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Synopsis: A general method to determine surface crystallography and therefore shape of

faceted nanoparticles by TEM is proposed.

ABSTRACT In this paper, we propose a general calculation method to characterize the
crystalline planes and directions of a faceted nanoparticle under TEM imaging and
diffraction mode. With the determination of the edge vectors and then the plane normal
vectors in the screen coordinate system of TEM, their Miller indices in the crystal
coordinate system can be calculated through coordinate transformation. The method is

helpful for the related studies on determination of the surface structure of nanoparticles.



1. Introduction

Recently, much attention has been focused on faceted nanoparticles with various shapes
due to their unique properties and potential applications in catalysis (Narayanan & El-
Sayed, 2005; Xiong et al., 2007), surface-enhanced Raman scattering (SERS) (Orendorff
et al., 2005) and optoelectronics (Maillard et al., 2003). It has been demonstrated that
many shape-related properties of nanoparticles can be attributed to their surface
crystallographic structure. For instance, tetrahexahedral Pt nanoparticles with high-index
{730} plane exhibit enhanced catalytic activity for the electro-oxidation as compared
with that of spherical particles (Tian er al., 2007). Also the surface crystal structure plays
a critical role in the anisotropic growth of nanocrystals. The selective binding of capping
molecules on different crystal planes may alter their surface energies and thus change
their growth capacities (Lee et al., 2003; Stekolnikov & Bechstedt, 2005). Therefore, the
characterization of surface crystallographic features of nanoparticles has become an
important issue for the study of their surface related properties and the investigation of

their shape evolution mechanism in growth process.

The application of TEM techniques to crystallographic analysis has been suggested for
several years (Zaefferer, 2002). In the present case of a nanoparticle, the surface plane
indices are conventionally indexed through comparing its diffraction pattern with its
projection in image after bringing the plane to the edge on position in TEM. Sometimes,
high-resolution TEM (HRTEM) images that record the atomic spacing of the on edge
planes are used to verify the determination of the surface plane index (Xiang et al., 2006;
Lee et al., 2002). The method is particularly suitable for nanoparticles with conventional
shapes (Xiong et al., 2007), i.e., the particles are enclosed by symmetric low-index facets,
as in most cases the low-indexed planes can easily satisfy the diffraction condition and
generate diffraction spots. However, for particles with unconventional shapes (Xiong et
al., 2007), i.e. covered with high-index facets, the method shows limitation. In such
cases, it is often difficult to obtain the corresponding diffraction spots for those high-
index planes. To solve this problem, an attempt has been made by measuring the angles
between the surface plane projections when the planes are simultaneously on edge-on

position and comparing them with the theoretical interfacial angles to conclude the miller
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indices of the facet (Tian et al., 2007). Obviously, the method requires great effort in
searching for the edge-on positions and sometimes it is even impossible to obtain such
position for some planes when the shape of the particle is not favorable. Moreover, the
study of unconventional shaped nanoparticles has recently become intensive due to their
unique catalytic properties resulting from the high index surface facet. Naturally, the
correct indexing of such surface planes constitutes one of the important bases for the
further property and growth kinetics investigation. Therefore, a general and accurate
determination method appears to be in great need. In response to such a requirement, we
developed a general calculation method that can be applied to determine any faceted
surface plane indices of nanoparticles without requiring the corresponding diffraction
spots, provided that the edges of the facets are visible under TEM imaging mode. This

technique will facilitate the surface related properties research in nanoscience.

2. Methodology

The basic principle of this method is to determine the edge vectors that define the surface
facets of a nanoparticle in the TEM screen coordinate system and then obtain the surface
plane normal by cross product and further calculate their Miller indices in the crystal
coordinate system through coordinate transformation. The full method will be detailed as

follows.
2.1 Setting of coordinate systems

Considering the characteristics of TEM for sample loading and imaging, it is
convenient to introduce three Cartesian coordinate systems in addition to the lattice base
of the crystalline and its reciprocal base. All the coordinate systems are of the same
handedness and the Cartesian coordinate systems are orthonormal. In the present work,
we choose the right-hand set. Of the three Cartesian coordinate systems, one is referenced
to the screen of the TEM that records the image of the particle. Its Z-axis is set in the
inverse direction of the incident electron beam, one coordinate system is set to the sample
holder also with its Z axis in the inverse direction of the incident electron beam when the
holder is in non-tilt position and the third one to the crystal under the convention

described in the “International Table of Crystallography” (Hahn, 1996). The orientation



relationships between the Cartesian coordinate systems are defined as a set of rotations
(Euler angles in Bunge notation (Bunge et al., 1981)) transforming one system into the

other.
2.2 Determination of the edge vectors in the screen coordinate system

To determine the coordinates of a edge vector in the screen coordinate system, two
sample positions are required. Assume that the unit edge vector in the sample holder

coordinate system is v(x, y, z) and let the equivalent vectors in the screen coordinate

system with respect to the two sample holder positions be v' (x', y', z') (position 1) and
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v (x%, y2 , 70) (position 2). Under TEM imaging mode, let the orientation relationship

between the screen coordinate system and the first sample position described by rotation
R(¢p,,® ,p,) and the rotation from the first sample position to the second sample
position AR (A@,,AD ,Agp,), as shown in Fig. 1. For simplicity, the first sample position

could be taken without tilt operation. R is then characterized by a single rotation around
the Z axis of the screen coordinate system caused by the magnetic rotation of the electron

beam which is magnification dependent. Thus, the following relations between the unit

vectors v, v' and v* hold for

V=M,V (1)

v:=M,-M, v (1b)

where M, and M, are the corresponding rotation matrices of R and AR, and are known.

Then the relation between the v' (x', y1 ,z') and v (x?, y2 ,z>) can be deduced as:
vi= M, -M;l -Ml’1 -v? 2)

where M;" and M;' are the inverse matrices of M, and M, . According to the imaging
principle of the TEM, an image of a nanoparticle is the rotated (around the Z axis of the
screen coordinate system and dependent on the magnification) and amplified projection
of the particle. As the Z axis of the screen coordinate system is set parallel to the incident

beam, i.e., the Z axis is parallel to the projection direction, the X and Y coordinates of

4



2

v' and v® in the screen coordinate system can be measured. Only z' and 7’ are

unknown. With the three linear equations offered by Eq. (2), the two unknown z' and z’
can be resolved. Thus the coordinates of the edge vector in the screen coordinate system

are determined.
2.3 Coordinate transformation matrices

The coordinate transformation from the screen coordinate system to the crystal bases
can be achieved through acquiring and indexing the electron diffraction pattern of the
crystal. The diffraction pattern can either be in spot pattern or in Kikuchi line pattern. For
simple operation, one of the two sample positions used to determine the edge vectors in
the screen coordinate system could be dedicated to obtain a diffraction pattern of a low
index zone axis. There is no automatic program available to directly determine the
orientation of the crystallite with respect to either the sample holder or the screen of the
microscope by indexing the spot pattern. Such software to determine the orientation by
indexing the Kikuchi pattern is available. Thus we will treat the spot pattern and the

Kikuchi pattern separately in this work.

According to the diffraction geometry, the TEM diffraction spot pattern of a crystallite
is the amplified 2-dimentional reciprocal plane of the crystallite, which is perpendicular
to the incident beam or the Z-axis of the screen coordinate system. Each spot in this
reciprocal plane represents one set of diffracting planes expressed with Miller indices (4 k
[). The reciprocal vector with components (4, k, /) in the reciprocal base is perpendicular
to the plane with Miller indices (h k ) in the direct lattice space. Thus with the correctly
indexed diffraction pattern, it is easy to find two vectors r' and r* that are coincident with
two reciprocal lattice vectors (h1 K ll) and (h2 K lz) in the XOY plane of the screen
coordinate system. By vector cross product, one can easily obtain the 3" vector ° in the
Z direction as shown in Fig. 2. The three vectors should be referred to the same basis,
either to the reciprocal space or to the direct space. It should be noted that r° is not
necessarily a reciprocal lattice vector. The coordinate transformation of the vectors
between the direct space and the reciprocal space can be easily realized with the direct

metric tensor or the reciprocal metric tensor (Egs. (Al) and (A2) in Appendix 1). Here



we referred the three vectors to the reciprocal space. Therefore, the coordinate
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. . . 3
transformation matrix from the screen coordinate system to the r'-r*r’ reference base

M, is:
HrlH -cosM Hrz” -cosmM+6) 0
= Hrlu -sinm Hrz” -cosm+06) O 3)

0 o

M

I—>g

where 1) is the angle between X-axis and r', and 8 is the angle between r' and r*. The

. . . 1.2 .
coordinate transformation matrix from the r'-r>-r’ reference base to the reciprocal space,

M, is
hl hz r3‘ -1
M, =k kK “4)
ll 13 r3

3 3 3 3 . .
where 7., r;. and r.. are the components of r~ referred to the reciprocal space. In this

way, the coordinate transformation matrices from the screen coordinate system to the

reciprocal space M,_, , and that to the direct space M,_,, are:

M M,, M, 5)

1sr =My,

and

M M, . G* (6)

Il =

in which G* is the metric tensor of the reciprocal basis (Shmueli, 1996) (Eq. (A2) in
Appendix 1).

The orientation of the crystallite with respect to the sample coordinate system can be
directly determined by indexing the Kikuchi line pattern using the commercial software

Euclid’s Phantasies (EP) (Morawiec, 1999; Morawiec et al., 2002). The orientation of the

crystalline is expressed with three Euler angles (¢,,®,,) (in Bunge notation) rotating
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the sample holder coordinate system to the Cartesian crystal coordinate system. The
orientation relationship between the Cartesian crystal coordinate system and the Bravais
lattice basis is set under the convention given by the “International Table of
Crystallography” (Hahn, 1996) described in Appendix B. Thus the screen- to- reciprocal

lattice base transformation matrix M, ., and the screen-to-crystal coordinate system

transformation matrix M, ,, will be:
M, =M, MM, (7
and

M_,=M

1

G* ®)

i>R "

in which M, is the rotation matrix from the screen to one of the sample holder positions
where the Kikuchi pattern is acquired, M, is the transformation matrix from the sample

holder coordinate system to the Cartesian crystal coordinate system and M is the

C—R
transformation matrix from the Cartesian crystal coordinate system to the reciprocal

space.

Therefore, for any vector obtained in the screen coordinate system v'(x;,y,,z;) that

corresponds to the sample position acquiring the diffraction pattern, its components in the

lattice space can be calculated as:

X;
Mi-il Y )
Z

and the intercepts of the plane that is normal to v'(x;, y,,z,) can be obtained as:

X;
Mi-iR Vi (10)
Z



In this way, the Miller indices of the edges and surface planes of the crystalline can be

determined.

3. Application

Hereafter, we present one example to illustrate the application of the above method.

The nanoparticles used in this example are hematite (& - Fe,0,) synthesized via chemical

route. They belong to the trigonal crystal system (space group R3c ) with lattice
parameters a=b=c=0.5419nm, a = /=y =55.36°. Hereafter we express the miller indices

in the trigonal base. The images and diffraction patterns of the hematite nanoparticle to
be determined were recorded using PHILIPS CM 200 TEM at 200kV. Fig. 3 shows the
TEM images of the hematite particle at the two sample positions and the corresponding
diffraction patterns. The Kikuchi and spot diffraction images are inserted after correcting
the additional rotation from the image of the particle. It can be seen that the particle has a

polyhedron shape. The three distinct edges of the particle are denoted with the unit vector

v,, V,, and v, and the three distinct surfaces are defined by the edge vectors are A ,

P, , and P, , as shown in Fig. 3. The rotation angles that characterize the orientation

relationship between the screen coordinate system and the first sample position (position

1: no tilt) R and from the first sample position to the second position (position 2: tilted)
AR are given in Table 1. The X and Y components of vector v, corresponding to the two

sample positions in the screen coordinate system were measured and their Z components
were calculated. The results are displayed in Table 2. One Kikuchi pattern (the inset of
Fig. 3(a)) was taken at sample position 1 and indexed using the Euclid’s Phantasies (EP)
(Moraviec et al., 2002). The set of Euler angles that denote the rotation from the sample
coordinate system to the Cartesian crystal coordinate system is (182.63°, 80.11°, 33.99°).
One diffraction spot pattern (the inset of Fig. 3(b)) was taken after the sample was tilted

(position 2) where the [010] zone axis is on edge. The two reference vectors r! and

coincident with the (101) and (101) spots, respectively. The third vector r that is in Z

direction and calculated by vector product has the components (0.333, 0.584, 0.333) in



the reciprocal space. The angle between the X-axis of the screen coordinate system and 7'

is 50.986° and that between r' and r* is 90°.

The Miller indices of the surface planes and the edges of the particle were calculated
separately by indexing the diffraction spot pattern and the Kikuchi pattern, as given in

Table 3. The results showed that hematite particles were enclosed by high-index facets.
4. Conclusions

In conclusion, a new method for determining the crystalline planes and directions of the
surface facets and edges of nanoparticles has been proposed in this paper. By determining
the edge vectors and then the plane normal vector of a surface facet in the TEM screen
coordinate mode, their Miller indices can be calculated through coordinate
transformation. The method offers a general and a systematical way to characterize the

surface crystallographic features of a nanoparticle and will facilitate the related studies.
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Tablel

The rotation angles that characterize the coordinate transformation from the
screen coordinate system to the first sample position R and that from the first
sample position to the second position AR

R(p, ,P,0,) AR (A@, ,AD , Ap,)
(165.84°, 0, 0) (0, 10.26°, -5.80°)

Table 2
Coordinates of the unit edge vectors v, with respect to the two sample holder

positions (Positions 1 and 2) in the screen coordinate system calculated with their
measured trace coordinates in the screen coordinate system.

x' y' z' x’ y’ &
v, -0.364 -0.685 -0.631 -0.456 -0.743 -0.490
v, -0.188 0.530 -0.827 -0.171 0.396 -0.902
v, 0.950 -0.163 0.267 0.940 -0.212 0.267

11



Table 3

Calculated Miller indices of the edge vectors v, and the planes P. from indexing the corresponding
diffraction spot pattern and Kikuchi line pattern.

[uvw] (hkl)
Spot Kikuchi Refined Spot Kikuchi Refined
Indices Deviation Indices  Deviation indices Indices Deviation Indices Deviation indices
Edge from the from the Plane from the from the
refined refined refined refined
indices indices indices indices
\2 [-1.562 [-1.471 o (1.288 (1.254 _
-1.080 1.56° -1.200 2.57° [4 35] P, 2.083 0.87 2.285 2.3 (356)
1.870] 1.837] -2.613) -2.484)
v, [-0.123 [-0.025 L (1.341 (1.121
-1.074 3.58° -1.070 1.23° [011] P, 4.705 0.75 4.542 2.6 (3119
-0.917] -1.000] 3.837) 3.864)
\A [2.022 [2.005 o R) (-3.091 (-3.256 o
-0.841 0.87° -0.761 1.18° [ Ps 1.712 1.63 1.556 0.89 (21D
0.325] 0.313] 4] -1.593) -1.591)
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Sample coordinate system

Screen coordinate system Position 1 Position 2
Z
Y
R 0] AR
o Y —» —>
X X

Figure 1
Relative positions of the Screen coordinate system and the Sample coordinate system.
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Screen coordinate system X-Y-Z

Figure 2

Ilustration of the screen coordinate system and the reference base of r'-r-r. The r'
and r° are reciprocal lattice vectors determined by indexing the spot diffraction
pattern. The r* calculated by cross product is expressed in the reciprocal space. It
should be noted that r* is not necessarily a reciprocal lattice vector.
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Figure 3

TEM images of hematite particle at (a) initial position and (b) tilted position. The inserts
are their corresponding (c) Kikuchi pattern and (d) spot pattern. (e) is the screen
coordinate system.

15



Appendix 1. Metric tensors of the direct and reciprocal bases

Let the crystal basis be defined by three base vectors a, b and ¢ with the respective
length of a, b and c. The angles between each pair of base vectors are &, £ and y. Its
reciprocal space is defined by the three lattice vectors a*, b* and ¢* with the respective
length a*, b* and c*. The computational and algebraic aspects of these mutually
reciprocal bases can be conveniently expressed in terms of the metric tensors of these

bases. The matrix of the metric tensor of the direct basis G or briefly the direct metric is:

a’ abcosy accosf
G =bacosy b bccoso (A1)
cacosf cbcoso c?

The corresponding reciprocal metric is:

b’c*sin’ o’ abc®(coso.cosP—cosy) ab’c(cos0.cosy—cospP)
v? v? v?
. _|abc*(cosocosB—cosy) a’c’sin’ B a’bc(cosBcosy—cosar)
G = V2 7 va v (A2)
ab’c(cosocosy—cosP)  a’be(cosPcosy—cosa) a’b’sin’y
V? v? v,

in which V? = a’b’*c*(1+ 2coso.cosBcosy—cos” o —cos’ B —cos’y). With Eq. (A1) and
(A2), the vector calculations and the coordinate transformation of the vectors between the

two bases can be easily realized.

Appendix 2. Coordinate transformation matrices between the Cartesian crystal
coordinate system and the direct lattice space and its reciprocal space

With the automatic Kikuchi pattern indexing software packages, such as HKL’s
Channel software package, TSL’s OIM software package and the Euclid’s Phantasies
(EP), the crystallographic orientation of a crystal can be determined by indexing the
Kikuchi patterns of the crystallite. The orientation of the crystallite is always expressed

by a set of rotations (Euler angles) from the sample coordinate system to the Cartesian
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coordinate system attached to the crystal. Therefore, the coordinate transformation
matrices from the Cartesian coordinate system to the Bravais lattice base and its
reciprocal base are always in need. The derivation of such matrices would be helpful for
the related calculations. According to the “International Table of Crystallography” (Hahn,
1996), the Cartesian system is set at the same origin of the Bravais lattice base with its X
axis parallel to the base vector a and the base vector ¢ is in the XOZ plane of the
Cartesian coordinate system, as shown in Fig. Al. Thus the components of @, b and ¢ in

the Cartesian coordinate system are as follows:

a,=a
a,=
a, =
b.=b-cosy
b, = _b \/1+2cosa'cosﬁ-cosy—cosza—coszﬁ—cosz;f (A3)
sin
b

b, =——(cosa—cos -cosy)

~ sinf

c,=c-cosf
¢, =0

c,=c-sinf3

Therefore, the transformation matrix from the Cartesian coordinate system to the

lattice base is:

aX b.X C)C
0 b, 0 (A4)
0 b, ¢

and the transformation matrix from the lattice base to the Cartesian coordinate system is:
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_i ¢,'b.=b -c. ¢ |
a, a.b,-c. ac,
0 L 0 (AS)
b,
IR L
b,-c. c. |

1 0 0
ax
bz 'Cx—bx " C, i _ bz (A6)
a. b, -c. b, b,-c.
_ & o L
L aX ’ CZ CZ .

and the transformation matrix from the reciprocal base to the Cartesian coordinate system
is:

=

-

SR
S o
SO

o
=
S
o
(2]

(AT)
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Figure A1
Relationship between the Cartesian coordinate system and the lattice base under the
convention of “International Table of Crystallography” (Hahn, 1996).
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