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Abstract 1

2

Participatory plant breeding (PPB) is aimed at developing varieties adapted to agroecologically-based sys-
tems. In PPB, selection is decentralized in the target environments, and relies on collaboration between
farmers, farmers’ organisations and researchers. By doing so, evaluation of new genotypes takes genotype
× environment (G × E) interactions into account to select for specific adaptation. In many cases, there
is little overlap among genotypes assessed from farm to farm because the farmers participating in a PPB
project choose which ones to assess on their farm. In addition, on-farm trials can often generate more
extreme observations than trials carried out on research stations. These features make the estimation of
genotype, environment and interaction effects more difficult. This challenge is not unique to PPB, as many
breeding programs use sparse testing or incomplete block designs to evaluate more genotypes, however in
PPB genotypes are not assigned randomly to environments. To explore methods of overcoming these chal-
lenges, this article tests various data analysis scenarios using a Bayesian approach with differentmodels and
a real wheat PPB dataset over 11 years. Fourmorpho-agronomic traits were studied, representing over 1000
G × E combinations from 189 on-farm trials. This dataset was severely unbalanced with more than 90%
of G × E combinations missing. We compared various Bayesian Finlay-Wilkinson models and found that
placing hierarchical distributions on model parameters and modelling residuals using a Student’s t distribu-
tion jointly improved the estimates of main effects and interactions. This statistical framework allowed us to
estimate two indicators of genotype stability (one static and one dynamic) despite the high disequilibrium of
the data. We found differences in mean and stability between genotype categories, with mixtures tending
to bemore stable. Themethods developed could be used for evaluation and/or selection within networks of
various stakeholders such as farmers, gardeners, plant breeders or managers of genetic resource centres.
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1 Introduction 25

Developing new varieties adapted to Organic Agriculture (OA), agroecological and low input systems is a 26

major concern to achieve improvements in agricultural sustainability (Wolfe et al., 2008). In OA, the use of 27

synthetic inputs (nitrogen, phytochemicals) is not allowed, therefore, cropping environments are not stan- 28

dardized by inputs and varieties grow in more diverse conditions from farm to farm (Dawson et al., 2008). 29

These environments are dependent on pedoclimatic conditions, yearly weather, farmers’ management prac- 30

tices and interactions between these factors (Desclaux et al., 2008). 31

In order to develop varieties adapted to such a diversity of environments two strategies can be used: (i) 32

centralized and indirect selection, or (ii) decentralized and direct selection. The key difference between these 33

approaches is the way they take genotype-by-environment (G × E) interactions into account. These interac- 34

tions are considered by plant breeders as themain factor limiting the efficiency of the response to selection in 35

breeding programs (Ceccarelli et al., 2001). In centralized and indirect selection, breeding lines are evaluated 36

and selected at a few research stations assumed to represent the target environments. This is efficient if there 37

is a high additive genetic correlation between the trait measured on the station and the same trait measured 38

in the target environment, and if the narrow sense heritability is high in the selection environment (Falconer, 39

1960). 40

Decentralized selection can take account ofG×E interactions that are important inOA (Dawson et al., 2008; 41

Murphy et al., 2007). In this approach, the selection and evaluation environments are very close to the target 42

environments (the production environments of farms). Selection then maximizes the use of the reproducible 43

part of G× E interactions to select for specific adaptations (Annicchiarico et al., 2010). This method is close to 44

direct selection and has been shown to be effective (Annicchiarico et al., 2010; Ceccarelli et al., 2001; Murphy 45

et al., 2007; Smith et al., 2001; Virk et al., 2005). 46

Many PPB programs have been carried out over the last 20 years targeting low-input farming systems in the 47

Global South and also OA and agroecological systems in Europe and North America (Ceccarelli and Grando, 48

2020). A few programs tested different experimental designs and specific statistical methods to analyze data 49

taking GxE into account (Mohammadi et al., 2011; Snapp and Silim, 2002). However, few had an extensive 50

dataset with a large number of farms, years and genotypes to allow investigation of the best relevantmethods 51

in detail. One programwith such data is a wheat PPB program that started in France in 2005, as a collaboration 52

between INRAE GQE-Le Moulon and the Farmers’ Seed Network (Réseau Semences Paysannes, RSP). This 53

PPB program had three objectives: (i) develop population-varieties adapted to farmers’ practices and needs 54

(organic management, artisanal bread quality ...) using a participatory approach, (ii) develop strategies for 55

preserving genetic diversity through on-farm dynamic management and breeding, and (iii) learn from and 56

improve farmers’ individual and collective breeding methods and diffuse successful methods broadly. 57

In this program, a large number of populations was evaluated over a large network of farms in the RSP 58

(Dawson et al., 2011; Goldringer et al., 2020; Rivière et al., 2015a,b; van Frank et al., 2020). Because of the 59

extensive trial network, the assessment of population performance within an environment could potentially 60

be improved by taking account of the average performance of populations over the network and the stability 61

of their performance, in particular temporal stability, as it determines agronomic and economic risks. Two 62

types of stability assessment have been developed: static and dynamic stability (Becker and Leon, 1988; Lin 63

et al., 1986). 64

The farmers involved in the program chose which populations to evaluate on their farm, based on prior 65

information about the parents, and characteristics of interest. As very few populations were present in all 66

the trials, the resulting series of trials was very unbalanced, so that the estimation of population average 67

performances and stabilities was difficult. Joint regression is a robust method for estimating genotype main 68

effects and stability with incomplete datasets (Finlay and Wilkinson, 1963; Pereira et al., 2007). It is based 69

on the Finlay-Wilkinson (FW) model, which is parsimonious since the interaction effect between a genotype 70

and an environment is modelled as the product of a genotype stability parameter, called sensitivity, and the 71
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environment main effect. Various Finlay-Wilkinson models have been used in a frequentist framework, which 72

include fixed-effect models and models with random environmental effects (Nabugoomu et al., 1999; Ng and 73

Williams, 2001; Patterson and Silvey, 1980). In the latter models, environmental effects are assumed to come 74

from a common distribution, thereby leading to shrunk estimates. FWmodels in which genotypemain effects, 75

environmentmain effects and genotype sensitivities are all random effects have recently been developed that 76

can handle unbalanced data and take into account the similarity between some genotypes and the similarity 77

between some environments. These have been implemented in a Bayesian framework andwhen they include 78

random effects, these are called hierarchical models (Carlin and Louis, 2008; Robert, 2007). Thus far, these 79

models have been used to analyze slightly unbalanced trials (Lian and de los Campos, 2016). Hierarchical 80

joint regression has also been used to analyze very unbalanced simulated data (van Frank et al., 2019). This 81

simulation study has shown that genotypes should be tested in sufficiently many trials in order to estimate 82

their main effects and sensitivities reliably. However, this method had not been used to analyze real and very 83

unbalanced trials. Thus, it was not clear if it could cope with the actual levels of unbalanced data seen in the 84

French PPB on-farm trials and what insight it could give into the behavior of genotypes across environments. 85

Extreme data is an important issue in data analysis. In multi-environment trials (MET), they may come 86

from either (1) errors between scoring and data formatting (measurement error, wrong labelling, etc.), or (2) 87

environmental heterogeneity in the trial (weed infestation, soil fertility, etc.), or (3) particular environmental 88

conditions that fall outside the normal range of environments under study (poor emergence, extremeweather, 89

strong pest/disease pressure, etc.). In our PPB program, as cultivation environments are less controlled, ex- 90

treme observations (types 2 and 3) could bemore frequent than expected. This could bias estimates based on 91

the normal distribution. Extreme observations could be removed from the dataset to solve this problem, but 92

it is difficult to decide which observations to remove. If too many extreme observations are removed, then 93

the variability of the data may be underestimated and the precision of the statistical analysis overestimated. 94

Alternatively, statistical methods that are robust to extreme observations may be used (Hampel et al., 2011; 95

Huber and Ronchetti, 1981). Various robust methods have been developed in a frequentist or a Bayesian 96

framework, in particular methods consisting in replacing the normal distribution by a Student’s t distribution 97

in statistical models. This distribution is more robust to extreme observations than the normal distribution, 98

because it has heavier tails (Carlin and Polson, 1991; Choy and Chan, 2008; Lange et al., 1989; Rosa et al., 99

2003). It has been used to handle the extreme observations of a single trial in a Bayesian framework (Besag 100

and Higdon, 1999; Cao et al., 2022; Gianola et al., 2018). However, to our knowledge, it has not been used to 101

analyze an unbalanced network of trials. 102

Recently, participatory variety trials using crowdsourcing has been used in several countries with great suc- 103

cess (van Etten et al., 2019). These methods typically use an experimental design called a triadic comparison 104

of technologies (tricot), followed by an analysis of variety ranks (Beza et al., 2017). In the tricot design, large 105

numbers of farmers each compare three variety subsets from the complete set of entries, and provide direct 106

comparison rankings among them for a few traits (i.e. best/middle/worst). By using ranking methods and 107

structuring the entry distribution as an incomplete block design, this allows for comparisons of larger num- 108

bers of varieties without overburdening individual farmers. These design options enhance breeders’ ability 109

to engage farmers in trialing experimental lines, since on-farm trials are often limited by space and farmers’ 110

time. Trialing a few experimental lines, including a check line or variety that is replicated across sites is more 111

realistic for farmers than implementing a fully replicated design. Triadic methods are very useful in many 112

situations, but they are not applicable to more mature networks of farmer breeders such as we have in our 113

PPB program for wheat. The farmers in this network have selected populations over time according to their 114

own rationale, and the populations are not randomly assigned to farmers. In addition, farmers test different 115

numbers of populations, with some only trialing a few and others trialing several dozen. Farmers also want 116

access to quantitative data rather than simple ranks, and so a non-parametric ranking of varieties with no 117

assumptions about distribution will not produce a satisfactory analysis for this purpose. 118

This article was aimed at improving the assessment of the population-varieties of our program by using 119
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the information at the level of the network. As our dataset was very unbalanced and could include extreme 120

observations, we compared several Finlay-Wilkinson models, in particular hierarchical models and models 121

based on the t distribution. These models were developed in a Bayesian framework, since this framework 122

is rigorous and since it facilitates the implementation of complex models (Carlin and Louis, 2008; Robert, 123

2007). Finally, the best Finlay-Wilkinson model we obtained was used to analyze our data and characterize 124

the behaviour of our population-varieties across environments. 125

2 Material and methods 126

Notation Meaning
PPB Participatory plant breeding
OA Organic agriculture
RSP French farmers’ seed network
MET Multi-environment trial
G× E Genotype× environment interaction
FW Finlay Wilkinson
MCMC Markov chain Monte Carlo
LOO Leave one out
α Germplasm main effect
θ Environment main effect
η Germplasm sensitivity (FW coefficient)
S2 Germplasm static stability
W Germplasm ecovalence (a dynamic stability)
elpdloo LOO expected logarithmic predictive density

Table 1. Main notations.
In our study, we will call a germplasm any biological entity whose individuals are derived from the same 127

breeding process, including varieties registered in the official catalog, landraces, historic varieties, mixtures 128

or populations stemming from crosses. An environment is the combination of a farm and a year. 129

2.1 Germplasm 130

We studied 206 germplasm covering different "germplasm types": 98 "cross" germplasm resulting from 131

crossesmade either on the farmor at the research station (Rivière et al., 2015b), 50 "landraces", i.e. population 132

varieties grown before 1850, 30 "historic varieties", developed by professional breeding before 1950, 17 "mix- 133

tures", which were generally complex, with numerous genotypes from potentially all the other germplasm 134

types. In addition, 11 "registered varieties" after 1950 and widely used in organic farming were included: 135

Maitre Pierre (1954), Poncheau (1956), Renan (1990), Ataro (2004), Pollux (2004), Rubisco (2012), Hendrix 136

(2012), Kampmann selected in Renan, and Hermes (1982), Alauda (2004) and Goldritter (2013), all three se- 137

lected in Probus (1957). 138

2.2 Experimental designs and data 139

2.2.1 Experimental designs 140

Data were collected between 2008 and 2019. Thewheat PPB program followed numerous experimental de- 141

signs due to the different constraints of farmers, collectives and researchers. The designs have been grouped 142

into 5 classes (Tab. 2). 143

The "regional farm" and "satellite farm" designs were co-designed to be adapted to the farmer-breeders’ 144

constraints and to be used in their agricultural routine. In these designs, the germplasm common to all 145
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farms (control germplasm) were collectively chosen by farmers and researchers, while each farmer individu- 146

ally chose the additional germplasm to be cultivated in his farm. At the beginning the control was a selection in 147

a landrace, and after 2014 it was a germplasm stemming from a cross. Both complete-block and incomplete- 148

block designs were used to address specific research questions such as the study of the evolution of traits 149

(Rivière et al., 2015b), local adaptation (van Frank et al., 2020) or the evaluation of agronomic performance 150

(Goldringer et al., 2020). Some unreplicated trials corresponded to trials with replications but for which mea- 151

surements could not be performed in some replications. 152

Nb of blocks Nb of repeated
germplams

Nb of gemplasms by
environment

Nb of environ-
ments

Complete blocks 2 to 3 6 to 45 7 to 45 24
Incomplete blocks 3 to 4 3 to 49 6 to 58 11
Regional farm 2 5 to 16 7 to 81 20
Statellite farm 1 1 to 22 5 to 79 102
Unreplicated 1 0 5 to 39 32

Table 2. Experimental designs of the 189 trials used in the statistical analysis. Nb: number, Environment:
combination of a year and a location.

2.2.2 Data collected 153

Four traits were studied, plant height (60% of the data was the average height of 25 individuals and 40%was 154

the overall height of the microplot, mm), spike weight (mean of 25 individual measures, g), protein content 155

of the grain (on the microplot, measured with NIRS technology at INRAE Clermont-Ferrand France, %) and 156

thousand kernel weight (TKW, measured on the microplot, g). These four traits were among those collectively 157

chosen by farmers and researchers to be measured during the PPB program (Table 3). Plant height was 158

measured in the field, while the other traits were measured after harvest at the research station on samples 159

of spikes sent by farmers. The data analyzed were the adjusted means for block effects if these effects were 160

significant, and the empirical means if otherwise. Obvious outliers were excluded. 161

van Frank et al. (2019) analyzed the sensitivity of the hierarchical FW model to different MET set-ups with 162

simulated data. They found that, in contrast to the environmental effects, the germplasm effects and FW 163

coefficients were difficult to estimate. This is why they recommended that a large number of environments 164

be used and that the germplasm be repeated sufficiently. We have therefore made a selection of the data 165

and kept the environments with at least five germplasm and the germplasm that were present in at least four 166

environments. Thus, the data analyzed comprised 70 to 76% of the initial data, depending on the trait. 167

The multi-environment data were very unbalanced, with most of the germplasm occurring in a limited 168

number of environments (the median number of replicates across environments was seven, and about 20% 169

of the germplasm were replicated in four environments only). For each trait, the number of observations was 170

between 1300 and 2000 and the measures were spread over more than nine years (Tab. 3). 171

Trait Observations Germplasm Environments Disequilibrium Farms Years
Plant height 1437 124 117 90 44 11
Spike weight 1804 172 148 93 52 10
Protein 1332 144 111 92 44 9
TKW 1982 177 165 93 58 11

Table 3. Description of the dataset. Disequilibrium: proportion of missing values in the Germplasm x Environ-
ment table in%.
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2.3 Models 172

The phenotypic value Yij ∈ R for a given trait Y , germplasm i and environment j was assumed to be equal 173

to 174

Yij = µij + εij , 175

where (i, j) ∈ C, C was the set of the germplasm x environment combinations occurring in the data set, 176

µij ∈ R was an expectation term, and εij ∈ R was a residual term. Five models were developed, which 177

modelled the expectation term, the residual term and the prior distribution differently (Tab. 4). 178

Expectation term Residual term Prior distribution
ADHn Additive Normal Hierarchical
ADHs Additive Student Hierarchical
FWHn Finlay Wilkinson Normal Hierarchical
FWHs Finlay Wilkinson Student Hierarchical
FWs Finlay Wilkinson Student Weakly informative

Table 4. The five models fitted.

2.3.1 Expectation term 179

In models ADHs and ADHn, the expectation term was modelled as additive effects of both the germplasm 180

and the environment without interaction: 181

µij = αi + θj , 182

where αi ∈ R was the main effect of germplasm i, and θj ∈ R was the main effect of environment j. Mod- 183

els FWHs, FWs and FWHn modelled genotype-environment interaction using the Finlay-Wilkinson, also called 184

joint-regression, model (Finlay and Wilkinson, 1963). In these models, the expectation term was assumed to 185

be equal to 186

µij = αi + θj + ηiθj , 187

where ηi ∈ R was the sensitivity of germplasm i to environments (linear regression coefficient, Perkins and 188

Jinks, 1968). Finlay and Wilkinson (1963) defined their coefficient as bi = 1 + ηi. As the average sensitivity 189

is equal to 0, a germplasm with ηi > 0 (resp. ηi < 0) is more (resp. less) sensitive to environments than a 190

germplasm with the average sensitivity (Nabugoomu et al., 1999). In these models, the interaction between 191

germplasm i and environment j was modelled as a multiplicative term ηiθj contributing to the expectation 192

term with the remaining part adding to the residual term. The Finlay-Wilkinson coefficient is considered as 193

both a static and a dynamic indicator of stability (Becker and Leon, 1988; Lin et al., 1986). In this model, 194

statically stable genotypes have a coefficient close to -1. Dynamically stable genotypes have a coefficient 195

close to zero, but having a coefficient close to zero is not sufficient to determine dynamic stability, this also 196

depends on the amount ofG× E variation that remains unexplained by the model. 197

2.3.2 Residual term 198

In models ADHn and FWHn, the distribution of the residual term was assumed to be normal: 199

εij ∼ N
(
0, σ2

ε

)
, 200

where N
(
0, σ2

ε

) was the normal distribution with expectation 0 and variance σ2
ε . However, to limit the in- 201

fluence of extreme values on the results of the analyses, we also developed models based on Student’s t 202

distributions. Thus, in models FWHs, FWs and ADHs, the distribution of the error term was assumed to be 203

equal to 204

εij ∼ t
(
0, σ2

ε , ν
)
, 205

6



where t
(
0, σ2

ε , ν
) was the Student’s t distribution with dispersion parameter σ2

ε > 0 and ν > 2 degrees of 206

freedom. We assumed that ν > 2 to ensure that the expectation and the variance of εij were defined and 207

finite. In models FWHs, FWs and ADHs, the variance of εij was equal to νσ2
ε/(ν − 2). The normal distribution 208

can be considered as a t distribution with ν tending to +∞. For additive models, the residual combined the 209

G× E contribution and errors, i.e. experimental errors and environmental heterogeneity in each trial, while 210

for FW models, it combined the part ofG× E not explained by η and errors. 211

2.3.3 Prior distribution 212

The statistical analysis was carried out in a Bayesian framework, so that a joint prior distribution was placed 213

onmodel parameters. We placedweakly informative priors on σε and ν (Cao et al., 2022; Gelman, 2006; Juárez 214

and Steel, 2010): 215

σε ∼ N+(0, λ2
ε), ν ∼ Γ(2, 0.1), 216

with ν > 2, and where λε was a known prior value of the standard deviation of the trait, N+(0, λ2
ε) was 217

the normal distribution restricted to positive values with parameters 0 and λ2
ε , and Γ(2, 0.1) was the gamma 218

distribution with shape parameter 2 and rate parameter 0.1. 219

Given the high data disequilibrium and the large numbers of germplasm and environments, we decided 220

to implement a hierarchical Bayesian approach. In all the models except the FWs model, αi, θj and when 221

present ηi were assumed to follow hierarchical distributions: 222

αi ∼ N
(
µY , σ

2
α

)
, ηi ∼ N

(
0, σ2

η

)
, θj ∼ N

(
0, σ2

θ

)
, 223

where µY , σα, ση and σθ were unknown parameters. Then, we placed weakly informative prior distributions 224

on the hyperparameters µY , σα, ση and σθ: 225

µY ∼ N
(
λµ, λ

2
ε

)
, σα ∼ N+(0, λ2

ε), σθ ∼ N+(0, λ2
ε), ση ∼ N+(0, 0.752), 226

where λµ was a known prior value of the trait mean. Germplasm main effects, environment main effects, 227

germplasm sensitivities and residuals were assumed to be independent given the hyperparameters, σε and 228

ν. In model FWs, the hierarchical distributions of αi, ηi and θj were replaced by weakly informative prior 229

distributions: 230

αi ∼ N
(
µY , λ

2
ε

)
, ηi ∼ N

(
0, 0.752

)
, θj ∼ N

(
0, λ2

ε

)
. 231

The values chosen for λε and λµ are in Appendix A.1. 232

2.3.4 Posterior distribution 233

Bayesian inference is based on the posterior distribution of the model parameters. This distribution was 234

estimated using Markov chain and Monte Carlo (MCMC) methods. These methods simulate the values of 235

the model parameters according to a Markov chain that converges to the posterior distribution of these pa- 236

rameters (Robert, 2007). The MCMC methods were implemented using R (R Core Team, 2014) and the pack- 237

age rstan (Stan Developpement Team, 2016), that performs Hamiltonian Monte Carlo (HMC) sampling. This 238

method aims at reducing the correlation between successive sampled values by using a proposal distribution 239

based on Hamiltonian dynamics (Neal, 2011). Four MCMC chains were run independently to test for conver- 240

gence. The initial values of each chain were taken randomly. For each chain, the burn-in consisted of 200 241

iterations, then 5,000 iterations were performed for all models, except FWs where 8,000 iterations were re- 242

quired. The average calculation time (for a given trait and a given model) was 9 minutes and the maximum 243

time was 22minutes (with FWs), with a computer intel CORE i7©. Estimates of the Gelman-Rubin statistic were 244

smaller than 1.02 and the effective sample size was greater than 400 for each parameter in all tested models. 245
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2.3.5 Model comparison 246

We compared the predictive ability of models using leave-one-out cross-validation, which seems more ap- 247

propriate than Bayes factors for selecting models that approximate the process generating the data (Lartillot, 248

2023). We estimated the expected logarithmic predictive density using the R package LOO (Vehtari et al., 2017). 249

This criterion was equal to 250

elpdloo =
∑

(i,j)∈C

ln(p(Yij |Y−ij)), 251

where Y−ij was the dataset without observation Yij , and p(Yij |Y−ij) was the leave-one-out posterior den- 252

sity of Yij . The larger this criterion, the better the agreement between the model and the data. The elpdloo 253

criterion was also used to identify extreme observations. The quantity ln(p(Yij |Y−ij)) can be understood as 254

the contribution of observation Yij to elpdloo. Observations with low contributions are unlikely and can be 255

considered extreme observations. 256

Formain effects and sensitivities, we estimated the average standard deviation of estimates, which allowed 257

us to have an estimate of the precision of these effects. To be able to compare the precision between traits, 258

forα and θ we estimated the average coefficient of variation by dividing this standard deviation by the general 259

average µY . 260

2.4 Data analysis 261

Model parameters were studied using the best model as determined by the methods described above. 262

2.4.1 Variance decomposition 263

In order to quantify the influence of model terms on observations, the variance of an observation was 264

decomposed. Since αi, θj , ηi and ϵij were assumed to be conditionally independent, the variance of an ob- 265

servation given the hyperparameters, σ2
ε and ν was equal to 266

V ar(Yij) = V ar(αi + θj + ηiθj + εij) = σ2
α + σ2

θ + σ2
ησ

2
θ + V ar(εij). 267

As the best model involved the t distribution, V ar(εij)was equal to νσ2
ϵ /(ν− 2). The proportions of variance 268

explained by the germplasm main effect, the environment main effect and the interaction effect were equal 269

to 270

π(α) =
σ2
α

V ar(Yij)
, π(θ) =

σ2
θ

V ar(Yij)
, π(ηθ) =

σ2
ησ

2
θ

V ar(Yij)
. 271

π(α) is also called broad-sense heritability. The proportion of variance explained by the model (coefficient of 272

determination) was equal to 273

R2 = π(α) + π(θ) + π(ηθ) =
σ2
α + σ2

θ + σ2
ησ

2
θ

V ar(Yij)
. 274

This definition of R2 ensured that R2 ≤ 1 (Gelman et al., 2019). We also estimated the proportion of the 275

variance ofG× E interactions and experimental errors that was explained by the ηiθj term, defined by 276

ρ =
V ar(ηiθj)

V ar(ηiθj + εij)
=

σ2
ησ

2
θ

σ2
ησ

2
θ + V ar(εij)

. 277

2.4.2 Characterization of germplasm 278

Germplasmmain effects and sensitivities were estimated. In addition, we estimated two stability indicators, 279

the static stability S2
i (Becker and Leon, 1988) and the ecovalence Wi (Wricke, 1962) which is an indicator of 280

dynamic stability. Static stability describes the response of a genotype that maintains a constant performance 281

across environments, while dynamic stability describes the response of a genotype showing a constant differ- 282

ence with the average response of all genotypes tested in each environment (Annicchiarico, 2002). Due to 283
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data imbalance, the empirical estimates of these indicators were biased. Thus, we defined stability indicators 284

bymeans of theoretical variances from the Bayesianmodel described above (Cotes et al., 2006; Piepho, 1999). 285

Using the independence assumptions of the model, we obtained for germplasm i, 286

Wi = V ar(ηiθj + εij) = η2i σ
2
θ + V ar(εij), 287

S2
i = V ar(θj + ηiθj + εij) = (1 + ηi)

2σ2
θ + V ar(εij) = (1 + 2ηi)σ

2
θ +Wi. 288

The larger these indicators, the less stable the germplasm. Becker (1981) applied the samedecompositionwith 289

the empirical variances. These stability indicators are approximations of the static stability and ecovalance in 290

a balanced framework. 291

Moreover, we tested whether the "type" of germplasm (cross, landrace, registered variety, mixture of 292

germplasm and historic variety) had an influence on germplasm parameters (αi, ηi, S2
i andWi) by running a 293

one-way ANOVA and Tukey–Kramer HSD test with germplasm type as factor. 294

3 Results 295

3.1 Model comparison 296

3.1.1 Predictive capacity of models 297

According to the elpdloo criterion, the non-hierarchical FWs model was less predictive than the hierarchical 298

FWHs model for all the traits (Fig. 1). Using the latter model shrank the estimates of η and sometimes α (Fig. 299

2). With the non-hierarchical model (FWs), some estimates (αi and ηi) seemed to be unreliable, in particular 300

some germplasm means were extreme and some FW coefficients were larger than 1 or smaller than -1. 301

The hierarchical models with a Student likelihood (FWHs, ADHs) weremore predictive than themodels with 302

a normal distribution (FWHn, ADHn), all the more as ν was low (Tab. 5). For protein content, ν was equal to 303

20, so the t distribution was close to a normal distribution. The t distribution reduced the shrinkage of FW 304

coefficients (Fig. 3). Moreover, tmodels better accounted for extreme data than normal models (Fig. 4). These 305

extreme data mainly came from germplasm that were not replicated in the trials. 306

The Finlay-Wilkinson models (FWHs, FWHn) were slightly more predictive than the simple additive models 307

(ADHs, ADHn), except for protein content, where the difference was not significant (Fig. 1). This difference was 308

smaller than the differences due to the distribution of residuals and the hierarchization of parameters. 309

The elpdloo criterion was estimated using Pareto smoothed importance sampling (Vehtari et al., 2017). This 310

method tends to be less precise for models that do not fit the data well. Thus, as expected, estimates of 311

elpdloo were more reliable for the two hierarchical models with a t likelihood (FWHs and ADHs) than for the 312

other models, in particular model FWs (Supplementary Tab. B.1). 313

3.1.2 Precision of estimates and distribution of residuals 314

For the models with a t distribution, the estimate of the number of degrees of freedom (ν) varied between 315

3.8 and 28.2 (close to a normal distribution) (Tab. 5). Thus, the shape of the distribution of residuals depended 316

on the trait. This result confirmed that the number of extreme observations was not negligible in our data, and 317

that models with a t distribution were more appropriate. In the latter case, the variation ranges of residuals 318

were wider but with more residual values close to 0 for the t distribution than the normal distribution (Fig.3). 319

Models had similar estimate precision, except for model FWs, which had less precise estimates. This result 320

confirmed that a basic joint regression, i.e. non-hierarchical model, was not suited to our unbalanced data. 321

Parameters α and θ were estimatedmore precisely (difference in coefficient of variation between -0.1 and 0.4, 322

Tab. 5) for t models (ADHs and FWHs) than for normal models (ADHn and FWHn). This result was consistent 323

with Fig. 4, where extreme data were better predicted by FWHs than by FWHn, except for protein content. 324
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Figure 1. Predictive capacity of models. elpdloo and its associated standard error for the four studied traits.

3.2 Data analysis 325

In the following, we used the FWHs model which proved to be the best model in terms of prediction and 326

accuracy of the estimated parameters. 327

3.2.1 Variance decomposition 328

The proportion of variance explained by each term of the model depended on the trait (Tab. 6). For all 329

four traits, the environment effect was highly explanatory. For height and TKW, a relatively large part of the 330

total variance was explained by the germplasm effect (resp. 23.8% and 16.1% ), whereas this part was much 331

smaller for spike weight and protein content (10.9% and 5.6%). The proportion of variance explained by the 332

sensitivity effect η was not significantly different from 0 for protein content and low for the three other traits. 333

It explained 6.5%, 4.8% and 6.9% of the variance ofG×E interactions and experimental errors (ρ parameter) 334

for plant height, spike weight and TKW, respectively. 335
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Figure 2. The first column presents the distribution of the trait to be explained (in grey). The last four columns
compare the hierarchical (red) and non hierarchical (blue) versions of the FWmodel with a Student law for the
residuals, and show the smoothed histograms of main effects and FW coefficients.

3.2.2 Characterization of germplasm 336

The correlation between germplasm sensitivity (ηi) and static stability (S2
i ) was very close to 1 for all traits 337

while germplasm sensitivity was poorly correlated to Wi (Tab. 7). The main effect αi had a low correlation 338

with ηi and S2
i , except for plant height and spike weight. Correlations between Wi and αi were low and in 339

most cases not significant. 340

Plant height was found to depend on the type of germplasm, landraces being taller than historic varieties, 341

which were themselves taller than registered varieties. Registered varieties were significantly more stable 342

(static stability and FW coefficient) than everything other than mixtures, but less stable dynamically (ecov- 343

alance). No germplasm parameters were significantly dependent on germplasm type for protein content and 344

spike weight. TKW germplasm main effects did not depend on the type of germplasm, but for this trait lan- 345

draces and mixtures appeared statically more stable than historic varieties. 346
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Figure 3. Comparison of hierarchical FWmodels with different residual laws, the Student (red) and the normal
(blue). These graphics show the smoothed histograms of main effects and FW coefficients.

4 Discussion 347

To fit the characteristics of PPB trials, i.e., few inter-farm replicates and possible extreme data, we de- 348

veloped several models and we found that the hierarchical Finlay-Wilkinson model with t residuals was the 349

best for prediction and parameter precision. Then we compared the performance and stability of different 350

germplasm types. 351

4.1 Handling the data from a highly unbalanced series of trials 352

As the farmers of the program chose the germplasm they assessed, the data obtained from the series of 353

trials were very unbalanced, withmore than 90%of theG×E combinationsmissing. Thismade the estimation 354

of germplasm main effects and sensitivities difficult. Although the Finlay-Wilkinson model was parsimonious, 355

a basic joint regression with weakly-informative prior distributions (model FWs) was not able to cope with 356

this level of disequilibrium. According to the elpdloo criterion, model FWs was not the best model (Fig. 1). In 357
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Figure 4. Comparison of t and normal models (FWHs vs FWHn) in terms of the contributions of observations
to the elpdloo criterion. Black (resp. red) dots correspond to observations that were measured on germplasm
that were replicated (resp. not replicated) within trials.

addition, its estimates had poor precision and it led to extreme sensitivity estimates, with values close to 1 or 358

-1 (Fig.2). 359

In contrast, hierarchical joint regression appeared more suited to our data structure. Model FWHs had the 360

largest elpdloo values for three traits out of four. Placing a hierarchical distribution on sensitivities constrained 361

estimates and brought them closer to 0. This led to more satisfactory sensitivity estimates, since they were 362

well below 1 in absolute value. 363

Three strategies have previously been used to manage incomplete G× E data: i) subset the total dataset 364

to obtain an almost balanced subset for the analysis (Ceccarelli and Grando, 2007), ii) predict missing data 365

with a more or less complex model and use these predictions in the analysis (Kumar et al., 2012; Woyann 366

et al., 2017), and iii) use a model more robust to unbalanced data, provided it complies with model validation 367

conditions (Assis et al., 2018; van Frank et al., 2019). We used the last strategy to maximise the amount of 368

information from the data (less data excluded than in the first strategy) with a one-step process (unlike the 369

second strategy). 370
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Trait Model ν cv(α) cv(θ) sd(η)
ADHn 3.0 2.8
ADHs 3.8 (0.5) 2.8 2.6

Plant height FWHn 3.1 2.9 0.08
FWHs 3.5 (0.4) 2.8 2.7 0.09
FWs 3.3 (0.4) 4.7 4.5 0.20
ADHn 5.3 5.2
ADHs 8.1 (2.2) 5.2 5.0

Spike weight FWHn 5.3 5.2 0.12
FWHs 8 (2.2) 5.3 5.1 0.11
FWs 10.2 (4.1) 6.8 5.7 0.29
ADHn 2.7 2.7
ADHs 19.9 (9.6) 2.6 2.7

Protein FWHn 2.6 2.7 0.05
FWHs 19.6 (9.6) 2.7 2.7 0.05
FWs 28.2 (13.4) 4.8 4.1 0.25
ADHn 2.8 2.8
ADHs 4.2 (0.5) 2.6 2.5

TKW FWHn 2.8 2.8 0.15
FWHs 4 (0.5) 2.7 2.5 0.17
FWs 3.8 (0.4) 3.5 3.2 0.33

Table 5. Number of degrees of freedom and precision of estimates.
ν: posterior means, with posterior standard deviations in parentheses, of the number of degrees of freedom
of the t distribution; cv(α), cv(θ): average posterior coefficients of variation of germplasm and environment
main effects; sd(η): average posterior standard deviation of germplasm sensitivities (FW coefficients).

Plant height Spike weight Protein TKW
Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

R2 87.1 82.9∼90.2 78.2 73.8∼82.1 83 79.1∼86.7 69.7 64.1∼74.8
π(α) 23.8 17.9∼30.7 10.9 7.7∼14.7 5.6 3.7∼8.2 16.1 12∼20.8
π(θ) 62.4 54.5∼69.8 66.2 60.1∼71.9 77.2 72∼82 51.4 44.6∼58.1
π(ηθ) 0.9 0.4∼1.6 1.1 0.4∼2.1 0.2 0∼0.8 2.2 1∼3.8
ρ 6.5 2.8∼12 4.8 1.7∼9.3 1.2 0∼4.7 6.9 3.1∼12

Table 6. Variance decomposition.
Estimates were made using model FWHs and are given in %. Mean: mean of the posterior distribution; 95%
CI: 95% credible intervals. R2 is the coefficient of determination. π(α), π(θ) and π(ηθ) are respectively the
proportion of variance explained by α, θ and ηθ. ρ is the proportion of the variance of G × E and errors
explained by ηθ.

van Frank et al. (2019) investigated the influence ofMET design on the evaluation of germplasmusingmodel 371

FWHn and simulations. They found that when data were highly unbalanced, this evaluation was more reliable 372

with at least 100 environments and when some germplasm were replicated over at least 5 environments per 373

germplasm. Therefore, we restricted the analysis to a subset of data that met these conditions. Having 100 374

environments seems difficult to achieve, but it should be noted that this number combines the number of 375

trials per year and the number of years, which may be achieved by a network of many farmers experimenting 376

over several years. 377

Cotes et al. (2006) used a Bayesian approach to estimate FW coefficients in a MET study in order to take 378

prior information on germplasm coming from other studies into account. A similar approach was used by 379

Couto et al. (2015), Foucteau and Denis (2001), and Nascimento et al. (2020) and was found to greatly improve 380

the results. Here, we used little prior information. But in the future, previous evaluation studies may provide 381
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!

Trait Pearson correlation between
αi|ηi αi|S2

i αi|Wi ηi|S2
i ηi|Wi S2

i |Wi

Plant height 0.43*** 0.4*** -0.41 0.997*** -0.34 -0.26
Spike weight 0.34*** 0.35*** 0.24* 0.999*** 0.17 0.21
Protein 0.13 0.14* -0.01 0.999*** -0.01 0
TKW 0.23* 0.23* 0.12 0.996*** 0.27 0.36

Table 7. Correlation between germplasm parameters.
*, **, *** : significant at P = 0.05, P = 0.01, P = 0.001 respectively.
αi: germplasm effect, ηi: germplasm sensitivity (FW coefficient), S2

i : static stability,Wi: ecovalence.
Trait Registered Historic Landrace Cross Mixture P-value

αi 862c 1136b 1221a 1175ab 1189ab <0.001
Plant height ηi n=6 -0.11b n=16 -0.01a n=21 0a n=74 0.01a n=7 -0.01ab 0.001

S2
i 37566b 44170a 44616a 45556a 43911ab 0.005

Wi 8835a 7680b 7678b 7716b 7707b <0.001
αi 2.03 1.99 1.94 1.96 2.02 0.439

Spike weight ηi n=8 0.02 n=20 0.02 n=40 -0.01 n=89 0 n=15 -0.01 0.297
S2
i 0.34 0.34 0.32 0.33 0.32 0.303

Wi 0.08 0.08 0.08 0.08 0.08 0.712
αi 11.1 11.4 11.4 11.4 11.5 0.125

Protein ηi n=9 0.001 n=27 0.001 n=34 -0.001 n=62 0 n=12 0.001 0.935
S2
i 3.41 3.41 3.39 3.4 3.41 0.951

Wi 0.61 0.61 0.61 0.61 0.61 0.641
αi 43.6 43.9 43.1 43.4 43.9 0.681

TKW ηi n=8 -0.03ab n=20 0.08a n=42 -0.03b n=92 0.01ab n=15 -0.05b 0.003
S2
i 32.9ab 37.4a 32.7b 34.3ab 31.7b 0.002

Wi 12.7 13 12.8 12.7 12.6 0.081
Table 8. Performance and stability of types of germplasm.
P-values in bold indicate significant differences (P<0.05) between germplasm types for a given trait and differ-
ent letters indicate significant differences (P<0.05) based on Tukey–Kramer HSD tests.
n: number of germplasm, αi: mean germplasm effect, ηi:mean sensitivity (FW coefficient), S2

i : mean static
stability andWi: mean ecovalence.

stronger prior information on germplasm behaviour. 382

4.2 Extreme observations 383

Extreme observations were more frequent in our dataset than expected under the normal distribution for 384

three traits out of four (Fig. 4). For these traits, using a t distribution increased elpdloo values, and the estimate 385

of the number of degrees of freedom of this distribution was smaller than 10 (Tab. 5). These extreme obser- 386

vations could occur in our dataset for several reasons: because most of the populations were not replicated 387

within the trials, because cultivation environments were less controlled, or because a non-negligible part of 388

the GxE interaction was not captured by themultiplicative term of the FWmodel. The normal distribution was 389

appropriate for the trait protein content. It is difficult to explain why this trait had fewer extreme observations. 390

A possible explanation could be that the measurement of protein content is more standardized than other 391

trait measurements. For plant height, extreme values occurred only for non-replicated micro-plots with a 392

global measurement and never with data from the average of 25 plants (Sect. 2.2.2), suggesting that this mea- 393

surement is less accurate. For TKW, the kernel count could be affected by broken kernels due to over-drying 394

or incorrect threshing settings leading to an overestimation of the number of kernels in the sample. Another 395

possible explanation is that protein content is less variable under different conditions than plant height and 396
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spike weight (Kazakou et al., 2014). 397

Using a t distribution did not affect the estimates of germplasm and environment main effects. On the 398

contrary, it improved the estimates of sensitivities. It reduced their shrinkage and allowed the multiplicative 399

term of the FW model to better captureG× E interactions (Fig.3). 400

The Student distribution is expected to take better account of extreme data and to yield more robust esti- 401

mates (Besag and Higdon, 1999; Lange et al., 1989; Rosa et al., 2003). Extreme data are more likely to occur 402

when varieties are not replicated within trials, which is frequent in this dataset (Fig. 4). Rosa et al. (2003) found 403

that a normal likelihood underestimated a sex effect compared to a t likelihood. This effect was estimated 404

less precisely with a normal distribution, which is consistent with our results for plant height, spike weight and 405

TKW. A Student likelihood appears to be a good solution for dealing with extreme data, in particular in sta- 406

bility analyses, where extreme observations are sometimes removed (this is justified when they are extreme 407

because of experimental errors, but not when they are due to natural variability). While this distribution has 408

recently been used to implement robust alternatives to BLUP (Gianola et al., 2018) or to handle environmental 409

heterogeneity in a single trial (Cao et al., 2022), to our knowledge, it has not already been used in MET studies. 410

4.3 Computing time 411

Series of trials often include many genotypes and environments, leading to large data sets. Thus, their 412

analysis using mixed or hierarchical models is generally computationally demanding (Smith et al., 2005). The 413

computational load can be reduced by using approximate estimation methods (Nabugoomu et al., 1999) or 414

efficient algorithms, such as algorithms based on sparse matrix operations (Gilmour et al., 1995; Thompson 415

et al., 2003). Hierarchical joint regression has already been implemented using Gibbs sampling or Jags (Lian 416

and de los Campos, 2016; van Frank et al., 2020). Our implementation based on Hamiltonian Monte Carlo 417

and Stan was more efficient since it required fewer iterations (Gelman, 2005). It allowed us to analyze large 418

datasets in about 10 minutes. 419

To reduce computing time, the analyses were carried out in two steps. First, germplasm means were esti- 420

mated using within-trial analyses. Then, these estimates were gathered and analyzed using a between-trial 421

analysis. Thus, this two-stage approach analyzesG×E means without taking account of their standard error. 422

Rivière et al. (2015a) developed a flexible method for estimating the experimental variance of trials with low 423

intra-farm replication (farm design presented in Tab. 2). An easy way to integrate the variability estimated in 424

the first stage would be for instance to use the same method as Couto et al. (2015). 425

4.4 Main effects 426

For the four traits studied, we found that the environmental part of the variance was large (from 51% for 427

TKW to 77% for protein content, Tab. 6), which is consistent with the diversity of the cropping environments en- 428

countered (soil, climate, cropping practices...). Nevertheless, heritability was still significant with plant height 429

> TKW> spike weight> protein. Rivière et al. (2015b) found (with data included in our study) a similar ranking 430

in heritability: plant height > TKW = protein > spike weight. Plant height is known to be quite heritable due 431

to a relatively simple genetic architecture with a few major genes, such as the well known Green Revolution 432

Rht1 and Rht2 genes (Peng et al., 1999). In our study, the presence of both quite recent registered varieties 433

and varieties dating from before the second World War, very likely led to varieties containing different alleles 434

for these loci and increased variability for height. The decrease in plant height from landraces to historic vari- 435

eties and registered varieties appears very clearly (Tab. 8) as also found in several studies (Bektas et al., 2016; 436

Cantarel et al., 2021). 437

4.5 Germplasm stabilities 438

FW coefficients explained a low proportion of the total variance (between 0.2% and 2.2%) and a low propor- 439

tion of the variance ofG× E interactions and errors (between 1.2% and 6.9%, Tab. 6). We can presume that 440
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the explanation of the interaction by the FW parameter is weaker the greater the number of environments 441

for example, 29% for 12 studies with less than 10 environments, and 12% for studies with more than 10 en- 442

vironments (Brancourt-Hulmel et al., 1997). Other classical models, such as AMMI (additive main effect and 443

multiplicative interaction) or GGE (G+G× E) models, might explain a larger part of GxE interactions. 444

Missing data estimation methods allow these models to be used when the data is highly unbalanced, with 445

up to from 40% unbalanced data for a MET with less than 20 environments to 60% unbalanced data for MET 446

with at least 40 environments (Woyann et al., 2017; Yan, 2013). However, these datasets are more balanced 447

than ours, and, as found by Rodrigues et al. (2011), FW is more robust than AMMI when the data are highly 448

unbalanced (75%). In our study, most germplasm occurred in a limited number of environments, so that a 449

parsimonious and very simplemodelling ofG×E interactions had to be used. An alternative approach would 450

be to better characterize the environments and thus explain the environmental effects and part of theG×E 451

interaction using environmental variables (Piepho, 2022). 452

Although sensitivities explained a rather low proportion of variance, HFWs model had larger elpdloo values 453

than additive models for three traits out of four. In addition, for these traits, some sensitivity estimates were 454

not negligible, with values close to 0.2 or 0.3. Interaction effects then represented 20% or 30% of environmen- 455

tal effects. Additive models were appropriate for the protein content trait. It was found that the multiplicative 456

term of the FWmodel was not significant for protein content, both in a balanced network of 15 environments 457

in Serbia (Hristov et al., 2010) and in 12 environments in Swiss organic trials (Knapp et al., 2017). On the con- 458

trary, Mut et al. (2010) found significant FW coefficients for a balanced network of 7 environments in Turkey. 459

These contrasting results could be explained by differences between numbers of environments or between 460

genetic diversities. 461

For plant height, we found that registered varieties were more statically stable but less dynamically stable 462

(Tab.8). This can be explained by the fact that there are only a few registered varieties in the trials, therefore 463

they have little influence on the average height, which can fluctuate greatly between trials, and therefore the 464

deviation from this average will be greater for this type. 465

Static and dynamic stabilities were difficult to estimate since our series of trials was very unbalanced. In par- 466

ticular, raw estimates of these stabilities were not reliable, since theyweremuch influenced by the unbalanced 467

nature of the data. By using theoretical variances, the FW model allowed us to calculate simple indicators of 468

static and dynamic stability in the wheat PPB dataset. To our knowledge, the FW model has never been used 469

for this purpose before. 470

Dependence between stability and mean is widespread (Reckling et al., 2021), but in our case, the correla- 471

tion was low, which simplified interpretation of the stability analysis. Several studies for different traits and 472

with balanced MET found a very strong correlation between FW coefficient and the static stability (Becker, 473

1981; Fasahat et al., 2015; Reckling et al., 2021). However, in our case, this relationship was even stronger 474

(Tab. 7), probably because of the assumption that the variance of residuals did not depend on the genotype. 475

As in many other studies, the residual variance was assumed to be independent of germplasm throughout 476

our study. Allowing the residual variance to depend on the genotype could improve the estimates of stability 477

indicators (Cotes et al., 2006; Couto et al., 2015). In particular, the dynamic indicator would be similar to the 478

Shukla Stability Variance, i.e, the varietal variance ofG×E interactions (Cotes et al., 2006). However, estimat- 479

ing a residual variance and a FW coefficient for each germplasm could be difficult in our study, as most of the 480

germplasm appeared in only a few environments. 481

When relationships were significant, mixtures were always in a more stable (statically and dynamically) 482

statistical group (Tab. 7). This result supports the fact that within-plot diversity stabilizes performances (Döring 483

et al., 2015; Kiær et al., 2012). 484

In the wheat PPB program, the populations tested were heterogeneous and their genotypic composition 485

could vary over years and farms (David et al., 2020). In this analysis, such variations were considered as 486

part of the response of a population to a given environment for the sake of simplicity. Therefore the G × 487

E interactions could be overestimated (resp. underestimated) if populations underwent diversifying (resp. 488
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stabilizing) selection pressures within farms. 489

4.6 Role of statistical methods in the wheat PPB project 490

This work was developed following the co-construction of an experimental set-up suitable for decentralized 491

on-farm evaluation and selection, and research into the best methods for analyzing the resulting data. It was 492

part of the methodology we set up in a wheat PPB program, which was based on a collaboration between 493

farmers, associations of farmers and researchers (Dawson et al., 2011). The farmers could freely choose 494

the populations they wanted to test, so that a wide genetic diversity could be evaluated in a wide range of 495

environments. There were on average more than 130 environments resulting from the combination of years 496

and farms. The number of genotypes evaluated was large compared to other studies, but it was smaller than 497

in CIMMYT’s MET, which involved between 500 and 800 genotypes tested in 12 MET between 1945 and 1986 498

(Braun et al., 1997). 499

One aim of the project was to provide farmers with information to help them select new germplasm for 500

testing on their farm. The statistical tools we developed sought to cope with the large degree to which this 501

series of trials was unbalanced. Their objectives were the same as in other MET analyses : (i) estimate and 502

predict germplasm’ values for traits of interest for breeding, (ii) study the stability of germplasm over several 503

environments, (iii) select new germplasm to be tested in new locations (Cotes et al., 2006). MET are usually 504

carried out to find stable germplasm that perform well on average over many locations, or to detect special 505

local adaptations to certain environments (Annicchiarico et al., 2005; Gauch et al., 2008). Here, while farmers 506

were mostly interested in selecting the best germplasm adapted to their local pedo-climatic conditions, farm- 507

ing practices and marketing objectives, information retrieved from the farmers’ network on new varieties to 508

introduce in their trials could also be useful. 509

5 Conclusion 510

The proposed hierarchical model was aimed at improving the estimates of the parameters of the FWmodel 511

from unbalanced datasets. This model was complex and was easier to implement in a Bayesian framework. 512

Placing hierarchical distributions on model parameters and modelling residuals using a t distribution im- 513

proved the estimates of main and interaction effects. This model allowed us to estimate static and dynamic 514

stability indicators despite the high level of unbalanced data. Main effects and stability indicators provide in- 515

formation on the behaviour of genotypes in different environments, which farmers could use in their selection 516

process. 517

Participatory research raises new research questions and contributes to the development of new meth- 518

ods for societal action (Kastenhofer et al., 2011). In PPB programs, all the methodology is based on collective 519

and collaborative work and action between farmers, associations of farmers and researchers (Brac de la Per- 520

rière et al., 2011). New statistical methods can contribute to a better use of such complex multi-environment 521

data in the selection process, and more generally to the effectiveness of participatory research (Martin and 522

Sherington, 1997). 523
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Supplementary information 538

A Models 539

Tab. A.1 provides supplementary information on the prior distribution of model parameters. 540

λµ λε µemp σemp

Plant height 1200 500 1188 234
Spike weight 2.00 0.80 2.03 0.58

Protein 12.0 4.0 11.5 1.9
TKW 45.0 10.0 43.7 5.8

Table A.1. Known values of the parameters of the prior distribution, empirical mean and standard deviation
of traits.

B Model comparison 541

Tab. B.1 provides supplementary information on the estimation of the elpdloo criterion. Fig. B.1 provides 542

supplementary information on the comparison of models FWHs and ADHs. Fig. B.2 provides supplementary 543

information on the comparison of models ADHs and ADHn. 544
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