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Abstract 

The Embedded Atom Method (EAM) approach has been applied to the study of five principle gliding 

systems in zirconium and titanium materials. The stacking fault energy maps are obtained and 

compared to the results of ab initio calculations. A good agreement was observed between the two 

approaches. Furthermore, the Critical Resolved Shear Stresses (CRSS) have been determined by 

Molecular Dynamics (MD) simulations based on the EAM potentials. The CRSS in the “a” direction 

for the basal, prismatic (type 1) and pyramidal (type 2) planes are obtained and compared.    

 I. Introduction 

The zirconium (Zr) and titanium (Ti) are important materials for industrials applications. It is 

thus important to improve their properties and performance when subjected to extreme 

conditions of deformation (high strain rate and high speed or high temperature present in the 

forming process).  Moreover, these materials are highly anisotropic, therefore it is important 

to control the relations between the deformation and the evolution of texture (or 

microstructure) in order to obtain the desired mechanical properties with the least energetic 

cost.   
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The majority of models predicting mechanical properties in deformed HCP materials are self-

consistent models.  They [1-2] are based on relationship between the experimental strain and 

stress (, ). They could provide simulated texture associated with desired mechanical 

properties [3]. However, these models require knowledge of systems strain, critical resolved 

shear stress (CRSS) and strain hardening induced among the most important gliding systems.  

During the last 20 years, mechanical behavior modelings of hexagonal materials try to obtain 

data of the CRSS and strain hardening matrices [1-3]. An important part of these CRSS data 

are unknown and are very different from one system to another. Consequently, one cannot 

simply apply the approach with only one isotropic strain hardening. In experimental 

conditions, the gliding systems are correlated. It is thus difficult to obtain the individual 

CRSS. And the atomistic simulation can be the ideal method to overcome this difficulty.  

The adapted approaches to simulate the CRSS of dislocations with accuracy are ab initio or 

classical molecular dynamics (MD) methods. As dislocations are defects with long range 

interactions, the periodic boundary conditions of the ab initio program and the small 

simulation boxes used would create self-interaction between the dislocation and its periodic 

images. The ab initio approach is therefore only used to determine the stacking fault energies, 

which are related to the dislocation stability. On the other hand, the MD approach is used to 

calculate both the CRSS values and the stacking fault energies. We are thus able to compare 

the stacking fault energies obtained by the two approaches.   

The key element for the accurate MD simulation is the interatomic potential. For the metals, 

the well adapted potential is the Embedded Atom Method (EAM) potential. Although most 

EAM potentials reproduce the equilibrium properties, some of them fail to describe correctly 

out-of-equilibrium conditions (movement of dislocations).  

A recent EAM potential created by Mendelev and Ackland [4] are fitted with the stacking 

fault energy obtained by many experimental and ab initio data for Zr. A comparison of this 

potential with the available others is made in this work. And for the Ti case, only the most 

used potentials are compared.  

The paper is organized as following: in Section 2, we present the experimental method for 

measuring the CRSS of Zr. In Section 3, the ab initio and MD method are presented. In 

Section 4, the maps of stacking fault energy are shown and discussed. The best energetic 

paths are presented in Section 5 and the CRSS results are calculated in Section 6. And finally, 

we discuss the results and we conclude in Section 7. 
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II. Experimental determination of the CRSS in the Zr monocrystals 

a) Material and methods 

In the experiments, zirconium strips are used. The dimensions are 120 mm of length , 5 mm 

of wide and 1 mm of thick. The chemical composition of these strips is given in Table 1. 

These strips were processed at 850 ° C for 5 days and then annealed at 700 ° C for 24 hours 

under high vacuum. This treatment allows the growth of the monocrystalline grains by the 

selection of variant during the recrystallization. After the treatment, the size of the grains 

reaches 15-40 mm of diameter. These strips and heat treatments were performed by CEZUS 

compagny. Analysis of orientation with X ray diffraction and SEM technic have highlighted 

many homogeneous monocrystalline grain size requirements with very different directions. 

The grains selected for the determination of CRSS are those which under the effect of a 

uniaxial tension can activate only one principal system. 

The micro tensile specimens are cut so that the single crystal studied corresponds to the useful 

area. After polishing, on the single crystal area, we introduced a microgrid with 0.5 m of 

square. The orientation of the single crystal surface has been previously determined. 

The tensile testing are done with the tensile machine directly in the SEM jed 845 in situ 

(Figure 1). Indeed, it is necessary to couple, during the test, both the mechanical response of 

sample (measure of the uniaxial stress and strain obtained by classical extensometer with the 

microgrids) and the observation of the emergence of corresponding mechanisms (monitored 

through optical imaging systems and electronic EBSD). The study of microgrids allows to 

verify the longitudinal and transverse homogeneity of the deformation in the areas where the 

first deformations appear. The activated deformation mechanisms will then be confirmed by 

transmission electron microscopy (TEM) post-mortem analysis. 

b) Characterization of activated mechanisms  

If we know the evolution of the crystal orientation of grains during the test, it is possible to 

identify their mechanisms of formation. In principle, there are an infinite number of 

crystallographic planes giving a single mark on a surface of the specimen. However, if we 

limit ourselves to families of planes corresponding to the mechanisms usually taken into 

account in hexagonal materials (Table 2), it appears that we can remove some ambiguities. 

Furthermore, the post-mortem TEM checks confirm the activated systems (Figure 2). 
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c) Results 

By monitoring both stress strain curves during tensile test and the knowledge of the crystal 

orientation when the system is activated, it is then possible to determine the CRSS in this 

system.  For these samples, we stayed at the step 1 (step where just one system is activated) of 

deformation which corresponds to 2% of strain. In this domain, one gliding system was 

highlighted. Three specimens for each system were used. The TEM observations are used to 

verify these mechanisms. Figure 2 shows stacks of type <a> screw dislocation. The analysis 

shows that the grid deformation is almost homogeneous throughout the sample (at 2% strain). 

We were able to determine the shear stresses for prismatic and pyramidal glide <a> 

respectively.  For <c+a> pyramidal glide, twinning has disturbed the test and the determined 

value is minimal because at this moment the glide was not continuously present in the 

specimen. The values obtained of the CRSS in the prismatic and pyramidal glide <a>  systems 

are respectively  35 and 40 MPa  (Figure 3) and 55 and 60 MPa. The value of <c+a> 

pyramidal system is between 90 and 110 MPa. 

 III. Simulation methods 

 a) Ab initio 

The ab initio calculations have been performed based on the density functional theory 

(DFT)[5-7], using Vienna ab initio software package (VASP)[8-10]. The interaction between 

ions and electrons is described by ultra-soft pseudopotentials (USPP)[11]. The generalized 

gradient approximation (GGA) in Perdew and Wang parametrization[12-13] is used to 

describe the exchange-correlation energy and it is the best approach to describe magnetic 

materials. For the pseudopotentials used, the electronic configurations are for Ti (3d34s1) and 

for Zr (4d35s1). In this work, the kinetic energy cutoff is 300eV. For the unit cell, tests were 

carried out using different k-point meshes to ensure the absolute convergence of the total 

energy within a precision better than 10-3 eV/atom. The best choice of Monkhorst-Pack[14] 

grid is to employ a 8×5×5 k-points grid within a unit cell. The density of k points in the unit 

cell is converged in the supercells and the kinetic energy cutoff is not changed. 

All structures have been relaxed using the conjugate gradient algorithm and both the atomic 

position and volume have been optimized. We have used the unit cell to calculate the 

structural properties (a and c parameters and the cohesive energy). The stacking fault energy 

and the interface energies are obtained using supercells. These cells are the multiple of the 

unit cell with two motifs. A study of the convergence according to the distance between the 
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interfaces was realized and showed us that with a distance superior to 15Å, the energy of 

interface evolution is less than 0.2 mJ/m2. 

For the maps of energy of interface, we used a sampling of 25×40 for the basal and type 1 

prismatic plans and a sampling of 36×34 for the type 2 prismatic plan for both zirconium and 

titanium systems.  

 

 b) Molecular dynamics (MD) 

We have used a laboratory code. The volume, the temperature and the number of atoms are 

fixed (NVT ensemble). The simulations are performed at the temperature 0K. The Newtonian 

equations of motion are integrated using a fifth-order Gear predictor-corrector algorithm. The 

Lagrange polynomial is used to fit a tabulated interatomic potential table. For each 

calculation, the relaxed structures are obtained by minimization of the energy. The 

convergence of the energy was reached and error on the energy is less than 0.0001 eV. The 

employed potentials in this work were based on the Embedded Atom Method (EAM)[15]. 

With this code, we have investigated the structural and elastic properties (a and c parameters, 

elastic constants, stacking fault energies) and the interface energies map.  

The stacking fault energy maps are calculated with box of 8000 atoms. The box is divided in 2 

smaller boxes. One box is fixed and the second box is moved in a two-dimensional space. The 

relaxations of each atom are permitted only in the third direction by MD quenching method.   

Concerning the calculation to determine the critical stress results are obtained by ADD code 

built by D. Rodney[16-19] because it is very efficient to study a plastic deformations.  We 

used the displacement of an edge dislocation which has been developed by the Osetsky and 

Bacon[20-21]. A simulation box is created with two half-crystals. The dimension of the two 

boxes are respectively N*b and (N-1)*b in the x direction, where N is an integer and b is the 

Burger’s vector. The box is relaxed and the dislocation appears after relaxation to minimize 

the potential energy by MD quenching method.  

 

 c) Interatomic potentials and crystal properties 

The HCP structure is not an easy structure to simulate at the atomic scale with the molecular 

dynamic (MD) method because of its anisotropy. Only few EAM potentials can predict 

correctly the essential structural, elastic and plastic properties. For example the reproducibility 

of the stacking fault energy (modeling parameter for the dislocation) is only obtained with a 

very recent Embeded Atom Method (EAM) potential[4]. Mendelev and Ackland have used an 

approach based on the stacking fault energy obtained by many experimental and ab initio data 
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for Zr to fit EAM potentials. The values of the stacking fault energy presented in [4] are in 

agreement with the prism plane fault that has a lower value than that of the I2 basal plane 

fault. In Table 2, the 5 plans of gliding for HCP are shown (Table 2 and Figure 4). 

To validate the EAM potentials for our study, we first performed tests consisting of 

calculations of the basic crystal properties.  Concerning the study of the zirconium, we have 

tested several EAM potentials [4;22-28], in particular the two potentials built by Mendelev et 

al.[4] and Ackland et al.[22]. As Khater et al.[29] we can observe  several slight differences 

between the performance of these potentials.  The results are presented in Table 3. We can see 

a good agreement between the experimental or ab initio values and our values while using the 

potentials on the structural properties. Concerning the elastics properties, the agreement is 

sometimes less good but remains acceptable.  

In the study of the titanium material, we have considered essentially 2 EAM potentials, one by 

Pasianot[28], and one by Ackland[30]. We can observe a good agreement between the results 

obtained by ab initio calculation or/and the experimental data with the values of the semi-

empirical EAM potentials (Table 4). Particularly, the Pasianot potential gives the best results. 

 d) Stacking faults 

It is not only important that the potentials correctly reproduce the structural and elastic 

properties. To study the plastic properties associated with dislocations, it is also necessary to 

properly describe the energies of stacking faults. We investigated the energy of four different 

stacking faults (two intrinsic ones and two extrinsic ones).  

The I1 stacking fault is created by the removing of a basal plane and a shift of half a crystal 

under the effect of minimizing the energy in the 1/3 [10-10] direction (the ABABABABAB 

sequence becomes ABABBABAB then ABABCBCBC). The I2 stacking fault is created by 

the replacement of A planes by C planes and the B planes by A planes (we can imagine a 

displacement of half crystal in the 1 / 3 [10-10] direction, the ABABABABAB sequence 

becoming ABABCACACA). The E extrinsic fault is obtained by inserting a C plane (the 

ABABABAB sequence becomes ABABCABAB). Finally, the T2 stacking fault results, only, 

from a gliding of one A plane in the direction 1 / 3 [10-10] giving one C plane (the 

ABABABAB sequence becomes ABABCBAB).  

We first calculated with the ab initio method, the energies of stacking faults for zirconium and 

titanium.  Subsequently, we have calculated the same stacking faults with the semi empirical 

EAM potentials. There are different effects. Overall, the values obtained by ab initio method 

are larger than the values obtained with molecular dynamics. On the other hand, we find that 
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I2 and T2 stacking fault energies are very close when using  the MD method, whereas with 

the ab initio method, the values are found quite different.  

It appears clearly that the energies of stacking faults are underestimated with the EAM 

potentials. They thus cannot reproduce the subtle differences (small energetic variation 

between I2 and T2 stacking fault). However, we note that the Mendelev potential for 

zirconium gives values in agreement with ab initio calculations. Concerning the titanium 

material, although the data obtained by ab initio and MD are different, we will still retain in 

rest of the article, the titanium potential by Pasianot, because its results are closer to ab initio 

ones than the other EAM potential tested (see Table 4).  The resultants are an agreement with 

the literature [31-32] 

 IV. Interface energies map 

After validation of the EAM potentials, we have studied the variation of the stacking fault 

energy () for 5 systems of gliding shown in Table 2.  We have compared the results found 

with 2 methods (molecular dynamics (MD) and ab initio calculations).  In both methods, the 

direct and the indirect ways are considered.  

The  energies consist of the difference between the energy of the out of not equilibrium 

system and the energy of the equilibrium system divided by the area of the surface. We 

plotted the data obtained by ab initio and molecular dynamics calculations for Zr and Ti. 

Super cells are constructed in order to avoid interaction between the interfaces. The 

techniques used are the following. Half of the supercell is moved in two dimension space, 

exploring the surface with a sampling corresponding to nx×ny points. We used 25x40 points 

for basal and prismatic 1 planes, 36x34 for the prismatic 2 plane, 25x90 points for type 1 

pyramidal plane and 44x47 points for type 2 pyramidal plane. Figures 5 to 9 show the results 

for Zr and Figures 10 to 14 show the results for Ti. The “a” figures illustrate the data obtained 

with the method of molecular dynamics and the “b” figures those obtained by ab initio 

calculations. Although the figures are qualitatively similar, there exist a few quantitative 

differences in shape, geometry and intensity.  

 a) Zr case 

In the case of Zr basal plane, there is a maximum between each atomic site  and a relative 

minimum in the direction 1/3[10-10] with the MD method (the 4 corners and the center of 

Fig.5a). Each site is enclosed in 3 regions with a maximum energy and 3 regions with a 

relative minimum energy. With the ab initio method, we observe de same geometry: 3 regions 
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with a maximum energy and 3 regions with a relative minimum energy on the basal plane 

(Figures 5c). 

The  energies of the type 1 prismatic plane obtained by MD and ab initio calculations are 

similar (Figures 6.a and 6.c). There is a small massif with low energies in the “a” direction 

and a big massif in the “c” direction with high energies. It is clear that the displacements in 

the “c” direction are subject to a component in “a” direction, because the best energetic way 

in the “c” direction is to pass by the center of the figure that is a saddle point. The sites of 

maximum energies are localized on the c-axis in MD method and they are slightly shifted out 

the c-axis with the ab initio approach.  

The  energies obtained for the type 2 prismatic planes with MD and ab initio approaches 

have the same symmetries but they are very different in magnitude (Figures 7.a and 7.c). 

There is a high energy peak in the [1-100] direction and a peak with low energy in the “c” 

direction. In this plane, the displacements in the c direction are subject to a shift in the [1-100] 

direction.  As the type 1 prismatic plane the center of the figure is a saddle point and the best 

energetic way in the c direction is to pass by the center of the plane.  

The calculation of the  energies for the pyramidal planes necessitates the use of a very large 

supercell. Only results with MD method are displayed here, because the time cost for an ab 

initio calculation would be out of the reach at present.  Concerning the type 1 of the pyramidal 

plane (Figure 8.a), we can observe a minimum of the energy on the map in each corner and at 

the center.  The location of these minimums forms triangles. In the center of these triangles, 

there is a region where the  energy is high (situated close to 1/4 of the c+a direction if the 

starting point is (0,0) or ¾ of the c+a direction if the starting point is (0, ½)). We can see, in 

the “a” direction, that the  energy is low and the energetic best way is not exactly the “a” 

direction but we must consider a small component in the “c+a” direction. 

In the type 2 pyramidal plane (Figure 9.a), there is a big energetic massif in the middle of the 

[1-100] direction. This massif has a saddle point in the center of the map. We can observe that 

the “c+a” way is energetically favorable and there isn’t other best way in this plane. 

  

 b) Ti case 

Figures 10.a and 10.c represent the  energies of Ti in the basal plane by MD and ab initio 

methosd. We observe the same behavior as for Zr: each site is enclosed by only three 

maximums (or three minimum) with MD approach and with ab initio method. The  energy 

close to the equilibrium site has a triangular expected shape in the map obtained by ab initio 
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method in the titanium case. The maximum energies are lower than those observed in case of 

Zr with MD approach and it is the opposite with ab initio method. 

The  energies of type 1 prismatic planes obtained by MD and by ab initio methods are 

different (Figures 11.a and 11.c). There is a low energy massif in the “a” direction and there is 

a high energy massif in the “c” direction in both cases but the energetic maximums of the both 

massifs obtained by ab initio method are higher than the maximum obtained by the MD 

method. The two massifs at the middle in the “a” and “c” directions tend to be closer that the 

Zr case. It is expected because the lattice parameters of Ti are smaller than that of Zr. 

Concerning the displacement in the “c” direction, the most favorable energetic way passes by 

the middle of the map with MD method.  This saddle point at the center of the map is not 

present in the ab initio results. In this case the best path, concerning the displacement in the c 

direction, is the direct way. 

 

The  energies of type 2 prismatic planes (Figures 12.a and 12.c) obtained by MD and ab 

initio approaches are quite different, although containing some similar aspects. In MD 

method, there is a high energy peak in the [1-100] and a peak much lower in the “c” direction 

as in the zirconium case. A path of least energy passing through the center of the map can be 

followed by the atoms. The symmetry around the site of equilibrium has a square shape. 

In the ab initio results (Fig.12.c), we see that the peaks in the middle of directions [1-100] and 

[0001] are the higher than MD results. The symmetry around the site has an equilibrium form 

of diamond. 

The type 1 of pyramidal  energy plane is presented in Figure 13.a, we can observe a 

minimum of the energy on the map in each corner and at the center.  The shape of these 

minimums is not perfectly spherical. Between these minimums in the <11-23> direction, there 

are maximums of energy. These maximums create large region with small connections in the 

<11-20> direction.  The symmetry of the maximum or minimum energies lattice is the same. 

The distance between two extrema is ½ <22-43>. It is clear, in the “a” direction, that the  

energy is low and the energetic best way is quasi the “a” direction but we must consider a 

small component in the “c+a” direction. 

In the type 2 pyramidal plane (Figure 14.a), we can observe very little difference  between the 

Zr case and the Ti case. There is a big energetic massif in the middle of the [1-100] direction. 

This massif has a saddle point in the center of the map. We can observe that the direct  “c+a” 

way is energetically favorable and there isn’t other best way in this plane. 
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 V. Best energetic ways 

 

The maps of  energies for Ti and Zr have similarities but also significant differences 

(maximum of energy, level of the saddle point). To better understand of the pathway  

followed by the atoms, we plotted a cut of the direct and the indirect energy paths (if the 

indirect paths exist) in “a” and “c” directions. 

 a) Zr case 

The energy paths obtained by MD and ab initio method, in the basal plane, are represented by 

Figures 5.b and 5.d. For direct paths, the difference between the two methods is 20% 

concerning the maximum of the energy in the direct “a” direction. In considering the curves 

of indirect paths, the gap increases slowly. The energy gain of the indirect path compared to 

the direct path is 36% for calculation of MD approach and 37 % for ab initio calculations. 

In the type 1 prismatic plane (Figures 6.b and 6.d.), we observe that the way in the “a” 

direction is energetically the lowest. There is no indirect path in the “a” direction. The direct 

path in the “c” direction has a very high energy peak (1000 and 2000 mJ/m2 for MD and ab 

initio methods, respectively).  A more favorable energetic way passes by the center of the map 

in the both approaches. It is observed that the indirect path has two relative minimums and 

that the energy gain between the two paths is 27% and 43% for MD and ab initio methods, 

respectively. We can also see that the local minimums are more stable with the method of MD 

than the ab initio  calculations (deeper valleys). 

For the prismatic plane of type 2 (Figures 7.b and 7.d), we consider only the direct and 

indirect paths in the “c” direction. The indirect path passes close to the middle of the map 

where the energy is lower than the energy of the maximum (787 and 531 mJ/m2 for MD and 

ab initio methods, respectively). The maximum energies are 934 and 1280mJ/m2 for the 

indirect paths obtained by the MD and ab initio methods, respectively. The relative minimum 

is more stable with the ab initio method than that obtained with the MD approach. The energy 

difference between the two paths is therefore 38% and 46% for MD and ab initio methods, 

respectively. As the energetic wells of the relative minimums are deeper with the ab initio 

method, the relative minimum is more stable. 

The energetic ways obtained with pyramidal map with MD method are presented at Figures 

8.b  and 8.b.  Concerning the type 1 of the pyramidal plane (Figure 4.b) with the “a” direction, 

we can observe a direct way and an indirect way with a minimum of energy at the middle.  

The maximum with the direct and the indirect way are 441 and 405 mJ/m2, respectively. The 
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relative maximum difference between these two paths  is 9%. In the “c+a” direction, we can 

observe on the direct way two peaks with different maximums of energy (2040 and 1750 

mJ/m2).  This effect shows energetic anisotropy depending on the direction of displacement.  

This effect disappears with the “c+a” indirect way. The “c+a” indirect passes by the center of 

the plan. The maximum of the energy obtained in the “c+a” indirect way is 1750 mJ/m2.  In 

this case, the energy difference between the two paths is 17% and nearly 0% for the 2 peaks, 

respectively.  

On the type 2 of pyramidal plane (Figure 9.b), we can see only the direct way. The maximum 

of the energy is 771 mJ/m2 in the “c+a” direction.  We can observe that the glide in the “c+a” 

direction on the (11-22) plane is easier than the glide on the (10-11) plane.  

 b) Ti case 

The energy paths obtained by MD and ab initio calculations in the basal plane are represented 

by Figures 10.b and 10.d. There are similarities with the zirconium case. However, contrary to 

Zr, the energy values obtained by the MD approach are slightly lower than those obtained 

with the ab initio method. For direct paths, the difference between the two methods is of  the 

order of 28%. In examining the curves of indirect paths, we notice that the gap increases 

(31%). 

Similar to Zr, the energy gain of the indirect path compared to the direct path is 17% for MD 

calculation and 13% for the ab initio calculation. The “a” indirect path has a relative 

minimum at the middle of the way  (285 and 416 mJ/m2 for MD and ab initio methods, 

respectively). 

Concerning the prismatic plane of type 1 (Figures 11.b and 11.d.), we observe that the path in 

the “a” direction is energetically the lowest, in Zr case. So there is no indirect path in this 

direction. The direct path in the “c” direction has a very high energy maximum (928 and 2030 

mJ/m2 for MD and ab initio methods, respectively). In the “c” direction and with the MD 

method only, there is a more favorable energy path passing by the center (713 mJ/m2). The 

relative minimums observed are shallow and the energy gain obtained between the two paths 

is 23%. 

For the prismatic plane of type 2 (Figures 12.b and 12.d.), we consider only the direct and 

indirect paths in the “c” direction, as for Zr. The indirect path passes close to the middle of the 

map (883 mJ/m2 for MD method and 1475 mJ/m2 for the ab initio approach) where the 

energies are lower compared to the maximum energies. The maximum energy of indirect 
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paths are 1080 and 599 mJ/m2 for MD and ab initio methods, respectively. The relative 

minimum is more stable with the ab initio method than that obtained with the approach of 

MD. The energy difference between the two paths is quite important, 38% and 42% for MD 

and ab initio methods, respectively. The relative minimum wells are deeper for the ab initio 

method, indicating that the relative minimum is more stable than the MD result. 

As in Zr case, in the type 1 pyramidal plane (Figures 13.b and 13.d.), we observe that the way 

in the “a” direction is energetically the lowest. The direct way and the indirect paths in the “a” 

direction is energetically quasi equivalent. The maximum with the direct and the indirect way 

are 469 and 459 mJ/m2, respectively. The relative maximum difference between these two 

paths  is 2%. In the “c+a” direction, we can observe on the direct way two peaks with 

different maximums of energy (1930 and 2130 mJ/m2).  As in Zr case, this effect shows 

energetic anisotropy depending on  the direction of displacement.  This effect disappears in 

the “c+a” indirect way. The “c+a” indirect passes closed to the center of the plane. The 

maximum of the energy obtained in the “c+a” indirect way is 1930 mJ/m2.  In this case, the 

energy difference between the two paths is 10%.  

In the type 2 of pyramidal plane (figure 14.b), we can see only the direct way. The maximum 

of the energy is 932 mJ/m2 in the “c+a” direction.  We can observe that the glide in the “c+a” 

direction on the (11-22) plane is easier than the glide on the (10-11) plane.  

 

To summarize, the paths of minimum  energy for Ti and Zr are similar but they also show 

quantitative differences. For the basal plane, we observe the same behavior with the two 

materials. There is an indirect path through the direction 1 / 3 [10-10]. This path reduces the 

energy barrier of 13-20%. The indirect path reveals a position energetically stable. 

For prismatic planes, the differences between Ti and Zr are larger, because for Ti, the energies 

obtained by ab initio are twice the energies obtained by MD. In the case of prismatic plane of 

type 1 and for Ti, there is no indirect path resulting from  a method for ab initio . 

For the prismatic plane of type 2, the minimum energy of the indirect path obtained by the ab 

initio method is more stable for both Ti and Zr systems. It can be also noted that energy to 

travel through the path is more important for Ti case than for Zr case (this with both 

approaches, but the effect is stronger for the ab initio results). 
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In Figures 11 and 12, we summarize all the results of maximum energies obtained in this 

study, for Zr and Ti respectively. 

 VI. Critical Resolved Shear Stress (CRSS) 

In this part, we calculate directly the CRSS in the edge dislocation in the 1/3[11-20] direction 

with 3 types of planes (basal, prismatic, and pyramidal planes). 

The shear stress for edge dislocation is due to the inherent resistance of atoms in the crystal. 

In the absence of temperature effects (T = 0K), the shear stress is equal to the Peierls stress. 

We have determined the Peierls stress in the basal, type 1 pyramidal and type 1 prismatic  

planes only in the “a” direction. In fact, the  energy calculations show that this is the 

direction that has the lowest energy. We follow the protocol by Bacon[17-18], and the MD 

code is adapted from that of Rodney[] initially used for cubic materials. We fix a block 

composed several layers of atoms and we move a equivalent block to the opposite side to 

create a shear. The atoms between the two blocks are mobile and can relax. The core of the 

dislocation can then move freely under the effect of shear. The relative increment of 

displacement is 10-5. 

  

Stress strain curves of crystals containing dislocations for the three slip systems are shown in 

Figure 15 for zirconium and Figure 16 for titanium. Concerning zirconium, the CRSS values 

have been calculated and are 3.5, 14 and 21 MPa for basal, pyramidal and prismatic planes 

respectively. If we normalize the CRSS values obtained by the lowest CRSS value, we find 

the following ratios: 1, 4.1 and 6.2. For titanium, the CRSS are 3.1, 4.2 and 12 MPa for the 

basal, pyramidal and prismatic planes respectively. After normalization, we obtain the 

following ratios: 1, 1.3 and 3.8. We can observe that both systems show the same ranking of 

CRSS ratios:  the glide along the basal plane seeming to be the easiest, followed by the 

pyramidal plane of type 1, where the gliding is easier than the third system, with the prismatic 

plane of type 1.  These results are quite different from the classifications obtained based the  

the  energies for  Zr and Ti (Figs 17-18). 
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VII. Discussion and Conclusion 

The hierarchy prediction of gliding systems in hexagonal materials has been investigated by 

many researchers[33]. Peierls was the first to suggest that the dislocations pass by energetic 

saddle points. These saddle points opposing movements of dislocations are a considered as 

friction forces. Several more or less refined models were created for predicting the slip 

systems. Legrand [34-35] suggested a criterium with the parameter 𝑹 =
𝜸𝒃𝒂𝒔𝒂𝒍

𝜸𝒑𝒓𝒊𝒔𝒎

𝑪𝟔𝟔

𝑪𝟒𝟒
.
 
If R <1 the 

main glide is basal, if R> 1, the main glide is prismatic and if R   1 then both basal and 

prismatic glides can take place. 𝛾𝑏𝑎𝑠𝑎𝑙 is the stacking fault energy in the basal plane and the 

𝛾𝑝𝑟𝑖𝑠𝑚is the stacking fault energy in the prismatic plane. 

In the present, for the case of zirconium, the energies of basal and prismatic stacking faults 

are respectively 199 mJ/m2 and 145 mJ/m2 by MD and 213 mJ/m2 and 166 mJ/m2 by ab initio 

method. Although, the values of elastic constants of potential Mendeleev and experimental 

values are close, the C66/C44 ratio is estimated 0.88 by MD while the ratio obtained by ab 

initio is 1.13. On the other hand, from the section 4, the values of  energy in the basal and 

prismatic planes obtained with the MD method and the ab initio method are in good 

agreement. 

The R ratio obtained by Legrand for Zr case was 2.3[34]. That obtained by the present MD 

investigation is 1.20 and we obtain 1.44 by ab initio approach. As these R ratio are higher 

than 1 and that the gliding should be the prismatic of type 1 glide. Nevertheless, the order of 

CRSS obtained in the section 6 predicts that the glide in the basal plan is the primary system. 

For Ti case, we obtained R ratios of the same order of magnitude. The energies of basal and 

prismatic stacking faults are respectively 246 mJ/m2 and 217 mJ/m2 by MD and 336 mJ/m2 

and 206 mJ/m2 by ab initio method. The C66/C44 ratio obtained is 1.15 by MD while the ratio 

obtained by ab initio method is 1.04 [36]. 

The Ti R ratio obtained by Legrand was 2.6 and that obtained by MD and ab initio methods 

are respectively 1.30 and 1.70. As in Zr case, although the glide should be the primary 

prismatic slip, the order of CRSS obtained in the section 6 gives that the basal glide as the 

principle gliding system.  
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We have calculated the  energy for 5 planes of glide to the zirconium and titanium by MD 

and ab initio methods, complementing previous studies. The  energies obtained with the two 

methods are in good agreement and are consistent with results from other research groups. 

We plotted the paths of lower  energy which could be followed by the atoms during the 

movement of dislocations in these HCP materials. These paths are in agreement with the 

experimentally observed paths and with instability of dislocations resulting in the creation of 

partial dislocations. 

We have given a classification involving the  energies of the saddle point (for the paths of 

least energy). This normalized classification predicts that the prismatic glide of type 1 in the 

<a> direction is the easiest. These results are in agreement with the experimental results 

obtained for Zr. 

The CRSS have been obtained for the two gliding systems for which the  energies are the 

lowest. The results are in agreement with previous simulations[29] but they do not correspond 

to the order of the classification with  energies and to the experimental results. Khater et al. 

[29], who studied the screw dislocations in Zr have not observed an hierarchy in agreement 

with experimental results either. 

 

In conclusion, our results show that it is necessary to improve bath the EAM potentials and 

the dislocation model, in order to better determine the CRSS in the hexagonal materials For 

example the EAM potential for Ti should be able to tell the difference between I2 and T2 

stacking faults. A dislocation model which is more complicated than that of [26] should be 

suggested, including equally the screw dislocation. In the new model, the presence of oxygen, 

which is included in the defects and which affects the CRSS, should be considered. 
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Table 1 chemical composition (weighted percent) 

 

Zr O2 Fe Hf 

Balance 400 to 500 ppm 20 ppm 50 ppm 
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Table 2 : Properties of the Zirconium obtained by ab initio  and MD  calculation with different EAM 
potentials. 

Plan of glide  Direction of glide  

name plan direction  Burgers vector 

Basal  (0001)  <11-20>  𝑎⃗ 

Prismatic 1  (10-10)  <11-20>  𝑎⃗ 

Pyramidal 1  (10-11)  <01-10>  𝑎⃗ 

Pyramidal 1  (10-11)  <11-23>  𝑐 + 𝑎⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 

Pyramidal 2  (11-22)  <11-23>  𝑐 + 𝑎⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 

Prismatic 1  (10-10)  <0001>  𝑐 

Prismatic 2  (11-20)  <0001>  𝑐 
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Table 3 : Properties of the Zirconium obtained by ab initio  and MD  calculation with different EAM 

potentials. 

Properties th Ex[31] Ackl[25] Ackl[22] Mend2.[4] Mend3[4] Cler1[25] Cler2[25]   Will[27] Will[27] Pasia[28] 

a (Å) 3.208
7 

3.230 3.266 3.249 3.220 3.232 3.152 3.233 3.226 3.164 3.232 

c (Å) 5.139
3 

5.150 5.212 5.183 5.215 5.172 5.137 5.254 5.257 5.156 5.149 

c/a 1.602 1.594 1.595 1.619 1.619 1.600 1.630 1.625 1.630 1.630 1.593 
Ec (eV) (-8.5) -6.32 -6.26 -6.25 -6.47 -6.64 -6.16 -6.03 -6.17 -6.52 -6.25 
C11 (GPa)  155.4 157.6 160.1 164.8 146.5 146.9 150.8 158 172.8 140.5 
C12 (GPa)  67.2 74.9 76.0 65.1 69.3 76.4 56.6 74.8 81.9 66.1 
C13 (GPa)  64.6 71.7 70.2 63.6 75.7 65.8 46.5 36.6 60.2 60.4 
C33 (GPa)  173.0 161.6 175.6 180.5 168.2 158.4 166.7 171.4 187.9 162.1 
C55 (GPa)  36.3  35.1  43.8     28.5 
C66 (GPa)  41.1 41.4 42.1 49.9 38.6 35.3 47.1 41.6 45.5 37.2 
Ev (eV)  2.08 1.78 1.79 2.27 1.76 1.79 2.63 2.07 2.17 1.73 

I1 (eV/Å2) 10.5  1.7 1.8 3.4 6.2 0.8 4.5 0.9 1.1 2.2 

I2 (eV/Å2) 14.2  3.5 3.5 6.9 12.4 1.6 8.9 1.8 2.1 4.4 
E (eV/Å2) 18.5  5.2 5.3 10.3 18.7 2.4 13.4 2.7 3.2 6.7 
T2 (eV/Å2) 14.2  3.5 3.5 6.9 12.4 1.6 8.9 1.8 2.1 4.4 
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Table 4 : Properties of the Titanium obtained by ab initio  and MD  calculation with different EAM 

potentials. 

Properties ab initio Exp[31] Pasianot[28] Ackland[30] 

a (Å) 2.934 2.951 2.951 2.966 
c (Å) 4.641 4.679 4.686 4.728 
c/a 1.582 1.586 1.588 1.594 
Ec (eV) (-7.73) -4.86 -4.85 -4.85 
C11 (GPa)  176.1 186.5 190.0 
C12 (GPa)  86.9 73.1 79.6 
C13 (GPa)  68.3 68.0 81.5 
C33 (GPa)  190.5 190.3 242.2 
C55 (GPa)  50.8 49.2 56.9 
C66 (GPa)  45.0 56.7 55.2 
Ev (eV)   1.53 1.44 
I1 (mJ/m2) 9.7  3.6 2.2 
I2 (mJ/m2) 17.3  7.1 4.3 
E (mJ/m2) 24.4  10.7 6.5 
T2 (mJ/m2) 21.9  7.1 4.3 
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Figure 1 Block diagram of the equipment 
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Figure 2 : the pile-ups of <a> dislocations in prismatic plane observe by  
TEM. 
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Fig 3 : Stress vs strain deformation of the prismatic gliding 
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Figure 4:  HCP cell with the different plans: the hcp cell is represented (at the left) with basal plan, (at 

the center) with the prismatic of type 1 and of type 2 plans, (at de right) with the pyramidal of type 1 

and of type 2 plans. 

  



24 
 

Zr 

Basal 

 

a) b) 
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Figure 5:  Zirconium. On the top left picture (a): Map of the stacking fault energy () in the (0001) 

plan obtained by MD. On the bottom left picture (c): Map of stacking fault energy () in the (0001) 

plan obtained by ab initio. On the top right (b): graphic of energetic way following the “a” direction 

obtained by MD. On the bottom right (d): graphic of energetic way following the “a” direction 

obtained by ab initio. The red lines represent the indirect paths. 
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Figure 6:  Zirconium. On the top left picture (a) : Map of the stacking fault energy () in the (10-10) 

plan obtained by MD. On the bottom left picture (c): Map of stacking fault energy () in the (10-10) 

plan obtained by ab initio. On the top right (b): graphic of energetic way following the “a” and “c” 

directions obtained by MD. On the bottom right (d): graphic of energetic way following the “a” and 

“c” directions obtained by ab initio. The red lines represent the indirect paths. 
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Figure 7:  Zirconium. On the top left picture (a): Map of the stacking fault energy () in the (11-20) 

plan obtained by MD. On the bottom left picture (c): Map of stacking fault energy () in the (11-20) 

plan obtained by ab initio. On the top right (b): graphic of energetic way following the “c” direction 

obtained by MD. On the bottom right (d): graphic of energetic way following the “c” direction 

obtained by ab initio. The red lines represent the indirect paths. 
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Figure 8:  Zirconium. On the top left picture (a): Map of the stacking fault energy () in the (11-20) 

plan obtained by MD. On the bottom left picture (c): graphic of energetic way following the “a” 

direction obtained by MD. On the bottom right (d): graphic of energetic way following the “c+a” 

direction obtained by ab initio. 
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Figure 9:  Zirconium. On the left picture (a): Map of the stacking fault energy ( in the (11-20) plan 

obtained by MD. On the right (b): graphic of energetic way following the “c+a” direction obtained by 

MD.  



29 
 

Ti 

Basal 

a) b) 

 

 

 

  
c) d) 

 

 

 

 

        

 

     

Figure 10:  Titanium. On the top left picture (a) : Map of the stacking fault energy () in the (0001) 

plan obtained by MD. On the bottom left picture (c): Map of stacking fault energy () in the (0001) 

plan obtained by ab initio. On the top right (b): graphic of energetic way following the “a” direction 

obtained by MD. On the bottom right (d): graphic of energetic way following the “a” direction 

obtained by ab initio. The red lines represent the indirect paths. 
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Figure 11:  Titanium. On the top left picture (a) : Map of the stacking fault energy () in the (10-10) 

plan obtained by MD. On the bottom left picture (c): Map of stacking fault energy () in the (10-10) 

plan obtained by ab initio. On the top right (b): graphic of energetic way following the “a” and “c” 

directions obtained by MD. On the bottom right (d): graphic of energetic way following the “a” and 

“c” directions obtained by ab initio. The red lines represent the indirect paths. 
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Figure 12:  Zirconium. On the top left picture (a): Map of the stacking fault energy () in the (11-20) 

plan obtained by MD. On the bottom left picture (c): Map of stacking fault energy () in the (11-20) 

plan obtained by ab initio. On the top right (b): graphic of energetic way following the “c” direction 

obtained by MD. On the bottom right (d): graphic of energetic way following the “c” direction 

obtained by ab initio. The red lines represent the indirect paths. 
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Figure 13:  Titanium. On the top left picture (a): Map of the stacking fault energy () in the (11-20) 

plan obtained by MD. On the bottom left picture (c): graphic of energetic way following the “a” 

direction obtained by MD. On the bottom right (d): graphic of energetic way following the “c+a” 

direction obtained by ab initio. The red lines represent the indirect paths. 
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     Figure 14:  Titanium. On the left picture (a): Map of the stacking fault energy () in the (11-20) plan 

obtained by MD. On the right (b): graphic of energetic way following the “c+a” direction obtained by 

MD.  
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Figure 15:  Zirconium normalized diagram of the maximum stacking fault energy () concerning three 

plans of glide following the “a” and “c” direction of glide obtained by MD and ab initio calculation.  
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Figure 16:  Titanium normalized diagram of the maximum stacking fault energy () concerning three 

plans of glide following the “a” and “c” direction of glide obtained by MD and ab initio calculation.  
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Ti 

 

Figure 17:  Resolved shear stress versus strain plots for glide of straight edge dislocation of Zr at 0 K. 
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Figure 18:  Resolved shear stress versus strain plots for glide of straight edge dislocation of Ti at 0 K.  
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