P. Simarro, G. Cecchi, J. Franco, M. Paone, A. Diarra et al., Estimating and Mapping the Population at Risk of Sleeping Sickness, PLoS Neglected Tropical Diseases, vol.190, issue.10, pp.1859-23145192, 2012.
DOI : 10.1371/journal.pntd.0001859.s001

G. Cross, R. Klein, and D. Linstead, Utilization of amino acids by Trypanosoma brucei in culture: L-threonine as a precursor for acetate, Parasitology, vol.227, issue.02, pp.311-326, 1975.
DOI : 10.1042/bj1120657

F. Bringaud, M. Barrett, and D. Zilberstein, Multiple roles of proline transport and metabolism in trypanosomatids, Frontiers in Bioscience, vol.17, issue.1, pp.349-374, 2012.
DOI : 10.2741/3931

N. Lamour, L. Riviere, V. Coustou, G. Coombs, M. Barrett et al., Proline Metabolism in Procyclic Trypanosoma brucei Is Down-regulated in the Presence of Glucose, Journal of Biological Chemistry, vol.280, issue.12, pp.11902-11910, 2005.
DOI : 10.1074/jbc.M414274200

V. Coustou, M. Biran, M. Breton, F. Guegan, L. Riviere et al., Journal of Biological Chemistry, vol.135, issue.24, pp.16342-51634, 2008.
DOI : 10.1016/S0166-6851(02)00015-4

S. Besteiro, M. Biran, N. Biteau, V. Coustou, T. Baltz et al., Is Produced by a Novel and Unique Glycosomal Enzyme, NADH-dependent Fumarate Reductase, Journal of Biological Chemistry, vol.153, issue.41, pp.38001-38012, 2002.
DOI : 10.1111/j.1574-6941.1980.tb01579.x

URL : http://www.jbc.org/content/277/41/38001.full.pdf

F. Bringaud, L. Riviere, and V. Coustou, Energy metabolism of trypanosomatids: Adaptation to available carbon sources, Molecular and Biochemical Parasitology, vol.149, issue.1, pp.1-9, 2006.
DOI : 10.1016/j.molbiopara.2006.03.017

URL : https://hal.archives-ouvertes.fr/hal-00215937

L. Riviere, S. Van-weelden, P. Glass, P. Vegh, V. Coustou et al., Journal of Biological Chemistry, vol.102, issue.44, pp.45337-45346, 2004.
DOI : 10.1021/bi020568f

Y. Millerioux, P. Morand, M. Biran, M. Mazet, P. Moreau et al., Journal of Biological Chemistry, vol.1761, issue.21, pp.17186-17197, 2012.
DOI : 10.1016/S0163-7827(01)00017-0

L. Riviere, P. Moreau, S. Allmann, M. Hahn, M. Biran et al., Acetate produced in the mitochondrion is the essential precursor for lipid biosynthesis in procyclic trypanosomes, Proceedings of the National Academy of Sciences, vol.280, issue.17, pp.12694-12699, 2009.
DOI : 10.1074/jbc.M500343200

URL : https://hal.archives-ouvertes.fr/hal-00426334

P. Vigueira and K. Paul, Requirement for acetyl-CoA carboxylase in Trypanosoma brucei is dependent upon the growth environment, Molecular Microbiology, vol.96, issue.1, pp.117-132, 2011.
DOI : 10.1073/pnas.96.23.13387

S. Lee, J. Stephens, K. Paul, and P. Englund, Fatty Acid Synthesis by Elongases in Trypanosomes, Cell, vol.126, issue.4, pp.691-699, 2006.
DOI : 10.1016/j.cell.2006.06.045

URL : https://doi.org/10.1016/j.cell.2006.06.045

J. Stephens, S. Lee, K. Paul, and P. Englund, Journal of Biological Chemistry, vol.261, issue.7, pp.4427-4436, 2007.
DOI : 10.1016/0166-6851(92)90024-E

Y. Moon, N. Shah, S. Mohapatra, J. Warrington, and J. Horton, Identification of a Mammalian Long Chain Fatty Acyl Elongase Regulated by Sterol Regulatory Element-binding Proteins, Journal of Biological Chemistry, vol.193, issue.48, pp.45358-45366, 2001.
DOI : 10.1074/jbc.274.29.20603

K. Autio, J. Guler, A. Kastaniotis, P. Englund, and J. Hiltunen, FEBS Letters, vol.271, issue.5, pp.729-733, 2008.
DOI : 10.1074/jbc.271.44.27795

S. Lee, J. Stephens, and P. Englund, A fatty-acid synthesis mechanism specialized for parasitism, Nature Reviews Microbiology, vol.4, issue.4, pp.287-297, 2007.
DOI : 10.7164/antibiotics.25.365

A. Uttaro, Acquisition and biosynthesis of saturated and unsaturated fatty acids by trypanosomatids, Molecular and Biochemical Parasitology, vol.196, issue.1, pp.61-70, 2014.
DOI : 10.1016/j.molbiopara.2014.04.001

I. Coppens and P. Courtoy, for Sterol Homeostasis in Its Different Life-Cycle Environments, Annual Review of Microbiology, vol.54, issue.1, pp.129-156, 2000.
DOI : 10.1146/annurev.micro.54.1.129

C. Roberts, R. Mcleod, D. Rice, M. Ginger, M. Chance et al., Fatty acid and sterol metabolism: potential antimicrobial targets in apicomplexan and trypanosomatid parasitic protozoa, Molecular and Biochemical Parasitology, vol.126, issue.2, pp.129-142, 2003.
DOI : 10.1016/S0166-6851(02)00280-3

M. Ginger, M. Chance, and L. Goad, Elucidation of carbon sources used for the biosynthesis of fatty acids and sterols in the trypanosomatid Leishmania mexicana, Biochemical Journal, vol.342, issue.2, pp.397-405, 1999.
DOI : 10.1042/bj3420397

M. Ginger, M. Prescott, D. Reynolds, M. Chance, and L. Goad, Utilization of leucine and acetate as carbon sources for sterol and fatty acid biosynthesis by Old and New World Leishmania species, Endotrypanum???monterogeii and Trypanosoma???cruzi, European Journal of Biochemistry, vol.124, issue.9, pp.2555-2566, 2000.
DOI : 10.1093/oxfordjournals.jbchem.a022161

C. Nes, U. Singha, J. Liu, K. Ganapathy, F. Villalta et al., procyclic and bloodstream forms, Biochemical Journal, vol.837, issue.1, pp.267-277, 2012.
DOI : 10.1128/EC.00358-09

Y. Millerioux, C. Ebikeme, M. Biran, P. Morand, G. Bouyssou et al., The threonine degradation pathway of the Trypanosoma brucei procyclic form: the main carbon source for lipid biosynthesis is under metabolic control, Mol Microbiol, vol.90, pp.114-129, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01101378

M. Berriman, E. Ghedin, C. Hertz-fowler, G. Blandin, H. Renauld et al., The Genome of the African Trypanosome Trypanosoma brucei, Science, vol.309, issue.5733, pp.416-422, 2005.
DOI : 10.1126/science.1112642

M. Ginger, A. Fairlamb, F. Opperdoes, J. Barry, J. Mottram et al., Comparative genomics of trypanosome metabolism, Trypanosomes: after the genome, pp.373-417, 2007.

S. Van-weelden, J. Van-hellemond, F. Opperdoes, and A. Tielens, , a Cycle Not Operating as a Cycle, Journal of Biological Chemistry, vol.105, issue.13, pp.12451-12460, 2005.
DOI : 10.1016/S0166-6851(99)00024-9

J. Berman, J. Gallalee, J. Best, and T. Hill, Uptake, Distribution, and Oxidation of Fatty Acids by Leishmania mexicana Amastigotes, The Journal of Parasitology, vol.73, issue.3, pp.555-560, 1987.
DOI : 10.2307/3282136

J. Blum, The Journal of Protozoology, vol.65, issue.6, pp.505-510, 1990.
DOI : 10.1016/0014-4894(88)90101-4

S. Allmann, M. Mazet, N. Ziebart, G. Bouyssou, L. Fouillen et al., Triacylglycerol Storage in Lipid Droplets in Procyclic Trypanosoma brucei, PLoS ONE, vol.103, issue.12, pp.114628-25493940, 2014.
DOI : 10.1371/journal.pone.0114628.s004

T. Smith and P. Butikofer, Lipid metabolism in Trypanosoma brucei, Molecular and Biochemical Parasitology, vol.172, issue.2, pp.66-79, 2010.
DOI : 10.1016/j.molbiopara.2010.04.001

F. Bringaud, M. Biran, Y. Millerioux, M. Wargnies, S. Allmann et al., Combining reverse genetics and nuclear magnetic resonance-based metabolomics unravels trypanosome-specific metabolic pathways, Molecular Microbiology, vol.5, issue.Part 2, pp.917-926, 2015.
DOI : 10.1371/journal.ppat.1000436

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/mmi.12990

D. Creek, M. Mazet, F. Achcar, J. Anderson, D. Kim et al., Probing the Metabolic Network in Bloodstream-Form Trypanosoma brucei Using Untargeted Metabolomics with Stable Isotope Labelled Glucose, PLOS Pathogens, vol.74, issue.3, p.25775470, 2015.
DOI : 10.1371/journal.ppat.1004689.s008

M. Carroll and P. Mccrorie, Lipid composition of bloodstream forms of Trypanosoma brucei brucei, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, vol.83, issue.3, pp.647-651, 1986.
DOI : 10.1016/0305-0491(86)90312-3

A. Panigrahi, Y. Ogata, A. Zikova, A. Anupama, R. Dalley et al., A comprehensive analysis of Trypanosoma brucei mitochondrial proteome, PROTEOMICS, vol.28, issue.7, pp.434-450, 2009.
DOI : 10.1074/mcp.M700490-MCP200

X. Zhang, J. Cui, D. Nilsson, K. Gunasekera, A. Chanfon et al., The Trypanosoma brucei MitoCarta and its regulation and splicing pattern during development, Nucleic Acids Research, vol.145, issue.21, pp.7378-7387, 2010.
DOI : 10.1083/jcb.145.5.951

URL : https://academic.oup.com/nar/article-pdf/38/21/7378/16769134/gkq618.pdf

M. Niemann, S. Wiese, J. Mani, A. Chanfon, C. Jackson et al., Reveals Novel Factors Required to Maintain Mitochondrial Morphology, Molecular & Cellular Proteomics, vol.145, issue.2, pp.515-528, 2013.
DOI : 10.1074/jbc.M111.300186

M. Ginger, M. Chance, I. Sadler, and L. Goad, Journal of Biological Chemistry, vol.94, issue.15, pp.11674-11682, 2001.
DOI : 10.1006/abbi.1998.0577

J. Carrero-lerida, G. Perez-moreno, V. Castillo-acosta, L. Ruiz-perez, and D. Gonzalez-pacanowska, Intracellular location of the early steps of the isoprenoid biosynthetic pathway in the trypanosomatids Leishmania major and Trypanosoma brucei, International Journal for Parasitology, vol.39, issue.3, pp.307-314, 2009.
DOI : 10.1016/j.ijpara.2008.08.012

M. Mazet, R. Harijan, T. Kiema, A. Haapalainen, P. Morand et al., The characterization and evolutionary relationships of a trypanosomal thiolase, International Journal for Parasitology, vol.41, issue.12, pp.1273-1283, 2011.
DOI : 10.1016/j.ijpara.2011.07.009

J. Heider, A new family of CoA-transferases, FEBS Letters, vol.61, issue.3, pp.345-349, 2001.
DOI : 10.1016/S0006-2952(00)00589-X

B. Rotureau, I. Subota, and P. Bastin, Molecular bases of cytoskeleton plasticity during the Trypanosoma brucei parasite cycle, Cellular Microbiology, vol.95, issue.5, pp.705-716, 2011.
DOI : 10.1016/0248-4900(88)90070-6

URL : https://hal.archives-ouvertes.fr/pasteur-01371324

S. Ramakrishnan, M. Serricchio, B. Striepen, and P. Butikofer, Lipid synthesis in protozoan parasites: A comparison between kinetoplastids and apicomplexans, Progress in Lipid Research, vol.52, issue.4, pp.488-512, 2013.
DOI : 10.1016/j.plipres.2013.06.003

D. Creek, J. Anderson, M. Mcconville, and M. Barrett, Metabolomic analysis of trypanosomatid protozoa, Molecular and Biochemical Parasitology, vol.181, issue.2, pp.73-84, 2012.
DOI : 10.1016/j.molbiopara.2011.10.003

B. Mantilla, L. Marchese, A. Casas-sanchez, N. Dyer, N. Ejeh et al., Proline Metabolism is Essential for Trypanosoma brucei brucei Survival in the Tsetse Vector, PLOS Pathogens, vol.810, issue.10, pp.1006158-5289646, 2017.
DOI : 10.1371/journal.ppat.1006158.s006

M. De-lima-stein, M. Icimoto, E. De-castro-levatti, V. Oliveira, A. Straus et al., Characterization and role of the 3-methylglutaconyl coenzyme A hidratase in Trypanosoma brucei, Molecular and Biochemical Parasitology, vol.214, pp.36-46, 2017.
DOI : 10.1016/j.molbiopara.2017.03.007

J. Pena-diaz, A. Montalvetti, C. Flores, A. Constan, R. Hurtado-guerrero et al., Mitochondrial Localization of the Mevalonate Pathway Enzyme 3-Hydroxy-3-methyl-glutaryl-CoA Reductase in the Trypanosomatidae, Molecular Biology of the Cell, vol.15, issue.3, pp.1356-1363, 2004.
DOI : 10.1073/pnas.90.5.1786

T. Kuzuyama, Mevalonate and Nonmevalonate Pathways for the Biosynthesis of Isoprene Units, Bioscience, Biotechnology, and Biochemistry, vol.181, issue.4, pp.1619-1627, 2002.
DOI : 10.1126/science.285.5433.1573

I. Coppens and P. Courtoy, Exogenous and endogenous sources of sterols in the culture-adapted procyclic trypomastigotes of Trypanosoma brucei, Molecular and Biochemical Parasitology, vol.73, issue.1-2, pp.179-188, 1995.
DOI : 10.1016/0166-6851(95)00114-G

W. Zhou, G. Cross, and W. Nes, Journal of Lipid Research, vol.258, issue.3, pp.665-673, 2007.
DOI : 10.1128/AAC.49.2.518-524.2005

G. Perez-moreno, M. Sealey-cardona, C. Rodrigues-poveda, M. Gelb, L. Ruiz-perez et al., Endogenous sterol biosynthesis is important for mitochondrial function and cell morphology in procyclic forms of Trypanosoma brucei, International Journal for Parasitology, vol.42, issue.11, pp.975-989, 2012.
DOI : 10.1016/j.ijpara.2012.07.012

R. Harijan, T. Kiema, M. Karjalainen, N. Janardan, M. Murthy et al., Crystal structures of SCP2-thiolases of Trypanosomatidae, human pathogens causing widespread tropical diseases: the importance for catalysis of the cysteine of the unique HDCF loop, Biochemical Journal, vol.66, issue.1, pp.119-130, 2013.
DOI : 10.1107/S0907444909052925

K. Gunasekera, D. Wuthrich, S. Braga-lagache, M. Heller, and T. Ochsenreiter, Proteome remodelling during development from blood to insect-form Trypanosoma brucei quantified by SILAC and mass spectrometry, BMC Genomics, vol.13, issue.1, pp.556-23067041, 2012.
DOI : 10.1186/1471-2164-13-556

R. Klein and D. Linstead, Biochemical Society Transactions, vol.4, issue.1, pp.48-50, 1976.
DOI : 10.1042/bst0040048

C. Choudhary, B. Weinert, Y. Nishida, E. Verdin, and M. Mann, The growing landscape of lysine acetylation links metabolism and cell signalling, Nature Reviews Molecular Cell Biology, vol.13, issue.8, pp.536-550, 2014.
DOI : 10.1002/pmic.201200001

L. Shi and B. Tu, Acetyl-CoA and the regulation of metabolism: mechanisms and consequences, Current Opinion in Cell Biology, vol.33, pp.125-131, 2015.
DOI : 10.1016/j.ceb.2015.02.003

Q. Wang, Y. Zhang, C. Yang, H. Xiong, Y. Lin et al., Acetylation of Metabolic Enzymes Coordinates Carbon Source Utilization and Metabolic Flux, Science, vol.103, issue.27, pp.1004-1007, 2010.
DOI : 10.1073/pnas.0604392103

D. Horn, Introducing histone modification in trypanosomes, Trends in Parasitology, vol.23, issue.6, pp.239-242, 2007.
DOI : 10.1016/j.pt.2007.03.009

URL : http://europepmc.org/articles/pmc3828116?pdf=render

T. Siegel, T. Kawahara, J. Degrasse, C. Janzen, D. Horn et al., Acetylation of histone H4K4 is cell cycle regulated and mediated by HAT3 in Trypanosoma brucei, Molecular Microbiology, vol.27, issue.Part 1, pp.762-771, 2008.
DOI : 10.1111/j.1365-2958.2007.06079.x

V. Alonso and E. Serra, Lysine Acetylation: Elucidating the Components of an Emerging Global Signaling Pathway in Trypanosomes, Journal of Biomedicine and Biotechnology, vol.21, issue.6, pp.452934-23093844, 2012.
DOI : 10.1038/nrmicro2149

R. Brun and M. Schonenberger, Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium, Acta Trop, vol.36, pp.289-292, 1979.

L. Azema, S. Claustre, I. Alric, C. Blonski, M. Willson et al., Interaction of substituted hexose analogues with the Trypanosoma brucei hexose transporter, Biochemical Pharmacology, vol.67, issue.3, pp.459-467, 2004.
DOI : 10.1016/j.bcp.2003.09.005

C. Ebikeme, L. Peacock, V. Coustou, L. Riviere, F. Bringaud et al., N-acetyl D-glucosamine stimulates growth in procyclic forms of Trypanosoma brucei by inducing a metabolic shift, Parasitology, vol.13, issue.2, pp.585-594, 2008.
DOI : 10.1016/j.pt.2005.02.008

URL : https://hal.archives-ouvertes.fr/hal-00318594

C. Ebikeme, J. Hubert, M. Biran, G. Gouspillou, P. Morand et al., Ablation of Succinate Production from Glucose Metabolism in the Procyclic Trypanosomes Induces Metabolic Switches to the Glycerol 3-Phosphate/Dihydroxyacetone Phosphate Shuttle and to Proline Metabolism, Journal of Biological Chemistry, vol.267, issue.42, pp.32312-32324, 2010.
DOI : 10.1073/pnas.0903355106

F. Bringaud, D. Robinson, S. Barradeau, N. Biteau, D. Baltz et al., Characterization and disruption of a new Trypanosoma brucei repetitive flagellum protein, using double-stranded RNA inhibition, Molecular and Biochemical Parasitology, vol.111, issue.2, pp.283-297, 2000.
DOI : 10.1016/S0166-6851(00)00319-4

F. Bringaud, D. Baltz, and T. Baltz, Functional and molecular characterization of a glycosomal PPi-dependent enzyme in trypanosomatids: Pyruvate, phosphate dikinase, Proceedings of the National Academy of Sciences, vol.250, issue.3, pp.7963-7968, 1998.
DOI : 10.1111/j.1432-1033.1997.00698.x

E. Wirtz, S. Leal, C. Ochatt, and G. Cross, A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei, Molecular and Biochemical Parasitology, vol.99, issue.1, pp.89-101, 1999.
DOI : 10.1016/S0166-6851(99)00002-X

J. Mukherjee and E. Dekker, Purification, properties, and N-terminal amino acid sequence of homogeneous Escherichia coli 2-amino-3-ketobutyrate CoA ligase, a pyridoxal phosphate-dependent enzyme, J Biol Chem, vol.262, pp.14441-14447, 1987.

S. Allmann, P. Morand, C. Ebikeme, L. Gales, M. Biran et al., Relies on Malic Enzyme and the Pentose Phosphate Pathway Fed by Gluconeogenic Flux, Journal of Biological Chemistry, vol.2012, issue.25, pp.18494-18505, 2013.
DOI : 10.2741/3931

URL : https://hal.archives-ouvertes.fr/hal-01268097

J. Amstrong, The molar extinction coefficient of 2,6-dichlorophenol indophenol, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.86, issue.1, pp.194-197, 1964.
DOI : 10.1016/0304-4165(64)90180-1

E. Harlow and D. Lane, Antibodies: a laboratory manual, 1988.

J. Sambrook, E. Fritsch, and T. Maniatis, Molecular cloning: a laboratory manual. 2 ed, 1989.

H. Denise, C. Giroud, M. Barrett, and T. Baltz, and Cymelarsan, European Journal of Biochemistry, vol.3, issue.1-2, pp.339-346, 1999.
DOI : 10.1016/0968-0896(95)00129-5

V. Hannaert, M. Albert, D. Rigden, M. Da-silva-giotto, O. Thiemann et al., Kinetic characterization, structure modelling studies and crystallization of Trypanosoma brucei enolase, European Journal of Biochemistry, vol.6, issue.15, pp.3205-3213, 2003.
DOI : 10.1093/protein/6.1.37

F. Bringaud, S. Peyruchaud, D. Baltz, C. Giroud, L. Simpson et al., Molecular characterization of the mitochondrial heat shock protein 60 gene from Trypanosoma brucei, Molecular and Biochemical Parasitology, vol.74, issue.1, pp.119-123, 1995.
DOI : 10.1016/0166-6851(95)02486-7

L. Kohl, T. Sherwin, and K. Gull, Assembly of the Paraflagellar Rod and the Flagellum Attachment Zone Complex During the Trypanosoma brucei Cell Cycle, The Journal of Eukaryotic Microbiology, vol.95, issue.2, pp.105-109, 1999.
DOI : 10.1083/jcb.104.3.439

M. Gould, S. Bachmaier, J. Ali, S. Alsford, D. Tagoe et al., ABSTRACT, Antimicrobial Agents and Chemotherapy, vol.57, issue.10, pp.4882-4893, 2013.
DOI : 10.1128/AAC.00508-13

V. Coustou, M. Biran, S. Besteiro, L. Riviere, T. Baltz et al., Journal of Biological Chemistry, vol.268, issue.37, pp.26832-26846, 2006.
DOI : 10.1006/jmbi.1998.2293

P. Bastin, Z. Bagherzadeh, K. Matthews, and K. Gull, A novel epitope tag system to study protein targeting and organelle biogenesis in Trypanosoma brucei, Molecular and Biochemical Parasitology, vol.77, issue.2, pp.235-239, 1996.
DOI : 10.1016/0166-6851(96)02598-4

G. Masse, S. Belt, S. Rowland, and M. Rohmer, Isoprenoid biosynthesis in the diatoms Rhizosolenia setigera (Brightwell) and Haslea ostrearia (Simonsen), Proceedings of the National Academy of Sciences, vol.62, issue.8, pp.4413-4418, 2004.
DOI : 10.1016/S0016-7037(98)00076-3

S. Akoka, L. Barantin, and M. Trierweiler, Concentration Measurement by Proton NMR Using the ERETIC Method, Analytical Chemistry, vol.71, issue.13, pp.2554-2561, 1999.
DOI : 10.1021/ac981422i