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Abstract Although fossil evidence suggests that various animal groups were able to move 
actively through their environment in the early stages of their evolution, virtually no direct infor-
mation is available on the nature of their muscle systems. The origin of jellyfish swimming, for 
example, is of great interest to biologists. Exceptionally preserved muscles are described here 
in benthic peridermal olivooid medusozoans from the basal Cambrian of China (Kuanchuanpu 
Formation, ca. 535 Ma) that have direct equivalent in modern medusozoans. They consist of 
circular fibers distributed over the bell surface (subumbrella) and most probably have a myoep-
ithelial origin. This is the oldest record of a muscle system in cnidarians and more generally in 
animals. This basic system was probably co- opted by early Cambrian jellyfish to develop capacities 
for jet- propelled swimming within the water column. Additional lines of fossil evidence obtained 
from ecdysozoans (worms and panarthropods) show that the muscle systems of early animals 
underwent a rapid diversification through the early Cambrian and increased their capacity to colo-
nize a wide range of habitats both within the water column and sediment at a critical time of their 
evolutionary radiation.

Editor's evaluation
Based on exceptionally preserved fossils of olivooids, a group of early cnidarians, from the basal 
Cambrian of China (535 million years ago), Wang and colleagues reveal primitive muscles of early 
animals with well- developed system of circular fibers directly comparable with the myoepithelial 
muscles of modern medusae, representing the oldest record of a muscle system in cnidarians and 
more generally in animals. The manuscript will be of broad interest to scientists, including paleontol-
ogists and evolutionary biologists as well as the public.
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Introduction
Cnidarians are generally accepted to be the sister group to bilaterians (Brusca et al., 2016; Erwin 
et al., 2011; Leclère and Röttinger, 2016; Zapata et al., 2015) and are represented by a huge variety 
of jellyfish, sea anemones, corals, sea fans, hydrozoans (including the colonial siphonophores) and less 
familiar parasitic groups (Raikova, 1988). Although often sessile (polyps) or parasitic, many of them 
are motile animals and a large proportion of them (such as jellyfish) use muscles to move very actively 
through the water column. In contrast to bilaterians, cnidarians owe most of their contractile power 
to epitheliomuscular or myoepithelial cells that make up both epithelial body layers (Brusca et al., 
2016; Schmidt- Rhaesa, 2007). These specialized cells contain interconnected contractile basal exten-
sions (myonemes or myofilaments) that altogether form longitudinal or circular sheets and play a role 
equivalent to the muscle layers of other animals. Epitheliomuscular cells are connected to nerve cells 
via chemical synapses (Westfall et al., 1971). Cnidarian muscles are characterized by multifunctional 
capacities and plasticity and perform key functions in locomotion, defense from predators, feeding 
and digestion at all life- cycle stages (planula, polyp, and medusa stages; see Leclère and Röttinger, 
2016). In medusae, locomotion is achieved by the rhythmic pulsation of circular sheets of epithelial 
striated muscles located around the bell margins and lining the subumbrellar surface. These contrac-
tions are counteracted by the elastic properties and antagonistic force of the mesoglea and result 
in expulsion of water from beneath the bell and thus displacement of the medusa via jet propulsion 
(Brusca et al., 2016).

The Precambrian fossil record of cnidarians remain sporadic and controversial, although molecular 
models often predict a very ancient (e.g. pre- Ediacaran) origin of the group (Erwin et  al., 2011). 
Haootia quadriformis from the Ediacaran (Fermeuse Formation; ca. 560 Ma; Newfoundland, eastern 
Canada) roughly resembles modern stalked jellyfish, such as staurozoans, and bears very fine wrinkles 
interpreted as putative coronal muscles (Liu et al., 2014a; Liu et al., 2015; see also Miranda et al., 
2015). Numerous circular forms with a radial pattern have been described in the Ediacaran (e.g. 
Cyclomedusa; Ukraine, Russia; see Zaika- Novatskiy et al., 1968; Fedonkin, 1981). Although some 
of them potentially represent bell imprints of jellyfish, others probably have a different origin (e.g. 
circular holdfasts of non- cnidarian sessile organisms or possible gas- escape sedimentary structures; 
see Sun, 1986). Conulariids is an extinct group of marine animals characterized by a hard exoskeleton 
resembling a set of morphological features with modern jellyfish such as a tetramerous symmetry, 
grooved corners and a periderm with numerous transverse ribs. Conulariids have been resolved as 
stem- group Scyphozoa (Van Iten et  al., 2006) and have very likely ancestors in the Precambrian, 
such as Vendoconularia triradiata and Paraconularia sp. from the terminal Ediacaran of Russia (Van 
Iten et al., 2005; Ivantsov, 2017) and Brazil (Van Iten et al., 2014), respectively. Corumbella werneri 
also supports a Precambrian origin of cnidarians, its annulated tube with a square cross- section and 
a lamellar microfabric resembling that of conulariids (Pacheco et  al., 2015). Convincing evidence 
for ancestral jellyfish- like medusozoans comes from the early Cambrian Chengjiang Lagerstätte (ca. 
521 Ma; Yunnan Province China) and is best exemplified by Yunnanoascus haikouensis, which shares 
a set of morphological features with modern jellyfish such as a tetramerous symmetry, rhopalia, long 
tentacles around the bell margin, and a possible manubrium in the central part of the bell (Han et al., 
2016a). Although Chengjiang fossils usually show extremely fine details of soft animal tissues and 
organs (including digestive, nervous, and reproductive systems), muscles remain elusive, and no trace 
of possible coronal muscles can be seen in Yunnanoascus. Other jellyfish from the mid- Cambrian 
Marjum Formation (ca. 505 Ma, Utah, USA; see Cartwright et al., 2007) display fine recognizable 
anatomical details such as the exumbrella and subumbrella, tentacles and relatively well- preserved 
coronal muscles that suggest swimming capacities.

The Kuanchuanpu Formation (ca. 535 Ma, lowermost Cambrian Fortunian Stage; Shaanxi Province, 
south China) yields a great variety of three- dimensionally preserved microfossils including cnidarians 
such as Olivooidae (Dong et al., 2013; Dong et al., 2016; Han et al., 2013; Han et al., 2016b; Liu 
et al., 2014b; Liu et al., 2017; Steiner et al., 2014). The developmental sequence of Olivooides starts 
with a spherical embryo that, after hatching, gives rise to a conical juvenile (Bengtson and Yue, 1997), 
suggesting direct development (Han et al., 2013; Steiner et al., 2014; Wang et al., 2020) with no 
counterpart among modern cnidarians. However, microtomography clearly shows that post- embryonic 
Olivooides does have anatomical features typical of modern cnidarians, a radial symmetry, single body 
opening, exumbrella and subumbrella, interradial septa (internal ridges), gonads, manubrium, oral 
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lips, apertural lobes, tentacles, frenula and velaria (Dong et al., 2013; Dong et al., 2016; Han et al., 
2013; Han et al., 2016b; Wang et al., 2020), which collectively support its placement and that of 
related forms within Medusozoa (Dong et al., 2013; Dong et al., 2016; Han et al., 2013; Han et al., 
2016b; Liu et al., 2014b; Liu et al., 2017; Wang et al., 2020). Wang et al., 2017 reported possible 
coronal muscles around the aperture of Sinaster (Olivooidae) but did not investigate their organization 
and possible function. We describe here secondarily phosphatized muscle fibers preserved in three 
dimensions, in post- embryonic stages of olivooids from the early Cambrian (Fortunian) Kuanchuanpu 
Formation. They represent the oldest occurrence of muscle tissue in cnidarians and more generally in 
animals. We also address the nature (e.g. myoepithelial) and function of this muscle system through 
detailed comparisons with modern jellyfish.

These new findings prompted us to re- examine and integrate fossil data obtained from other 
early Cambrian groups such as ecdysozoans (e.g. worms, lobopodians; see Budd, 1998; Vannier 
and Martin, 2017; Young and Vinther, 2017; Zhang et al., 2016), which together shed light on the 
diversity and functions of muscle systems in early animals.

Results
The 12 fossil specimens studied here have the diagnostic features of post- embryonic olivooids (Dong 
et al., 2013; Dong et al., 2016; Han et al., 2013; Han et al., 2016b; Wang et al., 2017; Wang et al., 
2020), such as an ovoid shape, pentaradial symmetry and the presence of a periderm, apertural lobes, 
exumbrella, perradial ridges, and interradial furrows (Figure 1—figure supplements 1 and 2; Figure 
2A- E; Figure 2—figure supplement 1). They also display a well- preserved network of circular fibers 
(Figures 1 and 2A–E), tentatively interpreted as coronal muscles by Wang et al., 2017 in a pilot study.

The body has a consistent ovoid shape and size (diameter between 560 and 580 μm) and is enclosed 
by a smooth periderm (5–10 μm in thickness) (Figure 1—figure supplement Figure 1—figure supple-
ments 1A and 2C, E- H). Centripetal, triangular projections, termed perradial apertural lobes (see 
Han et al., 2013; Wang et al., 2020) can be seen around the oral aperture of most specimens. They 
correspond to perradii and are organized with pentaradial symmetry (Figure 1—figure supplements 
1 and 2; Figure 2—figure supplement 1A, C). The partial loss of the periderm and perradial aper-
tural lobes in numerous specimens reveals a fine network of underlying closely packed, circular fibers, 
that are best developed around the oral aperture where they form four or five separate concentric 
bundles (individual thickness between 9 and 15 µm), each consisting of numerous (possibly up to 
eight) individual fibers (Figures 1B,C and 2B,C,E and F). These fiber rings run around the oral aper-
ture, have a consistent thickness and do not seem to be interrupted (Figure 1—figure supplement 1; 
Figure 2A, D, Figure 2—figure supplement 1A, B). Comparable fibers occur all over the body, but 
seem to be sparser toward the aboral pole (Figure 1—figure supplement 1B, C and Figure 1—figure 
supplement 2A- F; Figure 2D) and not organized in well- defined bundles (Figure 1D- G; Figure 2—
figure supplements 1 and 2; Figure 2A). Individual fibers are cylindrical (diameter ca. 2 µm), lying 
mostly parallel to each other, although oblique V- shaped interconnections (angle ca. 20–30°) may 
occur locally (Figure 2C). Fibers are finely and evenly coated with microcrystalline (ca 0.4 µm) calcium 
phosphate (Figure 1B, C and E). Circular fibers clearly extend into the triangular perradial apertural 
lobes (Figure 1—figure supplement 1A, E, F; Figure 2A and D). The circular fiber network seems 
to be overprinted by faint longitudinal depressions in the aboral half (Figure 2A, D, Figure 2—figure 
supplement 1B) that may correspond to interradial furrows.

Discussion
Myoepithelial muscles in cnidarians from the basal Cambrian
The close- knit circular fibers found in the bell of Olivooidae sp. can be confidently interpreted as 
epithelial muscle fibers based on their individual cylindrical shape, size range (around 2 µm in diam-
eter), regular arrangement in bundles (e.g. possibly five more around the bell margin), and closely- 
packed distribution over a single anatomical surface corresponding to the subumbrella (Figure 1; 
Figure 2—figure supplement 2). Our interpretation is also strongly supported by close similarities 
with the muscular system of modern cnidarians (myoepithelial cells; MEC). For example, the medusae 
of hydrozoans (Figure 2G–I; Figure 3A) display a continuous network of circular striated and radial 
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Figure 1. Post- embryonic stage of Olivooides sp. from the early Cambrian Kuanchuanpu Formation (ca. 535 Ma; South China), showing exposed muscle 
fibers. ELISN150- 278. Scanning electron micrographs. 
 (A) General view of oral side. (B) Details of fiber bundles around aperture (location indicated in A). (C) Close- up showing individual fibers within 
each bundle. (D) Dense network of fibers (location indicated in A). (E) Close- up of individual fibers coated with fine grains of calcium phosphate. 
(F), (G) Circular fibers approximately half way between the oral and aboral poles. Abbreviations: cm, circular muscle; pal, perradial apertural lobe; pe, 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.74716
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smooth muscles covering the underside of their bell (subumbrella). These 1- to- 4-µm- thick individual 
fibers show oblique interconnections (Figure  2G- I; Figure  2—figure supplement 2), and sparser 
radial smooth fibers run perpendicular to them (Leclère and Röttinger, 2016). A very similar config-
uration can be seen in early Cambrian olivooids, which display continuous circular fibers (in some 
cases covered by transversal structures imprinted on the circular bundles; see Figures  1–3A–C). 
Microscopic series of functional units (sarcomeres) that characterize striated muscles and give them 
a typical striated appearance (Figure 2G- I; Figure 2—figure supplement 2) are not discernible in 
the muscle network of Cambrian olivooids, making it impossible to class them as striated or smooth 
(Schmidt- Rhaesa, 2007). The muscles of olivooids seem to be more developed and concentrated 
around the bell margin, as seen in modern jellyfish, such as Clytia, Pelagia, and Chrysaora (Figure 2G- I; 
Figure 2—figure supplement 2). Other olivooids from the Kuanchuanpu Formation such as Sinaster 
have a comparable concentration of strong muscles around the oral aperture (possibly five bundles; 
see Wang et al., 2017) but, unlike those of the present specimens, seem to be interrupted by inter-
radial structures. The muscle fibers of olivooids distribute over a surface interpreted as the inner layer 
of the bell (subumbrella), as in modern medusae. In contrast with the distinct muscle system of bila-
terians, modern cnidarians have myoepithelial cells that are fully integrated into the ectodermal and 
endodermal epithelial tissues. Although the cellular organization cannot be seen in the present fossil 
material, we hypothesize that the muscular system of Cambrian olivooids was similarly composed 
of myoepithelial cells that had myofilaments projecting from their basal side. The circular network 
of olivooids may have been supplemented by longitudinal muscles accommodated within adradial 
furrows (Figure 3C). However, no clear individual fibers could be distinguished in these adradial areas 
possibly owing to decay or taphonomy. Paired features interpreted as tentacular buds occur around 
the oral rim of some olivooids (Han et al., 2013; Wang et al., 2020). Their external annulations may 
represent underlying muscle fibers (Wang et al., 2020), or, more likely, anchoring features of nema-
tocysts. The tentacles of modern cnidarians have longitudinal muscles but lack circular fibers (Hyman, 
1940).

The current, well- accepted, hypothesis is that olivooids developed from an ovoid post- embryonic 
form (present material) into a conical corrugated polyp- like structure (Bengtson and Yue, 1997; Dong 
et al., 2016; Han et al., 2013; Liu et al., 2014a; Steiner et al., 2014; Wang et al., 2020). The tran-
sition to polyps is characterized by the gradual increase of external ornamented ridges that most 
probably resulted in a complete anatomical reorganization, as commonly seen in the life cycle of 
modern cnidarians. Unfortunately, very little is known of the internal anatomy of these polyps, except 
that they secreted a tubular feature (periderm) comparable with that of some extant scyphozoans 
(Figure 1—figure supplement 3; Song et al., 2021) and had possible oral lobes (Wang et al., 2020). 
Although rare, clear traces of circular fibers do occur in the polyps of Olivooides mirabilis (see Figure 
12 in Steiner et al., 2014), suggesting that features of the muscle system were conserved through 
the lifecycle.

In summary, the close- knit fibrous network described here in post- embryonic olivooids is the oldest 
record of a muscular system in cnidarians and more generally in animals.

Functions of muscles in post-embryonic olivooids
The occurrence of strong muscles around the bell aperture and inside the perradial apertural lappets 
suggests that olivooids could contract their bell as modern medusae do (Figures 3A–C , and 4A–C). 
In extant jellyfish, these contractions are counteracted by the elastic properties and antagonistic force 
of the adjacent mesoglea. As a result, water is rhythmically expelled from beneath the bell and drives 
the medusa through the water column via jet propulsion (Brusca et al., 2016). Although olivooids 

periderm; *, perradii; →, interradii. Scale bars: 100 μm in (A); 20 μm in (B); 10 μm in (C), (E); 20 μm in (D), (F) and (G).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Three scanning electron micrographs of the Olivooides specimens.

Figure supplement 2. Four scanning electron micrographs of the Olivooides specimens.

Figure supplement 3. Polyp of Coronatae sp. from South China Sea showing the periderm.

Figure supplement 4. Origin of the fossil material.

Figure 1 continued

https://doi.org/10.7554/eLife.74716
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Figure 2. Post- embryonic stage of Olivooides sp. from the early Cambrian Kuanchuanpu Formation (ca. 535 Ma; South China), showing exposed muscle 
fibers by SEM. (A–F) and myoepithelial muscle network in extant hydrozoan jellyfish by fluorescence microscopy (G–I). (A–C) ELISN052- 33. General 
view of oral side and details of apertural circular muscle fibers and the V- shaped interconnection between the fibers in (C). (D–F) ELISN061- 19. General 
view of oral side and details of apertural, circular muscles fibers. (G–I) Eirene sp. (Hydrozoa) young medusa, general oral view, circular muscles along 
subumbrella and details of striated fibers; white arrow (I) indicates bifurcating fibers. Green and blue in (G–I) correspond to actin (phalloidin) and DNA 
(Hoechst) staining. Abbreviations: afl, adradial fold lappet; bm, bell margin; cm, circular muscle; mb, manubrium; nu, nucleus; pal, perradial apertural 
lobe; pfl, perradial fold lappet; smf, smooth (radial) muscle fiber; stf, striated (circular) muscle fiber; te, tentacle *, perradii; →, interradii. Scale bars: 
200 μm in (A), (D); 100 μm in (G); 50 μm in (E), (F); 20 μm in (B); 10 μm in (C), (H) and (I).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Two scanning electron micrographs of the Olivooides specimens.

Figure supplement 2. Myoepithelial muscle network in extant medusozoan cnidarians.

https://doi.org/10.7554/eLife.74716
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share important external and internal morphological features with medusozoans (Dong et al., 2013; 
Han et al., 2013; Han et al., 2016b; Wang et al., 2017; Wang et al., 2020), they are distinguished 
by an unusual pentaradial symmetry and life cycle (with an ovoid post- embryonic stage developing 
into a conical polyp). This life cycle has no direct counterpart in modern medusozoans (e.g. Brusca 
et al., 2016) that develop from a motile planula larva into a polyp and eventually a juvenile medusa 
through various processes (e.g. strobilation generating ephyrae in scyphozoans; see Gershwin, 1999). 
It has been suggested (Wang et al., 2020) that the post- embryonic stage of olivooids combined the 

Figure 3. Location of epithelial muscles in extant hydromedusae (A) and early Cambrian Olivooidae medusozoans (B, C). (A), (B) Simplified radial 
sections through body. (C) In oral view. (D) Artistic reconstruction of 535- million- year- old olivooid cnidarians showing eggs (the prehatched, background), 
post- embryonic (foreground) and polyp (background) stages. The circular muscle system is visible through the translucent periderm. The location of 
section (B) is indicated in (C) by small black arrows. Abbreviations: al, apertural lobe; cm, circular (coronal) muscle; en, endoderm; eu, exumbrella; ga, 
gastrovascular cavity; lm?, possible longitudinal muscle; ma, manubrium; me, mesoglea; pe, periderm; rc, radial canal; su, subumbrella; tb, tentacular 
bud; te, tentacle; ve, velum. Not to scale.

https://doi.org/10.7554/eLife.74716
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characters of a medusa with those of a polyp and thus would resemble a juvenile sessile jellyfish almost 
encased within a periderm, with its bell aperture facing upwards. At first sight, these circular muscles 
may suggest a role in locomotion, as in modern medusae. However, major structural differences 
separate modern jellyfish from Cambrian olivooids (see above). Whereas the movement of modern 
medusae is unconstrained, that of olivooids was most probably strongly hindered by its periderm 
(Bengtson and Yue, 1997; Steiner et al., 2014). The assumed mesoglea layer of olivooids seems 
to have been very thin (narrow gap between ex- and subumbrella; see Han et al., 2013; Han et al., 
2016b; Dong et al., 2016; Wang et al., 2017; Wang et al., 2020) thus limiting its dynamic capacity. 
Swimming efficiency of modern medusae depends on the power and distribution of muscles but also 
largely on the flexibility of the bell margin, a condition that is not found in olivooids. Powerful muscle 

Figure 4. Basic muscle systems in early Cambrian animals and their main functions. (A–C) Contractile epithelial muscles (MEC, myoepithelial, 
predominantly circular) and antagonistic mesoglea exemplified by olivooiids and free- swimming jellyfish; idealized relaxed (A) and contracted (B) states 
and simplified transverse section (C). (D–F) Grid- like network of circular and longitudinal subepidermal muscle fibers (HMS) around a cylindrical body 
filled with antagonistic internal fluid (hydroskeleton) exemplified by scalidophoran worms: idealized relaxed state (D); peristaltic contractions along body 
(E) and transverse section (F). (G–H) Longitudinal, circular muscles and extrinsic retractor muscles in lobopodians: idealized relaxed state (G); transverse 
section (H). Images (from top to bottom) represent an olivooid cnidarian, an extant jellyfish, the scalidophoran worm Ottoia (see Vannier, 2012) and the 
lobopodian Hallucigenia (see Chen and Zhou, 1997). Drawings and images not to scale. Abbreviations: cm, circular muscle; cu, cuticle; ec, ectoderm; 
en, endoderm; ep, epidermal layer; gu, gut; lc, lobopod claw; lim, limb muscle; lm, longitudinal muscle; lo, lobopod (soft leg); mb, manubrium; me, 
mesoglea; om, oblique muscle; oo, oral opening (bell margin); pc, primary cavity filled with fluid; rc, radial canal; se, sediment; tc, terminal claw.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Muscle system in priapulid worms (Ecdysozoa).

Figure supplement 2. Muscle system in Cambrian lobopodians (Ecdysozoa, Panarthropoda).

https://doi.org/10.7554/eLife.74716
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contractions may have been able to propel the animal over a very short distance but are unlikely to 
have sustained dynamic locomotion through the water column. This hypothetical ‘clumsy’ locomotion 
would have probably created more disadvantages (e.g. energy cost) than advantages to the animal. 
Moreover, it is unlikely to have generated any adequate escape reaction (e.g. from predators) or 
effective feeding technique. We favor an alternative option. One of the most vital requirements for 
post- embryonic olivooids was probably to obtain sufficient food. Modern medusae feed on small 
soft- bodied prey by using nematocyst- laden tentacles and oral arms that convey food to the mouth 
(Brusca et  al., 2016). Post- embryonic olivooids had tentacular buds that were not enough devel-
oped to capture food. Feeding may have been achieved by a different method, such as the rhythmic 
contractions of their circular muscles, especially those bordering the bell aperture (Figure  4A–C). 
Such contractions may have resulted in pumping and engulfing sea water containing potential food 
particles. Extant jellyfish such as Aurelia feed by a comparable mechanism (Costello and Colin, 1994). 
The aperture lappets of olivooids may have played a key role in closing the aperture after contraction 
in retaining food particles within the bell cavity before being transferred to the mouth and preventing 
foreign matters from entering the bell. Besides, the remarkable ability of modern cnidarians to trans-
form and rearrange their muscle systems (e.g. transition from polyp to medusa stages; Brusca et al., 
2016) may have played in this evolution and diversification. Muscle fibers primarily assigned to feeding 
(olivooids) may have been used for other functions such as active propulsion and escape responses 
during evolution while maintaining an important role in prey capture. In this context, we could make 
the bold speculation that the origin of medusae swimming, associated with the subsequent loss of 
periderm, is an exaptation of rhythmic feeding and respiration among benthic periderm- dwelling 
medusozoans, probably during Ediacarian- Cambrian period (Figure 4A–C).

Early evolution of muscle systems
The shift of the actin- myosin system from strictly intracellular to intercellular functions seems to have 
occurred in the early stages of metazoan evolution (Schmidt- Rhaesa, 2007). Although the most 
basal metazoans lack true muscles they do have the capacity to contract their body or part of it. For 
example, sponges have myocytes around the osculum that play a role in expelling wastes (Bagby, 
1966). The fiber cells of placozoans such as Trichoplax adherens have contractile extensions packed 
with actin filaments that link the ventral and dorsal epithelia (Armon et al., 2018). Although the gliding 
motility of placozoans is mainly performed by ciliated epithelial cells, fiber cells seem to be involved in 
active body deformation and invagination possibly related to feeding (Smith and Mayorova, 2019). 
The integration of the actin- myosin system within a dense network of myoepithelial cells as seen in 
Cambrian and modern cnidarians is likely to have been a major innovation that provided animals with 
new capacities for powerful movements (e.g. swimming, feeding, respiration, etc.). We suggest that 
the myoepithelial fiber network seen in post- embryonic olivooids may represent one of the oldest and 
basic types of animal muscle systems that probably has its origin in the late Precambrian. Larger jelly-
fish from the early (e.g. Han et al., 2016a) and mid- Cambrian (Marjum Lagerstätte; coronal muscles, 
Cartwright et al., 2007) are likely to have co- opted this basic system for more diverse functions such 
as swimming within the water column (e.g. active jet propulsion) and prey capture as seen in modern 
jellyfish such as Aurelia.

Diversity of muscle systems and locomotion modes in early Cambrian 
animals
Ecdysozoans (worms and panarthropods) provide additional evidence on the diversity of muscle 
systems in early Cambrian animals.

Scalidophoran worms were diverse and numerically abundant in the Cambrian (e.g. Burgess- 
shale- type Lagerstätten). Modern representatives of the group such as Priapulus have a close- 
knit network of circular and longitudinal muscle lining the inner surface of the body wall, that is 
surrounded by ECM (Figure  4D, F; Figure  4—figure supplement 1) and often termed ‘Haut-
muskelschlauch’ (HMS; see Schmidt- Rhaesa, 2007). The enclosed mass of incompressible fluid 
(hydroskeleton) that fills the primary cavity of such worms is the principal antagonist for muscular 
action (Figure 4). Dynamic interactions between HMS and hydroskeleton allow them to perform 
repeated body contraction and extension for burrowing (Figure 4D–F) (e.g. Vannier et al., 2010) 
and feeding. The eversion of the introvert is a process of pumping body fluids into the anterior 
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body region, whereas its invagination is performed by extrinsic oblique retractor muscles. Based on 
remarkable anatomical and functional similarities with modern priapulids (Figure 4D, F; Figure 4—
figure supplement 1), we posit that Cambrian scalidophorans also had a HMS- type musculature 
and possible retractors. This hypothesis is supported by abundant crawling and burrowing traces 
found in the basal Cambrian (e.g. treptichnid burrow systems; see Kesidis et al., 2019; Vannier 
et al., 2010) and the late Precambrian (e.g. Evans et al., 2020; Gehling et al., 2001) that could 
not have been made without the action of HMS on a hydrostatic skeleton (Figure 4D, F; Figure 4—
figure supplement 1). HMS clearly differs from the musculature of olivooid cnidarians in at least 
two key features: (1) HMS does not consist of myoepithelial cells and (2) the antagonist onto which 
muscular force transferred is not the mesoglea but the primary cavity filled with fluid (Leclère and 
Röttinger, 2016).

Lobopodians (e.g. Ortega- Hernández, 2015) is an informal group of ecdysozoans with an annu-
lated cuticle and paired soft legs (lobopods), that is crucial for understanding the remote ancestry of 
euarthropods. They are best exemplified by iconic Cambrian forms such as Hallucigenia (Smith and 
Caron, 2015; Smith and Ortega- Hernández, 2014) and Microdictyon (Pan et al., 2017). Most recent 
phylogenetic trees (e.g. Aria et al., 2021; Giribet and Edgecombe, 2019) have resolved Cambrian 
lobopodians as an ‘intermediate’ group between scalidophoran worms and arthropods with an 
arthropodized exoskeleton. The inner surface of their body wall was lined with closely packed circular 
and longitudinal muscle fibers that seem to have extended into the limbs (see Tritonychus in Zhang 
et al., 2016; Figure 4G, H; Figure 4—figure supplement 2A, B). This configuration strongly recalls 
that of ecdysozoan worms (see above). In Paucipodia from the Chengjiang Lagerstätte (see Vannier 
and Martin, 2017; see Figure 4—figure supplement 2C- E), a connecting strand runs between the 
terminal claw of the limbs and the area surrounding the gut and is interpreted here as a possible 
retractor muscle (see analogues in extant onychophorans De Sena Oliveira and Mayer, 2013). 
Although unsegmented as in smaller lobopodians, larger Cambrian lobopodians such as Pambdelu-
rion from the Sirius Passet Lagerstätte (ca. 520 Ma) are characterized by a more complex musculature 
with paired, lateral, ventral and dorsal longitudinal muscles. Well- developed bundles of extrinsic and 
intrinsic limb muscles presumably controlled their leg motion as in modern onychophorans (Budd, 
1998; Hoyle and Williams, 1980; Young and Vinther, 2017; see Figure 4G and H).

Early euarthropods that co- existed with lobopodians and scalidophoran worms (e.g. Burgess- Shale- 
type Lagerstätten) had already acquired rigid exoskeletal elements (sclerotized cuticular elements 
jointed by an arthrodial membrane, such as body sclerites and appendage podomeres) that were 
operated by a lever- like system of segmentally arranged antagonistic muscles as seen in Kiisortoqia 
and Camparamuta from the Sirius Passet Lagerstätte (Young and Vinther, 2017). This suggests that 
the rise of euarthropods was associated with a profound rearrangement of the muscle system possibly 
inherited from lobopodian ancestors, such as the reduction of the circular HMS musculature that lost 
its primary hydrostatic function and peristaltic capabilities because of exoskeletal rigidity (Young and 
Vinther, 2017).

Deuterostomes also evolved muscle systems during the Cambrian. Well- developed sigmoidal 
blocks occur within the trunk of early and mid- Cambrian chordates such as Myllokunmingia (Shu 
et al., 1996) and Haikouichthys (Shu et al., 2003; possibly craniate) and Pikaia (Conway Morris and 
Caron, 2012; stem- group chordate). They recall the W- shaped wall musculature of modern cephalo-
chordates such as Branchiostoma and fish, which is derived from segmental coelomic compartments. 
Although boundaries between adjacent blocks (myosepta) are often well defined, none of these ‘fish- 
like’ fossils reveals details on the nature and arrangement of muscle fibers. These assumed muscle 
blocks occupied much of the body wall of these ancient chordates and most probably played a crucial 
role in swimming.

In summary, both fossil and indirect evidence presented here indicate that different types of muscu-
lature co- existed among early Cambrian animals: (1) myoepithelial circular (MEC) muscles in cnidar-
ians, (2) grid- like and subepidermal (HMS) muscles in scalidophoran worms, (3) HMS and extrinsic 
muscles to control leg motion in lobopodians, (4) segmentally arranged muscles tightly integrated to 
exoskeletal elements in early euarthropods, (5) well- developed W- shaped muscles in early chordates.

Whereas the myoepithelial system appears as the most basic one, that of ecdysozoans seems to 
have undergone considerable changes and diversification over a relatively short time interval during 
the early Cambrian. This remarkable diversity and plasticity of muscle systems allowed a great variety 
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of animals to explore and colonize new environments and can be seen as one of the driving forces of 
the animal radiation.

Materials and methods
Geological setting
All studied fossils come from phosphatic limestones collected from the Kuanchuanpu Formation at the 
Shizhonggou section (Ningqiang County, Shaanxi Province, China; see Figure 1—figure supplement 
4). Biostratigraphy (Anabarites – Protohertzina – Arthrochities zone; Qian, 1977; Qian, 1999) indi-
cates that these rocks correspond to the Meishucunian Stage that is the equivalent of the lowermost 
Cambrian Terreneuvian Stage. Radiochronology (U- Pb method; Sawaki et  al., 2008; Peng et  al., 
2012) confirms that the Kuanchuanpu Formation is approximately 535 Ma. Secondarily phosphatized 
fossils were extracted from rocks via a standard acid digestion in 7% acetic acid. Dried residues with 
a grain- size  >60  μm were sorted and picked under a binocular microscope. Twelve specimens of 
Olivooidae (Cnidaria) bearing well- preserved muscle fibers were selected for the present study and 
mounted for SEM (FEI Quanta 400 FEG scanning electron microscope at Northwest University, China; 
Au- coating, high- vacuum). They belong to Sinaster petalon Wang et al., 2017 (ELISN115- 39), Hana-
gyroia orientalis Wang et al., 2020 (ELISN107- 470) and Olivooidae sp. (ELISN150- 278, ELISN111- 54, 
ELISN052- 33, ELISN045- 143, ELISN012- 16, ELISN061- 19, ELISN087- 64, ELISN088- 48, ELISN087- 33 
and ELISN098- 19). All specimens are deposited in the collections of the Shaanxi Key Laboratory of 
Early Life & Environments and the Department of Geology, Northwest University, China (‘ELI’ is an 
acronym of the former Early Life Institute that is now replaced by 'ELISN', SN for Shaanxi Province, 
China).

Two- week- old Clytia hemisphaerica medusae, newly released Eirene sp. medusae, 1- month- old 
Chrysaora colorata and Pelagia noctiluca metaephyrae were raised in the laboratory (Villefranche- 
sur- mer, France) following Lechable et al., 2020 and Ramondenc et al., 2017 culture protocols. Fixa-
tion followed by Phalloidin (actin) and Hoechst (nuclei) staining was performed on the four species as 
described for Clytia hemisphaerica in Sinigaglia et al., 2020. Samples were mounted in 50% Citifluor 
AF1 antifade mountant and imaged using Leica SP8 confocal and Zeiss Axio- Observer microscopes.

Extant priapulid worms (Priapulus caudatus) (see Figure 4—figure supplement 1) were collected 
(JV) from near the Kristineberg Marine Station (Sweden), fixed with glutaraldehyde and dried (Critical 
Point) for SEM observations (Univ. Lyon).
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