A Vertex Model for LLT Polynomials - Archive ouverte HAL Access content directly
Journal Articles International Mathematics Research Notices Year : 2022

A Vertex Model for LLT Polynomials

(1) , , ,
1
Andrew Gitlin
  • Function : Author
David Keating
  • Function : Author
Jeremy Meza
  • Function : Author

Abstract

Abstract We describe a novel Yang–Baxter integrable vertex model. From this vertex model we construct a certain class of partition functions that we show are essentially equal to the LLT polynomials of Lascoux, Leclerc, and Thibon. Using the vertex model formalism, we give alternate proofs of many properties of these polynomials, including symmetry and a Cauchy identity.

Dates and versions

hal-03875137 , version 1 (28-11-2022)

Identifiers

Cite

Sylvie Corteel, Andrew Gitlin, David Keating, Jeremy Meza. A Vertex Model for LLT Polynomials. International Mathematics Research Notices, 2022, 2022 (20), pp.15869-15931. ⟨10.1093/imrn/rnab165⟩. ⟨hal-03875137⟩

Collections

CNRS INSMI
0 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More