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1 Introduction

Developing new varieties adapted to Organic Agriculture (OA), agroecological and low input systems is a
major concern to achieve improvements in agricultural sustainability (Wolfe et al., 2008). In OA, the use of
synthetic inputs (nitrogen, phytochemicals) is not allowed, therefore, cropping environments are not stan-
dardized by inputs and varieties grow in more diverse conditions from farm to farm (Dawson et al., 2008).
These environments are dependent on pedoclimatic conditions, yearly weather, farmers’ management prac-
tices and interactions between these factors (Desclaux et al., 2008).

In order to develop varieties adapted to such a diversity of environments two strategies can be used: (i)
centralized and indirect selection, or (ii) decentralized and direct selection. The key difference between these
approaches is the way they take genotype-by-environment (G x FE) interactions into account. These interac-
tions are considered by plant breeders as the main factor limiting the efficiency of the response to selection in
breeding programs (Ceccarelli et al., 2001). In centralized and indirect selection, breeding lines are evaluated
and selected at a few research stations assumed to represent the target environments. This is efficient if there
is a high additive genetic correlation between the trait measured on the station and the same trait measured
in the target environment, and if the narrow sense heritability is high in the selection environment (Falconer,
1960).

Decentralized selection can take account of G x F interactions that are importantin OA (Dawson et al., 2008;
Murphy et al., 2007). In this approach, the selection and evaluation environments are very close to the target
environments (the production environments of farms). Selection then maximizes the use of the reproducible
part of G x E interactions to select for specific adaptations (Annicchiarico et al., 2010). This method is close to
direct selection and has been shown to be effective (Annicchiarico et al., 2010; Ceccarelli et al., 2001; Murphy
et al., 2007; Smith et al., 2001; Virk et al., 2005).

Many PPB programs have been carried out over the last 20 years targeting low-input farming systems in the
Global South and also OA and agroecological systems in Europe and North America (Ceccarelli and Grando,
2020). A few programs tested different experimental designs and specific statistical methods to analyze data
taking GxE into account (Mohammadi et al., 2011; Snapp and Silim, 2002). However, few had an extensive
dataset with a large number of farms, years and genotypes to allow investigation of the best relevant methods
in detail. One program with such data is a wheat PPB program that started in France in 2005, as a collaboration
between INRAE GQE-Le Moulon and the Farmers’ Seed Network (Réseau Semences Paysannes, RSP). This
PPB program had three objectives: (i) develop population-varieties adapted to farmers’ practices and needs
(organic management, artisanal bread quality ...) using a participatory approach, (ii) develop strategies for
preserving genetic diversity through on-farm dynamic management and breeding, and (iii) learn from and
improve farmers' individual and collective breeding methods and diffuse successful methods broadly.

In this program, a large number of populations was evaluated over a large network of farms in the RSP
(Dawson et al., 2011; Goldringer et al., 2020; Riviere et al., 2015a,b; van Frank et al., 2020). Because of the
extensive trial network, the assessment of population performance within an environment could potentially
be improved by taking account of the average performance of populations over the network and the stability
of their performance, in particular temporal stability, as it determines agronomic and economic risks. Two
types of stability assessment have been developed: static and dynamic stability (Becker and Leon, 1988; Lin
et al., 1986).

The farmers involved in the program chose which populations to evaluate on their farm, based on prior
information about the parents, and characteristics of interest. As very few populations were present in all
the trials, the resulting series of trials was very unbalanced, so that the estimation of population average
performances and stabilities was difficult. Joint regression is a robust method for estimating genotype main
effects and stability with incomplete datasets (Finlay and Wilkinson, 1963; Pereira et al., 2007). It is based
on the Finlay-Wilkinson (FW) model, which is parsimonious since the interaction effect between a genotype
and an environment is modelled as the product of a genotype stability parameter, called sensitivity, and the
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environment main effect. Various Finlay-Wilkinson models have been used in a frequentist framework, which
include fixed-effect models and models with random environmental effects (Nabugoomu et al., 1999; Ng and
Williams, 2001; Patterson and Silvey, 1980). In the latter models, environmental effects are assumed to come
from a common distribution, thereby leading to shrunk estimates. FW models in which genotype main effects,
environment main effects and genotype sensitivities are all random effects have recently been developed that
can handle unbalanced data and take into account the similarity between some genotypes and the similarity
between some environments. These have been implemented in a Bayesian framework and when they include
random effects, these are called hierarchical models (Carlin and Louis, 2008; Robert, 2007). Thus far, these
models have been used to analyze slightly unbalanced trials (Lian and de los Campos, 2016). Hierarchical
joint regression has also been used to analyze very unbalanced simulated data (van Frank et al., 2019). This
simulation study has shown that genotypes should be tested in sufficiently many trials in order to estimate
their main effects and sensitivities reliably. However, this method had not been used to analyze real and very
unbalanced trials. Thus, it was not clear if it could cope with the actual levels of unbalanced data seen in the
French PPB on-farm trials and what insight it could give into the behavior of genotypes across environments.

Extreme data is an important issue in data analysis. In multi-environment trials (MET), they may come
from either (1) errors between scoring and data formatting (measurement error, wrong labelling, etc.), or (2)
environmental heterogeneity in the trial (weed infestation, soil fertility, etc.), or (3) particular environmental
conditions that fall outside the normal range of environments under study (poor emergence, extreme weather,
strong pest/disease pressure, etc.). In our PPB program, as cultivation environments are less controlled, ex-
treme observations (types 2 and 3) could be more frequent than expected. This could bias estimates based on
the normal distribution. Extreme observations could be removed from the dataset to solve this problem, but
it is difficult to decide which observations to remove. If too many extreme observations are removed, then
the variability of the data may be underestimated and the precision of the statistical analysis overestimated.
Alternatively, statistical methods that are robust to extreme observations may be used (Hampel et al., 2011;
Huber and Ronchetti, 1981). Various robust methods have been developed in a frequentist or a Bayesian
framework, in particular methods consisting in replacing the normal distribution by a Student’s ¢ distribution
in statistical models. This distribution is more robust to extreme observations than the normal distribution,
because it has heavier tails (Carlin and Polson, 1991; Choy and Chan, 2008; Lange et al., 1989; Rosa et al.,
2003). It has been used to handle the extreme observations of a single trial in a Bayesian framework (Besag
and Higdon, 1999; Cao et al., 2022; Gianola et al., 2018). However, to our knowledge, it has not been used to
analyze an unbalanced network of trials.

Recently, participatory variety trials using crowdsourcing has been used in several countries with great suc-
cess (van Etten et al., 2019). These methods typically use an experimental design called a triadic comparison
of technologies (tricot), followed by an analysis of variety ranks (Beza et al., 2017). In the tricot design, large
numbers of farmers each compare three variety subsets from the complete set of entries, and provide direct
comparison rankings among them for a few traits (i.e. best/middle/worst). By using ranking methods and
structuring the entry distribution as an incomplete block design, this allows for comparisons of larger num-
bers of varieties without overburdening individual farmers. These design options enhance breeders’ ability
to engage farmers in trialing experimental lines, since on-farm trials are often limited by space and farmers'
time. Trialing a few experimental lines, including a check line or variety that is replicated across sites is more
realistic for farmers than implementing a fully replicated design. Triadic methods are very useful in many
situations, but they are not applicable to more mature networks of farmer breeders such as we have in our
PPB program for wheat. The farmers in this network have selected populations over time according to their
own rationale, and the populations are not randomly assigned to farmers. In addition, farmers test different
numbers of populations, with some only trialing a few and others trialing several dozen. Farmers also want
access to quantitative data rather than simple ranks, and so a non-parametric ranking of varieties with no
assumptions about distribution will not produce a satisfactory analysis for this purpose.

This article was aimed at improving the assessment of the population-varieties of our program by using
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the information at the level of the network. As our dataset was very unbalanced and could include extreme
observations, we compared several Finlay-Wilkinson models, in particular hierarchical models and models
based on the t distribution. These models were developed in a Bayesian framework, since this framework
is rigorous and since it facilitates the implementation of complex models (Carlin and Louis, 2008; Robert,
2007). Finally, the best Finlay-Wilkinson model we obtained was used to analyze our data and characterize
the behaviour of our population-varieties across environments.

2 Material and methods

Notation  Meaning

PPB Participatory plant breeding

OA Organic agriculture

RSP French farmers’ seed network

MET Multi-environment trial

GxFE Genotype X environment interaction
FW Finlay Wilkinson

MCMC Markov chain Monte Carlo

LOO Leave one out

« Germplasm main effect

Environment main effect

n Germplasm sensitivity (FW coefficient)

5?2 Germplasm static stability

w Germplasm ecovalence (a dynamic stability)
elpd,,, LOO expected logarithmic predictive density

Table 1. Main notations.

In our study, we will call a germplasm any biological entity whose individuals are derived from the same
breeding process, including varieties registered in the official catalog, landraces, historic varieties, mixtures
or populations stemming from crosses. An environment is the combination of a farm and a year.

2.1 Germplasm

We studied 206 germplasm covering different "germplasm types": 98 "cross" germplasm resulting from
crosses made either on the farm or at the research station (Riviére et al., 2015b), 50 "landraces", i.e. population
varieties grown before 1850, 30 "historic varieties", developed by professional breeding before 1950, 17 "mix-
tures", which were generally complex, with numerous genotypes from potentially all the other germplasm
types. In addition, 11 "registered varieties" after 1950 and widely used in organic farming were included:
Maitre Pierre (1954), Poncheau (1956), Renan (1990), Ataro (2004), Pollux (2004), Rubisco (2012), Hendrix
(2012), Kampmann selected in Renan, and Hermes (1982), Alauda (2004) and Goldritter (2013), all three se-
lected in Probus (1957).

2.2 Experimental designs and data

2.2.1 Experimental designs

Data were collected between 2008 and 2019. The wheat PPB program followed numerous experimental de-
signs due to the different constraints of farmers, collectives and researchers. The designs have been grouped
into 5 classes (Tab. 2).

The "regional farm" and "satellite farm" designs were co-designed to be adapted to the farmer-breeders’
constraints and to be used in their agricultural routine. In these designs, the germplasm common to all
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farms (control germplasm) were collectively chosen by farmers and researchers, while each farmer individu-
ally chose the additional germplasm to be cultivated in his farm. At the beginning the control was a selection in
alandrace, and after 2014 it was a germplasm stemming from a cross. Both complete-block and incomplete-
block designs were used to address specific research questions such as the study of the evolution of traits
(Riviére et al., 2015b), local adaptation (van Frank et al., 2020) or the evaluation of agronomic performance
(Goldringer et al., 2020). Some unreplicated trials corresponded to trials with replications but for which mea-
surements could not be performed in some replications.

Nb of blocks Nb of repeated Nbofgemplasmsby Nb of environ-

germplams environment ments
Complete blocks 2to3 6 to 45 7 to 45 24
Incomplete blocks 3to4 3to 49 6 to 58 1
Regional farm 2 5to 16 7 to 81 20
Statellite farm 1 1to 22 5to 79 102
Unreplicated 1 0 5to 39 32

Table 2. Experimental designs of the 189 trials used in the statistical analysis. Nb: number, Environment:
combination of a year and a location.

2.2.2 Data collected

Four traits were studied, plant height (60% of the data was the average height of 25 individuals and 40% was
the overall height of the microplot, mm), spike weight (mean of 25 individual measures, g), protein content
of the grain (on the microplot, measured with NIRS technology at INRAE Clermont-Ferrand France, %) and
thousand kernel weight (TKW, measured on the microplot, g). These four traits were among those collectively
chosen by farmers and researchers to be measured during the PPB program (Table 3). Plant height was
measured in the field, while the other traits were measured after harvest at the research station on samples
of spikes sent by farmers. The data analyzed were the adjusted means for block effects if these effects were
significant, and the empirical means if otherwise. Obvious outliers were excluded.

van Frank et al. (2019) analyzed the sensitivity of the hierarchical FW model to different MET set-ups with
simulated data. They found that, in contrast to the environmental effects, the germplasm effects and FW
coefficients were difficult to estimate. This is why they recommended that a large number of environments
be used and that the germplasm be repeated sufficiently. We have therefore made a selection of the data
and kept the environments with at least five germplasm and the germplasm that were present in at least four
environments. Thus, the data analyzed comprised 70 to 76% of the initial data, depending on the trait.

The multi-environment data were very unbalanced, with most of the germplasm occurring in a limited
number of environments (the median number of replicates across environments was seven, and about 20%
of the germplasm were replicated in four environments only). For each trait, the number of observations was
between 1300 and 2000 and the measures were spread over more than nine years (Tab. 3).

Trait Observations  Germplasm  Environments Disequilibrium  Farms  Years
Plant height 1437 124 117 90 44 11
Spike weight 1804 172 148 93 52 10
Protein 1332 144 111 92 44 9
TKW 1982 177 165 93 58 11

Table 3. Description of the dataset. Disequilibrium: proportion of missing values in the Germplasm x Environ-
ment table in %.
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2.3 Models

The phenotypicvalue Y;; € R for agiven trait Y, germplasm ¢ and environment j was assumed to be equal
to
Yij = pij + €ij,
where (i,j) € C, C was the set of the germplasm x environment combinations occurring in the data set,
1i; € R was an expectation term, and ¢;; € R was a residual term. Five models were developed, which
modelled the expectation term, the residual term and the prior distribution differently (Tab. 4).

Expectation term  Residual term  Prior distribution

ADHn  Additive Normal Hierarchical
ADHs  Additive Student Hierarchical
FWHn  Finlay Wilkinson Normal Hierarchical
FWHs  Finlay Wilkinson Student Hierarchical
FWs Finlay Wilkinson Student Weakly informative

Table 4. The five models fitted.

2.3.1 Expectation term

In models ADHs and ADHn, the expectation term was modelled as additive effects of both the germplasm

and the environment without interaction:
pij = a; + 05,
where a; € R was the main effect of germplasm ¢, and 6; € R was the main effect of environment j. Mod-
els FWHs, FWs and FWHn modelled genotype-environment interaction using the Finlay-Wilkinson, also called
joint-regression, model (Finlay and Wilkinson, 1963). In these models, the expectation term was assumed to
be equal to
pij = o + 05 4+ n:0;,

where 7; € R was the sensitivity of germplasm ¢ to environments (linear regression coefficient, Perkins and
Jinks, 1968). Finlay and Wilkinson (1963) defined their coefficient as b; = 1 + ;. As the average sensitivity
is equal to 0, a germplasm with n; > 0 (resp. n; < 0) is more (resp. less) sensitive to environments than a
germplasm with the average sensitivity (Nabugoomu et al., 1999). In these models, the interaction between
germplasm ¢ and environment j was modelled as a multiplicative term 7;0; contributing to the expectation
term with the remaining part adding to the residual term. The Finlay-Wilkinson coefficient is considered as
both a static and a dynamic indicator of stability (Becker and Leon, 1988; Lin et al., 1986). In this model,
statically stable genotypes have a coefficient close to -1. Dynamically stable genotypes have a coefficient
close to zero, but having a coefficient close to zero is not sufficient to determine dynamic stability, this also
depends on the amount of G’ x E variation that remains unexplained by the model.

2.3.2 Residual term

In models ADHNn and FWHNnN, the distribution of the residual term was assumed to be normal:
2
Eij NN(O,O'E> 5

where N (O,ag) was the normal distribution with expectation 0 and variance o2. However, to limit the in-
fluence of extreme values on the results of the analyses, we also developed models based on Student's ¢
distributions. Thus, in models FWHs, FWs and ADHSs, the distribution of the error term was assumed to be
equal to

Eij Nt(O,U?,V),
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where ¢ (0, o2, 1/) was the Student’s ¢ distribution with dispersion parameter o2 > 0 and v > 2 degrees of
freedom. We assumed that v > 2 to ensure that the expectation and the variance of ;; were defined and
finite. In models FWHs, FWs and ADHs, the variance of ¢;; was equal to vo? /(v — 2). The normal distribution
can be considered as a t distribution with v tending to 4+oc. For additive models, the residual combined the
G x F contribution and errors, i.e. experimental errors and environmental heterogeneity in each trial, while
for FW models, it combined the part of G x E not explained by n and errors.

2.3.3 Prior distribution

The statistical analysis was carried out in a Bayesian framework, so that a joint prior distribution was placed
on model parameters. We placed weakly informative priors on o. and v (Cao et al., 2022; Gelman, 2006; Juarez
and Steel, 2010):

0. ~NT(0,)\23), v~T(2,0.1),

with ¥ > 2, and where ). was a known prior value of the standard deviation of the trait, NJF(O7 Af) was
the normal distribution restricted to positive values with parameters 0 and A2, and I'(2,0.1) was the gamma
distribution with shape parameter 2 and rate parameter 0.1.

Given the high data disequilibrium and the large numbers of germplasm and environments, we decided
to implement a hierarchical Bayesian approach. In all the models except the FWs model, a;, 6; and when
present n; were assumed to follow hierarchical distributions:

a; ~ N (py,02), mN./\/'(O,og), 0; ~N(0,07),

where py, 04, 0, and oy were unknown parameters. Then, we placed weakly informative prior distributions
on the hyperparameters uy, 04, 0, and og:

py ~N (A, A2) . 00 ~NT(0,)2), 09 ~NT(0,)2), o, ~NT(0,0.75%),

where A\, was a known prior value of the trait mean. Germplasm main effects, environment main effects,
germplasm sensitivities and residuals were assumed to be independent given the hyperparameters, o. and
v. In model FWs, the hierarchical distributions of «;, 1; and 6; were replaced by weakly informative prior
distributions:

a; ~ N (py, A2), 1 ~ N (0,0.75%), 0; ~ N (0,A2).

The values chosen for A. and A, are in Appendix A.1.

2.3.4 Posterior distribution

Bayesian inference is based on the posterior distribution of the model parameters. This distribution was
estimated using Markov chain and Monte Carlo (MCMC) methods. These methods simulate the values of
the model parameters according to a Markov chain that converges to the posterior distribution of these pa-
rameters (Robert, 2007). The MCMC methods were implemented using R (R Core Team, 2014) and the pack-
age rstan (Stan Developpement Team, 2016), that performs Hamiltonian Monte Carlo (HMC) sampling. This
method aims at reducing the correlation between successive sampled values by using a proposal distribution
based on Hamiltonian dynamics (Neal, 2011). Four MCMC chains were run independently to test for conver-
gence. The initial values of each chain were taken randomly. For each chain, the burn-in consisted of 200
iterations, then 5,000 iterations were performed for all models, except FWs where 8,000 iterations were re-
quired. The average calculation time (for a given trait and a given model) was 9 minutes and the maximum
time was 22 minutes (with FWs), with a computer intel CORE i7©. Estimates of the Gelman-Rubin statistic were
smaller than 1.02 and the effective sample size was greater than 400 for each parameter in all tested models.
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2.3.5 Model comparison

We compared the predictive ability of models using leave-one-out cross-validation, which seems more ap-
propriate than Bayes factors for selecting models that approximate the process generating the data (Lartillot,
2023). We estimated the expected logarithmic predictive density using the R package LOO (Vehtari et al., 2017).
This criterion was equal to

elpd,, = > In(p(Yy|Y-s;)),
(i,9)€C
where Y_;; was the dataset without observation Y;;, and p(Y;;|Y_;;) was the leave-one-out posterior den-
sity of Y;;. The larger this criterion, the better the agreement between the model and the data. The elpd,
criterion was also used to identify extreme observations. The quantity In(p(Y;;|Y-;;)) can be understood as
the contribution of observation Y;; to elpd,,. Observations with low contributions are unlikely and can be

considered extreme observations.

loo*

For main effects and sensitivities, we estimated the average standard deviation of estimates, which allowed
us to have an estimate of the precision of these effects. To be able to compare the precision between traits,
for a and 0 we estimated the average coefficient of variation by dividing this standard deviation by the general
average [y .

2.4 Data analysis

Model parameters were studied using the best model as determined by the methods described above.

2.4.1 Variance decomposition

In order to quantify the influence of model terms on observations, the variance of an observation was
decomposed. Since «y, 85, n; and €;; were assumed to be conditionally independent, the variance of an ob-
servation given the hyperparameters, o2 and v was equal to

Var(Y;) = Var(o; + 6, + 00 +€i5) = o2+ o+ 072702 + Var(e;).

As the best model involved the ¢ distribution, Var(e;;) was equal to vo? /(v — 2). The proportions of variance
explained by the germplasm main effect, the environment main effect and the interaction effect were equal

to
o2 02 oloj
=« )= —0 g) = 10
7(0) = gt w0) = g ) = ot
m(«) is also called broad-sense heritability. The proportion of variance explained by the model (coefficient of
determination) was equal to
02 + crg + 012703

R%? =n(a)+7(0) + w(nh) = Var(Y;;)

This definition of R2 ensured that R? < 1 (Gelman et al., 2019). We also estimated the proportion of the
variance of G x I interactions and experimental errors that was explained by the n;0; term, defined by

_ Var(ni0;) 0305
- Var(nib; +eij) oloj + Var(eij)

2.4.2 Characterization of germplasm

Germplasm main effects and sensitivities were estimated. In addition, we estimated two stability indicators,
the static stability Sf (Becker and Leon, 1988) and the ecovalence W; (Wricke, 1962) which is an indicator of
dynamic stability. Static stability describes the response of a genotype that maintains a constant performance
across environments, while dynamic stability describes the response of a genotype showing a constant differ-
ence with the average response of all genotypes tested in each environment (Annicchiarico, 2002). Due to
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data imbalance, the empirical estimates of these indicators were biased. Thus, we defined stability indicators

by means of theoretical variances from the Bayesian model described above (Cotes et al., 2006; Piepho, 1999).

Using the independence assumptions of the model, we obtained for germplasm ¢,

Wi = Var(nb; +ei;) = niog + Var(ey;),
S? Var(0; +n:8; +eij) = (1+n:)°05 + Var(ei;) = (1 + 2mi)og + Wi

The larger these indicators, the less stable the germplasm. Becker (1981) applied the same decomposition with
the empirical variances. These stability indicators are approximations of the static stability and ecovalance in
a balanced framework.

Moreover, we tested whether the "type" of germplasm (cross, landrace, registered variety, mixture of
germplasm and historic variety) had an influence on germplasm parameters (o, 1;, S? and W;) by running a
one-way ANOVA and Tukey-Kramer HSD test with germplasm type as factor.

3 Results

3.1 Model comparison

3.1.1 Predictive capacity of models

According to the elpd,__ criterion, the non-hierarchical FWs model was less predictive than the hierarchical

loo

FWHs model for all the traits (Fig. 1). Using the latter model shrank the estimates of  and sometimes « (Fig.

2). With the non-hierarchical model (FWs), some estimates («; and 7;) seemed to be unreliable, in particular
some germplasm means were extreme and some FW coefficients were larger than 1 or smaller than -1.

The hierarchical models with a Student likelihood (FWHs, ADHs) were more predictive than the models with
a normal distribution (FWHn, ADHn), all the more as v was low (Tab. 5). For protein content, v was equal to
20, so the t distribution was close to a normal distribution. The ¢ distribution reduced the shrinkage of FW
coefficients (Fig. 3). Moreover, t models better accounted for extreme data than normal models (Fig. 4). These
extreme data mainly came from germplasm that were not replicated in the trials.

The Finlay-Wilkinson models (FWHs, FWHN) were slightly more predictive than the simple additive models
(ADHs, ADHn), except for protein content, where the difference was not significant (Fig. 1). This difference was
smaller than the differences due to the distribution of residuals and the hierarchization of parameters.

The elpd,__ criterion was estimated using Pareto smoothed importance sampling (Vehtari et al., 2017). This
method tends to be less precise for models that do not fit the data well. Thus, as expected, estimates of

loo

elpd,, were more reliable for the two hierarchical models with a ¢ likelihood (FWHs and ADHs) than for the

other models, in particular model FWs (Supplementary Tab. B.1).

3.1.2 Precision of estimates and distribution of residuals

For the models with a ¢ distribution, the estimate of the number of degrees of freedom (v) varied between
3.8 and 28.2 (close to a normal distribution) (Tab. 5). Thus, the shape of the distribution of residuals depended
on the trait. This result confirmed that the number of extreme observations was not negligible in our data, and
that models with a t distribution were more appropriate. In the latter case, the variation ranges of residuals

were wider but with more residual values close to 0 for the ¢ distribution than the normal distribution (Fig.3).

Models had similar estimate precision, except for model FWs, which had less precise estimates. This result
confirmed that a basic joint regression, i.e. non-hierarchical model, was not suited to our unbalanced data.
Parameters o and 6 were estimated more precisely (difference in coefficient of variation between -0.1 and 0.4,
Tab. 5) for t models (ADHs and FWHSs) than for normal models (ADHn and FWHnN). This result was consistent
with Fig. 4, where extreme data were better predicted by FWHs than by FWHnN, except for protein content.
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loo

3.2 Data analysis

In the following, we used the FWHs model which proved to be the best model in terms of prediction and
accuracy of the estimated parameters.

3.2.1 Variance decomposition

The proportion of variance explained by each term of the model depended on the trait (Tab. 6). For all
four traits, the environment effect was highly explanatory. For height and TKW, a relatively large part of the
total variance was explained by the germplasm effect (resp. 23.8% and 16.1% ), whereas this part was much
smaller for spike weight and protein content (10.9% and 5.6%). The proportion of variance explained by the

sensitivity effect 7 was not significantly different from 0 for protein content and low for the three other traits.

It explained 6.5%, 4.8% and 6.9% of the variance of G x E interactions and experimental errors (p parameter)
for plant height, spike weight and TKW, respectively.
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Figure 2. The first column presents the distribution of the trait to be explained (in grey). The last four columns
compare the hierarchical (red) and non hierarchical (blue) versions of the FW model with a Student law for the
residuals, and show the smoothed histograms of main effects and FW coefficients.

3.2.2 Characterization of germplasm

The correlation between germplasm sensitivity (1;) and static stability (S?) was very close to 1 for all traits
while germplasm sensitivity was poorly correlated to W; (Tab. 7). The main effect a;; had a low correlation
with n; and S2, except for plant height and spike weight. Correlations between W; and «; were low and in
most cases not significant.

Plant height was found to depend on the type of germplasm, landraces being taller than historic varieties,
which were themselves taller than registered varieties. Registered varieties were significantly more stable
(static stability and FW coefficient) than everything other than mixtures, but less stable dynamically (ecov-
alance). No germplasm parameters were significantly dependent on germplasm type for protein content and
spike weight. TKW germplasm main effects did not depend on the type of germplasm, but for this trait lan-
draces and mixtures appeared statically more stable than historic varieties.
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Figure 3. Comparison of hierarchical FW models with different residual laws, the Student (red) and the normal
(blue). These graphics show the smoothed histograms of main effects and FW coefficients.

4 Discussion

To fit the characteristics of PPB trials, i.e., few inter-farm replicates and possible extreme data, we de-
veloped several models and we found that the hierarchical Finlay-Wilkinson model with ¢ residuals was the
best for prediction and parameter precision. Then we compared the performance and stability of different
germplasm types.

4.1 Handling the data from a highly unbalanced series of trials

As the farmers of the program chose the germplasm they assessed, the data obtained from the series of
trials were very unbalanced, with more than 90% of the G’ x E combinations missing. This made the estimation
of germplasm main effects and sensitivities difficult. Although the Finlay-Wilkinson model was parsimonious,
a basic joint regression with weakly-informative prior distributions (model FWs) was not able to cope with
this level of disequilibrium. According to the elpd . criterion, model FWs was not the best model (Fig. 1). In
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Figure 4. Comparison of t and normal models (FWHs vs FWHnN) in terms of the contributions of observations
to the elpd,, criterion. Black (resp. red) dots correspond to observations that were measured on germplasm
that were replicated (resp. not replicated) within trials.

addition, its estimates had poor precision and it led to extreme sensitivity estimates, with values close to 1 or
-1 (Fig.2).

In contrast, hierarchical joint regression appeared more suited to our data structure. Model FWHSs had the
largest elpd, , values for three traits out of four. Placing a hierarchical distribution on sensitivities constrained
estimates and brought them closer to 0. This led to more satisfactory sensitivity estimates, since they were
well below 1 in absolute value.

Three strategies have previously been used to manage incomplete G x E data: i) subset the total dataset
to obtain an almost balanced subset for the analysis (Ceccarelli and Grando, 2007), ii) predict missing data
with a more or less complex model and use these predictions in the analysis (Kumar et al., 2012; Woyann
et al., 2017), and iii) use a model more robust to unbalanced data, provided it complies with model validation
conditions (Assis et al., 2018; van Frank et al., 2019). We used the last strategy to maximise the amount of
information from the data (less data excluded than in the first strategy) with a one-step process (unlike the
second strategy).
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Trait Model v cv(a)  cv(f) sd(nm)

ADHn 3.0 2.8
ADHs 3.8(0.5) 2.8 2.6

Plant height ~ FWHn 3.1 2.9 0.08
FWHs 3.5(0.4) 2.8 2.7 0.09
FWs 3.3(0.4) 4.7 4.5 0.20
ADHn 53 5.2
ADHs 8.1(2.2) 5.2 5.0

Spike weight ~ FWHnN 5.3 5.2 0.12
FWHs 8(2.2) 53 5.1 0.11
FWs 10.2 (4.1) 6.8 5.7 0.29
ADHn 2.7 2.7
ADHs 19.9(9.6) 2.6 2.7

Protein FWHnN 2.6 2.7 0.05

FWHs 19.6 (9.6) 2.7 2.7 0.05
FWs 28.2(13.4) 4.8 4.1 0.25

ADHnN 2.8 2.8
ADHs 4.2 (0.5) 2.6 2.5

TKW FWHnN 2.8 2.8 0.15
FWHs 4(0.5) 2.7 2.5 0.17
FWs 3.8(0.4) 35 3.2 0.33

Table 5. Number of degrees of freedom and precision of estimates.

v: posterior means, with posterior standard deviations in parentheses, of the number of degrees of freedom
of the ¢ distribution; cv(«), cv(6): average posterior coefficients of variation of germplasm and environment
main effects; sd(n): average posterior standard deviation of germplasm sensitivities (FW coefficients).

Plant height Spike weight Protein TKW
Mean  95% Cl Mean  95% Cl Mean  95% Cl Mean 95% Cl
R? 87.1 82.9~90.2 782 73.8~82.1 83 79.1~86.7 69.7 64.1~74.8
() 23.8 17.9~30.7 109 7.7~14.7 56 3.7~8.2 16.1  12~20.8
() 62.4 54.5~69.8 66.2 60.1~71.9 77.2  72~82 51.4 44.6~58.1
m(nb) 0.9 0.4~1.6 1.1 0.4~21 0.2 0~0.8 22 1~3.38
p 6.5 2.8~12 48 1.7~93 1.2 0~4.7 6.9 3.1~12

Table 6. Variance decomposition.

Estimates were made using model FWHSs and are given in %. Mean: mean of the posterior distribution; 95%
Cl: 95% credible intervals. R? is the coefficient of determination. m(«), w(#) and m(n0) are respectively the
proportion of variance explained by «, 6 and nf. p is the proportion of the variance of G x E and errors
explained by 6.

van Frank et al. (2019) investigated the influence of MET design on the evaluation of germplasm using model
FWHnN and simulations. They found that when data were highly unbalanced, this evaluation was more reliable
with at least 100 environments and when some germplasm were replicated over at least 5 environments per
germplasm. Therefore, we restricted the analysis to a subset of data that met these conditions. Having 100
environments seems difficult to achieve, but it should be noted that this number combines the number of
trials per year and the number of years, which may be achieved by a network of many farmers experimenting
over several years.

Cotes et al. (2006) used a Bayesian approach to estimate FW coefficients in a MET study in order to take
prior information on germplasm coming from other studies into account. A similar approach was used by
Couto et al. (2015), Foucteau and Denis (2001), and Nascimento et al. (2020) and was found to greatly improve
the results. Here, we used little prior information. But in the future, previous evaluation studies may provide
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Trait Pearson correlation between

o | ailS? Wi mi|S? ni|Wi S Wi
Plant height ~ 0.43*** (. 4*%%* -0.41 0.997*** -0.34  -0.26
Spike weight ~ 0.34**%*  (0.35%**  (.24* 0.999***  0.17 0.21
Protein 0.13 0.14* -0.01 0.999***  -0.01 0
TKW 0.23* 0.23* 0.12 0.996***  0.27 0.36

Table 7. Correlation between germplasm parameters.
* &% k%% significant at P = 0.05, P = 0.01, P = 0.001 respectively.
«;: germplasm effect, ;: germplasm sensitivity (FW coefficient), S2: static stability, W;: ecovalence.

Trait Registered Historic Landrace Cross Mixture P-value
i 862° 1136° 12214 11759 1189%®  <0.001
Plant height n=6 -0.11° n=16 -0.01¢ n=21 0° n=74 0.01¢ n=7 -0.01% 0.001
G2 37566° 44170° 44616° 45556 43911%®  0.005
Wi 8835 7680° 7678° 7716° 7707° <0.001
i 2.03 1.99 1.94 1.96 2.02 0.439
Spike weight 7;  n=8 0.02 n=20 0.02 n=40 -0.01 n=89 0 n=15 -0.01 0.297
S? 0.34 0.34 0.32 0.33 0.32 0.303
Wi 0.08 0.08 0.08 0.08 0.08 0.712
i 11.1 11.4 11.4 11.4 11.5 0.125
Protein i n=9  0.001 n=27 0.001 n=34 -0.001 n=62 0 n=12  0.001 0.935
S2 3.41 3.41 3.39 3.4 3.41 0.951
Wi 0.61 0.61 0.61 0.61 0.61 0.641
o 43.6 43.9 43.1 43.4 439 0.681
TKW n;  n=8 -0.03?® n=20 0.08° n=42 -0.03® n=92 0.01%® n=15 -0.05° 0.003
H 32.99 37.4° 32.7° 34.3% 31.7° 0.002
Wi 12.7 13 12.8 12.7 12,6 0.081

Table 8. Performance and stability of types of germplasm.

P-values in bold indicate significant differences (P<0.05) between germplasm types for a given trait and differ-
ent letters indicate significant differences (P<0.05) based on Tukey-Kramer HSD tests.

n: number of germplasm, a;: mean germplasm effect, 7;:mean sensitivity (FW coefficient), S2: mean static
stability and W;: mean ecovalence.

stronger prior information on germplasm behaviour.

4.2 Extreme observations

Extreme observations were more frequent in our dataset than expected under the normal distribution for
three traits out of four (Fig. 4). For these traits, using a ¢ distribution increased elpd
of the number of degrees of freedom of this distribution was smaller than 10 (Tab. 5). These extreme obser-

W Values, and the estimate
vations could occur in our dataset for several reasons: because most of the populations were not replicated
within the trials, because cultivation environments were less controlled, or because a non-negligible part of
the GxE interaction was not captured by the multiplicative term of the FW model. The normal distribution was
appropriate for the trait protein content. It is difficult to explain why this trait had fewer extreme observations.
A possible explanation could be that the measurement of protein content is more standardized than other
trait measurements. For plant height, extreme values occurred only for non-replicated micro-plots with a
global measurement and never with data from the average of 25 plants (Sect. 2.2.2), suggesting that this mea-
surement is less accurate. For TKW, the kernel count could be affected by broken kernels due to over-drying
or incorrect threshing settings leading to an overestimation of the number of kernels in the sample. Another
possible explanation is that protein content is less variable under different conditions than plant height and
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spike weight (Kazakou et al., 2014).

Using a t distribution did not affect the estimates of germplasm and environment main effects. On the
contrary, it improved the estimates of sensitivities. It reduced their shrinkage and allowed the multiplicative
term of the FW model to better capture G x E interactions (Fig.3).

The Student distribution is expected to take better account of extreme data and to yield more robust esti-
mates (Besag and Higdon, 1999; Lange et al., 1989; Rosa et al., 2003). Extreme data are more likely to occur
when varieties are not replicated within trials, which is frequent in this dataset (Fig. 4). Rosa et al. (2003) found
that a normal likelihood underestimated a sex effect compared to a t likelihood. This effect was estimated
less precisely with a normal distribution, which is consistent with our results for plant height, spike weight and
TKW. A Student likelihood appears to be a good solution for dealing with extreme data, in particular in sta-
bility analyses, where extreme observations are sometimes removed (this is justified when they are extreme
because of experimental errors, but not when they are due to natural variability). While this distribution has
recently been used to implement robust alternatives to BLUP (Gianola et al., 2018) or to handle environmental
heterogeneity in a single trial (Cao et al., 2022), to our knowledge, it has not already been used in MET studies.

4.3 Computing time

Series of trials often include many genotypes and environments, leading to large data sets. Thus, their
analysis using mixed or hierarchical models is generally computationally demanding (Smith et al., 2005). The
computational load can be reduced by using approximate estimation methods (Nabugoomu et al., 1999) or
efficient algorithms, such as algorithms based on sparse matrix operations (Gilmour et al., 1995; Thompson
et al., 2003). Hierarchical joint regression has already been implemented using Gibbs sampling or Jags (Lian
and de los Campos, 2016; van Frank et al., 2020). Our implementation based on Hamiltonian Monte Carlo
and Stan was more efficient since it required fewer iterations (Gelman, 2005). It allowed us to analyze large
datasets in about 10 minutes.

To reduce computing time, the analyses were carried out in two steps. First, germplasm means were esti-
mated using within-trial analyses. Then, these estimates were gathered and analyzed using a between-trial
analysis. Thus, this two-stage approach analyzes G x E means without taking account of their standard error.
Riviere et al. (2015a) developed a flexible method for estimating the experimental variance of trials with low
intra-farm replication (farm design presented in Tab. 2). An easy way to integrate the variability estimated in
the first stage would be for instance to use the same method as Couto et al. (2015).

4.4 Main effects

For the four traits studied, we found that the environmental part of the variance was large (from 51% for
TKW to 77% for protein content, Tab. 6), which is consistent with the diversity of the cropping environments en-
countered (soil, climate, cropping practices...). Nevertheless, heritability was still significant with plant height
> TKW > spike weight > protein. Riviére et al. (2015b) found (with data included in our study) a similar ranking
in heritability: plant height > TKW = protein > spike weight. Plant height is known to be quite heritable due
to a relatively simple genetic architecture with a few major genes, such as the well known Green Revolution
Rht1 and Rht2 genes (Peng et al., 1999). In our study, the presence of both quite recent registered varieties
and varieties dating from before the second World War, very likely led to varieties containing different alleles
for these loci and increased variability for height. The decrease in plant height from landraces to historic vari-
eties and registered varieties appears very clearly (Tab. 8) as also found in several studies (Bektas et al., 2016;
Cantarel et al., 2021).

4.5 Germplasm stabilities

FW coefficients explained a low proportion of the total variance (between 0.2% and 2.2%) and a low propor-
tion of the variance of G x F interactions and errors (between 1.2% and 6.9%, Tab. 6). We can presume that
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the explanation of the interaction by the FW parameter is weaker the greater the number of environments
for example, 29% for 12 studies with less than 10 environments, and 12% for studies with more than 10 en-
vironments (Brancourt-Hulmel et al., 1997). Other classical models, such as AMMI (additive main effect and
multiplicative interaction) or GGE (G + G x E) models, might explain a larger part of GxE interactions.

Missing data estimation methods allow these models to be used when the data is highly unbalanced, with
up to from 40% unbalanced data for a MET with less than 20 environments to 60% unbalanced data for MET
with at least 40 environments (Woyann et al., 2017; Yan, 2013). However, these datasets are more balanced
than ours, and, as found by Rodrigues et al. (2011), FW is more robust than AMMI when the data are highly
unbalanced (75%). In our study, most germplasm occurred in a limited number of environments, so that a
parsimonious and very simple modelling of G x E interactions had to be used. An alternative approach would
be to better characterize the environments and thus explain the environmental effects and part of the G x E
interaction using environmental variables (Piepho, 2022).

Although sensitivities explained a rather low proportion of variance, HFWs model had larger elpd,, values
than additive models for three traits out of four. In addition, for these traits, some sensitivity estimates were
not negligible, with values close to 0.2 or 0.3. Interaction effects then represented 20% or 30% of environmen-
tal effects. Additive models were appropriate for the protein content trait. It was found that the multiplicative
term of the FW model was not significant for protein content, both in a balanced network of 15 environments
in Serbia (Hristov et al., 2010) and in 12 environments in Swiss organic trials (Knapp et al., 2017). On the con-
trary, Mut et al. (2010) found significant FW coefficients for a balanced network of 7 environments in Turkey.
These contrasting results could be explained by differences between numbers of environments or between
genetic diversities.

For plant height, we found that registered varieties were more statically stable but less dynamically stable
(Tab.8). This can be explained by the fact that there are only a few registered varieties in the trials, therefore
they have little influence on the average height, which can fluctuate greatly between trials, and therefore the
deviation from this average will be greater for this type.

Static and dynamic stabilities were difficult to estimate since our series of trials was very unbalanced. In par-
ticular, raw estimates of these stabilities were not reliable, since they were much influenced by the unbalanced
nature of the data. By using theoretical variances, the FW model allowed us to calculate simple indicators of
static and dynamic stability in the wheat PPB dataset. To our knowledge, the FW model has never been used
for this purpose before.

Dependence between stability and mean is widespread (Reckling et al., 2021), but in our case, the correla-
tion was low, which simplified interpretation of the stability analysis. Several studies for different traits and
with balanced MET found a very strong correlation between FW coefficient and the static stability (Becker,
1981; Fasahat et al., 2015; Reckling et al., 2021). However, in our case, this relationship was even stronger
(Tab. 7), probably because of the assumption that the variance of residuals did not depend on the genotype.
As in many other studies, the residual variance was assumed to be independent of germplasm throughout
our study. Allowing the residual variance to depend on the genotype could improve the estimates of stability
indicators (Cotes et al., 2006; Couto et al., 2015). In particular, the dynamic indicator would be similar to the
Shukla Stability Variance, i.e, the varietal variance of G x F interactions (Cotes et al., 2006). However, estimat-
ing a residual variance and a FW coefficient for each germplasm could be difficult in our study, as most of the
germplasm appeared in only a few environments.

When relationships were significant, mixtures were always in a more stable (statically and dynamically)
statistical group (Tab. 7). This result supports the fact that within-plot diversity stabilizes performances (Doring
et al., 2015; Kieer et al., 2012).

In the wheat PPB program, the populations tested were heterogeneous and their genotypic composition
could vary over years and farms (David et al., 2020). In this analysis, such variations were considered as
part of the response of a population to a given environment for the sake of simplicity. Therefore the G x
E interactions could be overestimated (resp. underestimated) if populations underwent diversifying (resp.
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stabilizing) selection pressures within farms.

4.6 Role of statistical methods in the wheat PPB project

This work was developed following the co-construction of an experimental set-up suitable for decentralized
on-farm evaluation and selection, and research into the best methods for analyzing the resulting data. It was
part of the methodology we set up in a wheat PPB program, which was based on a collaboration between
farmers, associations of farmers and researchers (Dawson et al., 2011). The farmers could freely choose
the populations they wanted to test, so that a wide genetic diversity could be evaluated in a wide range of
environments. There were on average more than 130 environments resulting from the combination of years
and farms. The number of genotypes evaluated was large compared to other studies, but it was smaller than
in CIMMYT's MET, which involved between 500 and 800 genotypes tested in 12 MET between 1945 and 1986
(Braun et al., 1997).

One aim of the project was to provide farmers with information to help them select new germplasm for
testing on their farm. The statistical tools we developed sought to cope with the large degree to which this
series of trials was unbalanced. Their objectives were the same as in other MET analyses : (i) estimate and
predict germplasm’ values for traits of interest for breeding, (ii) study the stability of germplasm over several
environments, (iii) select new germplasm to be tested in new locations (Cotes et al., 2006). MET are usually
carried out to find stable germplasm that perform well on average over many locations, or to detect special
local adaptations to certain environments (Annicchiarico et al., 2005; Gauch et al., 2008). Here, while farmers
were mostly interested in selecting the best germplasm adapted to their local pedo-climatic conditions, farm-
ing practices and marketing objectives, information retrieved from the farmers’ network on new varieties to
introduce in their trials could also be useful.

5 Conclusion

The proposed hierarchical model was aimed at improving the estimates of the parameters of the FW model
from unbalanced datasets. This model was complex and was easier to implement in a Bayesian framework.
Placing hierarchical distributions on model parameters and modelling residuals using a t distribution im-
proved the estimates of main and interaction effects. This model allowed us to estimate static and dynamic
stability indicators despite the high level of unbalanced data. Main effects and stability indicators provide in-
formation on the behaviour of genotypes in different environments, which farmers could use in their selection
process.

Participatory research raises new research questions and contributes to the development of new meth-
ods for societal action (Kastenhofer et al., 2011). In PPB programs, all the methodology is based on collective
and collaborative work and action between farmers, associations of farmers and researchers (Brac de la Per-
riere et al., 2011). New statistical methods can contribute to a better use of such complex multi-environment
data in the selection process, and more generally to the effectiveness of participatory research (Martin and
Sherington, 1997).
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Supplementary information

A Models

Tab. A.1 provides supplementary information on the prior distribution of model parameters.

Au A ftemp  Temp
Plant height 1200 500 1188 234
Spike weight 2.00 0.80 2.03 0.58
Protein 120 40 115 1.9
TKW 450 100 437 5.8
Table A.1. Known values of the parameters of the prior distribution, empirical mean and standard deviation
of traits.

B Model comparison

Tab. B.1 provides supplementary information on the estimation of the elpd__ criterion. Fig. B.1 provides

loo

supplementary information on the comparison of models FWHs and ADHs. Fig. B.2 provides supplementary
information on the comparison of models ADHs and ADHn.
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Figure B.1. Comparison of models FWHs and
ADHs for the distribution of germplasm main ef-
fects (a), environment main effects (6), FW coef-
ficients (n) and residuals (¢) for each trait. Red:
model FWHs; Blue: model ADHs.

Figure B.2. Comparison of models ADHs and
ADHn in terms of the contributions of observa-
tions to the elpd,  criterion. Black (resp. red) dots
correspond to observations that were measured
on germplasm that were repeated (resp. not re-
peated) within trials
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