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Löıc HERVÉ, and James LEDOUX ∗

version: Thursday 24th November, 2022 – 11:09

Abstract

Given a perturbed version Pθ of a Markov kernel Pθ0 with respective invariant proba-
bility measures πθ and πθ0 , we provide estimates of theW -weighted norm ∥πθ−πθ0∥W for
some Lyapunov function W . We follow Tweedie’s approach proposed in a seminal paper
on the truncation-augmentation scheme for approximating the invariant probability mea-
sure of discrete-state Markov kernels. But the novelty here is that the state space for the
Markov kernels and the form of the perturbation are general, and that the intermediate
term ∥πθ − P n

θ (x, ·)∥W usually involved to control the error norm ∥πθ − π∥W is replaced

with ∥πθ− µ̃(θ)
n ∥W , where µ̃

(θ)
n is an alternative probability measure which has been intro-

duced in a recent work for approximating πθ under a minorization condition. The interest

is that the estimates of ∥πθ − µ̃
(θ)
n ∥W turn out to be much more accurate and practicable

than for ∥πθ − P n
θ (x, ·)∥W under geometric or polynomial drift conditions. Moreover we

do not need to resort to the use of techniques related to the existence of an atom for
Pθ0 . This study is performed for geometrically or polynomially ergodic Markov kernels,
and compared with prior works when applied to the standard truncation-augmentation
scheme for discrete-state Markov kernels.

AMS subject classification : 60J05

Keywords : Invariant probability measure; Rate of convergence; Perturbed Markov kernels;
Drift conditions; Small set; Truncation-augmentation approximation.

1 Introduction

In this paper, we study the sensitivity of the invariant probability measure of a Markov
kernel when replaced with a perturbed version. Before presenting the general framework and
the main results of this work, we discuss the classical example of the truncated-augmented
scheme for approximating the invariant probability measure of an infinite stochastic matrix.
Let P := (P (i, j))(i,j)∈N2 be an infinite stochastic matrix and for every k ≥ 1 let Pk be a
linear augmentation (e.g. in the first or the last column) of the (k + 1)× (k + 1) north-west
corner truncation of P . Let π (resp. πk) be the invariant probability measure of P on N
(resp. of Pk on Bk := {0, . . . , k}). For the sake of simplicity, the natural extension on N of
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the finite matrix Pk and of its invariant probability measure are still denoted by Pk and πk
in this introductory section. If P satisfies some minorization and geometric drift conditions
with respect to (w.r.t.) some Lyapunov function V : N→[1,+∞), Tweedie proved in [Twe98,
Th. 3.2] that, for the first-column augmentation, we have limk ∥πk − π∥V = 0 where ∥ · ∥V
stands for the V -weighted total variation norm, see the definition in (6). Tweedie’s proof
is based on the V−geometrical ergodicity property of both P and Pk, that is: there exist
ρ ∈ (0, 1) and C ∈ (0,+∞) such that

∀k ∈ N∗ ∪ {∞}, ∀n ≥ 0, sup
|f |≤V

sup
x∈N

∣∣(Pk
nf)(x)− πk(f)1X

∣∣
V (x)

≤ C ρn (1)

with the convention P∞ := P , π∞ := π. Explicit bounds of ∥πk − π∥V are not stated in
[Twe98, Th. 3.2] since the use of the rate ρ and constant C in (1) are unlikely to be of
practical value, see [Twe98, p. 526]. Although progress on finding computable bounds for
ρ and C has been made (e.g. see [MT94, Bax05, HL22a, and references therein]), this issue
remains a difficult problem. A favourable but very specific case is when P is stochastically
monotone and satisfies the following geometric drift condition w.r.t. some finite set S

∃δ ∈ (0, 1), b > 0, PV ≤ δ V + b 1S . (2)

In this case and assuming that S := {0}, Tweedie proved in [Twe98, Th. 4.2, Eq. (46)] that

∀n ≥ 1, ∥πk − π∥TV ≤ 4 b

1− δ
δn + n ηk with ηk =

2b

(1− δ)V (k)
(3)

where ∥ · ∥TV denotes the total variation norm (see (7)) and πk in (3) is the invariant proba-
bility measure of the last-column augmentation Pk of P . Under the same assumptions on P ,
such a bound is proved to hold in [Liu10, Th. 5.2] for any arbitrary augmented truncation
approximation. Moreover Liu shows in [Liu10] that Tweedie’s approach can also be used
to get an explicit bound for ∥πk − π∥TV when P is assumed to be stochastically monotone
and polynomially ergodic. Specifically, if P satisfies a minorization condition with respect to
some finite atom S and if the following polynomial drift condition introduced in [JR02]

∃α < 1, b, c > 0, PV ≤ V − c V α + b 1S (4)

holds with c = 1 and S = {0}, then we have (see [Liu10, Th. 5.1])

∀n ≥ 1, ∥πk − π∥TV ≤ 8V (1)

(1− α)
α

1−α

1

n
α

1−α

+ n ξk with ξk =
2b

V (k + 1)α
. (5)

In fact, this estimate only requires that P be dominated by a stochastically monotone Markov
kernel Q satisfying the above drift conditions. Mention that this kind of estimates has been
obtained in [Mas16] for the last-column augmentation of block-monotone Markov chains
under the subgeometric drift condition introduced in [DFMS04].

The purpose of this work is to use the recent work [HL22b] in order to extend Tweedie-type
estimate (5) to perturbed Markov kernels {Pθ}θ∈Θ (not necessarily obtained by truncation)
defined on a general state space and satisfying uniform (w.r.t. θ ∈ Θ) minorization and poly-
nomial drift conditions. In particular, we do not assume that Pθ is stochastically monotone,
nor do we assume that the small set of the minorization condition is an atom. Moreover,
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all the estimates are expressed in the V−weighted total variation norm for some V ≥ 1,
which obviously dominates the total variation norm. Application to truncation of discrete
Markov kernels is discussed in Section 3. Note that, although the case of geometrically er-
godic Markov kernels P can be similarly developed (see Appendix A), it is omitted here since
it has been proved in [LL18, HL22a] that a better approach can be used to derive very simple
explicit estimates of ∥πθ − π||V from

∫
∥Pθ(x, ·)− P (x, ·)∥V πθ(dx) where πθ is the invariant

probability measure of Pθ, see Remark 2.2.

Our general context is the following one. Let (X,X ) be a measurable space and let {Pθ}θ∈Θ
be a family of transition kernels on (X,X ), where Θ is an open subset of some metric space.
Let M+ (resp. M+

∗ ) denote the set of finite non-negative (resp. positive) measures on (X,X ).
For any µ ∈ M+ and any µ-integrable function f : X→C, µ(f) denotes the integral

∫
X fdµ.

We assume that {Pθ}θ∈Θ satisfies the following minorization condition

∃S ∈ X , ∃ν ∈ M+
∗ , ∀θ ∈ Θ, ∀x ∈ X, ∀A ∈ X , Pθ(x,A) ≥ ν(1A) 1S(x). (SΘ)

Assumption (SΘ) means that S is a small-set for the whole family {Pθ}θ∈Θ and that the
associated positive measure is the same for all θ ∈ Θ, namely ν. We also suppose that,
for every θ ∈ Θ, there exists a unique Pθ−invariant probability measure πθ on (X,X ) such
that πθ(1S) > 0. Moreover, for every θ ∈ Θ and for every n ≥ 1 we consider the following

probability measure µ̃
(θ)
n on (X,X ) introduced in [HL20, HL22b]

µ̃(θ)n :=
1

µ
(θ)
n (1X)

µ(θ)n where µ(θ)n :=

n∑
k=1

ν ◦R k−1
θ and Rθ := Pθ − ν(·)1S .

Now let W : X→[1,+∞) be a measurable function such that

∀θ ∈ Θ, πθ(W ) <∞ and ∃C ∈ (0,+∞), ∀θ ∈ Θ, PθW ≤ CW. (WΘ)

Under Assumption (SΘ) and the first condition in (WΘ) we know from [HL22b, Ths. 2.1-3.1]

that for every θ ∈ Θ we have limn ∥πθ − µ̃
(θ)
n ∥W = 0, where ∥ · ∥W stands for the W -weighted

total variation norm, see (6). Now let θ0 be fixed in Θ. To have a good understanding of the
next results, Pθ0 has to be viewed as the unperturbed Markov kernel with unknown invariant
probability measure πθ0 , while Pθ for θ ̸= θ0 are the perturbed Markov kernels with known
or computable invariant probability measure πθ. The goal is to approximate πθ0 by πθ.

In Section 2, under Assumptions (SΘ)-(WΘ) we introduce the following quantities

∀n ≥ 1, ε̃n,Θ,W := sup
θ∈Θ

∥πθ−µ̃(θ)n ∥W and ∀θ ∈ Θ, ∀x ∈ X, ∆θ,W (x) := ∥Pθ(x, ·)−Pθ0(x, ·)∥W ,

and we prove in Theorem 2.1 that limθ→ θ0 ∥πθ − πθ0∥W = 0 provided that the two following
conditions hold:

lim
n→+∞

ε̃n,Θ,W = 0 and ∀x ∈ X, lim
θ→ θ0

∆θ,W (x) = 0.

Under these assumptions we prove in Corollary 2.1 that the real numbers γθ := πθ(∆θ,1X)
and γθ,W := πθ(∆θ,W ) converge to 0 when θ→ θ0. Moreover we give a rate of convergence for
∥πθ − πθ0∥W depending on ε̃n,Θ,W , γθ and γθ,W . In practice, γθ and γθ,W are supposed to be
computable for θ ̸= θ0, so that the error bounds for ∥πθ − πθ0∥W obtained in Corollary 2.1 is
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relevant whenever the rate of convergence of the sequence {ε̃n,Θ,W }n≥1 is known. This last
question can be investigated from [HL22b] under geometrical or polynomial drift conditions.
Then, assuming that the whole family {Pθ}θ∈Θ satisfies these polynomial drift conditions
in a uniform way in θ ∈ Θ, accurate and computable bounds for ε̃n,Θ,W are addressed in
Section 3. When applied to the above described truncation framework with an atomic small-
set as in [Twe98, Liu10], the error bounds for ∥πk − π∥TV are proved to be quite similar
to Liu’s estimate (5) under the polynomial drift condition (4) on P . Under geometric drift
condition (2) on P , the estimates of ∥πk − π∥V are quite similar to Tweedie’s estimate (3),
see Appendix A.

The novelty of this work is to use the intermediate quantity ∥πθ − µ̃
(θ)
n ∥W in place of

∥πθ−P n
θ (x, ·)∥W to control the error norm ∥πθ−πθ0∥W . This control is studied under standard

drifts conditions. The benefit of this approach is that the bounds on ∥πθ − µ̃
(θ)
n ∥W obtained

in [HL22b] are in general much more accurate and practicable than those obtained in the
literature for ∥πθ−P n

θ (x, ·)∥W , see [HL22b, Sec. 6]. Finally recall that neither atomic (except
when we compare with Liu’s work) nor stochastic monotonicity assumptions are required in
this paper. In the context of truncation approximation, the convergence of {πk}k≥1 to π has
been studied for a long time, see [Twe98, IGL22, IG22, and references therein]. The results
related to this note are briefly discussed in Remark 3.4.

Notations. IfW : X→[1,+∞) is a measurable function and if (λ1, λ2) ∈ (M+)2 is such that
λi(W ) <∞ for i = 1, 2, then the W -weighted total variation norm ∥λ1 − λ2∥W is defined by

∥λ1 − λ2∥W := sup
|f |≤W

∣∣λ1(f)− λ2(f)
∣∣. (6)

If W = 1X, then ∥λ1 − λ2∥1X = ∥λ1 − λ2∥TV is the standard total variation norm. If λ1 and
λ2 are probability measures on (X,X ), then ∥λ1 −λ2∥TV corresponds to their standard total
variation distance, which can also be defined by

∥λ1 − λ2∥TV = 2 sup
A∈X

|λ1(1A)− λ2(1A)|. (7)

Recall that a non-negative kernel R(x, dy), x ∈ X, on (X,X ) is said to be submarkovian if
for every x ∈ X we have R(x,X) ≤ 1. We denote by R its functional action defined by

∀x ∈ X, (Rf)(x) :=

∫
X
f(y)R(x, dy),

where f : X→R is any R(x, ·)−integrable function. For every n ≥ 1 the n−th iterate kernel
of R(x, dy) is denoted by Rn(x, dy), x ∈ X, and Rn stands for its functional action. As usual
R0 is the identity map I by convention.

2 Main results

Let {Pθ}θ∈Θ be a family of transition kernels on (X,X ), where Θ is an open subset of some
metric space. We assume that the family {Pθ}θ∈Θ satisfies Assumption (SΘ), and that for
every θ ∈ Θ there exists a unique Pθ−invariant probability measure πθ on (X,X ) such that

πθ(1S) > 0. For every θ ∈ Θ we consider the following recursive sequence {β(θ)k }k≥1 ∈ (M+)N
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introduced in [HL20, HL22b]

β
(θ)
1 (·) := ν(·) and ∀n ≥ 2, β(θ)n (·) := ν

(
Pn−1
θ ·

)
−

n−1∑
k=1

ν
(
Pn−k−1
θ 1S

)
β
(θ)
k (·). (8)

We know from [HL20, HL22b] that

0 < µ(θ)(1X) :=

+∞∑
k=1

β
(θ)
k (1X) <∞, πθ(1S) = µ(θ)(1X)

−1 and πθ := µ(θ)(1X)
−1 µ(θ) (9)

where µ(θ) ∈ M+
∗ is defined by

µ(θ) :=
+∞∑
k=1

β
(θ)
k . (10)

Moreover, for every θ ∈ Θ and for every n ≥ 1, let us define µ
(θ)
n ∈ M+

∗ and the probability

measure µ̃
(θ)
n on (X,X ) by:

µ(θ)n :=
n∑

k=1

β
(θ)
k and µ̃(θ)n := µ(θ)n (1X)

−1
µ(θ)n . (11)

2.1 Basic estimates

For any measurable function W : X→[1,+∞) satisfying Assumption (WΘ) and for any fixed
θ0 ∈ Θ, let us introduce the following quantities

∀n ≥ 1, ε̃n,Θ,W = sup
θ∈Θ

∥πθ − µ̃(θ)n ∥W (12)

∀θ ∈ Θ, ∀x ∈ X, ∆θ,W (x) := ∥Pθ(x, ·)− Pθ0(x, ·)∥W (13)

together with the two following conditions:

lim
n→+∞

ε̃n,Θ,W = 0 (EW )

∀x ∈ X, lim
θ→ θ0

∆θ,W (x) = 0. (∆W )

Theorem 2.1 Assume that {Pθ}θ∈Θ satisfies Assumption (SΘ), and that for every θ ∈ Θ
there exists a unique Pθ−invariant probability measure πθ on (X,X ) such that πθ(1S) > 0. Let
W : X→[1,+∞) be a measurable function satisfying Assumption (WΘ). Then the following
inequalities hold for for every n ≥ 2

for U ∈ {1X,W}, ∥µ(θ)n − µ(θ0)n ∥U ≤
n−1∑
k=1

min
{
µ
(θ0)
k (∆θ,U ) , µ

(θ)
k (∆θ,U )

}
(14a)

∥πθ − πθ0∥W ≤ 2 ε̃n,Θ,W +
∥µ(θ)n − µ

(θ0)
n ∥W

µ
(θ)
n (1X)

+
µ
(θ0)
n (W ) ∥µ(θ0)n − µ

(θ)
n ∥TV

µ
(θ)
n (1X)µ

(θ0)
n (1X)

. (14b)

If moreover Assumptions (∆W ) and (EW ) hold, then

lim
θ→ θ0

∥πθ − πθ0∥W = 0. (15)
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Remark 2.1 If {Pθ}θ∈Θ satisfies Assumption (SΘ) and if each Pθ admits a unique invariant
probability measure πθ on (X,X ) such that πθ(1S) > 0, then

∥πθ − πθ0∥TV ≤ 2 ε̃n,Θ,1X + 2µ(θ)n (1X)
−1 ∥µ(θ)n − µ(θ0)n ∥TV (16)

since W = 1X obviously satisfies Assumption (WΘ), so that (14b) with W = 1X gives (16).
In particular both estimates (16) and (14b) hold under the assumptions of Theorem 2.1.

The proof of Theorem 2.1 is based on the two next lemmas. Lemma 2.1 below is classical,
e.g. see [Twe98]. Its proof is recalled for convenience.

Lemma 2.1 LetW : X→[1,+∞) be a measurable function. For i = 0, 1 let Ri(x, dy), x ∈ X,
be two non-negative submarkovian kernels on (X,X ) such that

∀i ∈ {0, 1}, ∀x ∈ X,
∫
X
W (y)Ri(x, dy) ≤W (x), (17)

and define
∀x ∈ X, ∆W (x) = ∥R1(x, ·)−R0(x, ·)∥W .

Then we have for every measurable function f : X→R such that |f | ≤W

∀n ≥ 1, ∀x ∈ X,
∣∣(Rn

1f)(x)− (Rn
0f)(x)

∣∣ ≤ min

{ n−1∑
j=0

(
Rj

0∆W )(x),
n−1∑
j=0

(
Rj

1∆W )(x)

}
. (18)

Proof. For n = 1 Inequality (18) holds since we have for every measurable function f : X→R
such that |f | ≤W ∣∣(R1f)(x)− (R0f)(x)

∣∣ ≤ ∆W (x)

from the definition of the W -weighted total variation norm. Next proceed by induction.
Assume that (18) holds for some n ≥ 1. Let g : X→R be any measurable function such that
|g| ≤W . Then∣∣(Rn+1

1 g)(x)− (Rn+1
0 g)(x)

∣∣ ≤
∣∣(Rn

1 (R1 −R0)g
)
(x)

∣∣+ ∣∣((Rn
1 −Rn

0 )R0g
)
(x)

∣∣
≤

∫
X

∣∣(R1g)(y)− (R0g)(y)
∣∣Rn

1 (x, dy) +
n−1∑
j=0

(
Rj

1∆W )(x)

≤
∫
X
∆W (y)Rn

1 (x, dy) +

n−1∑
j=0

(
Rj

1∆W )(x) =

n∑
j=0

(
Rj

1∆W )(x)

using the triangular inequality, the fact that |R0g| ≤ R0W ≤ W by hypothesis (17) and the
induction assumption, and finally the definition of ∆W . Exchanging the role of R0 and R1

in the previous inequality gives (18) at order n+ 1.

□

For any ν-integrable function f : X→R, we set

Tf := ν(f) 1S with S ∈ X and ν ∈ M+
∗ given in (SΘ). (19)

Note that for every θ ∈ Θ we have 0 ≤ T ≤ Pθ from the positivity of ν and from (SΘ).
Define the submarkovian kernel Rθ = Pθ − T . We know from [HL22b, Prop. 2.1] that

∀θ ∈ Θ, ∀k ≥ 1, β
(θ)
k = ν ◦Rk−1

θ (20)

with the convention R0
θ = I. Moreover recall that β

(θ)
1 = β

(θ0)
1 = ν.
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Lemma 2.2 Under the assumptions of Theorem 2.1, Property (14a) holds and we have

∀θ ∈ Θ, ∀n ≥ 2, ∥µ̃(θ)n − µ̃(θ0)n ∥W ≤ an ∥µ(θ)n − µ(θ0)n ∥W + bn ∥µ(θ0)n − µ(θ)n ∥TV (21a)

with an :=
1

µ
(θ)
n (1X)

and bn :=
µ
(θ0)
n (W )

µ
(θ)
n (1X)µ

(θ0)
n (1X)

. (21b)

Proof. It is sufficient to prove (14a) with U = W , see Remark 2.1. Then we have for every
measurable function f : X→R such that |f | ≤W

∀n ≥ 2,
∣∣µ(θ)n (f)− µ(θ0)n (f)

∣∣ ≤
n∑

k=2

∣∣β(θ)k (f)− β
(θ0)
k (f)

∣∣ (from (11))

=

n∑
k=2

∣∣ ∫
X
(Rk−1

θ f)(x)− (Rk−1
θ0

f)(x) dν(x)
∣∣ (from (20))

≤
n−1∑
k=1

∫
X

∣∣(Rk
θf)(x)− (Rk

θ0f)(x)
∣∣ dν(x)

≤
n−1∑
k=1

k−1∑
j=0

ν
(
Rj

θ∆θ,W

)
from (18) in Lemma 2.1 applied to R0 = Rθ0 and R1 = Rθ, observing moreover that ∆θ,W

in (13) is also given by

∀x ∈ X, ∆θ,W (x) = ∥Rθ(x, ·)−Rθ0(x, ·)∥W .

Then (14a) follows from (20) and from the definition of the W -weighted total variation norm
(moreover exchange the role of θ and θ0 in the previous inequality to obtain the complete
form of (14a)). Finally let us prove (21a). We have for every measurable function f : X→R
such that |f | ≤W∣∣µ̃(θ)n (f)− µ̃(θ0)n (f)

∣∣ ≤ 1

µ
(θ)
n (1X)

∣∣µ(θ)n (f)− µ(θ0)n (f)
∣∣+ |µ(θ0)n (f)|

∣∣∣∣ 1

µ
(θ)
n (1X)

− 1

µ
(θ0)
n (1X)

∣∣∣∣
≤ 1

µ
(θ)
n (1X)

∥µ(θ)n − µ(θ0)n ∥W + µ(θ0)n (W )

∣∣µ(θ0)n (1X)− µ
(θ)
n (1X)

∣∣
µ
(θ)
n (1X)µ

(θ0)
n (1X)

≤ 1

µ
(θ)
n (1X)

∥µ(θ)n − µ(θ0)n ∥W +
µ
(θ0)
n (W )

µ
(θ)
n (1X)µ

(θ0)
n (1X)

∥µ(θ0)n − µ(θ)n ∥TV

from which we deduce (21a).

□

Proof of Theorem 2.1. Property (14a) has been proved in Lemma 2.2. Next we have

∀θ ∈ Θ, ∀n ≥ 1, ∥πθ − πθ0∥W ≤ ∥πθ − µ̃(θ)n ∥W + ∥µ̃(θ)n − µ̃(θ0)n ∥W + ∥µ̃(θ0)n − πθ0∥W .

Then (14b) follows from the definition of ε̃n,Θ,W in (12) and from (21a). Now prove (15)
under the additional assumptions (∆W )-(EW ). We have for every θ ∈ Θ and every n ≥ 2

∥πθ − πθ0∥W ≤ 2 ε̃n,Θ,W + (an + bn) ∥µ(θ)n − µ(θ0)n ∥W
≤ 2 ε̃n,Θ,W + ν(1X)

−1
(
1 + ν(1X)

−1µ(θ0)n (W )
)
∥µ(θ)n − µ(θ0)n ∥W

≤ 2 ε̃n,Θ,W + ν(1X)
−1

(
1 + ν(1X)

−1µ(θ0)n (W )
)
(n− 1)µ(θ0)(∆θ,W ) (22)
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from µ
(θ)
n (1X) ≥ µ

(θ)
1 (1X) = β

(θ)
1 (1X) = ν(1X), and from (14a) and µ

(θ0)
k ≤ µ(θ0). Recall that

µ(θ0) ∈ M+ and that
∀θ ∈ Θ, ∆θ,W ≤ 2CW (23)

from (WΘ). Then, under Assumption (∆W ), we obtain that

lim
θ→ θ0

µ(θ0)(∆θ,W ) = 0

from Lebesgue’s theorem since µ(θ0)(W ) < ∞ (use πθ0(W ) < ∞ and (9)). It follows from
(22) that

∀n ≥ 2, lim sup
θ→ θ0

∥πθ − πθ0∥W ≤ 2 ε̃n,Θ,W .

Then Assumption (EW ) gives (15) since n is arbitrarily large in the previous inequality. □

2.2 Convergence rates

In practice the stationary distribution πθ0 of Pθ0 is supposed to be unknown and to be not
directly computable. By contrast the stationary distribution πθ of the perturbed transition
kernel Pθ is expected to be computable and then to provide an approximation of πθ0 . In this
context, Inequalities (14a)-(14b) of Theorem 2.1 can be used to obtain an explicit control
of ∥πθ − πθ0∥W , provided that the functions ∆θ,W (·) and ∆θ,1X(·) defined in (13) are also
supposed to be computable, so that the real numbers γθ,W := πθ(∆θ,W ) and γθ := πθ(∆θ,1X)
introduced below are available. The bound in (14b) also depends on the term ε̃n,Θ,W defined
in (12), which is investigated in the next section under a polynomial drift condition, see also
Remark 2.2.

Corollary 2.1 Assume that the assumptions of Theorem 2.1 hold and that there exists an
integer n∗ ≥ 2 such that

∀n ≥ n∗, εn,Θ,1X := sup
θ∈Θ

[
µ(θ)(1X)− µ(θ)n (1X)

]
≤ 1

2
. (24)

Then the following inequalities hold for every θ ∈ Θ and for every n ≥ n∗:

∥πθ − πθ0∥TV ≤ 2 ε̃n,Θ,1X + 4(n− 1) γθ (25a)

∥πθ − πθ0∥W ≤ 2 ε̃n,Θ,W + 2(n− 1)
(
γθ,W + 2πθ0(W )γθ

)
(25b)

with γθ := πθ(∆θ,1X) and γθ,W := πθ(∆θ,W ). (25c)

If moreover Assumptions (∆W ) and (EW ) hold, then we have

lim
θ→ θ0

γθ = lim
θ→ θ0

γθ,W = 0.

Proof. It follows from the definition (24) of n∗ that

∀n ≥ n∗, ∀θ ∈ Θ, µ(θ)n (1X) ≥ µ(θ)(1X)− 1/2 ≥ µ(θ)(1X)/2

since µ(θ)(1X) = 1/πθ(1S) ≥ 1, see (9). Hence

∀n ≥ n∗, ∀θ ∈ Θ,
1

µ
(θ)
n (1X)

≤ 2πθ(1S).
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Moreover Property (14a) and µ
(θ)
k ≤ µ(θ) give for U ∈ {1X,W}

∥µ(θ)n − µ(θ0)n ∥U ≤ (n− 1)µ(θ)(∆θ,U ).

Then, applying (14b) and the two last inequalities, we obtain that for every n ≥ n∗ and for
every θ ∈ Θ

∥πθ − πθ0∥W ≤ 2 ε̃n,Θ,W + 2(n− 1)

(
πθ(1S)µ

(θ)(∆θ,W ) + 2πθ(1S)πθ0(1S)µ
(θ0)(W )µ(θ)(∆θ,1X)

)
≤ 2 ε̃n,Θ,W + 2(n− 1)

(
πθ(∆θ,W ) + 2πθ0(W )πθ(∆θ,1X)

)
from (9). This proves (25b). Similarly, starting from (16) (in place of (14b)), we obtain (25a).
Next assume that Assumptions (∆W ) and (EW ) hold. Note that

γθ,W = πθ(∆θ,W ) ≤
∣∣πθ(∆θ,W )− πθ0(∆θ,W )

∣∣+ πθ0(∆θ,W ) ≤ 2C∥πθ − πθ0∥W + πθ0(∆θ,W )

since ∆θ,W ≤ 2CW , see (23). Hence limθ→ θ0 γθ,W = 0 from (15) and from Lebesgue’s
theorem with respect to the probability measure πθ0 (recall that πθ0(W ) <∞ from Assump-
tion (WΘ)). Finally we have limθ→ θ0 γθ = 0 since γθ ≤ γθ,W . □

Remark 2.2 At this stage of the exposition, when {Pθ}θ∈Θ is a family of perturbed geo-
metrically or polynomially ergodic Markov kernels, then the bounds (25a)-(25b) of Corol-
lary 2.1 combined with the estimates of ε̃n,Θ,W derived from [HL22b] can be used to con-
trol the error term ∥πθ − πθ0∥W for some suitable functions W linked to the drift con-
ditions. In this work we are mainly concerned with the polynomial case, see Section 3.
Indeed, in the case of V−geometrically ergodic Markov kernels, the norm ∥πθ − πθ0∥W
with W = V α0 for some suitable α0 ∈ (0, 1] can be simply and efficiently controlled from
γθ,W =

∫
X ∥Pθ0(x, ·)−Pθ(x, ·)∥W πθ(dx) combining a spectral approach with solutions to Pois-

son’s equation (see [LL18, Th. 2] for irreducible and positive recurrent discrete Markov kernels
and [HL22a, Th. 6.1] in a general context). So, we are not going in that direction. What can
be done using Corollary 2.1 in the context of perturbed V−geometrically ergodic Markov ker-
nels is postponed in Appendix A for completeness. In particular we show in Appendix A that
our general estimates are very close to Tweedie’s (see (2)) when applied to discrete truncation
issues.

3 Applications to polynomially ergodic Markov kernels

Under Assumption (SΘ), let us introduce the following condition for some positive integer m:
there exists a collection {Vi}mi=0 of Lyapunov functions (i.e. Vi : X→[1,+∞) is measurable)
with Vm = 1X and ∀θ ∈ Θ, ∀x ∈ X, (PθV0)(x) <∞, such that

∀θ ∈ Θ, ∀i ∈ {0, . . . ,m− 1}, (Pθ − T )Vi ≤ Vi − Vi+1 with T (·) := ν(·)1S . (26)

Since Pθ − T ≥ 0 from (SΘ), the properties (26) imply that

Vm = 1X ≤ Vm−1 ≤ · · · ≤ V1 ≤ V0.

Moreover we have ν(V0) <∞. For any positive integer j define

Cj := 2
j(j+1)

2
−1 and Dj := 2

(j+1)(j+2)
2

+1. (27)

9



The next estimates for the terms ε̃n,Θ,1X and ε̃n,Θ,Vj defined in (12) and used in Esti-
mates (25a)-(25b) are obtained from the bounds in [HL22b, Eq. (24), (27) and Cor. 5.1]
applied to Pθ, which only depend on ν(V0) with ν ∈ M+

∗ (independent of θ ∈ Θ) given in
(SΘ) and on the positive constants µ(θ)(Vj). Hence, for j = 0, . . . ,m we define (a priori in
[0,+∞])

ϑj := sup
θ∈Θ

µ(θ)(Vj).

Complements on these constants are provided in Remark 3.1.

Theorem 3.1 Assume that the family {Pθ}θ∈Θ satisfies Assumption (SΘ) and Conditions (26)
for some m ≥ 1 with respect to some collection {Vi}mi=0 of Lyapunov functions with Vm = 1X
and ∀θ ∈ Θ, ∀x ∈ X, (PθV0)(x) <∞. Also assume that for every θ ∈ Θ there exists a unique
Pθ−invariant probability measure πθ on (X,X ) such that πθ(1S) > 0. Then the following
assertions hold.

(a) If m ≥ 2, then Estimate (25a) holds with

∀n ≥ n∗, ε̃n,Θ,1X ≤ 2Cm ν(V0)

m− 1

1

nm−1

where n∗ = max
(
2 ,

⌊(
2(m− 1)−1Cmν(V0)

)1/(m−1)⌋
+ 1

)
. (28)

(b) If m ≥ 3, then for every j = 2, . . . ,m−1 and every θ ∈ Θ we have πθ(Vj) ≤ µ(θ)(Vj) <∞.
Moreover we have ϑj <∞, and Estimate (25b) holds with W = Vj and

∀n ≥ n∗, ε̃n,Θ,Vj ≤
Cj ν(V0)

j − 1

1

nj−1
+ 2ϑj

Cm ν(V0)

m− 1

1

nm−1
.

(c) If m ≥ 1 and ϑ0 <∞, then Estimate (25a) holds with

∀n ≥ n∗∗, ε̃n,Θ,1X ≤ 2Dmϑ0
m

1

nm

where n∗∗ = max
(
2 ,

⌊(
2m−1Dmϑ0

)1/m⌋
+ 1

)
. (29)

(d) If m ≥ 2 and ϑ0 < ∞, then for every j = 1, . . . ,m − 1 we have ϑj ≤ ϑ0, and Esti-
mate (25b) holds with W = Vj and

∀n ≥ n∗∗, ε̃n,Θ,Vj ≤
Dj ϑ0
j

1

nj
+ 2ϑj

Dm ϑ0
m

1

nm
.

Remark 3.1 Note that for j = 0, . . . ,m−1 the second condition of (WΘ) holds with W = Vj
from (26) and ν(Vj) < ∞. Also mention that n∗ in (28) (resp. n∗∗ in (29)) satisfies (24)
under the assumptions of Assertion (a) (resp. Assertion (c)) since for every θ ∈ Θ the quantity

εn := µ(θ)(1X)− µ
(θ)
n (1X) satisfies from [HL22b, Cor. 5.1]

εn ≤ Cm ν(V0)

m− 1

1

nm−1
in Assertion (a) and εn ≤ Dmϑ0

m

1

nm
in Assertion (c).
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Moreover the following bound for the constant ϑj can be used in Assertions (b) of Theorem 3.1
(see the proof [HL22b, Cor. 5.1]):

ϑj = sup
θ∈Θ

+∞∑
k=1

β
(θ)
k (Vj) ≤ Cj ν(V0)

+∞∑
k=1

1

kj
. (30)

Also recall that µ(θ)(Vj) = µ(θ)(1X)πθ(Vj) = πθ(Vj)/πθ(1S) from (9). In particular Condition
ϑ0 <∞ in Assertions (c)-(d) of Theorem 3.1 holds if, and only if, a := infθ∈Θ πθ(1S) > 0 and
L := supθ∈Θ πθ(V0) <∞, in which case we have ϑ0 ≤ L/a. Moreover, in Assertions (a) and
(c), we have limθ→ θ0 ∥πθ − πθ0∥TV = 0 from Corollary 2.1, provided that Assumption (∆W )
holds with W = 1X. Similarly, in Assertion (b) and (d) we have limθ→ θ0 ∥πθ − πθ0∥Vj =
0 provided that Assumption (∆W ) holds with W = Vj (with the condition on j given in
Assertion (b) and (d) respectively). The smaller j is, the larger the function W = Vj is
in (25b), but the worse bound of ε̃n,Θ,Vj is. Consequently in practice, for a given measurable
function f : X→R such that f/V1 is bounded, the best bound for |πθ(f)−πθ0(f)| which can be
derived from Assertions (b) or (d) is obtained by choosing the greatest integer j ≤ m (i.e. the
smallest function Vj) such that |f |/Vj is bounded. Of course, if f is bounded (i.e. f/Vm is
bounded), then the best bound for |πθ(f) − πθ0(f)| is provided by (a) (or by (c) if ϑ0 < ∞).
Also observe that the bound of ε̃n,Θ,Vj in Assertion (b) does not apply to j = 1. By contrast,
under the condition ϑ0 <∞, the bound of ε̃n,Θ,Vj in Assertion (d) applies to j = 1.

Application to truncation-augmentation of discrete Markov kernels

Let P := (P (x, y))(x,y)∈N2 be a Markov kernel on X := N. For any k ≥ 1 let Bk := {0, . . . , k}.
We assume that there exists a finite subset S ⊂ N and ν ∈ M+

∗ with finite support Supp(ν) ⊂
N such that

∀x ∈ N, ∀A ⊂ N, P (x,A) ≥ ν(1A) 1S(x). (S)

Moreover we assume that there exists an unbounded and non-decreasing sequence V :=
(V (x))x∈N with V (0) = 1 such that

M := sup
x∈S

(PV )(x) <∞ (M)

∃α ∈ [0, 1), ∃c > 0, ∀x ∈ Sc, (PV )(x) ≤ V (x)− c V (x)α. (DJSc)

In the present context, Inequality (DJSc) is the polynomial drift condition introduced in
[JR02] and is nothing else than Inequality (4) in the introduction. This condition was used
with c = 1 and S = {0} in [Liu10, Th. 5.1]. Recall that this polynomial drift condition has
been generalized in [DFMS04] to cover general subgeometric rates of the convergence of the
iterates Pn to π(·) 1X, see also [DMPS18, Sect. 17.2]. Finally P is assumed to have a unique
invariant probability measure π such that π(1S) > 0.

Now, for k ≥ 1 set Bk
c := N \ Bk and let us consider the k-th truncated and arbitrary

augmented matrix Pk of the (k + 1)× (k + 1) north-west corner truncation of P :

∀(x, y) ∈ Bk
2, Pk(x, y) := P (x, y) + P (x,Bk

c)ψx,k(y) (31)

where ψx,k(·) is some probability measure on Bk. When ψx,k(·) ≡ ψk(·) only depends on k
then this is referred as to a linear augmentation. When ψx,k(·) = δ0(·) or ψx,k(·) = δk(·)
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then we obtain the first/last column linear augmentation used in [Twe98]. The goal here
is to prove that, if P satisfies Assumptions (S)-(M)-(DJSc), then its invariant probability
measure π can be approximated by the Pk−invariant probability measure πk, with an explicit
error control in function of the integer k. Since P is an infinite matrix, we first define the
following extended Markov kernel P̂k of Pk on N:

∀(x, y) ∈ N2, P̂k(x, y) :=


Pk(x, y) if (x, y) ∈ Bk

2

1 if y = 0 and x > k

0 otherwise.

Similarly, if πk is a Pk−invariant probability measure on Bk, then we define the extended
probability measure π̂k on N by

∀x ∈ N, π̂k({x}) :=

{
πk({x}) if x ∈ Bk

0 if x /∈ Bk.
(32)

For every k ≥ 1, let us introduce

∀x ∈ N, ∆k(x) := ∥P (x, ·)− P̂k(x, ·)∥TV (33)

and, if πk is a Pk−invariant probability measure on Bk, define

γk :=
∑
x∈Bk

πk(x)∆k(x). (34)

Finally let k0 ∈ N be the smallest integer such that

S ⊂ Bk0 and Supp(ν) ⊂ Bk0 . (35)

The main focus here is on the comparison of our results with Liu’s work [Liu10], so that
the finite set S in Assumptions (S)-(M)-(DJSc) is assumed to be an atom in the next
Theorem 3.2 which is based on [HL22b, Cor. 5.4], see Remark 3.3 for the non-atomic case.
More specifically assume that P := (P (x, y))(x,y)∈N2 satisfies Assumptions (S)-(M)-(DJSc)
with S supposed to be an atom satisfying Condition (35). Next define the following positive
integer

m := ⌊(1− α)−1⌋ (36)

with α ∈ [0, 1) given in (DJSc) and where ⌊·⌋ denotes the integer part function. We know
from [HL22b, Subs. 5.2] that the single Markov kernel P satisfies Condition (26) with respect
to the following family {Vi}mi=0 of Lyapunov functions

V0 =
[ m∏
k=1

ck
]−1

V, ∀1 ≤ i ≤ m− 1 : Vi =
[ m∏
k=i+1

ck
]−1

V αi , Vm = 1X (37)

with c1 := c ∈ (0, 1) (we can choose c ∈ (0, 1) in (DJSc)) and some explicit {ci}mi=2 ∈
(0, 1)m−1, and with 0 < αm−1 < · · · < α2 < α1 < 1 recursively defined by α0 = 1, α1 :=
1− 1/m ∈ [0, 1), and

∀i = 2, . . . ,m− 1, αi = 2αi−1 − αi−2 = (α1 − 1) i+ 1,
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see [HL22b, Cor. 5.4 and its proof] for details. We have

∀i = 0, . . . ,m− 1, lim
x→+∞

[
Vi(x)− Vi+1(x)

]
= 0

since αi+1 < αi and V (x) ↗ +∞ when x→+∞ by hypothesis. Hence there exists a positive
integer k1 such that

∀i = 0, . . . ,m− 1, ∀x ∈ N ∪ [k1,+∞), Vi(x)− Vi+1(x) ≥ Vi(0). (38)

Now assume that P has a unique invariant probability measure π such that π(1S) > 0 and
that for every k ≥ kmax := max(k0, k1), the matrix Pk in (31) admits a unique Pk−invariant
probability measure πk on Bk such that πk(1S) > 0. Then the next Lemmas 3.1-3.3 show
that π̂k defined in (32) is the unique P̂k−invariant probability measure, and that the whole
family {Pθ}θ∈Θ with

Θ :=
([
kmax,+∞

)
∩ N

)
∪ {∞}, P∞ := P, ∀θ ≥ kmax, Pθ := P̂k, (39)

satisfies Assumption (SΘ) with S, ν given in (S) and Condition (26) w.r.t. the Lyapunov
functions {Vi}mi=0 defined in (37). Moreover Assumption (∆W ) is fulfilled with W = V0.
Accordingly all the conclusions of Theorem 3.1 hold with πθ0 = π∞ = π and πθ = π̂k for
k ≥ kmax. This provides an explicit control for ∥π̂k−π∥TV or for ∥π̂k−π∥Vj according to the
value of m in (36), which only depends on α ∈ [0, 1) in (DJSc). The next statement only
focusses on the error bound in total variation distance ∥π̂k − π∥TV to fit the framework of
[Liu10].

Theorem 3.2 Assume that P := (P (x, y))(x,y)∈N2 satisfies Assumptions (S)-(M)-(DJSc)
with S supposed to be an atom and to satisfy Condition (35). Let k0 and k1 be given in (35)
and (38) respectively, and set kmax := max(k0, k1). Moreover assume that P has a unique
invariant probability measure π such that π(1S) > 0 and that for every k ≥ kmax (up to pick
a larger integer kmax) the matrix Pk admits a unique Pk−invariant probability measure πk
on Bk such that πk(1S) > 0. Finally let m be defined by (36) and let V0 be the Lyapunov
function in (37). Then the following assertions holds.

(a) For every k ≥ kmax, π̂k defined in (32) is the unique P̂k−invariant probability measure.

(b) The sequence {γk}k≥1 defined in (34) satisfies: limk γk = 0.

(c) If m ≥ 2, defining Cm as in (27) and the integer n∗ ≥ 2 as in (28), then we have:

∀k ≥ kmax, ∀n ≥ n∗, ∥π̂k − π∥TV ≤ 4Cm ν(V0)

m− 1

1

nm−1
+ 4(n− 1) γk. (40)

(d) If m ≥ 1 and L := supk∈Θ π̂k(V0) <∞, a = infk∈Θ πk(1S) > 0, then

∀k ≥ kmax, ∀n ≥ n∗∗, ∥π̂k − π∥TV ≤ 4Dmϑ0
m

1

nm
+ 4(n− 1) γk (41)

with ϑ0 = L/a and where Dm and the integer n∗∗ ≥ 2 are defined as in (27) and (29).
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The Pk−invariant probability measure πk on Bk is supposed to be computable since Pk is
a finite matrix. In this case the exact value of the real numbers γk := πk(∆k) in (34) is
computable from Formula (42) below. A bound of γk is given in Proposition 3.4. Finally
note that, if the positive measure µ(θ) in (10) with Θ given here in (39) is known, then ϑ0
in Assertion (d) is given by ϑ0 := supθ∈Θ µ

(θ)(V0), provided that this quantity is finite, see
Theorem 3.1 and Remark 3.1.

Proof. Assertion (a) is proved in Lemma 3.1 below. Note that we have ∀k ≥ k0, π̂k(1S) =
πk(1S) since S ⊂ Bk0 from Assumption (35). Moreover we deduce from Lemma 3.1 that
γk = π̂k(∆k), thus γk ≡ πθ(∆θ,1X) = γθ using the notations from (39) and Corollary 2.1, see
(25c). Then the conclusions (40) and (41) follow from (25a) combined with Assertions (a)
and (c) of Theorem 3.1. Indeed Lemma 3.3 below shows that the whole family {Pθ}θ∈Θ given
in (39) satisfies the assumptions of Theorem 3.1, see also Remark 3.1 concerning the constant
ϑ0 in Assertion (d). Moreover we know from Theorem 3.1 that Assumption (EW ) holds with
W = 1X, and Lemma 3.2 below shows that Assumption (∆W ) holds with W = 1X. This
proves Assertion (b) due to Corollary 2.1. □

Lemma 3.1 Let P := (P (x, y))(x,y)∈N2 be a Markov kernel on N, let k ≥ 1, and let Pk be
the stochastic matrix Pk given in (31). If Pk admits a unique invariant probability measure
πk on Bk, then π̂k defined in (32) is the unique P̂k−invariant probability measure.

Proof. We deduce from the definitions of P̂k and π̂k that

∀y ∈ Bk
c,

∑
x∈N

P̂k(x, y) π̂k({x}) = 0 = π̂k({y}).

Thus

∀y ∈ Bk,
∑
x∈N

P̂k(x, y) π̂k({x}) =
∑
x∈Bk

P̂k(x, y) π̂k({x})

=
∑
x∈Bk

Pk(x, y)πk({x}) = πk({y}) = π̂k({y})

using successively the definitions of π̂k and P̂k, the Pk−invariance of πk, and again the
definition of π̂k. We have proved that π̂k is a P̂k−invariant probability measure. To prove
the uniqueness, consider any P̂k−invariant probability measure η̂ = (η̂({x}))x∈N. Then

∀y ∈ Bk
c, η̂({y}) =

∑
x∈N

P̂k(x, y) η̂({x}) = 0

from the definition of P̂k. Thus

∀y ∈ Bk, η̂({y}) =
∑
x∈N

P̂k(x, y) η̂({x}) =
∑
x∈Bk

P̂k(x, y) η̂({x}) =
∑
x∈Bk

Pk(x, y) η̂({x})

from the definition of P̂k. Thus η := (η̂({x}))x∈Bk
is a Pk−invariant probability measure on

Bk. This proves that η̂ = π̂k. □

Lemma 3.2 Let P := (P (x, y))(x,y)∈N2 be a Markov kernel on N. For any k ≥ 1, let ∆k(·)
be given in (33). Then we have

∀k ≥ 1, ∀x ∈ N, ∆k(x) = 2
(
1Bk

(x)P (x,Bk
c) + 1Bk

c(x)P (x,N∗)
)
. (42)

Moreover we have ∀x ∈ N, limk ∆k(x) = 0, that is Assumption (∆W ) holds with W = 1X.
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Proof. For any x ∈ Bk we have

∆k(x) =
∑
y∈N

∣∣P (x, y)− P̂k(x, y)
∣∣ = P (x,Bk

c)
∑
y∈Bk

ψx,k(y) + P (x,Bk
c) = 2P (x,Bk

c) (43)

from the definitions of P̂k, Pk in (31) using that ψx,k(Bk) = 1. For any x ∈ Bk
c, we obtain

from the definition of P̂k that

∆k(x) = (1− P (x, 0)) +
∑
y∈N∗

P (x, y) = 2P (x,N∗).

Thus Equality (42) holds for any x ∈ N. Finally, for any x ∈ N, the convergence to 0 of the
sequence {∆k(x)}k≥1 easily follows from (42) and the convergence of

∑
y∈N P (x, y). □

Lemma 3.3 If P := (P (x, y))(x,y)∈N2 satisfies the assumptions of Theorem 3.2, then the
family {Pθ}θ∈Θ given in (39) satisfies the assumptions of Theorem 3.1.

Proof. Let k ≥ k0. For every x ∈ S and every A ⊂ N we have

P̂k(x,A) ≥
∑

y∈A∩Bk

P̂k(x, y) ≥
∑

y∈A∩Bk

P (x, y) = P (x,A ∩Bk) ≥ ν(A ∩Bk) = ν(A)

using successively x ∈ S ⊂ Bk0 ⊂ Bk and the definitions of P̂k and Pk, Assumption (S), and
finally Supp(ν) ⊂ Bk0 ⊂ Bk. This proves that the family {Pθ}θ∈Θ in (39) satisfies Assump-
tion (SΘ) with S, ν given in (S). Now let us prove that {Pθ}θ∈Θ satisfies Condition (26)
with respect to the family {Vi}mi=0 defined in (37). That the Markov kernel P∞ = P satisfies
(26) w.r.t. {Vi}mi=0 is discussed before Theorem 3.2. Next, we have to prove that, for every

k ≥ kmax, the Markov kernel P̂k satisfies (26) with respect to the same family {Vi}mi=0.

Let W := (W (x))x∈N be any non-decreasing sequence with W (0) ≥ 1. Let k ≥ 1. We
have

∀x ∈ Bk, (P̂kW )(x) =
∑
y∈Bk

P (x, y)W (y) + P (x,Bk
c)

∑
y∈Bk

ψx,k(y)W (y)

≤
∑
y∈Bk

P (x, y)W (y) + P (x,Bk
c)

[
W (k)

∑
y∈Bk

ψx,k(y)

]
=

∑
y∈Bk

P (x, y)W (y) +
∑

y∈Bk
c

P (x, y)W (k)

≤
∑
y∈N

P (x, y)W (y) = (PW )(x) (44)

since for any (y, z) ∈ Bk × Bk
c, W (y) ≤ W (k) ≤ W (z) and since ψx,k(·) is a probability

measure on Bk. Moreover we have

∀x ∈ Bk
c, (P̂kW )(x) =W (0).

Note that for every i = 0, . . . ,m − 1 the function W = Vi is non-decreasing and such that
Vi(0) ≥ 1 since Vi ≥ Vm = 1X. Let k ≥ k1. Then applying the previous inequalities to
W = Vi for any i = 0, . . . ,m− 1 provides

∀x ∈ Bk, (P̂kVi)(x) ≤ (PVi)(x) ≤ Vi(x)− Vi+1(x) + ν(Vi)1S(x) (45)
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since P satisfies (26), and

∀x ∈ Bk
c, (P̂kVi)(x) = Vi(0) ≤ Vi(x)− Vi+1(x) ≤ Vi(x)− Vi+1(x) + ν(Vi)1S(x) (46)

from (38). This proves that P̂k satisfies (26).

Finally note that we have ∀x ∈ X, (PV0)(x) <∞ from (M) and (DJSc). Then we obtain
that ∀k ≥ kmax, ∀x ∈ X, (P̂kV0)(x) <∞ from (45)-(46) applied with i = 0. □

Remark 3.2 Assertions (b) and (d) of Theorem 3.1 apply too under the assumptions of
Theorem 3.2. Recall that the bounds (30) can be used for Assertions (b) of Theorem 3.1.
Moreover set

∆k,Vj
(x) = ∥P (x, ·)− P̂k(x, ·)∥Vj .

Note that the term γθ,Vj
:= πθ(∆θ,Vj

) in Estimates (25b) is given here by

γk,Vj
= π̂k(∆k,Vj

) =
∑
x∈Bk

π({x})∆k,Vj
(x).

For completeness let us prove that ∀x ∈ N, limk ∆k,Vj
(x) = 0, so that limk γk,Vj

= 0 due
to Corollary 2.1. Obviously it is sufficient to prove that ∀x ∈ N, limk ∆k,V0(x) = 0 since

Vj ≤ V0. From the definition of P̂k and (31), we have for every x ∈ Bk

∆k,V0(x) =
∑
y∈N

∣∣P (x, y)− P̂k(x, y)
∣∣V0(y)

= P (x,Bk
c)

∑
y∈Bk

ψx,k(y)V0(y) +
∑

y∈Bk
c

P (x, y)V0(y)

≤ P (x,Bk
c)V0(k) +

∑
y∈Bk

c

P (x, y)V0(y)

≤
∑

z∈Bk
c

P (x, z)V0(z) +
∑

y∈Bk
c

P (x, y)V0(y) ≤ 2
∑

y∈Bk
c

P (x, y)V0(y) (47)

since V0 is non-decreasing and ψx,k(Bk) = 1. Moreover for any x ∈ Bk
c we have

∆k,V0(x) = P (x,N∗)V0(x) +
∑
y∈N∗

P (x, y)V0(y).

Now fix x ∈ N. Then it follows from (47) applied to any k > x that limk ∆k,V0(x) = 0 since∑
y∈N P (x, y)V0(y) = (PV0)(x) <∞ from (M) and (DJSc).

Remark 3.3 The non-atomic case can be addressed in a similar way using [HL22b, Cor. 5.5],
but in this case the analogue of the integer m and of the Lyapunov functions Vi require
more preparation. More specifically, assume that P := (P (x, y))(x,y)∈N2 satisfies Assumptions
(S)-(M)-(DJSc) with some finite set S satisfying Condition (35). First of all, the biggest
function V0 is of the form V0 = c0V

η0 for some constants c0 > 0 and η0 ∈ (0, 1] from [HL22b,
Cor. 5.5]. Note that the case η0 < 1 is possible when S is not an atom. Then we define the
integer m := ⌊η0(1−α)−1⌋. Observe that, if η0 < 1, then m is not necessary positive, so that
we have to assume that η0 ≥ 1−α (thus m ≥ 1) to continue the construction of the Lyapunov
functions Vi. From [HL22b, Cor. 5.5], if η0 ≥ 1−α, then the single Markov kernel P satisfies
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Condition (26) w.r.t. some family {Vi}mi=0 of Lyapunov functions defined as in (37), but with
V η0 in place of V (see the proof of [HL22b, Cor. 5.5] for details on the construction of {Vi}mi=0

and use [HL22b, Cor. 5.2] to obtain that P satisfies (26) w.r.t. {Vi}mi=0). Consequently, when
the assumptions of Theorem 3.2 holds with a non-atomic finite set S, then all the conclusions
of Theorem 3.2 remain true with respect to the family {Vi}mi=0 defined in [HL22b, Cor. 5.5]:
this can be established by repeating the proof of Theorem 3.2 based on Lemmas 3.1-3.3. Indeed
note that, in the proof of Theorem 3.2, the fact that S is an atom has been only used to prove
that the single Markov kernel P satisfies Condition (26) w.r.t. the family {Vi}mi=0 in (37) using
[HL22b, Cor. 5.4]. Hence the only differences with the atomic case are the following. First
the integer m := ⌊η0(1−α)−1⌋ may be zero (i.e. η0 < 1−α), in which case the construction of
the Lyapunov functions Vi is not possible. Second, if 1−α ≤ η0 < 1, then the construction of
{Vi}mi=0 is possible, but the analogue of the bounds (40)-(41) may be less accurate than in the
atomic case since m := ⌊η0(1 − α)−1⌋ may be smaller than the integer ⌊(1 − α)−1⌋. Finally
note that, under the previous assumptions on P , Assertions (b) and (d) of Theorem 3.1 also
apply with respect to the family {Vi}mi=0 defined in [HL22b, Cor. 5.5]. Again the bounds (30)
can be used for Assertions (b), and we have limk γk,Vj

= 0, see Remark 3.2.

Remark 3.4 (Convergence of {π̂k}n≥0 to π in truncation approximation) As already
mentioned, Tweedie proved in [Twe98, Th 3.2] that the convergence in the V -weighted total
variation norm takes place for the first-column linear augmentation (see (31) with ψx,k = δ0)
of V -geometrically ergodic discrete Markov chains. Using regeneration methods, such a con-
vergence is extended to V -geometrically or polynomially ergodic Markov chains with continu-
ous state space in [IG22, Th 2] for a specific linear augmentation (that is the k−first columns
augmentation, for some k, in the discrete state space case). Finally mention that the weak
convergence in the case of general augmentation of continuous state space Markov chains has
been recently addressed in [IGL22]. Note that in such context, the weak convergence does not
provide the convergence in the total variation norm. The estimation of convergence rates is
not discussed in [IG22, IGL22].

To complete the estimates (40) and (41) of ∥π̂k − π∥TV , let us provide a bound on γk =
πk(∆k).

Proposition 3.4 Assume that P := (P (i, j))(i,j)∈N2 satisfies Assumptions (S)-(M)-(DJSc).
Let k ≥ 1 be such that the matrix Pk in (31) admits a unique Pk−invariant probability measure
πk on Bk, and let γk defined in (34). Then

∀k ≥ k0, γk ≤ 2(cMα +M)

c
× 1

V (k + 1)α
(48)

where α and c are given in (DJSc).
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Proof. Note that PV α ≤ (PV )α from Jensen’s inequality. From (43) we obtain for k ≥ k0

γk = 2
∑
x∈Bk

πk({x})P
(
x,Bk

c
)
= 2

∑
x∈Bk

πk({x})P
(
x, {y ∈ N : y ≥ k + 1}

)
(from (33))

= 2
∑
x∈Bk

πk({x})P
(
x, {y ∈ N : V (y)α ≥ V (k + 1)α}

)
(since V α ↗)

≤ 2
∑
x∈Bk

πk({x})
(PV α)(x)

V (k + 1)α
(from Markov’s inequality)

≤ 2

V (k + 1)α

[
Mα +

∑
x∈Sc∩Bk

πk({x}) (PV α)(x)

]
(from PV α ≤ (PV )α, (M), πk(Bk) = 1)

≤ 2

V (k + 1)α

[
Mα +

∑
x∈Sc∩Bk

πk({x})V (x)α
]

(since ∀x ∈ Sc, (PV α)(x) ≤ (PV (x))α ≤ V (x)α from (DJSc))

≤ 2

V (k + 1)α

[
Mα +

∑
x∈Bk

πk({x})V (x)α
]
=

2

V (k + 1)α
[
Mα + πk(V

α
k)
]

(49)

where V α
k := V α

|Bk
is the restriction of V α to Bk. Next, if Vk := V|Bk

, we have

∀x ∈ Bk, (PkVk)(x) ≤ Vk(x)− cV α
k(x) +M

from Inequality (44) applied to W = V and (M)-(DJSc). Then, by using that πkPk = πk,
it follows that

c πk(V
α
k) ≤M.

Finally, combining (49) and the last inequality, we obtain (48).

□

Let us only discuss the least favourable case of small values of α in (DJSc), noticing that
m = 1 when α ∈ (0, 1/2) and that m = 2 when α ∈ [1/2, 2/3). As we can see from the
estimates (40)-(41) of ∥πk − π∥TV and from the estimate of γk in (48), we obtain a quite
similar bound to (5) [Liu10]. Note that here P is not assumed to be stochastically monotone.
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A Perturbation of V -geometrically ergogic Markov kernels

If the family {Pθ}θ∈Θ satisfies Assumption (SΘ) of Section 1 and the next Assumptions (MΘ)-
(DΘ,Sc), then the bounds for ∥πθ − πθ0∥TV and ∥πθ − πθ0∥V α0 obtained in [HL22a, Th. 6.1]
with α0 ∈ (0, 1] given in (50) below are more relevant than those derived from Estimates (25a)-
(25b) combined with the bound (52) of the next Theorem A.1, see Remark 2.2 and the bound
(65) p. 23. Hence Theorem A.1 below is only given for completeness. The goal of this theorem
is to show that the results of Section 2 also apply to V -geometrically ergogic Markov kernels
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and to prove that, when applied to truncation of stochastically monotone discrete Markov
kernels, it then provides a bound for ∥πθ − πθ0∥TV which is similar to Tweedie’s Estimate
(3), see Remark A.3.

Assume that the family {Pθ}θ∈Θ satisfies Assumptions (SΘ) of Section 1 with respect to
some small set S ∈ X and some ν ∈ M+

∗ . Moreover assume that there exists a Lyapunov
function V : X→[1,+∞) satisfying V (0) = 1 and such that the following conditions hold

MΘ := sup
θ∈Θ

sup
x∈S

(PθV )(x) <∞ (MΘ)

∃δ ∈ (0, 1), ∀θ ∈ Θ, ∀x ∈ Sc, (PθV )(x) ≤ δ V (x). (DΘ,Sc)

Assumptions (MΘ)-(DΘ,Sc) ensures that the whole family {Pθ}θ∈Θ satisfies the so-called
geometric drift condition

∃δ ∈ (0, 1), ∃b :=MΘ > 0, ∀θ ∈ Θ, PθV ≤ δ V + b1S

with respect to the Lyapunov function V in a uniform way in θ ∈ Θ. Then for every θ ∈ Θ
there exists a unique Pθ−invariant probability measure πθ on (X,X ) such that πθ(V ) < ∞,
e.g. see [MT93, RR04]. Also note that ν(V ) <∞ from (SΘ). We know from [HL22b, Cor. 4.2]
that there exists a computable real number α0 ∈ (0, 1] (see Remark A.1) such that

∀θ ∈ Θ, PθV
α0 ≤ δα0 V α0 + ν(V α0)1S . (50)

Define

A :=
ν(V α0)

1− δα0
and n∗ = max

(
2 ,

⌊ ln(1− δα0)− ln ν(V α0)− ln 2

α0 ln δ

⌋
+ 1

)
. (51)

The following bounds for ε̃n,Θ,1X and ε̃n,Θ,V α0 are obtained from [HL22b, (24), (27) and
Cor. 4.2].

Theorem A.1 Assume that the family {Pθ}θ∈Θ satisfies Assumptions (SΘ)-(MΘ)-(DΘ,Sc)
and that for every θ ∈ Θ we have πθ(1S) > 0, Then

∀θ ∈ Θ, ∀n ≥ n∗, ε̃n,Θ,1X ≤ 2Aδα0n and ε̃n,Θ,V α0 ≤ A
(
1 + 2A

)
δα0n. (52)

Remark A.1 The real number α0 ∈ (0, 1] in (50) can be easily computed from Assump-
tions (MΘ)-(DΘ,Sc) by using Jensen’s inequality, see [HL22b, (35) and Prop. 4.1]. Actually
the real number MΘ plays an important role in the computation of α0: roughly speaking, the
larger MΘ is compared to ν(V ), the smaller α0 is. If S is an atom in (SΘ) with ν given by
ν = P (s, ·) for some s ∈ S, then (50) holds with α0 = 1, see [HL22b, Cor. 4.1]. However the
case α0 = 1 is not equivalent to the atomic case, in other words Property (50) may hold with
α0 = 1 for non-atomic small set S, see [HL22b, Sec. 6].

Remark A.2 Under the assumptions of Theorem A.1, the function W = V α0 satisfies the
second condition of (WΘ) from (50). Consequently Estimates (25a)-(25b) of Corollary 2.1
combined with (52) can be used to control ∥πθ − πθ0∥V α0 , provided that Assumption (∆W )
holds with W = V α0, that is

∀x ∈ X, lim
θ→ θ0

∥Pθ(x, ·)− Pθ0(x, ·)∥V α0 = 0
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where α0 ∈ (0, 1] is given by (50). In particular we have limθ→ θ0 γθ = limθ→ θ0 γθ,V α0 = 0
and

lim
θ→ θ0

∥πθ − πθ0∥V α0 = 0.

Finally note that n∗ given in (51) satisfies (24) since we know from [HL22b, Cor. 4.2] that

∀θ ∈ Θ, ∥µ(θ) − µ(θ)n ∥TV ≤ Aδα0n.

Applications to truncation-augmentation of discrete Markov kernels

Let P := (P (i, j))(i,j)∈N2 be a Markov kernel on X := N. For any k ≥ 1 let Bk := {0, . . . , k}.
We assume that there exists a finite subset S ⊂ N and ν ∈ M+

∗ with finite support Supp(ν) ⊂
N such that P satisfies Condition (S), see p. 11. Moreover we assume that there exists an
increasing sequence V := {V (i)}i∈N with V (0) = 1 such that P satisfies Condition (M) (see
p. 11) and the following geometric drift condition

∃δ ∈ (0, 1), ∀i ∈ Sc, (PV )(i) ≤ δ V (i). (DSc)

Under these assumptions we know that there exists a unique P−invariant probability mea-
sure π on N. We assume that π(1S) > 0. For k ≥ 1 let us consider the k-th truncated-
augmented matrix Pk as defined in (31). The goal here is to prove that, if P satisfies As-
sumptions (S)-(M)-(DSc), then its invariant probability measure π can be approximated
by the Pk−invariant probability measure πk, with an explicit error control in function of the
integer k. Let P̂k be the extended Markov kernel of Pk on N defined in Section 3. Similarly,
π̂k is the extended probability measure (32) of the Pk−invariant probability measure πk.

Under Assumptions (S)-(M)-(DSc) we know from [HL22b, Cor. 4.2] that there exists a
computable real number α0 ∈ (0, 1] such that

∀i ∈ S, (PV α0)(i) ≤ δα0 V (i)α0 + ν(V α0). (53)

Obviously the comments in Remark A.1 apply here to the real number α0 defined in (53)
from the single Markov kernel P . For every k ≥ 1 and every i ∈ N, ∆k(i) is defined in (33)
and we introduce

∀i ∈ N, ∆k,V α0 (i) = ∥P (i, ·)− P̂k(i, ·)∥V α0 . (54)

For any k ≥ 1, if πk is a Pk−invariant probability measure on Bk, then set

γk :=
∑
i∈Bk

πk(i)∆k(i) and γk,V α0 :=
∑
i∈Bk

πk(i)∆k,V α0 (i). (55)

Finally let k0 ∈ N be the smallest positive integer such that

V (k0) ≥
1

δ
, S ⊂ Bk0 and Supp(ν) ⊂ Bk0 . (56)

Theorem A.2 Assume that P := (P (i, j))(i,j)∈N2 satisfies Assumptions (S)-(M)-(DSc)
and Condition (56). Moreover assume that π(1S) > 0 and that for every k ≥ k0 (up to pick
a larger integer k0) the matrix Pk admits a unique Pk−invariant probability measure πk on
Bk such that πk(1S) > 0. Then the following assertions holds.

21



(a) π̂k defined in (32) is the unique P̂k−invariant probability measure.

(b) We have limk γk = limk γk,V α0 = 0.

(c) Defining A and n∗ as in (51), we have for every k ≥ k0 and for every n ≥ n∗:

∥π̂k − π∥TV ≤ 4Aδα0n + 4 (n− 1) γk. (57)

(d) Setting B := 2A(1 + 2A), we have for every k ≥ k0 and for every n ≥ n∗:

∥π̂k − π∥V α0 ≤ Bδα0n + 2(n− 1)
(
γk,V α0 + 2πθ0(V

α0)γk
)
. (58)

The Pk−invariant probability measure πk on Bk is supposed to be computable since Pk is a
finite matrix. In this case the exact value of the real numbers γk := πk(∆k) and γk,V α0 =
πk(∆k,V α0 ) in (55) are computable from (59) (and from a similar formula for ∆k). Bounds
for γk and γk,V α0 are given in Proposition A.3.

Proof of Theorem A.2. Assertion (a) and limk γk = 0 have been proved in Lemmas 3.1-3.2.
The proof of Assertion (b) is then complete using Lemma A.1 below and Corollary 2.1. Note
that we have ∀k ≥ k0, π̂k(1S) = πk(1S) since we have S ⊂ Bk0 from Assumption (56).
Also observe that γk := π̂k(∆k) and γk,V α0 = π̂k(∆k,V α0 ). The conclusions (57) and (58)
of Theorem 3.2 then follows from Corollary 2.1 combined with Theorem A.1 using the next
Lemma A.2. □

Lemma A.1 Let P := (P (i, j))(i,j)∈N2 be a Markov kernel on N. For any k ≥ 1, we have

∀i ∈ N, ∆k,V α0 (i) =1Bk
(i)

(
P (i, Bk

c)
∑
j∈Bk

ψi,k(j)V (j)α0 +
∑

j∈Bk
c

P (i, j)V (j)α0

)

+ 1Bk
c(i)

+∞∑
j=1

P (i, j)
(
1 + V (j)α0

)
. (59)

Moreover we have ∀i ∈ N, limk ∆k,V α0 (i) = 0, i.e. Assumption (∆W ) holds with W = V α0.

Proof. Let i ∈ Bk. We have

∥P (i, ·)− P̂k(i, ·)∥V α0 =
∑
j∈N

∣∣P (i, j)− P̂k(i, j)
∣∣V (j)α0

= P (i, Bk
c)

∑
j∈Bk

ψi,k(j)V (j)α0 +
∑

j∈Bk
c

P (i, j)V (j)α0 .

For any i ∈ Bk
c, we easily derive from the definition of P̂k that

∥P (i, ·)− P̂k(i, ·)∥V α0 = 1− P (i, 0) +

+∞∑
j=1

P (i, j)V (j)α0 =

+∞∑
j=1

P (i, j)
(
1 + V (j)α0

)
.

We have proved (59). Next,
∑

j∈Bk
ψi,k(j)V (j)α0 ≤

∑
j∈Bk

ψi,k(j)V (ℓ)α0 = V (ℓ)α0 for any
ℓ > k since V is increasing and ψi,k(·) is a probability distribution. It follows that

∀i ∈ Bk, ∆k,V α0 (i) ≤ 2
∑

j∈Bk
c

P (i, j)V (j)α0 . (60)

Finally fix i ∈ N. Then it follows from (60) applied to any k > i that limk ∆k,V α0 (i) = 0
since

∑
j∈N P (i, j)V (j)α0 ≤ (PV )(i) <∞ from V α0 ≤ V and (M)-(DSc). □
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Lemma A.2 Assume that P := (P (i, j))(i,j)∈N2 satisfies Assumptions (S)-(M)-(DSc) and

Condition (56). Set P̂∞ := P and Θ = ([k0,+∞) ∩ N) ∪ {∞}. Then the family {P̂k}k∈Θ of
Markov kernels on N satisfies Assumptions (SΘ)-(MΘ)-(DΘ,Sc) with Θ as above defined,
and

∀k ∈ Θ, P̂kV
α0 ≤ δα0 V α0 + ν(V α0)1S with α0 given in (53). (61)

Proof. Let k ≥ k0. Then P̂k satisfies Condition (SΘ), see the begining of the proof of
Lemma 3.3. Moreover we have

∀i ∈ Bk, (P̂kV )(i) ≤ (PV )(i), thus ∀i ∈ Sc ∩Bk, (P̂kV )(i) ≤ δV (i)

from Inequality (44) applied to W = V and from (DSc). The first inequality provides (MΘ)
due to (M). Next we deduce from the first condition of (56) and from the definition of P̂k

that
∀i ∈ B c

k , (P̂kV )(i) = V (0) = 1 ≤ δV (i)

since V is increasing and since i ∈ B c
k implies that i > k ≥ k0. This proves (DΘ,Sc).

Finally using [HL22b, Cor. 4.2], Property (61) follows from (SΘ)-(MΘ)-(DΘ,Sc): actually
the real number α0 in (61) is that given in (53) since it only depends on the data in the
conditions (SΘ)-(MΘ)-(DΘ,Sc) for P̂k, which are the same as in (S)-(M)-(DSc) for P . □

Proposition A.3 Assume that P := (P (i, j))(i,j)∈N2 satisfies Assumptions (S)-(M)-(DSc).
Let k ≥ 1 be such that the matrix Pk admits a unique Pk−invariant probability measure πk
on Bk, and let γk and γk,V α0 be defined in (55) with α0 ∈ (0, 1] given in (53). Then

∀k ≥ k0, γk ≤ 2M

(1− δ)
× 1

V (k + 1)
(62)

where M and δ are given in (M)-(DSc). Moreover if α0 < 1, then

∀k ≥ k0, γk,V α0 ≤ 2M

(1− δ)
× 1

V (k + 1)1−α0
. (63)

Finally, if α0 = 1 and if there exists η > 1, δη ∈ (0, 1) and Mη > 0 such that we have
PV η ≤ δηV

η +Mη, then

∀k ≥ k0, γk,V ≤ 2Mη

(1− δη)
× 1

V (k + 1)η−1
. (64)

Remark A.3 To compare our bounds with Tweedie’s estimate (3) (stochastically monotone
case), we assume that P := (P (i, j))(i,j)∈N2 satisfies Assumptions (S)-(M)-(DSc) with an
atome S. Then we have α0 = 1 in (50) (see Remark A.1), and we can see that (57) combined
with (62) is similar to (3). If P is not stochastically monotone, (57) and (62) remain true,
and this may even provide a better bound than in [Twe98, Sect. 3], since the V−geometrical
rate of convergence ρ in [Twe98, Th. 3.2, see Eqs (31) and (33)] may be strictly greater than
δ in (57), see [HL22a, Cor 2.1] for details. To complete the discussion at the beginning of
this appendix and in Remark 2.2, recall that Liu’s bound [LL18, Th. 2] obtained in the atomic
case, that is

∥π̂k − π∥TV ≤ 1− δ +M

2(1− δ)2
γk (65)
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is in any case more accurate than either Tweedie’s bound (3) or (57) combined with (62).
Finally mention that Liu’s bound (65) has been extended in [HL22a, Th. 6.1] to any family
{Pθ}θ∈Θ of Markov kernels defined on a general state space and satisfying Assumptions (SΘ)-
(MΘ)-(DΘ,Sc), provided that δ and M in (65) are replaced with δα0 and ν(V α0) respectively,
where α0 is given in (50). In the atomic case where α0 = 1, the bound [HL22a, Th. 6.1] is
exactly (65).

Proof. As in the proof of Proposition 3.4 we have from Markov’s inequality

γk ≤ 2
∑
i∈Bk

πk(i)
(PV )(i)

V (k + 1)

≤ 2

V (k + 1)

∑
i∈Bk

πk(i)
(
δV (i) +M

)
(from (M)-(DSc)).

Moreover, setting Vk := V|Bk
the restriction of V to Bk, we have

∀i ∈ Bk, (PkVk)(i) ≤ δVk(i) +M

from (44) applied to W = V and from (M)-(DSc). Thus

πk(Vk) = πk(PkVk) ≤ δπk(Vk) +M,

from which we deduce that

πk(Vk) ≤
M

1− δ
.

Then (62) easily follows from the previous inequalities.

Next, if α0 < 1, set β0 = 1 − α0 and for every i ∈ N define ηi ∈ M+ by: ∀A ⊂ N, ηi =∑
j∈A P (i, j)V (j)α0 . Then we can write

γk,V α0 ≤ 2
∑
i∈Bk

πk(i)
∑

{j:V (j)β0≥V (k+1)β0}

P (i, j)V (j)α0 (from (60) and V ↗)

≤ 2
∑
i∈Bk

πk(i)
ηi(V

β0)

V (k + 1)β0
(from Markov’s inequality w.r.t. ηi)

=
2

V (k + 1)β0

∑
i∈Bk

πk(i) (PV )(i) (from the definitions of ηi and β0)

≤ 2M

(1− δ)V (k + 1)β0
(proceeding as for γk).

This proves (63). Finally, if α0 = 1, then setting β = η− 1 and applying Markov’s inequality
to the set {j : V (j)β > V (k)β} as above we obtain that

γk,V ≤
∑
i∈Bk

πk(i)
ηi(V

β)

V (k + 1)β
=

2

V (k + 1)β

∑
i∈Bk

πk(i) (PV
η)(i) ≤ 2Mη

(1− δη)V (k + 1)β

where the last inequality is derived from the drift condition: ∀i ∈ Bk, (PkV
η
k)(i) ≤

(PV η)(i) ≤ δηV
η(i) +Mη, as in the first part of the proof. □
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