Ncd in Motility Assays, Curr. Biol, vol.16, pp.2293-2302, 2006.

D. J. Sharp, K. R. Yu, J. C. Sisson, W. Sullivan, and J. M. Scholey, Antagonistic microtubule-sliding motors position mitotic centrosomes in Drosophila early embryos, Nat. Cell Biol, vol.1, pp.51-54, 1999.

I. M. Toli? and N. Pavin, Bridging the gap between sister kinetochores, Cell Cycle, vol.15, pp.1169-1170, 2016.

J. Kajtez, Overlap microtubules link sister k-fibres and balance the forces on bioriented kinetochores, Nat. Commun, vol.7, p.10298, 2016.

D. Cimini, Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells, J. Cell Biol, vol.153, pp.517-527, 2001.

S. L. Thompson and D. A. Compton, Examining the link between chromosomal instability and aneuploidy in human cells, J. Cell Biol, vol.180, pp.665-672, 2008.

A. Petrone, M. E. Adamo, C. Cheng, and A. N. Kettenbach, Identification of Candidate Cyclin-dependent kinase 1 (Cdk1) Substrates in Mitosis by Quantitative Phosphoproteomics, Mol. Cell. Proteomics MCP, vol.15, pp.2448-2461, 2016.

T. Tsukahara, Y. Tanno, and Y. Watanabe, Phosphorylation of the CPC by Cdk1 promotes chromosome bi-orientation, Nature, vol.467, pp.719-723, 2010.

S. Kimmins, Differential functions of the Aurora-B and Aurora-C kinases in mammalian spermatogenesis, Mol. Endocrinol. Baltim. Md, vol.21, pp.726-739, 2007.

L. Ounis, Mutations of the aurora kinase C gene causing macrozoospermia are the most frequent genetic cause of male infertility in Algerian men, Asian J. Androl, vol.17, pp.68-73, 2015.

M. Cazales, CDC25B phosphorylation by Aurora-A occurs at the G2/M transition and is inhibited by DNA damage, Cell Cycle Georget. Tex, vol.4, pp.1233-1238, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00317413

G. Eot-houllier, Aurora A-dependent CENP-A phosphorylation at inner centromeres protects bioriented chromosomes against cohesion fatigue, Nat. Commun, vol.9, p.1888, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01863221

T. Courthéoux, Microtubule nucleation during central spindle assembly requires NEDD1 phosphorylation on serine 405 by Aurora A, J. Cell Sci, vol.132, 2019.

M. E. Tanenbaum, A Complex of Kif18b and MCAK Promotes Microtubule Depolymerization and Is Negatively Regulated by Aurora Kinases, Curr. Biol, vol.21, pp.1356-1365, 2011.

C. Jang, J. A. Coppinger, A. Seki, J. R. Yates, and G. Fang, Plk1 and Aurora A regulate the depolymerase activity and the cellular localization of Kif2a, J. Cell Sci, vol.122, pp.1334-1341, 2009.

A. A. Jeyaprakash, Structure of a Survivin-Borealin-INCENP Core Complex Reveals How Chromosomal Passengers Travel Together. Cell, vol.131, pp.271-285, 2007.

P. Vagnarelli and W. C. Earnshaw, Chromosomal passengers: the four-dimensional regulation of mitotic events, Chromosoma, vol.113, pp.211-222, 2004.

S. A. Kawashima, Y. Yamagishi, T. Honda, K. Ishiguro, and Y. Watanabe, Phosphorylation of H2A by Bub1 prevents chromosomal instability through localizing shugoshin, Science, vol.327, pp.172-177, 2010.

F. Wang, A Positive Feedback Loop Involving Haspin and Aurora B Promotes CPC Accumulation at Centromeres in Mitosis, Curr. Biol. CB, vol.21, pp.1061-1069, 2011.

J. J. Lipp, T. Hirota, I. Poser, and J. Peters, Aurora B controls the association of condensin I but not condensin II with mitotic chromosomes, J. Cell Sci, vol.120, pp.1245-1255, 2007.

S. Hauf, The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint, J. Cell Biol, vol.161, pp.281-294, 2003.

M. A. Lampson, K. Renduchitala, A. Khodjakov, and T. M. Kapoor, Correcting improper chromosome-spindle attachments during cell division, Nat. Cell Biol, vol.6, pp.232-237, 2004.

D. Cimini, X. Wan, C. B. Hirel, and E. D. Salmon, Aurora kinase promotes turnover of kinetochore microtubules to reduce chromosome segregation errors, Curr. Biol. CB, vol.16, pp.1711-1718, 2006.

P. D. Andrews, Aurora B Regulates MCAK at the Mitotic Centromere, Dev. Cell, vol.6, pp.253-268, 2004.

K. Krupina, Ubiquitin Receptor Protein UBASH3B Drives Aurora B Recruitment to Mitotic Microtubules, Dev. Cell, vol.36, pp.63-78, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02371072

C. Norden, The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage, Cell, vol.125, pp.85-98, 2006.

K. Lee and K. Rhee, PLK1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis, J. Cell Biol, vol.195, pp.1093-1101, 2011.

B. R. Mardin, F. G. Agircan, C. Lange, and E. Schiebel, Plk1 Controls the Nek2A-PP1? Antagonism in Centrosome Disjunction, Curr. Biol, vol.21, pp.1145-1151, 2011.

E. Smith, Differential control of Eg5-dependent centrosome separation by Plk1 and Cdk1, EMBO J, vol.30, pp.2233-2245, 2011.

E. A. Foley, M. Maldonado, and T. M. Kapoor, Formation of stable attachments between kinetochores and microtubules depends on the B56-PP2A phosphatase, Nat. Cell Biol, vol.13, pp.1265-1271, 2011.

S. Elowe, S. Hümmer, A. Uldschmid, X. Li, and E. A. Nigg, Tension-sensitive Plk1 phosphorylation on BubR1 regulates the stability of kinetochore microtubule interactions, Genes Dev, vol.21, pp.2205-2219, 2007.

J. Beck, Ubiquitylation-dependent localization of PLK1 in mitosis, Nat. Cell Biol, vol.15, pp.430-439, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02371100

R. N. Bastos and F. A. Barr, Plk1 negatively regulates Cep55 recruitment to the midbody to ensure orderly abscission, J. Cell Biol, vol.191, pp.751-760, 2010.

B. Aressy, A screen for deubiquitinating enzymes involved in the G2/M checkpoint identifies USP50 as a regulator of HSP90-dependent Wee1 stability, Cell Cycle, vol.9, pp.3839-3846, 2010.

S. Giovinazzi, V. M. Morozov, M. K. Summers, W. C. Reinhold, and A. M. Ishov, USP7 and Daxx regulate mitosis progression and taxane sensitivity by affecting stability of Aurora-A kinase, Cell Death Differ, vol.20, pp.721-731, 2013.

F. Stegmeier, Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities, Nature, vol.446, pp.876-881, 2007.

X. Zhuo, Usp16 regulates kinetochore localization of Plk1 to promote proper chromosome alignment in mitosis, J. Cell Biol, vol.210, pp.727-735, 2015.

R. J. Van-leuken, M. P. Luna-vargas, T. K. Sixma, R. M. Wolthuis, and R. H. Medema, Usp39 is essential for mitotic spindle checkpoint integrity and controls mRNAlevels of aurora B, Cell Cycle Georget. Tex, vol.7, pp.2710-2719, 2008.

Q. P. Vong, K. Cao, H. Y. Li, P. A. Iglesias, and Y. Zheng, Chromosome Alignment and Segregation Regulated by Ubiquitination of Survivin, Science, vol.310, pp.1499-1504, 2005.

E. J. Song, The Prp19 complex and the Usp4Sart3 deubiquitinating enzyme control reversible ubiquitination at the spliceosome, Genes Dev, vol.24, pp.1434-1447, 2010.

G. Fang, H. Yu, and M. W. Kirschner, Direct binding of CDC20 protein family members activates the anaphase-promoting complex in mitosis and G1, Mol. Cell, vol.2, pp.163-171, 1998.

S. A. Wickström, K. C. Masoumi, S. Khochbin, R. Fässler, and R. Massoumi, CYLD negatively regulates cell-cycle progression by inactivating HDAC6 and increasing the levels of acetylated tubulin, EMBO J, vol.29, pp.131-144, 2010.

A. Mukai, Dynamic regulation of ubiquitylation and deubiquitylation at the central spindle during cytokinesis, J. Cell Sci, vol.121, pp.1325-1333, 2008.

C. Lindon, R. Grant, and M. Min, Ubiquitin-Mediated Degradation of Aurora Kinases, Front. Oncol, vol.5, 2016.

J. Park, M. Kwon, E. E. Kim, H. Lee, and E. J. Song, USP35 regulates mitotic progression by modulating the stability of Aurora B, Nat. Commun, vol.9, p.688, 2018.

L. Winters, Pivoting of microtubules driven by minus-end-directed motors leads to spindle assembly, BMC Biol, vol.17, p.42, 2019.

G. Itoh, Lateral attachment of kinetochores to microtubules is enriched in prometaphase rosette and facilitates chromosome alignment and bi-orientation establishment, Sci. Rep, vol.8, p.3888, 2018.

C. L. Rieder and S. P. Alexander, Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells, J. Cell Biol, vol.110, pp.81-95, 1990.

T. S. Hays, D. Wise, and E. D. Salmon, Traction force on a kinetochore at metaphase acts as a linear function of kinetochore fiber length, J. Cell Biol, vol.93, pp.374-389, 1982.

A. A. Hyman and T. J. Mitchison, Two different microtubule-based motor activities with opposite polarities in kinetochores, Nature, vol.351, pp.206-211, 1991.

A. Khodjakov and C. L. Rieder, Kinetochores moving away from their associated pole do not exert a significant pushing force on the chromosome, J. Cell Biol, vol.135, pp.315-327, 1996.

T. J. Mitchison, Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence, J. Cell Biol, vol.109, pp.637-652, 1989.

P. Dhonukshe, N. Vischer, and T. W. Gadella, Contribution of microtubule growth polarity and flux to spindle assembly and functioning in plant cells, J. Cell Sci, vol.119, pp.3193-3205, 2006.

P. Maddox, A. Desai, K. Oegema, T. J. Mitchison, and E. D. Salmon, Poleward microtubule flux is a major component of spindle dynamics and anaphase a in mitotic Drosophila embryos, Curr. Biol. CB, vol.12, pp.1670-1674, 2002.

D. W. Buster, D. Zhang, and D. J. Sharp, Poleward Tubulin Flux in Spindles: Regulation and Function in Mitotic Cells, Mol. Biol. Cell, vol.18, pp.3094-3104, 2007.

V. Sudakin, G. K. Chan, and T. J. Yen, Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2, J. Cell Biol, vol.154, pp.925-936, 2001.

C. Ditchfield, Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores, J. Cell Biol, vol.161, pp.267-280, 2003.

A. T. Saurin, M. S. Van-der-waal, R. H. Medema, S. M. Lens, and G. J. Kops, Aurora B potentiates Mps1 activation to ensure rapid checkpoint establishment at the onset of mitosis, Nat. Commun, vol.2, p.316, 2011.

Y. Tsuda, Mitotic slippage and the subsequent cell fates after inhibition of Aurora B during tubulin-binding agent-induced mitotic arrest, Sci. Rep, vol.7, p.16762, 2017.

M. Yang, Insights into mad2 regulation in the spindle checkpoint revealed by the crystal structure of the symmetric mad2 dimer, PLoS Biol, vol.6, p.50, 2008.

B. J. Howell, Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation, J. Cell Biol, vol.155, pp.1159-1172, 2001.

J. S. Rosenberg, F. R. Cross, and H. Funabiki, KNL1/Spc105 recruits PP1 to silence the spindle assembly checkpoint, Curr. Biol. CB, vol.21, pp.942-947, 2011.

J. V. Shah, Dynamics of centromere and kinetochore proteins; implications for checkpoint signaling and silencing, Curr. Biol. CB, vol.14, pp.942-952, 2004.

M. Yang, p31comet blocks Mad2 activation through structural mimicry, Cell, vol.131, pp.744-755, 2007.

G. Xia, Conformation-specific binding of p31(comet) antagonizes the function of Mad2 in the spindle checkpoint, EMBO J, vol.23, pp.3133-3143, 2004.

K. A. Knouse, J. Wu, C. A. Whittaker, and A. Amon, Single cell sequencing reveals low levels of aneuploidy across mammalian tissues, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.13409-13414, 2014.

S. Santaguida, Chromosome Mis-segregation Generates Cell-Cycle-Arrested Cells with Complex Karyotypes that Are Eliminated by the Immune System, Dev. Cell, vol.41, p.5, 2017.

S. L. Thompson and D. A. Compton, Proliferation of aneuploid human cells is limited by a p53-dependent mechanism, J. Cell Biol, vol.188, pp.369-381, 2010.

E. H. Hinchcliffe, Chromosome missegregation during anaphase triggers p53 cell cycle arrest through histone H3.3 Ser31 phosphorylation, Nat. Cell Biol, vol.18, pp.668-675, 2016.

S. Stingele, Global analysis of genome, transcriptome and proteome reveals the response to aneuploidy in human cells, Mol. Syst. Biol, vol.8, p.608, 2012.

T. A. Potapova, J. Zhu, and R. Li, Aneuploidy and chromosomal instability: a vicious cycle driving cellular evolution and cancer genome chaos, Cancer Metastasis Rev, vol.32, pp.377-389, 2013.

J. Y. Kim, J. Lee, and J. Cho, Ubiquitin C-terminal hydrolase-L3 regulates Smad1 ubiquitination and osteoblast differentiation, FEBS Lett, vol.585, pp.1121-1126, 2011.

E. Frickel, Apicomplexan UCHL3 retains dual specificity for ubiquitin and Nedd8 throughout evolution, Cell. Microbiol, vol.9, pp.1601-1610, 2007.

, Exons -Homo sapiens -Ensembl genome browser 97, vol.13, p.22, 2019.

M. Pan, Chemical Protein Synthesis Enabled Mechanistic Studies on the Molecular Recognition of K27-linked Ubiquitin Chains, Angew. Chem. Int. Ed, vol.58, pp.2627-2631, 2019.

S. C. Johnston, C. N. Larsen, W. J. Cook, K. D. Wilkinson, and C. P. Hill, Crystal structure of a deubiquitinating enzyme (human UCH-L3) at 1.8 A resolution, EMBO J, vol.16, pp.3787-3796, 1997.

R. Setsuie, M. Suzuki, Y. Tsuchiya, and K. Wada, Skeletal muscles of Uchl3 knockout mice show polyubiquitinated protein accumulation and stress responses, Neurochem. Int, vol.56, pp.911-918, 2010.

R. J. Deshaies, E. D. Emberley, and A. Saha, Control of cullin-ring ubiquitin ligase activity by nedd8, Subcell. Biochem, vol.54, pp.41-56, 2010.

C. N. Larsen, B. A. Krantz, and K. D. Wilkinson, Substrate specificity of deubiquitinating enzymes: ubiquitin C-terminal hydrolases, Biochemistry, vol.37, pp.3358-3368, 1998.

S. Misaghi, Structure of the ubiquitin hydrolase UCH-L3 complexed with a suicide substrate, J. Biol. Chem, vol.280, pp.1512-1520, 2005.

C. N. Larsen, J. S. Price, and K. D. Wilkinson, Substrate Binding and Catalysis by Ubiquitin C-Terminal Hydrolases: Identification of Two Active Site Residues, Biochemistry, vol.35, pp.6735-6744, 1996.

M. W. Popp, K. Artavanis-tsakonas, and H. L. Ploegh, Substrate filtering by the active site crossover loop in UCHL3 revealed by sortagging and gain-of-function mutations, J. Biol. Chem, vol.284, pp.3593-3602, 2009.

K. D. Wilkinson, The binding site for UCH-L3 on ubiquitin: mutagenesis and NMR studies on the complex between ubiquitin and UCH-L3, J. Mol. Biol, vol.291, pp.1067-1077, 1999.

E. Semenova, X. Wang, M. M. Jablonski, J. Levorse, and S. M. Tilghman, An engineered 800 kilobase deletion of Uchl3 and Lmo7 on mouse chromosome 14 causes defects in viability, postnatal growth and degeneration of muscle and retina, Hum. Mol. Genet, vol.12, pp.1301-1312, 2003.

M. A. Wood, M. P. Kaplan, C. M. Brensinger, W. Guo, and T. Abel, Ubiquitin Cterminal hydrolase L3 (Uchl3) is involved in working memory, Hippocampus, vol.15, pp.610-621, 2005.

M. Suzuki, R. Setsuie, and K. Wada, Ubiquitin carboxyl-terminal hydrolase l3 promotes insulin signaling and adipogenesis, Endocrinology, vol.150, pp.5230-5239, 2009.

R. Setsuie, Ubiquitin C-terminal hydrolase-L3-knockout mice are resistant to diet-induced obesity and show increased activation of AMP-activated protein kinase in skeletal muscle, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.23, pp.4148-4157, 2009.

R. Nishi, The deubiquitylating enzyme UCHL3 regulates Ku80 retention at sites of DNA damage, Sci. Rep, vol.8, p.17891, 2018.

Y. Miyoshi, High expression of ubiquitin carboxy-terminal hydrolase-L1 and -L3 mRNA predicts early recurrence in patients with invasive breast cancer, Cancer Sci, vol.97, pp.523-529, 2006.

U. Rolén, Activity profiling of deubiquitinating enzymes in cervical carcinoma biopsies and cell lines, Mol. Carcinog, vol.45, pp.260-269, 2006.

H. M. Song, J. E. Lee, and J. H. Kim, Ubiquitin C-terminal hydrolase-L3 regulates EMT process and cancer metastasis in prostate cell lines, Biochem. Biophys. Res. Commun, vol.452, pp.722-727, 2014.

M. B. Butterworth, The deubiquitinating enzyme UCH-L3 regulates the apical membrane recycling of the epithelial sodium channel, J. Biol. Chem, vol.282, pp.37885-37893, 2007.

N. R. Mtango, M. Sutovsky, C. A. Vandevoort, K. E. Latham, and P. Sutovsky, Essential role of ubiquitin C-terminal hydrolases UCHL1 and UCHL3 in mammalian oocyte maturation, J. Cell. Physiol, vol.227, pp.2022-2029, 2012.

W. C. Earnshaw, Discovering centromere proteins: from cold white hands to the A, B, C of CENPs, Nat. Rev. Mol. Cell Biol, vol.16, pp.443-449, 2015.

R. A. Dickins, Probing tumor phenotypes using stable and regulated synthetic microRNA precursors, Nat. Genet, vol.37, pp.1289-1295, 2005.

B. Orr and H. Maiato, No chromosome left behind: The importance of metaphase alignment for mitotic fidelity, J. Cell Biol, vol.218, pp.1086-1088, 2019.

C. L. Fonseca, Mitotic chromosome alignment is required for proper nuclear envelope reassembly, Cell Biology, 2018.

H. J. Chung, J. E. Park, N. S. Lee, H. Kim, and C. Jang, Phosphorylation of Astrin Regulates Its Kinetochore Function, J. Biol. Chem, vol.291, pp.17579-17592, 2016.

A. J. Holland and D. W. Cleveland, The deubiquitinase USP44 is a tumor suppressor that protects against chromosome missegregation, J. Clin. Invest, vol.122, pp.4325-4328, 2012.

S. Bhattacharya, D. Chakraborty, M. Basu, and M. K. Ghosh, Emerging insights into HAUSP (USP7) in physiology, cancer and other diseases, Signal Transduct. Target. Ther, vol.3, 2018.

L. Palazzo, R. Della-monica, R. Visconti, V. Costanzo, and D. Grieco, ATM controls proper mitotic spindle structure, Cell Cycle Georget. Tex, vol.13, pp.1091-1100, 2014.

C. X. Deng, Tumorigenesis as a consequence of genetic instability in Brca1 mutant mice, Mutat. Res, vol.477, pp.183-189, 2001.

D. Jullien, P. Vagnarelli, W. C. Earnshaw, and Y. Adachi, Kinetochore localisation of the DNA damage response component 53BP1 during mitosis, J. Cell Sci, vol.115, pp.71-79, 2002.

H. Wang, Aurora kinase B dependent phosphorylation of 53BP1 is required for resolving merotelic kinetochore-microtubule attachment errors during mitosis, Oncotarget, vol.8, pp.48671-48687, 2017.

. Gds5408-/-204616_at, , p.16, 2019.

L. J. Kurihara, E. Semenova, J. M. Levorse, and S. M. Tilghman, Expression and Functional Analysis of Uch-L3 during Mouse Development, Mol. Cell. Biol, vol.20, pp.2498-2504, 2000.

T. M. Kapoor, Chromosomes Can Congress to the Metaphase Plate Before Biorientation, Science, vol.311, pp.388-391, 2006.

M. Barisic, P. Aguiar, S. Geley, and H. Maiato, Kinetochore motors drive congression of peripheral polar chromosomes by overcoming random arm-ejection forces, Nat. Cell Biol, vol.16, pp.1249-1256, 2014.

N. Gudimchuk, Kinetochore kinesin CENP-E is a processive bi-directional tracker of dynamic microtubule tips, Nat. Cell Biol, vol.15, pp.1079-1088, 2013.

J. K. Yucel, CENP-meta, an Essential Kinetochore Kinesin Required for the Maintenance of Metaphase Chromosome Alignment in Drosophila, J. Cell Biol, vol.150, pp.1-12, 2000.

V. L. Johnson, M. I. Scott, S. V. Holt, D. Hussein, and S. S. Taylor, Bub1 is required for kinetochore localization of BubR1, Cenp-E, Cenp-F and Mad2, and chromosome congression, J. Cell Sci, vol.117, pp.1577-1589, 2004.

X. Yao, A. Abrieu, Y. Zheng, K. F. Sullivan, and D. W. Cleveland, CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint, Nat. Cell Biol, vol.2, p.484, 2000.

J. Gruber, J. Harborth, J. Schnabel, K. Weber, and M. Hatzfeld, The mitotic-spindleassociated protein astrin is essential for progression through mitosis, J. Cell Sci, vol.115, pp.4053-4059, 2002.

D. M. Kern, J. K. Monda, K. Su, E. M. Wilson-kubalek, and I. M. Cheeseman, Astrin-SKAP complex reconstitution reveals its kinetochore interaction with microtubule-bound Ndc80, 2017.

J. C. Schmidt, Aurora B kinase controls the targeting of the Astrin-SKAP complex to bioriented kinetochores, J. Cell Biol, vol.191, pp.269-280, 2010.

A. K. Dunsch, E. Linnane, F. A. Barr, and U. Gruneberg, The astrin-kinastrin/SKAP complex localizes to microtubule plus ends and facilitates chromosome alignment, J. Cell Biol, vol.192, pp.959-968, 2011.

B. Polak, P. Risteski, S. Lesjak, and I. M. Toli?, PRC1-labeled microtubule bundles and kinetochore pairs show one-to-one association in metaphase, EMBO Rep, vol.18, pp.217-230, 2017.

J. Chen and J. Liu, Spindle Size Scaling Contributes to Robust Silencing of Mitotic Spindle Assembly Checkpoint, Biophys. J, vol.111, pp.1064-1077, 2016.

R. Nunes-bastos, Aurora B suppresses microtubule dynamics and limits central spindle size by locally activating KIF4A, J. Cell Biol, vol.202, pp.605-621, 2013.

A. W. Bird and A. A. Hyman, Building a spindle of the correct length in human cells requires the interaction between TPX2 and Aurora A, J. Cell Biol, vol.182, pp.289-300, 2008.

S. Young, S. Besson, and J. P. Welburn, Length-dependent anisotropic scaling of spindle shape, Biol. Open, vol.3, pp.1217-1223, 2014.

R. L. Shrestha and V. M. Draviam, Lateral to end-on conversion of chromosomemicrotubule attachment requires kinesins CENP-E and MCAK, Curr. Biol. CB, vol.23, pp.1514-1526, 2013.

R. L. Shrestha, Aurora-B kinase pathway controls the lateral to end-on conversion of kinetochore-microtubule attachments in human cells, Nat. Commun, vol.8, 2017.

D. Cimini, L. A. Cameron, and E. D. Salmon, Anaphase spindle mechanics prevent missegregation of merotelically oriented chromosomes, Curr. Biol. CB, vol.14, pp.2149-2155, 2004.

D. Cimini, D. Fioravanti, E. D. Salmon, and F. Degrassi, Merotelic kinetochore orientation versus chromosome mono-orientation in the origin of lagging chromosomes in human primary cells, J. Cell Sci, vol.115, pp.507-515, 2002.

H. T. Ma, Y. Y. Chan, X. Chen, K. F. On, and R. Y. Poon, Depletion of p31comet protein promotes sensitivity to antimitotic drugs, J. Biol. Chem, vol.287, pp.21561-21569, 2012.

K. Wang, Thyroid hormone receptor interacting protein 13 (TRIP13) AAA-ATPase is a novel mitotic checkpoint-silencing protein, J. Biol. Chem, vol.289, pp.23928-23937, 2014.

R. P. Sear and M. Howard, Modeling dual pathways for the metazoan spindle assembly checkpoint, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.16758-16763, 2006.

X. Luo and H. Yu, Protein Metamorphosis: The Two-State Behavior of Mad2, Struct. Lond. Engl, vol.16, p.1616, 1993.

M. Lohel, B. Ibrahim, S. Diekmann, and P. Dittrich, The role of localization in the operation of the mitotic spindle assembly checkpoint, Cell Cycle, vol.8, pp.2650-2660, 2009.

C. L. Rieder, A. Schultz, R. Cole, and G. Sluder, Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle, J. Cell Biol, vol.127, pp.1301-1310, 1994.

C. L. Rieder, R. W. Cole, A. Khodjakov, and G. Sluder, The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores, J. Cell Biol, vol.130, pp.941-948, 1995.

C. L. Rieder, Mitosis in vertebrate somatic cells with two spindles: implications for the metaphase/anaphase transition checkpoint and cleavage, Proc. Natl. Acad. Sci. U. S. A, vol.94, pp.5107-5112, 1997.

E. R. Griffis, N. Stuurman, and R. D. Vale, Spindly, a novel protein essential for silencing the spindle assembly checkpoint, recruits dynein to the kinetochore, J. Cell Biol, vol.177, pp.1005-1015, 2007.

F. G. Westhorpe, A. Tighe, P. Lara-gonzalez, and S. S. Taylor, p31comet-mediated extraction of Mad2 from the MCC promotes efficient mitotic exit, J. Cell Sci, vol.124, pp.3905-3916, 2011.

T. Habu and T. Matsumoto, p31(comet) inactivates the chemically induced Mad2-dependent spindle assembly checkpoint and leads to resistance to anti-mitotic drugs, SpringerPlus, vol.2, p.562, 2013.

A. L. Knowlton, W. Lan, and P. T. Stukenberg, Aurora B is enriched at merotelic attachment sites, where it regulates MCAK, Curr. Biol. CB, vol.16, pp.1705-1710, 2006.

S. Santaguida, A. Tighe, A. M. D'alise, S. S. Taylor, and A. Musacchio, Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine, J. Cell Biol, vol.190, pp.73-87, 2010.

B. A. Weaver and D. W. Cleveland, Does aneuploidy cause cancer?, Curr. Opin. Cell Biol, vol.18, pp.658-667, 2006.

Y. Fang and X. Shen, Ubiquitin carboxyl-terminal hydrolases: involvement in cancer progression and clinical implications, Cancer Metastasis Rev, vol.36, pp.669-682, 2017.

, Expression of UCHL3 in cancer -Summary -The Human Protein Atlas, p.17, 2019.

Z. Song, A novel UCHL3 inhibitor, perifosine, enhances PARP inhibitor cytotoxicity through inhibition of homologous recombination-mediated DNA double strand break repair, Cell Death Dis, vol.10, 2019.

G. Meroni and G. Diez-roux, TRIM/RBCC, a novel class of 'single protein RING finger' E3 ubiquitin ligases, BioEssays, vol.27, pp.1147-1157, 2005.

M. G. Koliopoulos, D. Esposito, E. Christodoulou, I. A. Taylor, and K. Rittinger, Functional role of TRIM E3 ligase oligomerization and regulation of catalytic activity, EMBO J, vol.35, pp.1204-1218, 2016.

K. L. Borden, In vivo and in vitro characterization of the B1 and B2 zinc-binding domains from the acute promyelocytic leukemia protooncoprotein PML, Proc. Natl. Acad. Sci, vol.93, pp.1601-1606, 1996.

G. A. Versteeg, The E3-Ligase TRIM Family of Proteins Regulates Signaling Pathways Triggered by Innate Immune Pattern-Recognition Receptors, Immunity, vol.38, pp.384-398, 2013.

S. Kano, N. Miyajima, S. Fukuda, and S. Hatakeyama, Tripartite Motif Protein 32 Facilitates Cell Growth and Migration via Degradation of Abl-Interactor 2, Cancer Res, vol.68, pp.5572-5580, 2008.

M. Watanabe, T. Tsukiyama, and S. Hatakeyama, TRIM31 interacts with p52Shc and inhibits Src-induced anchorage-independent growth, Biochem. Biophys. Res. Commun, vol.388, pp.422-427, 2009.

Y. Masuda, TRIM29 regulates the assembly of DNA repair proteins into damaged chromatin, Nat. Commun, vol.6, p.7299, 2015.

T. Sato, F. Okumura, T. Ariga, and S. Hatakeyama, TRIM6 interacts with Myc and maintains the pluripotency of mouse embryonic stem cells, J. Cell Sci, vol.125, pp.1544-1555, 2012.

K. Jensen, C. Shiels, and P. S. Freemont, PML protein isoforms and the RBCC/TRIM motif, Oncogene, vol.20, pp.7223-7233, 2001.

P. D. Uchil, B. D. Quinlan, W. Chan, J. M. Luna, and W. Mothes, TRIM E3 Ligases Interfere with Early and Late Stages of the Retroviral Life Cycle, PLoS Pathog, vol.4, p.16, 2008.

M. Stremlau, The cytoplasmic body component TRIM5? restricts HIV-1 infection in Old World monkeys, Nature, vol.427, pp.848-853, 2004.

S. N. Chen, Human Molecular Genetic and Functional Studies Identify TRIM63 , Encoding Muscle RING Finger Protein 1, as a Novel Gene for Human Hypertrophic Cardiomyopathy, Circ. Res, vol.111, pp.907-919, 2012.

M. Arra, The M694V Variant of the Familial Mediterranean Fever Gene Is Associated with Sporadic Early-Onset Alzheimer's Disease in an Italian Population Sample, Dement. Geriatr. Cogn. Disord, vol.23, pp.55-59, 2007.

A. Trockenbacher, MID1, mutated in Opitz syndrome, encodes an ubiquitin ligase that targets phosphatase 2A for degradation, Nat. Genet, vol.29, pp.287-294, 2001.

W. Tsai, TRIM24 links a non-canonical histone signature to breast cancer, Nature, vol.468, pp.927-932, 2010.

B. Herquel, Transcription cofactors TRIM24, TRIM28, and TRIM33 associate to form regulatory complexes that suppress murine hepatocellular carcinoma, Proc. Natl. Acad. Sci, vol.108, pp.8212-8217, 2011.

M. Sardiello, S. Cairo, B. Fontanella, A. Ballabio, and G. Meroni, Genomic analysis of the TRIM family reveals two groups of genes with distinct evolutionary properties, BMC Evol. Biol, vol.8, p.225, 2008.

G. Meroni, Genomics and Evolution of the TRIM Gene Family, TRIM/RBCC Proteins, vol.770, pp.1-9, 2012.

K. M. Short and T. C. Cox, Subclassification of the RBCC/TRIM Superfamily Reveals a Novel Motif Necessary for Microtubule Binding, J. Biol. Chem, vol.281, pp.8970-8980, 2006.

M. A. Massiah, B. N. Simmons, K. M. Short, and T. C. Cox, Solution Structure of the RBCC/TRIM B-box1 Domain of Human MID1: B-box with a RING, J. Mol. Biol, vol.358, pp.532-545, 2006.

L. M. Napolitano and G. Meroni, TRIM family: Pleiotropy and diversification through homomultimer and heteromultimer formation, IUBMB Life, vol.64, pp.64-71, 2012.

K. Ozato, D. Shin, T. Chang, and H. C. Morse, TRIM family proteins and their emerging roles in innate immunity, Nat. Rev. Immunol, vol.8, pp.849-860, 2008.

J. Woo, Structural and functional insights into the B30.2/SPRY domain, EMBO J, vol.25, pp.1353-1363, 2006.

X. Li, D. F. Yeung, A. M. Fiegen, and J. Sodroski, Determinants of the Higher Order Association of the Restriction Factor TRIM5? and Other Tripartite Motif (TRIM) Proteins, J. Biol. Chem, vol.286, pp.27959-27970, 2011.

A. Reymond, The tripartite motif family identifies cell compartments, EMBO J, vol.20, pp.2140-2151, 2001.

L. M. Napolitano, E. G. Jaffray, R. T. Hay, and G. Meroni, Functional interactions between ubiquitin E2 enzymes and TRIM proteins, Biochem. J, vol.434, pp.309-319, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00565906

W. A. Mcewan, Intracellular antibody-bound pathogens stimulate immune signaling via the Fc receptor TRIM21, Nat. Immunol, vol.14, pp.327-336, 2013.

H. Lee, The Role of Tripartite Motif Family Proteins in TGF-? Signaling Pathway and Cancer, J. Cancer Prev, vol.23, pp.162-169, 2018.

K. A. Wilkinson and J. M. Henley, Mechanisms, regulation and consequences of protein SUMOylation, Biochem. J, vol.428, pp.133-145, 2010.

Z. Yuan, The ATDC (TRIM29) Protein Binds p53 and Antagonizes p53-Mediated Functions, Mol. Cell. Biol, vol.30, pp.3004-3015, 2010.

&. Venuto and . Merla, E3 Ubiquitin Ligase TRIM Proteins, vol.8, p.510, 2019.

C. Recio, Signal transducer and activator of transcription (STAT)-5: an opportunity for drug development in oncohematology, Oncogene, 2019.

M. F. Caratozzolo, TRIM8 modulates p53 activity to dictate cell cycle arrest, Cell Cycle, vol.11, pp.511-523, 2012.

G. Xu, TRIM14 regulates cell proliferation and invasion in osteosarcoma via promotion of the AKT signaling pathway, Sci. Rep, vol.7, p.42411, 2017.

X. Mu, H. Li, L. Zhou, and W. Xu, TRIM52 regulates the proliferation and invasiveness of lung cancer cells via the Wnt/?-catenin pathway, Oncol. Rep, 2019.

M. U. Gack, TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-Imediated antiviral activity, Nature, vol.446, pp.916-920, 2007.

M. U. Gack, Influenza A Virus NS1 Targets the Ubiquitin Ligase TRIM25 to Evade Recognition by the Host Viral RNA Sensor RIG-I, Cell Host Microbe, vol.5, pp.439-449, 2009.

M. G. Grütter, J. Luban, and . Structure, HIV-1 capsid recognition, and innate immune signaling, Curr. Opin. Virol, vol.2, pp.142-150, 2012.

C. Tissot and N. Mechti, Molecular Cloning of a New Interferon-induced Factor That Represses Human Immunodeficiency Virus Type 1 Long Terminal Repeat Expression, J. Biol. Chem, vol.270, pp.14891-14898, 1995.
URL : https://hal.archives-ouvertes.fr/hal-02361053

A. Allouch, The TRIM Family Protein KAP1 Inhibits HIV-1 Integration, Cell Host Microbe, vol.9, pp.484-495, 2011.

M. Watanabe and S. Hatakeyama, TRIM proteins and diseases, J. Biochem. (Tokyo), p.87, 2017.

P. B. Shieh, E. Kudryashova, and M. J. Spencer, Limb-girdle muscular dystrophy 2H and the role of TRIM32, Handbook of Clinical Neurology, vol.101, pp.125-133, 2011.

Z. Zhang, TRIM11 Upregulation Contributes to Proliferation, Invasion, and EMT of Hepatocellular Carcinoma Cells, Oncol. Res. Featur. Preclin. Clin. Cancer Ther, vol.25, pp.691-699, 2017.

P. Czerwi?ska, S. Mazurek, and M. Wiznerowicz, The complexity of TRIM28 contribution to cancer, J. Biomed. Sci, vol.24, p.63, 2017.

M. F. Caratozzolo, TRIM8 anti-proliferative action against chemo-resistant renal cell carcinoma, Oncotarget, vol.5, 2014.

J. Roche, The Epithelial-to-Mesenchymal Transition in Cancer, Cancers, vol.10, p.52, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01660995

S. Feng, Tripartite motif-containing 14 (TRIM14) promotes epithelialmesenchymal transition via ZEB2 in glioblastoma cells, J. Exp. Clin. Cancer Res, vol.38, p.57, 2019.

M. C. Moh and S. Shen, The roles of cell adhesion molecules in tumor suppression and cell migration: a new paradox, Cell Adhes. Migr, vol.3, pp.334-336, 2009.

Z. Zhu, TRIM25 blockade by RNA interference inhibited migration and invasion of gastric cancer cells through TGF-? signaling, Sci. Rep, vol.6, p.19070, 2016.

Z. Jin, TRIM14 promotes colorectal cancer cell migration and invasion through the SPHK1/STAT3 pathway, Cancer Cell Int, vol.18, p.202, 2018.

S. Wang, The ubiquitin ligase TRIM25 targets ERG for degradation in prostate cancer, Oncotarget, vol.7, 2016.

P. Guo, TRIM31 is upregulated in hepatocellular carcinoma and promotes disease progression by inducing ubiquitination of TSC1-TSC2 complex, Oncogene, vol.37, pp.478-488, 2018.

J. Zhang, TRIM45 functions as a tumor suppressor in the brain via its E3 ligase activity by stabilizing p53 through K63-linked ubiquitination, Cell Death Dis, vol.8, pp.2831-2831, 2017.

H. Shi, Analysis of Genome-Wide Association Study (GWAS) data looking for replicating signals in Alzheimer's disease (AD), Int. J. Mol. Epidemiol. Genet, vol.1, pp.53-66, 2010.

P. D. Uchil, TRIM protein-mediated regulation of inflammatory and innate immune signaling and its association with antiretroviral activity, J. Virol, vol.87, pp.257-272, 2013.

P. D. Uchil, TRIM15 is a focal adhesion protein that regulates focal adhesion disassembly, J. Cell Sci, vol.127, pp.3928-3942, 2014.

W. Chen, C. Lu, and J. Hong, TRIM15 Exerts Anti-Tumor Effects Through Suppressing Cancer Cell Invasion in Gastric Adenocarcinoma, Med. Sci. Monit, vol.24, pp.8033-8041, 2018.

O. Lee, Role of the focal adhesion protein TRIM15 in colon cancer development, Biochim. Biophys. Acta BBA -Mol. Cell Res, vol.1853, pp.409-421, 2015.

E. L. Doyle, TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction, Nucleic Acids Res, vol.40, pp.117-122, 2012.

, ATCC Cell Lines. Available at, p.16, 2019.

H. Shibata, Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene, Science, vol.278, pp.120-123, 1997.

M. De-robertis, The AOM/DSS murine model for the study of colon carcinogenesis: From pathways to diagnosis and therapy studies, J. Carcinog, vol.10, p.9, 2011.

P. D. Uchil, TRIM15 is a focal adhesion protein that regulates focal adhesion disassembly, J. Cell Sci, vol.127, pp.3928-3942, 2014.

P. D. Uchil, TRIM15 is a focal adhesion protein that regulates focal adhesion disassembly, J. Cell Sci, vol.127, pp.3928-3942, 2014.

O. Lee, Role of the focal adhesion protein TRIM15 in colon cancer development, Biochim. Biophys. Acta BBA -Mol. Cell Res, vol.1853, pp.409-421, 2015.

T. Svingen, H. Letting, N. Hadrup, U. Hass, and A. M. Vinggaard, Selection of reference genes for quantitative RT-PCR (RT-qPCR) analysis of rat tissues under physiological and toxicological conditions, PeerJ, vol.3, p.855, 2015.

M. Horazna, Msx1 loss suppresses formation of the ectopic crypts developed in the Apc-deficient small intestinal epithelium, Sci. Rep, vol.9, p.1629, 2019.

W. Chen, C. Lu, and J. Hong, TRIM15 Exerts Anti-Tumor Effects Through Suppressing Cancer Cell Invasion in Gastric Adenocarcinoma, Med. Sci. Monit, vol.24, pp.8033-8041, 2018.

U. Cavallaro and G. Christofori, Cell adhesion in tumor invasion and metastasis: loss of the glue is not enough, Biochim. Biophys. Acta, vol.1552, pp.39-45, 2001.

M. C. Moh and S. Shen, The roles of cell adhesion molecules in tumor suppression and cell migration: a new paradox, Cell Adhes. Migr, vol.3, pp.334-336, 2009.

N. Seki, in a Mouse Mammary Epithelial Cell Line NMuMG by Using cDNA Microarray DEK and Proto-oncogene Cyclin B 1-regulated Genes that Include ING 1 Identification of the p 33 Updated, 2002.

, OS ATCC ® HTB-96 TM Homo sapiens bone osteosarcoma, p.23, 2019.