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Abstract

We prove that the average sensitivity of nested canalizing multi-
valued functions is bounded above by a constant. In doing so, we
introduce a generalization of nested canalizing multivalued functions,
which we call weakly nested canalizing, for which this upper bound
holds.

1 Introduction

Boolean canalizing functions are Boolean functions f : (Z/2Z)n → R such
that at least one input variable, say xi (1 6 i 6 n), has a value a = 0 or 1
which determines the value of f(x). Nested canalizing (NC) functions are a
“recursive” version of canalizing functions: an NC function f is canalizing
as above and moreover its restriction f↾xi 6=a is itself NC.

These classes of Boolean functions have been introduced by Kauffman
[3, 4] to formalize the “canalizing” behaviour observed in some discrete sys-
tems. This idea is also at the basis of Waddington’s work in embryology:
he described an epigenetic landscape guiding embryogenesis by canalizing
configurations [19].

NC functions are particularly interesting because they have “low com-
plexity”. The average sensitivity AS(f) (also called influence or total in-
fluence) of a Boolean function f is a measure of its complexity. It can be
defined in several ways, in particular via Fourier-Walsh analysis. It is re-
lated to spectral concentration, learning properties, decision tree complexity
[10]. For arbitrary Boolean functions, AS(f) = O(n), but some functions
have significantly smaller average sensitivity. For NC functions, AS(f) is
bounded above by a constant [7, 6].
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NC functions are notably used as appropriate rules in Boolean mod-
els of gene regulatory networks [17]. The dynamical systems in biological
networks are far from random, and it has been shown that NC functions
ensure expected stability properties [3, 5] and are indeed predominant in
large databases of Boolean gene networks [15].

In most cases Boolean variables are sufficient, but for some situations this
description is too crude, and it may be necessary to consider other levels. To
model such a situation correctly, multivalued variables have been introduced
[18]. Then it is necessary to consider multivalued functions f : (Z/kZ)n →
Z/kZ for some k > 2. The notion of average sensitivity generalizes to
the multivalued setting [10], and multivalued NC functions are defined in
[8, 9]. Very little is known about their spectral properties. In [1], a variant
of average sensitivity, the normalized average c-sensitivity, is defined for
multivalued functions, and used to measure the stability of networks made
of NC functions.

A natural question is whether the average sensitivity of NC multivalued
functions is bounded above by a constant, too. We prove in Theorem 3 that
this is the case. We actually show that the upper bound holds for a more
general class of functions, which we call weakly nested canalizing, and at
the same time this enables us to establish the upper bound in a simpler way
than in [7] for Boolean NC functions.

2 Nested canalizing multivalued functions

Let k, n be positive integers, k > 2. Z/kZ is the ring of integers modulo k.
Following [8, 9, 1], we shall say that f : (Z/kZ)n → Z/kZ is canalizing

with respect to coordinate i and (a, b) ∈ Z/kZ×Z/kZ if there exists a function
g : (Z/kZ)n → Z/kZ different from the constant b such that

f(x) =

{
b if xi = a

g(x) if xi 6= a.

We shall simply say that f is canalizing if it is canalizing with respect to
some i, a, b.

A segment is a subset of Z/kZ of the form {0, . . . , i} or {i, . . . , k − 1}.
Let σ ∈ Sn be a permutation, A1, . . . , An be segments, and c1, . . . , cn+1 ∈

Z/kZ be such that cn 6= cn+1. Then f is said to be nested canalizing (NC)
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with respect to σ, A1, . . . , An, c1, . . . , cn+1 if

f(x) =





c1 if xσ(1) ∈ A1

c2 if xσ(1) /∈ A1, xσ(2) ∈ A2

...
...

cn if xσ(1) /∈ A1, . . . , xσ(n−1) /∈ An−1, xσ(n) ∈ An

cn+1 if xσ(1) /∈ A1, . . . , xσ(n−1) /∈ An−1, xσ(n) /∈ An.

We shall simply say that f is NC if it is NC with respect to some σ,
A1, . . . , An, c1, . . . , cn+1.

2.1 Weakly nested canalizing multivalued functions

In Theorem 3, we shall give an upper bound on average sensitivity which
holds not only for NC functions, but for the more general class of weakly
nested canalizing functions, which we define now.

Let n be a positive integer. For each i ∈ {1, . . . , n}, Ωi is a finite set of
cardinality ki > 0, Ω =

∏
iΩi, and f : Ω → R. Note that we do not require

ki > 2 for all i. If kj = 1 for some j, f could be viewed as a function with
one less variable, i.e. as a function on

∏
i 6=j Ωi, but we still consider it as a

function defined on
∏

iΩi.
We shall say that f is weakly canalizing with respect to coordinate i and

(a, b) ∈ Ωi × R if f(x) = b whenever xi = a, and simply that it is weakly
canalizing if it is weakly canalizing with respect to some i, a, b.

Note that this definition differs slightly from the usual definition by the
absence of condition on the values of f for xi 6= a: we do not require the
existence of some x such that xi 6= a and f(x) 6= b. In particular, constant
functions are weakly canalizing, though not canalizing.

If f is canalizing with respect to i, a, b and ki > 2, we shall consider

f↾xi 6=a : Ω ∩ {x | xi 6= a} → R,

the restriction of f to the set of x ∈ Ω such that xi 6= a.
The class of weakly nested canalizing on Ω =

∏
iΩi is then defined by

induction on the cardinality |Ω| =
∏

i ki of Ω:

• If |Ω| = 1, i.e. ki = 1 for all i, any f : Ω → R is weakly nested
canalizing (WNC) on Ω.

• If |Ω| > 1, f : Ω → R is WNC on Ω if it is weakly canalizing with
respect to some i, a, b such that ki > 2 and f↾xi 6=a is WNC on Ω∩{x |
xi 6= a}, a strict subset of Ω.
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Intuitively, a function f : Ω → R is WNC if its domain Ω can be “peeled”
by successively removing coordinate hyperplanes (defined by equations of the
form xi = a) whose points are mapped by f to the same value, whence the
following characterization:

Proposition 1. Letting K =
∑

i ki, f is WNC if and only if there exist a
function v : {1, . . . ,K} → {1, . . . , n} and numbers ai ∈ Ωv(i) and bi ∈ R for
each i ∈ {1, . . . ,K} such that:

f(x) =





b1 if xv(1) = a1

b2 if xv(1) 6= a1, xv(2) = a2
...

...

bK if xv(1) 6= a1, . . . , xv(K−1) 6= aK−1, xv(K) = aK .

In decomposing an NC function f : (Z/kZ)n → Z/kZ, each coordinate
i ∈ {1, . . . , n} is considered exactly once (in some order prescribed by a
permutation σ) and the value of f is fixed for xσ(i) in some segment Ai.
This can be realized by successively fixing the value of f for each α ∈ Ai,
and therefore, the class of WNC functions contains the class of NC functions,
as stated in the following Proposition:

Proposition 2. If f : (Z/kZ)n → Z/kZ is NC, then it is WNC.

Proof. Assume f is NC with respect to σ, A1, . . . , An, c1, . . . , cn+1. For each
i ∈ {1, . . . , n}, let

Ai = {α1
i , . . . , α

|Ai|
i }

(Z/kZ) \ Ai = {α
1+|Ai|
i , . . . , αk

i }

with α1
i < · · · < α

|Ai|
i and α

1+|Ai|
i < · · · < αk

i . This defines K = nk numbers

αj
i ∈ Z/kZ. For each i ∈ {1, . . . , n} and j ∈ {1, . . . , k}, let

βj
i =

{
ci if j 6 |Ai|

cn+1 otherwise.

To comply with the characterization of WNC functions (Proposition 1), we
relabel the numbers αj

i , β
j
i by identifying the list

α1
1, . . . , α

|A1|
1 , . . . , α1

n, . . . , α
|Ai|
n , α

1+|A1|
1 , . . . , αk

1 , . . . , α
1+|An|
n , . . . , αk

n
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as the list a1, . . . , aK , and by identifying similarly the list

β1
1 , . . . , β

|A1|
1 , . . . , β1

n, . . . , β
|An|
n , β

1+|A1|
1 , . . . , βk

1 , . . . , β
1+|An|
n , . . . , βk

n

as the list b1, . . . , bK . Call ϕ this relabeling, mapping r ∈ {1, . . . ,K} to the
pair ϕ(r) = (i, j) such that ar = αj

i and br = βj
i . For instance, ϕ(1) = (1, 1)

and ϕ(K) = (n, k). Then finally, a function v : {1, . . . ,K} → {1, . . . , n}
is defined by v(r) = σ(i) if ϕ(r) = (i, j). Then f clearly enjoys the char-
acterization of WNC functions, with the choice of function v and numbers
ar, br.

2.2 Examples

• As we have already observed, constant functions from (Z/kZ)n to
Z/kZ are WNC but not NC.

• In decomposing a WNC function f : (Z/kZ)n → Z/kZ, it is possible
to “peel” a coordinate hyperplane defined on some coordinate i (i.e.
by some equation xi = a), then a coordinate hyperplane defined on j,
and later a coordinate hyperplane defined on i again. This is because
of the recursive definition of WNC functions, and gives more freedom
in the construction of WNC functions than in the construction of NC
functions.

For instance, the functions min and max : (Z/kZ)2 → Z/kZ are
not NC, as observed in [1]. However, an easy induction on k shows
that they are WNC. For instance, min = mink : {0, . . . , k − 1}2 →
{0, . . . , k− 1} is weakly canalizing with respect to 1, 0, 0, mink↾x1 6=0 is
weakly canalizing with respect to 2, 0, 0, and mink↾x1 6=0,x2 6=0 is identi-
cal to the function mink−1 : {1, . . . , k − 1}2 → {1, . . . , k − 1}, which is
WNC.

• Also, in constructing a WNC function f : (Z/kZ)n → Z/kZ, the values
a used to define f(x) for xi = a need not be extremal values (initially
0 or k − 1), they can be intermediate values: 0 < a < k − 1.

For instance, the function from Z/3Z to Z/3Z defined by 0 7→ 0, 1 7→
1, 2 7→ 0 is not NC because it is canalizing with respect to either the
intermediate value 1 (for its unique variable), or the values 0 and 2
(which do not form a segment). But any function from Z/kZ to Z/kZ
is WNC.
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2.3 NC functions and genetic networks

We have already mentioned that canalizing functions are significantly pre-
dominant in gene network modellings [15], and that networks with nested
canalyzing rules are stable [5]. In this context, one is interested in the
discrete-time asynchronous evolution of the expression levels of n genes,
where “asynchronous” means that at each time step, the level of at most
one gene can change. Moreover the expression level of each gene belongs to
a finite set, typically {0, 1} or {0, 1, 2}.

The following example is inspired from the logical modelling of the phage
lambda, a biological model widely studied to understand the decision be-
tween lysis and lysogenization [11, 16, 12]. It involves two genes, CI and Cro.
CI is either expressed or not, and its expression level is therefore modelled
by a Boolean variable, Cro can take 3 values {0, 1, 2}. This simple model
is sufficient to display both multistability (representing lysis and lysogeny
fates) and oscillations (lysogeny state) [13, 14].

In state x = (xCI , xCro) ∈ Z/2Z × Z/3Z, the next value of CI is given
by the following function fCI : Z/2Z × Z/3Z → Z/2Z:

fCI(x) =

{
0 if xCro > 1

1 otherwise.

For instance, in state (1, 2), the next value of CI can be 0 because fCI(1, 2) =
0, and in state (0, 2), the value of CI cannot change because fCI(0, 2) = 0.
Similarly, the next value of Cro is given by a function fCro : Z/2Z×Z/3Z →
Z/3Z. However, the following two choices for fCro:

f1
Cro(x) =





0 if xCI = 1

1 if xCI = 0 and xCro = 2

2 otherwise

f2
Cro(x) =





1 if xCro = 2

0 if xCro 6= 2 and xCI = 1

2 otherwise

give rise to the same asynchronous trajectories, represented by the following
graph, where vertices are states of the system (xCI , xCro) and arrows link
two consecutive states:
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(0, 2) (1, 2)

(0, 1) (1, 1)

(0, 0) (1, 0)

These two functions do not have the same canalizing property: f1
Cro is NC,

f2
Cro is only WNC. Thus, in this example two functions that represent the
same asynchronous dynamics do not have the same canalizing properties.
The observations of [5] can thus be an assistance for modelling the biological
system, a task known to be difficult, as the number of network-compatible
functions is enormous.

3 Average sensitivity of WNC multivalued func-

tions

Following [10, Chapter 8], we shall take the following definition of average
sensitivity.

First, Fourier decomposition is generalized to non Boolean domains. Let
Ω =

∏n
i=1 Ωi be as above, with |Ωi| = ki. On the vector space of real-valued

functions defined on Ω, an inner product is given by 〈f, g〉 = Ex[f(x)g(x)],
where E denotes the expectation. Here, x ∈ Ω and we assume independent
uniform probability distributions on the Ωi. A Fourier basis is an orthonor-
mal basis (ϕα)α∈

∏
i{0,...,ki}

such that ϕ(0,...,0) = 1. It is not difficult to see
that a Fourier basis always exists, although it is not unique.

Then, fix a Fourier basis (ϕα). The Fourier coefficients of f : Ω → R

are f̂(α) = 〈f, ϕα〉, and Eif =
∑

αi=0 f̂(α)ϕα turns out to be independent
of the basis. for all i ∈ {1, . . . , n}, let the ith coordinate Laplacian operator
Li be the linear operator defined by Lif = f − Eif .

Finally, the influence of coordinate i on f is defined by Inf i[f ] = 〈f, Lif〉,
and the average sensitivity (also called influence or total influence) of f is
then AS[f ] =

∑
i Inf i[f ].

By Plancherel’s theorem (see [10]), we have

Inf i[f ] =
∑

αi 6=0

f̂(α)2 = Ex[Varyi [f(x1, . . . , xi−1, yi, xi+1, . . . , xn)]],

where Var denotes the variance (Var[g] = E[g2]−E[g]2) and yi ∈ Ωi. The
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above equality makes clear that the definition of influence of multivalued
functions generalizes the Boolean case, as expected.

Now, for an arbitrary f : Ω → [0,M ], we have Vari[f ](x) 6 (M/2)2 for
all i, therefore Inf i[f ] 6 M2/4 for all i and AS[f ] 6 n ·M2/4 = O(n).

For WNC functions, this upper bound can be greatly improved. In the
Boolean case, [7] proves (by a different method from ours) that AS[f ] 6 2
for NC {−1,+1}-valued functions. This bound is improved in [6], where it
is proved that AS[f ] 6 4/3. For NC functions f : {0, 1}n → {0, 1}, the
result in [7] means AS[f ] 6 1/2.

Theorem 3 generalizes this result, by establishing that, in the more gen-
eral multivalued case, the average sensitivity of WNC functions is bounded
above by a constant.

Theorem 3. Let Ω =
∏n

i=1 Ωi where each Ωi has cardinality ki > 0. Let
f : Ω → [0,M ] and κ = maxi(ki − 1)/ki < 1. If f is WNC (in particular if
it is NC), then

AS[f ] 6
M2

4(1 − κ)
.

Proof. We prove this by induction on
∑

i ki. If ki = 1 for all i, the inequality
holds trivially: actually AS[f ] = 0. Now assume f is canalizing with respect
to j, a, b, with kj > 2, and let f ′ = f↾xj 6=a. Let Ω′ be the set of x ∈ Ω

such that xj 6= a, so that f ′ : Ω′ → R
+. The induction hypothesis is

AS[f ′] 6 M ′2/(4(1 − κ′)), with

M ′ = max
x∈Ω′

f ′(x) = max
x∈Ω′

f(x) 6 M

κ′ = max

{
kj − 2

kj − 1
,max

i 6=j

ki − 1

ki

}
6 κ.

Note that the induction hypothesis implies AS[f ′] 6 M2/(4(1 − κ)). We
shall use the notation Vari[f ](x) = Varyi [f(x1, . . . , xi−1, yi, xi+1, . . . , xn)].
Then AS[f ] = Ex[

∑
iVari[f ](x)] and

AS[f ] ·
∏

i

ki =
∑

x

∑

i

Vari[f ](x)

=
∑

xj=a

Varj[f ](x) +
∑

xj 6=a

(
Varj[f ](x) +

∑

i 6=j

Vari[f ](x)

)

since f(x) is constant when xj = a, so that Vari[f ](x) = 0 for i 6= j. Fur-
thermore, Varj [f ](x) is independent of xj , and on the other hand,Vari[f ](x)
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= Vari[f
′](x) if xj 6= a and i 6= j. Thus

AS[f ] ·
∏

i

ki = kj ·
∑

xj=a

Varj[f ](x) +
∑

x∈Ω′

∑

i 6=j

Vari[f
′](x).

Since 0 6 f(x) 6 M for all x, we have Varj [f ](x) 6 M2/4. Therefore

AS[f ] ·
∏

i

ki 6 kj ·
∏

i 6=j

ki ·M
2/4 +

∑

x∈Ω′

n∑

i=1

Vari[f
′](x)

=
∏

i

ki ·M
2/4 +AS[f ′] · (kj − 1) ·

∏

i 6=j

ki

and

AS[f ] 6
M2

4
+AS[f ′] ·

kj − 1

kj
6

M2

4
+ κ ·AS[f ′].

To conclude the proof, it suffices to observe that AS[f ′] 6 M2/(4(1 − κ))
implies AS[f ] 6 M2/(4(1 − κ)).

In the Boolean case, κ = 1/2 and M = 1, so that the upper bound
M2/(4(1 − κ)) equals 1/2 and the above result is a generalization of the
result in [7]. The proof is also significantly simpler than the one in [7]. It
can be easily checked that in the Boolean case, our argument on variance
essentially amounts to compute the fraction of edges in the Hamming cube
{0, 1}n which are boundary edges (i.e. edges (x, y) with f(x) 6= f(y)).

An obvious question is whether the boundM2/(4(1−κ)) can be improved
for multivalued WNC, or at least NC, functions, along the lines of [6].
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