Y. S. Park, A. C. Whalley, M. Kamenetska, M. L. Steigerwald, M. S. Hybertsen et al., J. Am. Chem. Soc, vol.129, pp.1384-1389, 2003.

L. Scheres, M. Giesbers, and H. Zuilhof, Langmuir, vol.26, pp.4790-4795, 2010.

O. V. Borisov, E. B. Zhulina, and T. M. Birshtein, Macromolecules, vol.27, pp.4795-4803, 1994.

J. Jalkh, Y. R. Leroux, C. Lagrost, and P. Hapiot, J. Phys. Chem. C, vol.118, pp.28640-28646, 2014.

K. Smaali, S. Lenfant, S. Karpe, M. Oçafrain, P. Blanchard et al., , vol.4, pp.2411-2421, 2010.

S. A. Dahoumane, M. N. Nguyen, A. Thorel, J. Boudou, M. M. Chehimi et al., Langmuir, vol.25, pp.9633-9638, 2009.

J. L. Bahr, J. Yang, D. V. Kosynkin, M. J. Bronikowski, R. E. Smalley et al., J. Am. Chem. Soc, vol.123, pp.302-307, 2001.

F. Barroso-bujans, J. L. Fierro, S. Rojas, S. Sánchez-cortes, M. Arroyo et al., , vol.45, pp.1669-1678, 2007.

M. Delamar, R. Hitmi, J. Pinson, and J. M. Saveant, J. Am. Chem. Soc, vol.114, pp.5883-5884, 1992.

S. Ranganathan and R. L. Mccreery, Anal. Chem, vol.73, pp.893-900, 2001.

P. Allongue, M. Delamar, B. Desbat, O. Fagebaume, R. Hitmi et al., J. Am. Chem. Soc, vol.119, pp.201-207, 1997.

J. R. Lomeda, C. D. Doyle, D. V. Kosynkin, W. Hwang, and J. M. Tour, J. Am. Chem. Soc, vol.130, pp.16201-16206, 2008.

Z. Li, W. Yan, and S. Dai, Langmuir, vol.21, pp.11999-12006, 2005.

P. Simon and Y. Gogotsi, Acc. Chem. Res, vol.46, pp.1094-1103, 2013.

G. Pognon, T. Brousse, and D. Bélanger, Carbon, vol.49, pp.1340-1348, 2011.

S. Uchiyama, H. Watanabe, H. Yamazaki, A. Kanazawa, H. Hamana et al., Int J Electrochem Sci, vol.154, issue.11, pp.131-135, 1986.

K. Xu, M. S. Ding, T. R. Jow-;-b, ). D. Moosbauer, S. Jordan et al., Electrochim. Acta, vol.46, p.218, 2001.

J. Gamby, P. L. Taberna, P. Simon, J. F. Fauvarque, and M. Chesneau, J. Power Sources, vol.101, pp.109-116, 2001.

J. Chmiola, G. Yushin, R. Dash, Y. Gogotsi-;-c, ). J. Chmiola et al., J. Power Sources, vol.158, pp.1760-1763, 2006.

E. Raymundo-piñero, K. Kierzek, J. Machnikowski, and F. Béguin, Carbon, vol.44, pp.2498-2507, 2006.

S. Zheng, Z. Wu, S. Wang, H. Xiao, F. Zhou et al., Energy Storage Mater, vol.6, p.387, 2017.

K. S. Novoselov, Science, vol.306, pp.666-669, 2004.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan et al., Nano Lett, vol.8, pp.902-907, 2008.

M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Nano Lett, vol.8, pp.3498-3502, 2008.

P. Simon, Y. ;. Gogotsi, S. Stoller, Y. Park, J. Zhu et al., Acc. Chem. Res, vol.46, pp.3498-3502, 2008.

Z. Algharaibeh, P. G. Pickup-;-b, ). E. Lebègue, T. Brousse, J. Gaubicher et al., Electrochem. Commun, vol.13, pp.1272-1283, 2011.

S. E. Burkhardt, M. A. Lowe, S. Conte, W. Zhou, H. Qian et al.,

;. C. Abruña and . Benoit, Energy Environ. Sci, vol.5, pp.7176-7187, 2012.

G. Pognon, C. Cougnon, D. Mayilukila, and D. Bélanger, ACS Appl. Mater. Interfaces, vol.4, pp.3788-3796, 2012.

A. Grondein and D. Bélanger, Fuel, vol.90, pp.2684-2693, 2011.

B. D. Assresahegn, T. Brousse, D. Bélanger-;-b, ). E. Lebègue, C. Benoit et al., J. Electrochem. Soc, vol.92, pp.989-997, 2015.

L. Madec, A. Bouvrée, P. Blanchard, C. Cougnon, T. Brousse et al., J. Mater. Chem. A, vol.5, issue.1, pp.13120-13127, 2012.

C. Benoit, D. Demeter, D. Bélanger, and C. Cougnon, Angew. Chem. Int. Ed, vol.128, pp.5404-5407, 2016.

T. Menanteau, C. Benoît, T. Breton, and C. Cougnon, Electrochem. Commun, vol.63, pp.70-73, 2016.

E. Boron-trifluoride, Na2SO4 (99%) were purchased from Alfa Aesar and 2,2-diphenyl-1-picrylhydrazyl (DPPH) were purchased from SIGMA. Tetrabutylammonium hexafluorophosphate (Aldrich) and acetonitrile (HPLC grade, Carlo Erba) were used as received for electrochemical studies. Triethylamine (99.5%) from Aldrich, Tetrahydrofuran (THF, HPLC grade), diethyl ether (Analysis grade), ethyl acetate (Reagent grade), Dichloromethane (DCM, HPLC grade), cyclohexane (Reagent grade), petroleum ether (Reagent grade), dichloromethane (DCM, Reagent grade) from Carlo Erba and glacial acetic acid, ?46% BF3 basis), 4-iodoaniline (98%), t-BuLi (1.9 M in pentane), tert-butylnitrite (90%), ethynylferrocene (97%), ferrocenemethanol (97%), MgSO4 (98%), ferrocene (98%), FeCl3 (97%)

, Aldrich were used for NMR analysis. Glassy carbon (GC) electrodes from Bioanalytical Systems Inc. (model MF-2012; 3 mm in diameter) were used for cyclic voltammetry. GC sheets from Alfa Aesar were used for XPS and pyrolyzed photoresist film (PPF), 2SO (99.9%) and CDCl3 (99.8%) from

, After 15 min stirring, the precipitated was filtered and washed with diethyl ether to afford the diazonium salt in 90% yield as a beige solid. 1 H NMR (300 MHz, (CD3)2SO): ? (ppm) = 8.43 (d, 2H, J = 9

, (triisopropylsilyl)ethynyl)aniline was obtained under argon atmosphere by dropwise addition of triisopropylsilylacetylene (2.46 mL, 10.97 mmol, 1.10 equiv.) in a mixture of 4-iodoaniline (2.18 g, 9.97 mmol, 1 equiv, p.20

B. D. Assresahegn, T. Brousse, and D. Bélanger, Advances on the use of diazonium chemistry for functionalization of materials used in energy storage systems, Carbon, vol.92, pp.362-381, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01725485

C. Combellas, M. Delamar, F. Kanoufi, J. Pinson, and F. I. Podvorica, Spontaneous grafting of iron surfaces by reduction of aryldiazonium salts in acidic or neutral aqueous solution. Application to the protection of iron against corrosion, Chem. Mater, vol.17, pp.3968-3975, 2005.

S. Cosnier and P. Mailley, Recent advances in DNA sensors, Analyst, vol.133, pp.984-991, 2008.

S. Ranganathan, I. Steidel, F. Anariba, and R. L. Mccreery, Covalently bonded organic monolayers on a carbon substrate: A new paradigm for molecular electronics, Nano Letters, vol.1, pp.491-494, 2001.

M. D. Angione, T. Duff, A. P. Bell, S. N. Stamatin, C. Fay et al., Enhanced antifouling properties of carbohydrate coated poly(ether sulfone) membranes, ACS Appl. Mater. Interfaces, vol.7, pp.17238-17246, 2015.

S. Park, J. C. Gildersleeve, O. Blixt, I. Shin, and C. Microarrays, Chem. Soc. Rev, vol.42, pp.4310-4326, 2013.

W. S. Yeap, X. Liu, D. Bevk, A. Pasquarelli, L. Lutsen et al., Functionalization of borondoped nanocrystalline diamond with N3 dye molecules, ACS Appl. Mater. Interfaces, vol.6, pp.10322-10329, 2014.

R. M. Arnold, N. E. Huddleston, and J. Locklin, Utilizing click chemistry to design functional interfaces through postpolymerization modification, J. Mater. Chem, vol.22, pp.19357-19365, 2012.

A. Devadoss and C. E. Chidsey, Azide-modified graphitic surfaces for covalent attachment of alkyne-terminated molecules by "click" chemistry, J. Am. Chem. Soc, vol.129, pp.5370-5371, 2007.

A. B. Lowe, Thiol-yne 'click'/coupling chemistry and recent applications in polymer and materials synthesis and modification, Polymer, vol.55, pp.5517-5549, 2014.

J. Raymakers, A. Artemenko, S. S. Nicley, P. ?tenclová, A. Kromka et al., Expanding the scope of diamond surface chemistry: Stille and Sonogashira cross-coupling reactions, J. Phys. Chem. C, vol.121, pp.23446-23454, 2017.

Y. L. Zhong, K. P. Loh, A. Midya, and Z. Chen, Suzuki coupling of aryl organics on diamond, vol.20, pp.3137-3144, 2008.

M. Qua, Y. Zhang, J. He, X. Cao, and J. Zhang, Pd-catalyzed coupling reaction on the organic monolayer: Sonogashira reaction on the silicon (1 1 1) surfaces, Appl. Surf. Sci, vol.255, pp.2608-2612, 2008.

J. Liang, R. E. Smith, A. Vezzoli, L. Xie, D. C. Milan et al., Electrochemically grafted single molecule junctions exploiting a chemical protection strategy, Electrochimi. Acta, vol.220, pp.436-443, 2016.

A. A. Gietter, R. C. Pupillo, G. P. Yap, T. P. Beebe, J. Rosenthal et al., On-surface cross-coupling methods for the construction of modified electrode assemblies with tailored morphologies, Chem. Sci, vol.4, pp.437-443, 2013.

M. Müri, B. Gotsmann, Y. Leroux, M. Trouwborst, E. Lörtscher et al., Modular functionalization of electrodes by cross-coupling reactions at their surfaces, Adv. Funct. Mater, vol.21, pp.3706-3714, 2011.

P. Murugan, S. J. Ananthakrishnan, N. Somanathan, D. Samanta, and A. B. , Nanoscale functionalization of surfaces by graft-through Sonogashira polymerization, RSC Adv, vol.5, pp.4121-4125, 2015.

J. K. Kariuki and M. T. Mcdermott, Formation of multilayers on glassy carbon electrodes via the reduction of diazonium salts, Langmuir, vol.17, pp.5947-5951, 2001.

J. Pinson and F. Podvorica, Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts, Chem. Soc. Rev, vol.34, pp.429-439, 2005.

T. Menanteau, E. Levillain, and T. Breton, Electrografting via diazonium chemistry: from multilayer to monolayer using radical scavenger, Chem. Mater, vol.25, pp.2905-2909, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02534533

Y. R. Leroux, H. Fei, J. Noël, C. Roux, and P. Hapiot, Efficient covalent modification of a carbon surface: Use of a silyl protecting group to form an active monolayer, J. Am. Chem. Soc, vol.132, pp.14039-14041, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00839912

P. A. Brooksby and A. J. Downard, Electrochemical and Atomic Force Microscopy Study of Carbon Surface Modification Via Diazonium Reduction in Aqueous and Acetonitrile Solutions, Langmuir, vol.20, pp.5038-5045, 2004.

D. Marinelli, F. Fasano, B. Najjari, N. Demitri, and D. Bonifazi, Borazino-Doped Polyphenylenes, J. Am. Chem. Soc, vol.139, pp.5503-5519, 2017.

J. M. Casas-solvas, A. Vargas-berenguel, L. F. Capitán-vallvey, and F. Santoyo-gonzález, Convenient methods for the synthesis of ferrocene-carbohydrate conjugates, Org. Lett, vol.6, pp.3687-3690, 2004.

P. Srinivas, S. Prabhakar, F. Chevallier, E. Nassar, W. Erb et al., Synthesis of ferrocene amides and esters from aminoferrocene and 2-substituted ferrocenecarboxylic acid and properties thereof, New J. Chem, vol.40, pp.9441-9447, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01414285

B. Liang, M. Dai, J. Chen, and Z. Yang, Copper-free Sonogashira coupling reaction with PdCl2 in water under aerobic conditions, J. Org. Chem, vol.70, pp.391-393, 2005.

D. Bélanger and J. Pinson, Electrografting: a powerful method for surface modification, Chem. Soc. Rev, vol.40, pp.3995-4048, 2011.

P. Doppelt, G. Hallais, J. Pinson, F. Podvorica, and S. Verneyre, Surface modification of conducting substrates. Existence of azo bonds in the structure of organic layers obtained from diazonium salts, Chem. Mater, vol.19, pp.4570-4575, 2007.

M. M. Lorion, B. Matt, S. Alves, A. Proust, G. Poli et al., Versatile post-functionalization of polyoxometalate platforms by using an unprecedented range of palladium-catalyzed coupling reactions, Chem. Eur. J, vol.19, pp.12607-12612, 2013.

C. Combellas, F. Kanoufi, J. Pinson, and F. I. Podvorica, Sterically hindered diazonium salts for the grafting of a monolayer on metals, J. Am. Chem. Soc, vol.130, pp.8576-8577, 2008.

Y. R. Leroux and P. Hapiot, Nanostructured monolayers on carbon substrates prepared by electrografting of protected aryldiazonium salts, Chem. Mater, vol.25, pp.489-495, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00814516

W. Liu and T. D. Tilley, Sterically controlled functionalization of carbon surfaces with C6H4CH2X (X = OSO2Me or N3) groups for surface attachment of redox-active molecules, Langmuir, vol.31, pp.1189-1195, 2015.

A. A. Reitinger, N. A. Hutter, A. Donner, M. Steenackers, O. A. Williams et al., Functional polymer brushes on diamond as a platform for immobilization and electrical wiring of biomolecules, Adv. Funct. Mater, vol.23, pp.2979-2986, 2013.

S. Y. Sayed, A. Bayat, M. Kondratenko, Y. Leroux, P. Hapiot et al., Bilayer molecular electronics: All-carbon electronic junctions containing molecular bilayers made with "click" chemistry, J. Am. Chem. Soc, vol.135, pp.12972-12975, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01151686

E. Touzé, S. Dabos-seignon, T. Cauchy, F. Gohier, and C. Cougnon, Electrode grafting by oxidation of an amine catalyzed by a ferrocenyl "antenna" through intramolecular electron transfer, Electrochem. Commun, vol.82, pp.52-55, 2017.

I. López, M. Cesbron, E. Levillain, and T. Breton, Diazonium grafting control through a redox cross-reaction: Elucidation of the mechanism involved when using 2,2-diphenylpicrylhydrazyl as an inhibitor, ChemElectroChem, vol.5, pp.1-7, 2018.

T. Menanteau, M. Dias, E. Levillain, A. J. Downard, and T. Breton, Electrografting via diazonium chemistry: The key role of the aryl substituent in the layer growth mechanism, J. Phys. Chem. C, vol.120, pp.4423-4429, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01330327

B. Ortiz, C. Saby, G. Y. Champagne, and D. Bélanger, Electrochemical modification of a carbon electrode using aromatic diazonium salts. 2. Electrochemistry of 4-nitrophenyl modified glassy carbon electrodes in aqueous media, J. Electroanal. Chem, vol.455, pp.75-81, 1998.

M. Toupin and D. Bélanger, Thermal stability study of aryl modified carbon black by in situ generated diazonium salt, J. Phys. Chem. C, vol.111, pp.5394-5401, 2007.

A. L. Gui, G. Liu, M. Chockalingam, G. L. Saux, E. Luais et al., A comparative study of electrochemical reduction of 4-nitrophenyl covalently grafted on gold and carbon, electroanalysis, vol.22, pp.1824-1830, 2010.

D. Bélanger and J. Pinson, Electrografting: a powerful method for surface modification, Chem. Soc. Rev, vol.40, pp.3995-4048, 2011.

A. Adenier, M. M. Chehimi, I. Gallardo, J. Pinson, and N. Vila, Electrochemical oxidation of aliphatic amines and their attachment to carbon and metal surfaces, Langmuir, vol.20, pp.8243-8253, 2004.

O. D. Benjamin, M. Weissmann, and D. Bélanger, Electrochemical modification of carbon electrode with benzylphosphonic group, Electrochim. Acta, vol.122, pp.210-217, 2014.

O. Buriez, E. Labbé, P. Pigeon, G. Jaouen, and C. Amatore, Electrochemical attachment of a conjugated amino-ferrocifen complex onto carbon and metal surfaces, J. Electroanal. Chem, pp.169-175, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01230398

O. Buriez, F. I. Podvorica, A. Galtayries, E. Labbé, S. Top et al., Surface grafting of a ?-conjugated amino-ferrocifen drug, J. Electroanal. Chem, vol.699, pp.21-27, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01878684

L. Cuffe, R. D. Hudson, J. F. Gallagher, S. Jennings, J. Mcadam et al., Synthesis, structure, and redox chemistry of ethenyl and ethynyl ferrocene polyaromatic dyads, Organometallics, vol.24, pp.2051-2060, 2005.

C. Fave, V. Noel, J. Ghilane, G. Trippé-allard, H. Randriamahazaka et al., Electrochemical switches based on ultrathin organic films: from diode-like behavior to charge transfer transparency, J. Phys. Chem. C, vol.112, pp.18638-18643, 2008.

A. L. Beckwith and R. J. Leydon, Free-radical substitution of ferricinium ion. The mechanism of the arylation of ferrocene, Tetrahedron, vol.20, pp.791-801, 1964.

E. Touzé, Electrochemistry Communications, vol.82, pp.52-55, 2017.

H. and H. , H) ¼ 2.5 Hz, 1 H), vol.8

. Mhz,

, H) ¼ 2.6 Hz, 1 H), 7.79 (d, 4 J (H,H) ¼ 2.6 Hz, 1 H), 7.18 (d, 3 J (H,H) ¼ 9.0 Hz, 1H). 13 C NMR (100 MHz

E. Touz, Electrochimica Acta, vol.265, pp.121-130, 2018.

K. W. Leitner, B. Gollas, M. Winter, and J. O. Besenhard, Combination of redox capacity and double layer capacitance in composite electrodes through immobilization of an organic redox couple on carbon black, Electrochim. Acta, vol.50, 2004.

S. Isikli and R. Diaz, Substrate-dependent performance of supercapacitors based on an organic redox couple impregnated on carbon, J. Power Sources, vol.206, pp.53-58, 2012.

R. D. Smith and P. G. Pickup, Novel electroactive surface functionality from the coupling of an aryl diamine to carbon black, Electrochem. Commun, vol.11, pp.10-13, 2009.

Z. Algharaibeh, X. Liu, and P. G. Pickup, An asymmetric anthraquinone-modified carbon/ruthenium oxide supercapacitor, J. Power Sources, vol.187, pp.640-643, 2009.

K. Kalinathan, D. P. Desroches, X. Liu, and P. G. Pickup, Anthraquinone modified carbon fabric supercapacitors with improved energy and power densities, J. Power Sources, vol.181, pp.182-185, 2008.

M. Weissmann, O. Crosnier, T. Brousse, and D. Elanger, Electrochemical study of anthraquinone groups, grafted by the diazonium chemistry, in different aqueous media-relevance for the development of aqueous hybrid electrochemical capacitor, Electrochim. Acta, vol.82, pp.250-256, 2012.

L. Madec, A. Bouvr-ee, P. Blanchard, C. Cougnon, T. Brousse et al., In situ redox functionalization of composite electrodes for high powerehigh energy electrochemical storage systems via a non-covalent approach, Energy Environ. Sci, vol.5, pp.5379-5386, 2012.

E. Leb-egue, T. Brousse, O. Crosnier, J. Gaubicher, and C. Cougnon, Direct introduction of redox centers at activated carbon substrate based on acidsubstituent-assisted diazotization, Electrochem. Commun, vol.25, pp.124-127, 2012.

E. Leb-egue, T. Brousse, J. Gaubicher, and C. Cougnon, Chemical functionalization of activated carbon through radical and diradical intermediates, Electrochem. Commun, vol.34, pp.14-17, 2013.

S. Isikli, M. Lecea, M. Ribagorda, M. C. Carreno, and R. D?az, Influence of quinone grafting via FriedeleCrafts reaction on carbon porous structure and supercapacitor performance, Carbon, vol.66, pp.654-661, 2014.

G. Pognon, T. Brousse, L. Demarconnay, and D. Elanger, Performance and stability of electrochemical capacitor based on anthraquinone modified activated carbon, J. Power Sources, vol.196, pp.4117-4122, 2011.

A. Le-comte, G. Pognon, T. Brousse, and D. Elanger, Determination of the quinoneloading of a modified carbon powder-based electrode for electrochemical capacitor, Electrochemistry, vol.81, pp.863-866, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00961248

Q. Abbas, P. Ratajczak, P. Babuchowska, A. Le-comte, D. Elanger et al., Strategies to improve the performance of carbon/carbon capacitors in salt aqueous electrolytes, J. Electrochem. Soc, vol.162, pp.5148-5157, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01725985

X. Chen, H. Wang, H. Yi, X. Wang, X. Yan et al., Anthraquinone on porous carbon nanotubes with improved supercapacitor performance, J. Phys. Chem. C, vol.118, pp.8262-8270, 2014.

A. Le-comte, T. Brousse, and D. Elanger, Simpler and greener grafting method for improving the stability of anthraquinone-modified carbon electrode in alkaline media, Electrochim. Acta, vol.137, pp.447-453, 2014.

C. Cougnon, E. Leb-egue, and G. Pognon, Impedance spectroscopy study of a catechol-modified activated carbon electrode as active material in electrochemical capacitor, J. Power Sources, vol.274, pp.551-559, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01390931

Z. Algharaibeh and P. G. Pickup, An asymmetric supercapacitor with anthraquinone and dihydroxybenzene modified carbon fabric electrodes, Electrochem. Commun, vol.13, pp.147-149, 2011.

E. Leb-egue, T. Brousse, J. Gaubicher, R. Retoux, and C. Cougnon, Toward fully organic rechargeable charge storage devices based on carbon electrodes grafted with redox molecules, J. Mater. Chem, vol.2, pp.8599-8602, 2014.

N. An, Y. An, Z. Hu, B. Guo, Y. Yang et al., Graphene hydrogels non-covalently functionalized with alizarin: an ideal electrode material for symmetric supercapacitors, J. Mater. Chem, vol.3, pp.22239-22246, 2015.

X. Su, K. Tan, J. Elbert, C. Rüttiger, M. Gallei et al., Asymmetric Faradaic systems for selective electrochemical separations, Energy Environ. Sci, vol.10, pp.1272-1283, 2017.

C. Karlsson, E. Amstorp, M. Strømme, and M. Sj?-odin, Computational electrochemistry study of 16 isoindole-4,7-diones as candidates for organic cathode materials, J. Phys. Chem. C, vol.116, pp.3793-3801, 2012.

K. Hernández-burgos, S. E. Burkhardt, G. G. Rodríguez-calero, R. G. Hennig, and H. D. Abrunea, Theoretical studies of carbonyl-based organic molecules for energy storage applications: the heteroatom and substituent effect, J. Phys. Chem. C, vol.118, pp.6046-6051, 2014.

R. B. Araujo, A. Banerjee, P. Panigrahi, L. Yang, M. Strømme et al., Designing strategies to tune reduction potential of organic molecules for sustainable high capacity battery application, J. Mater. Chem, vol.5, pp.4430-4454, 2017.

S. E. Burkhardt, M. A. Lowe, S. Conte, W. Zhou, H. Qian et al., Tailored redox functionality of small organics for pseudocapacitive electrodes, vol.5, pp.7176-7187, 2012.

G. Pognon, C. Cougnon, D. Mayilukila, and D. Elanger, Catechol-modified activated carbon prepared by the diazonium chemistry for application as active electrode material in electrochemical capacitor, ACS Appl. Mater. Interfaces, vol.4, pp.3788-3796, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01388860

S. Uchiyama, H. Watanabe, H. Yamazaki, A. Kanazawa, H. Hamana et al., Electrochemical introduction of amino group to a glassy carbon surface by the electrolysis of carbamic acid, J. Electrochem. Soc, vol.154, pp.31-35, 2007.

G. G. Wildgoose, A. T. Masheter, A. Crossley, J. H. Jones, and R. G. Compton, Electrolysis of ammonium carbamate: a voltammetric and X-ray photoelectron spectroscopic investigation into the modification of carbon electrodes, Int. J. Electrochem. Sci, vol.2, pp.809-819, 2007.

T. Nagaoka and T. Yoshino, Surface properties of electrochemically pretreated glassy carbon, Anal. Chem, vol.58, pp.1037-1042, 1986.

A. S. Kumar, S. Sornambikai, P. Gayathri, and J. Zen, Selective covalent immobilization of catechol on activated carbon electrodes, J. Electroanal. Chem, vol.641, pp.131-135, 2010.

A. S. Kumar and P. Swetha, Electrochemical-assisted encapsulation of catechol on a multiwalled carbon nanotube modified electrode, Langmuir, vol.26, pp.6874-6877, 2010.

S. A. Trammell, M. Moore, T. L. Schull, and N. Lebedev, Synthesis and electrochemistry of self-assembled monolayers containing quinone derivatives with varying electronic conjugation, J. Electroanal. Chem, vol.628, pp.125-133, 2009.

N. H. Nguyen, C. Cougnon, and F. Gohier, Deprotection of arenediazonium tetrafluoroborate ethers with BBr 3, J. Org. Chem, vol.74, pp.3955-3957, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00418878

M. Li, S. M. Shandilya, M. A. Carpenter, A. Rathore, W. L. Brown et al., First-in-class small molecule inhibitors of the single-strand DNA cytosine deaminase APOBEC3G, ACS Chem. Biol, vol.7, pp.506-517, 2012.

W. G. Hong, B. H. Kim, S. M. Lee, H. Y. Yu, Y. J. Yun et al., Agentfree synthesis of graphene oxide/transition metal oxide composites and its application for hydrogen storage, Int. J. Hydrogen Energy, vol.37, pp.7594-7599, 2012.

A. Pendashteh, M. F. Mousavi, and M. S. Rahmanifar, Fabrication of anchored copper oxide nanoparticles on graphene oxide nanosheets via an electrostatic coprecipitation and its application as supercapacitor, Electrochim. Acta, vol.88, pp.347-357, 2013.

M. Andresen, L. Johansson, B. S. Tanem, and P. Stenius, Properties and characterization of hydrophobized microfibrillated cellulose, Cellulose, vol.13, pp.665-677, 2006.

Y. R. Leroux, H. Fei, J. No?-el, C. Roux, and P. Hapiot, Efficient covalent modification of a carbon surface: use of a silyl protecting group to form an active monolayer, J. Am. Chem. Soc, vol.132, pp.14039-14041, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00839912

M. Toupin and D. Elanger, Thermal stability study of aryl modified carbon black by in situ generated diazonium salt, J. Phys. Chem. C, vol.111, pp.5394-5401, 2007.

P. Doppelt, G. Hallais, J. Pinson, F. Podvorica, and S. Verneyre, Surface modification of conducting substrates. Existence of azo bonds in the structure of organic layers obtained from diazonium salts, Chem. Mater, vol.19, pp.4570-4575, 2007.

B. L. Hurley and R. L. Mccreery, Covalent bonding of organic molecules to Cu and Al alloy 2024 T3 surfaces via diazonium ion reduction, J. Electrochem. Soc, vol.151, pp.252-259, 2004.

L. Madec, K. A. Seid, J. Badot, B. Humbert, P. Moreau et al., Redirected charge transport arising from diazonium grafting of carbon coated LiFePO 4, Phys. Chem. Chem. Phys, vol.16, pp.22745-22753, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01095778

G. Liu, E. Luais, and J. J. Gooding, The fabrication of stable gold nanoparticlemodified interfaces for electrochemistry, Langmuir, vol.27, pp.4176-4183, 2011.

P. Brant and R. D. Feltham, X-ray photoelectron spectra of aryldiazo derivatives of transition metals, J. Organomet. Chem, vol.120, pp.53-57, 1976.

P. Finn and W. Jolly, Nitrogen ls binding energies of some azide, dinitrogen, and nitride complexes of transition metals, Inorg. Chem, vol.11, pp.1434-1435, 1972.

T. M. Bockman, D. Kosynkin, and J. K. Kochi, Isolation and structure elucidation of transient (colored) complexes of arenediazonium with aromatic hydrocarbons as intermediates in arylations and azo couplings, J. Org. Chem, vol.62, pp.5811-5820, 1997.

T. Menanteau, M. Dias, E. Levillain, A. J. Downard, and T. Breton, Electrografting via diazonium chemistry: the key role of the aryl substituent in the layer growth mechanism, J. Phys. Chem. C, vol.120, pp.4423-4429, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01330327

Y. Xie and P. M. Sherwood, X-ray photoelectron spectroscopic studies of carbon fiber surfaces. Differences in the surface chemistry and bulk structure of different carbon fibers based on poly(acrylonitrile) and pitch and comparison with various graphite samples, Chem. Mater, vol.2, pp.293-299, 1990.

Y. R. Leroux and P. Hapiot, Nanostructured monolayers on carbon substrates prepared by electrografting of protected aryldiazonium salts, Chem. Mater, vol.25, pp.489-495, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00814516

J. Lehr, B. E. Williamson, and A. J. Downard, Spontaneous grafting of nitrophenyl groups to planar glassy carbon substrates: evidence for two mechanisms, J. Phys. Chem. C, vol.115, pp.6629-6634, 2011.

K. S. Sing, D. H. Everett, R. A. Haul, L. Moscou, R. A. Pierotti et al., Pure Appl. Chem, vol.57, pp.603-619, 1985.

G. Pognon, T. Brousse, and D. Belanger, Effect of molecular grafting on the pore size distribution and the double layer capacitance of activated carbon for electrochemical double layer capacitors, Carbon, vol.49, pp.1340-1348, 2011.

E. Touz, Electrochimica Acta, vol.265, pp.121-130, 2018.

G. Kear, B. D. Barker, and F. C. Walsh, Electrochemical corrosion of unalloyed copper in chloride media e a critical review, Corrosion Sci, vol.46, pp.109-135, 2004.

G. Bianchi and P. Longhi, Copper in sea-water, potential-pH diagrams, Corrosion Sci, vol.13, pp.853-864, 1973.

Y. Feng, K. S. Siow, W. K. Teo, K. L. Tan, and A. K. Hsieh, Corrosion mechanisms and products of copper in aqueous solutions at various pH values, Corrosion, vol.53, pp.389-398, 1997.

P. A. Korzhavy and B. Johansson, Literature Review on the Properties of Cuprous Oxide Cu2O and the Process of Copper Oxidation, 2011.

S. K. Lee, H. C. Hsu, and W. H. Tuan, Oxidation behavior of copper at a temperature below 300 C and the methodology for passivation, Mater. Res, vol.19, pp.51-56, 2016.

Y. Zhu, K. Mimura, and M. Isshiki, Oxidation mechanism of copper at 623e1073K, Mater. Trans, vol.43, pp.2173-2176, 2002.

T. A. Ramanarayanan and J. Alonzo, Oxidation of copper and reduction of Cu 2 0 in an environmental scanning electron microscope at 800 C, Oxid. Metals, vol.24, pp.17-27, 1985.

, Fitting parameters for the EIS data obtained with air-oxidized copper surfaces and their evolution with heating time. Evolution of Rp1 (a), Q1 and n1 (b), Rp2 (c) and Q2 and n2 (d)

E. Touz-e, C. Cougnon, and /. , Electrochimica Acta, vol.262, pp.206-213, 2018.

Y. Zhu, K. Mimura, J. W. Lim, M. Isshiki, and Q. Jiang, Brief review of oxidation kinetics of copper at 350 C to 1050 C, Metall. Mater. Trans. 37A, pp.1231-1237, 2006.

E. Cano, M. F. Opez, J. Simancas, and J. M. Bastidas, X-Ray photoelectron spectroscopy study on the chemical composition of copper tarnish products formed at low humidities, J. Electrochem. Soc, vol.148, pp.26-30, 2001.

J. P. Wang and W. D. Cho, Oxidation behavior of pure copper in oxygen and/or water vapor at intermediate temperature, ISIJ Int, vol.49, 2009.

M. G. Hapase, M. K. Gharpurey, and A. B. Biswas, The oxidation of vaccum deposited films of copper, Surf. Sci, vol.9, pp.87-89, 1968.

S. Nakayama, A. Kimura, M. Shibata, S. Kuwabata, and T. Osakai, Voltammetric characterization of oxide films formed on copper in air, J. Electrochem. Soc, vol.148, pp.467-472, 2001.

S. Poulston, P. M. Parlett, P. Stone, and M. Bowker, Surface oxidation and reduction of CuO and Cu 2 O studied using XPS and XAES, Surf. Interface Anal, vol.24, pp.811-820, 1996.

G. Panzner, B. Egert, and H. P. Schmidt, The stability of CuO and Cu2O surfaces during argon sputtering studied by XPS and AES, Surf. Sci, vol.151, pp.400-408, 1985.

G. Deroubaix and P. Marcus, X-ray photoelectron spectroscopy analysis of copper and zinc oxides and sulphides, Surf. Interface Anal, vol.18, pp.39-46, 1992.

S. Nakayama, A. Kimura, M. Shibata, S. Kuwabata, and T. Osakai, Voltammetric characterization of oxide films formed on copper in air, J. Electrochem. Soc, vol.148, pp.467-472, 2001.

M. Seo, Y. Ishikawa, M. Kodaira, A. Sugimoto, S. Nakayama et al., Cathodic reduction of the duplex oxide films formed on copper in air with high relative humidity at 60 C, Corrosion Sci, vol.47, pp.2079-2090, 2005.

A. M. Meier, P. R. Chidambaram, and G. R. Edwards, A comparison of the wettability of copper-copper oxide and silver-copper oxide on polycrystalline alumina, J. Mater. Sci, vol.30, pp.4781-4786, 1995.

Y. Nam and Y. S. Ju, Comparative study of copper oxidation schemes and their effects on surface wettability, ASME International Mechanical Engineering Congress and Exposition, vol.10, pp.1833-1838, 2008.

K. Cho and E. C. Cho, Effect of the microstructure of copper oxide on the adhesion behavior of epoxy/copper leadframe joints, J. Adhes. Sci. Technol, vol.14, pp.1333-1353, 2000.

S. B. Adeloju and Y. Y. Duan, Corrosion resistance of Cu 2 O and CuO on copper surfaces in aqueous media, Br. Corrosion J, vol.29, pp.309-314, 1994.

M. Curioni, F. Scenini, T. Monetta, and F. Bellucci, Correlation between electrochemical impedance measurements and corrosion rate of magnesium investigated by real-time hydrogen measurement and optical imaging, Electrochim. Acta, vol.166, pp.372-384, 2015.

H. P. Dhar, R. E. White, G. Burnell, L. R. Cornwell, R. B. Griffin et al., Corrosion of Cu and Cu-Ni alloys in 0.5M NaCl and in synthetic seawater, Corrosion, vol.41, pp.317-323, 1985.

Y. Feng, W. K. Teo, K. S. Siow, and A. K. Hsieh, The corrosion behavior of copper in neutral tap water. Part II: determination of corrosion rates, Corrosion Sci, vol.38, pp.387-395, 1996.

I. Dehri and M. Erbil, The effect of relative humidity on the atmospheric corrosion of defective organic coating materials: an EIS study with a new approach, Corrosion Sci, vol.42, pp.969-978, 2000.

E. Touz-e, C. Cougnon, and /. , Electrochimica Acta, vol.262, pp.206-213, 2018.