Skip to Main content Skip to Navigation

Active and passive biomonitoring tools for microplastics assessment in two highly polluted aquatic environments : case study of the Seine estuary and the Lebanese coast

Abstract : Plastic fabrication is increasing worldwide in response to daily human demands. This mass production is linked to the immense plastic marine litter found all around the world: each synthetic material is meant to find its way back into the aquatic systems. Anthropogenic pressure and the immense human population, the lack of appropriate plastic treatment process and the growing industrial activities advocate their presence in the aquatic environments. These plastics are then found in the form of microplastics (microscopic particle with a size < 5 mm) observed in the water, in the sediments and are prone to be ingested by various marine organisms along the trophic chain. This thesis focuses on (1) assessing microplastics sources and input into the aquatic environment and their occurrence in biota, and (2) to test the feasibility of using transplanted organisms (caging) for monitoring microplastics pollution in the marine coastal environment. Two coastal areas highly impacted by anthropogenic pressures were studied: Le Havre in France and the Lebanese coast. For the former, the role of a municipal wastewater treatment plant (WWTP) effluent and an abandoned coastal landfill as pathways for microplastics (MPs) input into the marine environment was assessed. MPs were first analyzed in raw sewage influent, sludge and effluent samples, and their fate was studied along a distance gradient from the WWTP in three matrices: surface water, sediments and wild mussels (Mytilus spp). MPs were found in all matrices with a decreasing abundance from the effluent. Strong MPs abundances (higher than those found near the WWTP effluent) were observed in the vicinity of the coastal landfill suggesting its importance as a MPs entry route into the marine coastal environment. Whereas for the Lebanese coast, we evaluated for the first time the MPs pollution in the seawater, sediments and two important seafood species (one pelagic fish: Engraulis encrasicolus and one bivalve: Spondylus spinosus). Results showed different patterns of MPs concentration in the analyzed matrices. The occurrence of MPs in the biota was high (83.4% and 86.3% in anchovies and spiny oysters, respectively). These results highlighted the high MPs pollution found in the Levantine Basin in comparison to other Western Mediterranean regions. In addition, the obtained results indicate the potential contribution of coastal landfills to this pollution. Most often microplastics studies involve collection of organisms’ samples from natural populations. In this thesis, we tested the feasibility of using transplanted organisms (caging) for monitoring microplastics’ pollution in the marine coastal environment. We developed caging experiments with juvenile European Flounder, Platichthys flesus, in estuarine nursery grounds and blue mussels, Mytilus edulis, in coastal marine environment. For each species, the abundance and characteristics (shape, size, color and type of polymers) of MPs ingested by caged individuals are compared with those ingested by wild individuals collected at the same site and with those found in their surrounding environment (surface water and sediments). Our results suggest that transplanted organisms (caging) may be a promising tool for MPs biomonitoring making monitoring more reliable with an accurate assessment of the biological effects of MPs over a predetermined exposure period.
Complete list of metadatas

Cited literature [619 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Wednesday, February 19, 2020 - 5:19:49 PM
Last modification on : Saturday, February 29, 2020 - 1:36:19 AM


Files produced by the author(s)


  • HAL Id : tel-02484873, version 1


Maria Kazour. Active and passive biomonitoring tools for microplastics assessment in two highly polluted aquatic environments : case study of the Seine estuary and the Lebanese coast. Earth Sciences. Université du Littoral Côte d'Opale, 2019. English. ⟨NNT : 2019DUNK0544⟩. ⟨tel-02484873v1⟩



Record views


Files downloads