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With recent advances in the eld of articial intelligence Al) such as binarized
neural networks (BNNs), a wide variety of vision applicatis with energy-optimized
implementations have become possible at the edge. Such netarks have the rst
layer implemented with high precision, which poses a challege in deploying a uniform
hardware mapping for the network implementation. Stochast computing can allow
conversion of such high-precision computations to a sequeoe of binarized operations
while maintaining equivalent accuracy. In this work, we pmose a fully binarized
hardware-friendly computation engine based on stochasticcomputing as a proof of
concept for vision applications involving multi-channelputs. Stochastic sampling is
performed by sampling from a non-uniform (normal) distridion based on analog
hardware sources. We rst validate the bene ts of the proposd pipeline on the CIFAR-10
dataset. To further demonstrate its application for real-arld scenarios, we present a
case-study of microscopy image diagnostics for pathogen déection. We then evaluate
bene ts of implementing such a pipeline using OXRAM-based iccuits for stochastic
sampling as well as in-memory computing-based binarized mitiplication. The proposed
implementation is about 1,000 times more energy ef cient conpared to conventional
oating-precision-based digital implementations, with nemory savings of a factor of 45.

Keywords: stochastic computing (SC), binarized neural netw
computing (IMC), near-sensor computing

ork (BNN), RRAM (resistive RAM), in-memory

1. INTRODUCTION

Arti cial intelligence (Al) and deep learning research leagnabled innovative solutions for a wide
variety of vision applications at the edge. As a result, theseldeen increasing focus on developing
low-precision Al solutions while maintaining accuracy e¢plent with oating-point precision
(Moons et al., 2017 With the emergence of binarized neural networks (BNNshas become
possible to map complex multiply-and-accumulate (MAC) operasitmsimple logic gates such as
exclusive-NOR (XNOR) and population count (popcount) operatiorisis simpli cation leads to
savings in energy, area and latency at the cost of a modesger accuracyGourbariaux et al.,
2019.

For most hardware BNNs demonstrated in literature, the infayter is typically implemented

eitherin oating-point or 8-bitinteger (int8) precision, wereas the subsequent layers use binarized

neurons. In order to map all operations to a truly binarized pipe, the computation of input
layer using stochastic sampling has been proposeé €t al., 2097 A fully binarized pipeline
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can allow executing computation at the edge, without relyingor implementing in-memory computing. Finally, in Section 4,
on network communication with high-performance compute we summarize the conclusions of the study.

servers in order to perform oating-point computationgljou

et al., 201p To further improve energy e ciency of such

technologies, near-sensor computing has been investigatc?d MATERIALS AND METHODS

(Conti et al., 2018; Plastiras et al., 2)1Recently, stochastic 1. Dataset Description

binary neural networks have been proposed for mono-chann
convolutional neural networks (CNNs).¢e et al., 2017; Hirtzlin
et al., 201pto enable near-sensor computing. Such networks ca
be used for performing rst-level computations for applicat®n

.1.1. Automated Laboratory Diagnostics Dataset
The automated laboratory diagnostics dataset released dy th
Arti cial Intelligence Research Group, Makerere University,
. . . L . Uganda Quinn et al., 201phas been used for this study. The
such as remote sensing, material analysis, medical imadgsis) dataset incorporates images acquired using a mobile cam#éra wi

anis:i Or: S;gtegr?;.lylezr?l:;o?:]s?gc?lgitic(:hgcl;rﬁoﬁgn a roachesa microscope for the following diseases: malaria, tubercylosis
gni 9e . mputing app and intestinal parasites. The malaria dataset contains ésag
however, is the generation of high-quality random number

ithal budaet. Stochasti fina for imol i Staken from thick blood smears at 1,000 magni cation,
with & low energy budget. Stochastic sampiing Ior IMpIementing zy, oy ated plasmodium (7,245 objects in 1,182 images).

TRNG (True Random Number Generators) using analog].he tuberculosis dataset contains images taken from fresh

properties of circuits and devices has been studied in Iiteegt sputum and stained using ZN (Ziehl Neelsen) stain, at 1,000
n or'der _to develolp r;é)re. sgc;ljre as vlvellzgs larea-e Clentrpagni cation, with annotated tuberculosis bacilli (3,73djects
ggcllé'_tSQ(j'a:tg alet 3618' gu'o :t 2’ eéoié’_ Palrl’ e‘]tegly eztoﬁ‘ 1’928 images). The intestinal parasites dataset contaiagés
Huan’g ot al 2(')’20_ Sir’nion 202m6Wever Yin most cas.és a][ ken from slides of a portion of stool sample examined under
. v ’ 400x magni cation annotated with eggs of hookworm, Taenia
non-uniform distribution, i.e., normal or log-normal, haseen and Hymenolepsis nana (162 objects in 1,217 imag@sjn
observed._ Such dis_trib_utions are attractive for applicatiench et al., 201) Detailed description on number,of training and test
as Bayesian Iearnl_ngu(w et al,, 2019; Malhotra et al,, 2020 samples, slice dimensions are providedTable 1 Using these
Montg Carlo sampllng[()algat_y etal., 203lor deep Boltz.mann images, we produced positive and negative sample images for
mac_hme;s Par”.‘ar . and _Sur|, 2030 Unfortunat_ely, un|fo_r_m training a binary classi cation model that can detect theggace
distribution, W.h'Ch Is typically u_s_ed for _stoqhasUc Comm IS of pathogen. Positive samples (i.e., those containing plasmudi
nor_mally obtained 0|_1Iy by addl]flonal cireut overheadsderzgl bacilli, or parasite eggs, respectively) were produced by dakin
tzooirécreased costs in terms of area and energyr(g et al., the centered bounding boxes in the annotation of the dataset
In.this paper, we propose a novel method for realizingNegativesamplesin eachimage (i.e.,inthegbsencepfare;&m‘_th
N : f pathogens) were taken from random locations not intersegtin
stochastic binary neural networks for performing classiioa with any annotated bounding boxes. As dominant image areas
RGB images. We rst use the CIFAR-10 dataset for validation,. . . U - )
on did not contain pathogen objects, the ratio of positive to nagat

Then, to demonstrate a real-world application, we use the ) .
. . ) amples was highly skewed. Thus, some negative samples were
proposed network for microscopy image analysis. Bene ts o

implementing the proposed network based on emerging OxRAMandomly discarded and new positive samples were created by

technology for both stochastic sampling as well as XNC)I._gpplying di erent transformations: rotation and ipping@uinn
computation are also analyzed in detail et al., 201p Example training images used as input for training

o . . the binary classi ers for each dataset are showfigure 1 The
Key contributions of this work are as follows: . .
produced sample images were then down-sized to 220 (for
Stochastic sampling at input layer based on normamalaria and tuberculosis) and 3030 (for intestinal parasites).
distribution is demonstrated for realizing stochastic &irzed

convolutional neural network (SBCNN) with validation over 9 o Proposed SBCNN Methodology
the CIFAR-10 dataset. , , Stochastic BNN studies have been primarily limited to
The rst demonstration of stochastic BNNs for microscopy gingle channels, usually on the MNIST dataset and uniform
application, match_mg reported accuracy from literature with §istribution-based samplingLee et al., 2017: Hirtzlin et al.,
large memory savings @5 ) and energy savings 1000 ) 5419 adapting stochastic BNN computation for multi-channel
compared to oating-pointimplementations. RGB data for object detection requires optimizing the channel
The paper is organized as follows: Section 2.1 provides details SPeci ¢ scaling Krizhevsky et al., 20)4We propose a novel
the dataset. Section 2.2 describes the architecture of dpoped ~Multi-channel SBCNN architecture where a stochastic hinar
SBCNN. Section 2.3 describes the architecture of a 2T-2¢onvolutional layer is used as input layer to the BNN. To aghie
OxRAM-based in-memory computing array. Section3.1 provide@n € cient implementation, pre-processing of the RGB data is
analysis of performance of proposed SBCNN on the CIFARISt performed using mean-sigma normalizatiork(izhevsky
10 and microscopy datasets, and also describes algorithch uset al., 201p
for implementing SBCNN-based pathogen detector. Section 3.2
compares performance of implemented network across multiple X, D Xai i 2(0,1,2). 1)
computing platforms and also across memory technologies used ’ [
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FIGURE 1 | Microscopy image samples from datasetQuinn et al., 2016 for diseases.(A) Malaria, (C) tuberculosis, and (E) intestinal parasite. Sample slices used for
training for classi cation network to detect pathogen:(B) Malaria, (D) tuberculosis, and (F) intestinal parasite.

TABLE 1 | Dataset samples used for experiments.

Dataset Train samples Test samples Slice dimensions Downsample ratio
Malaria 289,458 290,401 40 40 2
Tuberculosis 78,285 80,863 20 20 5
Intestinal parasite 1,508 1,439 60 60 10
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FIGURE 2 | (A) Stochastic sampling for multi-channel input images based o normal distribution.(B) Modi ed AlexNet architecture used for CIFAR-10-based case
study. (C) CIFAR-10 dataset samples for each class.

Here, X;; denotes the normalized responsgy; denotes the (Alaghi and Hayes, 20).3 However, capturing the response
actual input, andi denotes the color channel. The data ow is of the rescaled RGB image based on sampling using a uniform
shown inFigure 2 This type of rescaling is often used to enhancelistribution may not always be e cient, as the rescaled pixel
the accuracy of deep neural networks. may not have an absolute minimum and maximum value. Also,
Uniform distribution is generally accepted as the goldas mentioned in Section 1, uniform distributions often reegui
standard for implementation of stochastic computingadditional post-processing circuitry in order to be genedate
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FIGURE 3 | Variation in stochastic input representations based oMy and for CIFAR-10 image sample by stochastic sampling using siiributions: (A) Uniform and
(B) normal. Variation in stochastic input representations basd on Npre and for ALD-AIR image sample by stochastic sampling using digbutions: (C) Uniform and (D)
normal.

directly in hardware. Hence, we investigate stochasticpliagn  networks were explored to estimate the impact of precision. The
from a normal distribution based on mean-sigma normalizatio Adam optimizer Kingma and Ba, 20)4vas used for optimizing
parameters. A single binary sample can be obtained as showntime loss during training. To introduce stochastic computimg

Equation (2). the network, we build upon the method proposed byirtzlin
et al., 201R Representations of sample input images based on
Xpi D Xrji > randn( i, i) 2 (0, 1,2). (2) stochastic presentations using uniform and normal distribot
based sampling are shown FKigure 3 for both CIFAR-10 and
Here,Xpi, i, idenote binary sample value, mean, and standard\LD-AIR datasets. Histograms of pixel-wise intensity acralss

deviation for a pixel in channel, respectively, whileandnis 3 channels for sample images from each dataset are shown in
a random number obtained using a normal distribution. For aFigure 4.

single pixel, samples are collected as a stream of binarysvalue

by repeated sampling fd¥,re presentations to better capture the
complete input range (shown iRigure 3):

Algorithm 1 | SBCNN inference algorithm.

P "\llapf Xpi Require: Input vector X, Weight matrice®Vp,
Xmi D lNi (3) Bias vector$y, #Layers L #Presentations N.
pre

Ensure: Predicted output

Here, Xm; denotes summation of the stochastic samples stream. Sto_ch_a stic Layer
The network architecture used throughout our study is an—5|gn(pl;’(u)pcount(XNOR\(vo,x> rand)) - bo)
based on the AlexNet architecturéifzhevsky et al., 20)2  Ag=sign( an)
with the output layer restricted to 10 neurons (multi-class nDO
classi cation) for CIFAR-10Figure 2 and two neurons (binary ~ XegularLayer —
classi cation) for ALD-AIR dataset. The neural networkseds 107 1D i< LITDiCCdo
in the study were trained as per the method proposed by A = SIgn(PopCount(XNORWi Ai 1)) - bi)
et al. (Courbariaux et al., 20)6Both quantized and binarized end for
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FIGURE 4 | Histograms of pixel-value distribution over image samplefom the datasets used in the study:(A-D) original image,(E—H) uniform distribution based
stochastic sampling, and(I-L) normal distribution-based stochastic sampling.

2.3. Hardware Implementation Based on chip, where synaptic weights are stored in OXRAM (shown in
Emerging Memory Devices Figure 5D), and which utilizes the 2T-2R architecture (shown in
The major hardware realizations for implementing proposed™igures 5A,Q to store synaptic weights in a di erential fashion:
SBCNN include stochastic sampling at input layer anc® device pair programmed in low resistance state (LRS)/high
computation of BNN. In BNNs, weight values are one-bitfesistance state (HRS) represe@ts, and, conversely, HRS/LRS
(weight can only take values 1 and C1), and neuron represents 1. Pre-charge sense ampliers (PCSAs) compare
activation is implemented by the sign function. Neuron outputthe resistance states of the two paired devices, thus reading

is computed by the synaptic weight. An advantage of this approach is the
possibility of incorporating the XNOR operation utilized in
y D sign(popcount(XNOR;, Xj))  b). (4) BNN computation directly within PCSA by the addition of

four transistors (shown inFigure 5H). Figures 5E,Fpresents
Here, popcount is a function counting the number of ones,the methodology for implementing fully connected layers, by
andbis a learned neuron's threshold. Besides reducing memomyinimizing data movement Hirtzlin et al., 2019. Training
requirements due to reduced precision, BNNs enable redaoctiois performed o -chip, followed by weight programming and
of computation logic circuit area, as digital multipliers che  inference operations. We use this implementation of BNN as a
replaced by simple XNOR logic gates. reference in this work.

For realizing such computation in using emerging memory Emerging memory devices such as OxRAM devices have been

devices in hardware, we introduced in previous studigscquet ~ shown to demonstrate normal C2Rorr distribution, which has
et al., 2018; Hirtzlin et al., 209@ hybrid CMOS/OXRAM test been exploited for stochastic sampling applicatioBsr( et al.,
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FIGURE 5 | (A) Stochastic neuron circuit based on OxRAM device used for inpt sampling. 2T-2R in-memory XNOR circuit for BNN computatin. (B) C2C variability
observed in low resistance state (LRS) for the fabricated GRAM device of Palgaty et al., 2027). (C) Memory array chip photograph.(D) OXRAM cell.(E) Binarized
neural network implementation highlighting connectionsot one speci ¢ neuron. (F) Implementation of binarized neural network in the “paralléd sequential”

con guration. (G) 2T-2R bitcell array.(H) Schematic of 2T-2R bit-cell for XNOR operation computatiofased on pre-charge sense ampli ers (PCSAs)Hirtzlin et al.,
2019).

2015; Dalgaty et al., 20R1A circuit implementation for the Max presentationsiVe train the network with a maximum
same is shown irigure SA. Each stochastic neuron accepts an number of presentations (256) and infer witiNpre
image pixel in form of voltage encoding that is compared with presentations.

the voltage drop across the OXRAM device, which is repeatedly Matched presentation$raining and inference are performed
cycled from LRS to HRS. The intrinsic C2Roy variability using the samélpre nUMber of presentations.

of the OxRAM device leads to a variable reference voItag'S
for the comparator. LRS variability of a fabricated OXRAM
device Dalgaty et al., 2091s shown inFigure 5B. This enables
translation of deterministic input voltage to a stochastindry
neuron output.

esults of the analysis comparing these two strategies are
shown in Figures 6A—C We analyzed the overall impact on
inference in terms of three parameters: (i) accuracy (%)m{iP
(mean average precision), (iii) ROC AUC (receiver operating
characteristics area under curve). For all three parametkes
performance of the matched presentations method is observed

3. RESULTS AND DISCUSSIONS to be consistently better than the max. presentations method.
The matched presentation method leads to accuracy values

3.1. Simulation Results and Discussion that are close tdNpe D 256 for all values oNpre. We also

3.1.1. Case study A: CIFAR-10 observed that using matched presentation method Wge D

To evaluate the proposed SBCNN for generic image classiratios8 showed equivalent accuracy as the max. presentations case
applications, we performed analysis using the CIFAR-10 datasi®r Npe D 256. The matched presentation method, therefore,
(Krizhevsky et al., 20)4The Npre parameter used for training appears vastly superior.

was 32. A benchmarking of the proposed SBCNN is shown in

Table 2 For all stochastic computations, average results obtaine?l1.2. Case Study B: Microscopy

over ve trials are listed. Point-of-Care (PoC) microscopy diagnostic support systems

The performance of our proposed method based on samplinfpr di erent diseases (e.g., malaria, tuberculosis, andsiiral
from normal distribution matches AlexNet closely 8%) even parasite infection) have been studied in detail with regard
using 32-bit oating point precision (FP32). In contrast, the to application of deep learning. However, most of the
network based on sampling from uniform distribution resuilts ~ implementations in the literature are based on conventional
a higher accuracy drop (6%). CPUs (rang et al., 2090 high-end GPUs Quinn et al., 201}

Npre is an important parameter to realize equivalentor FPGAs {okota et al., 2002; Grull et al., 2Q1’Recent
accuracy with a reduced number of operations. Towork has also explored possibility of realizing such PoC
understand the impact of this parameter, we also analyzesystems using specialized ASIC accelerators with reduced
two strategies: energy consumption ethi et al., 20)8 Here, we present
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a case-study for the application of the proposed SBCNMNccuracy inFigure 7. We observe the highest accuracy for
for microscopy image analysis for potential applicationFP-32 and a consistent accuracy reduction when moving to
speci ¢ optimization with the goal of low-power/low-resource lower precision.
edge realizations. Further, we estimated performance for SBCNN with both
The AlexNet architecture was again used as referenasiform and normal distribution-based samplingNgre D
model for the study Krizhevsky et al., 20)2We performed 32). The results are also reported Figure 7. We observe
analysis for FP-32 int8, as well as binary precisions andincreased or equivalent accuracy when transitioning from
plotted the results of both training as well as inferenceuniform to normal distribution-based sampling. To further
optimize the network architecture given the lower complexity
of the task (i.e., binary classi cation), we reduced thewuk
depth by removing an intermediate linear layer leading to
TABLE 2 | Test accuracy benchmarking of different precision network simulated increased memory savings. This modi ed network architeetu

in this study, for CIFAR-10 dataset. is referred to as reduced SBCNN. As observedFigure 7,
Network description Input layer Test the total accuracy drop between best-case FP32 and the

precision accuracy (%) (Top-1) optimized reduced SBCNN is approximately 5%. Furthermore,

we can also observe that the impact of bit-precision trade-

AlexNet (FP-32 precision) FP-32 88.64 o with accuracy is more pronounced for datasets with
AlexNet (INT8 precision) INTS 87.57 less training data (malaria vs. tuberculosis). In case of
AlexNet (BNN) INT8 86.92 intestinal parasites dataset, this trend is reversed duehéo t
SBCNN (uniform) Kipre D 32) Binary 82.89 small size of the dataset resulting in over tting, even with
*SBCNN (normal) Npre D 32) Binary 85.61 reduced precision.

FIGURE 6 | Variation of network performance metrics witfNye for inference using stochastic binarized neural network (BN) (AlexNet model) for CIFAR-10 dataset:
(A) Accuracy, (B) mean average precision, andC) receiver operating characteristics area under curve. Theesults have been averaged over 5 iterations.

FIGURE 7 | Network precision and architecture analysis for microscop diagnosis task. For all stochastic networks, training anéhference is performed withNpre D 32.
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FIGURE 8 | Heatmaps generated based on sliding window-based detectias using reduced stochastic binarized neural network (BNNjlassi ers: (A) Malaria, (B)
tuberculosis, and (C) intestinal parasite. Detections on microscopy sample imags: (D) Malaria, (E) tuberculosis, and (F) intestinal parasite. Red box indicates
network-based detection, and white box indicates ground tuth. The Npre used for training and inference are 32.

FIGURE 9 | Receiver operating characteristics (ROC) curves for proped stochastic binarized convolutional neural network (SBNN):(normal distribution and
reduced layers):(A) Malaria, (B) tuberculosis, and (C) intestinal parasite. Precision recall curves for propose8BCNN (normal distribution and reduced layers)D)
Malaria, (E) tuberculosis, and (F) intestinal parasite.

After the training step described in Section 2.2, the clessi  sliding window approach, the classi er output is summed over
can be used for performing detection of pathogens using théhe pixels of the window in order to generate a heat map. The
sliding window approach on microscopy images. As part of thesliding windows have 50% overlap in both horizontal and ioait
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FIGURE 10 | Variation of network performance metrics witfNyre for stochastic binarized convolutional neural network (SBNN) (reduced model) on microscopy
diagnosis task: (A) Accuracy, (B) mean average precision (mAP), angC) ROC_AUC. Results have been averaged over 5 iterations.

TABLE 3 | Performance estimates of inference with multiple architeares for microscopy image analysis.

. MAC ops (Mops)
Network type Platform Weight memory (MB) . Energy ( J)
per inference

AlexNet (Float) GPU (RTX 2080) 217.42 1.47e5
. ASIC (Eyeriss v2)
AlexNet (int8) 54.37 5.72e3
(Chen et al., 2019
BNN 7.53 15.24 7.98
Stochastic BNN 2T-2R IMC 7.53 12.91 6.84
Reduced model 4.79 10.74 5.66

directions. Heat map outputs generated based on the sliding ROC and PR curves for the experiments were calculated
windows are then normalized, followed by a threshold operati by averaging performance parameters over ve iterations for
in order to generate candidate regions in form of binary mapsstochastic networks. As shown Figure 9, the smallest network
Bounding boxes are generated based on contour detecti@rchitecture is able to match the learning performance of32P-
performed over these binary maps. To improve detection qualityAlexNet.

non-maximal suppression was applied. Results for the detection

for each type of pathogen with corresponding heatmaps ar8.1.4. Impact of Stochastic Presentations

shown inFigure 8 In Figure 1Q we analyze the impact of tiéye parameter used
during inference on the overall learning performance in term
of (a) accuracy, (b) mAP, and (c) ROC AUC. When using
the presentations strategy, there is a minor trade-o in @ler
(I:earning performance (2%). The impact is more severe in case
of the smallest dataset (intestinal parasites), which woeslt

in over- tting. When using the max. presentations strategie

3.1.3. Learning Performance

We characterized the accuracy of all network architectus#sg
two metrics: ROC curve and precision-recall (PR) curve. RO
curves are used to visualize the precision capacity of thearktw

e S o e e s abserv an nreasing e n eaming prormance asyi
) p slop approach the value used for training.

one demonstrate very high precision and, in turn, less chance From the analysis, we conclude that, for a practical

of false positives. For ROC curves, the AUC is measured as, plementation Nore D 8 would be su cient. As can be observed

performance parameter. AUC equal to one is typically observe om Figure 7, training accuracy for all datasets is relatively

for an ideal classi er, whereas AUC equal to 0.5 is observed fg . .
. . ' - L nstant ( 4% di eren for all architectures. However, ther
classi ers with the worst performancéigjian-Tilaki, 2013. constant ( 4% di erence) for all architectures. However, there

. . - e . . is a major trade-o in computation complexity and memory
_ _Whlle such estimates for |dent|fy|ng positives are |mporta_nt requirement as shown ifiable 3
it is also necessary to understand impact of false negatives.
Hence, PR curves are used. PR curves show the trade-g )
between precision (1-FDR, where FDR means False Discovedy2- Performance Analysis: Memory,
Rate) and recall (TPR). In case of an ideal curve, the precisidanergy, and Delay
remains unchanged and at maximum until recall reaches ond.o compare the di erent architectures proposed in the study, we
This curve also forms the basis for estimating mean averagsstimated the number of operations and energy corresponding

precision (mAP). to each network architecture for mapping them on the 2T-2R
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TABLE 4 | Benchmarking performance with respect to other literaturestudies for 4. CONCLUSION
implementation of binarized AlexNet.

In this study, we proposed a hardware-friendly stochastic

Technology Energz’/gf me References binarized convolutional neural network architecture for
performing energy-e cient near-sensor computing, using
72,833.21 Li et al., 2017 stochastic sampling from non-uniform distributions. We rst
DRAM 3,427.83 sudarshanetal, 2019 validated the proposed implementation using the CIFAR-
660.00 Jiang et al., 2017 10 dataset for generic classication applications. Next, we
SRAM 23.30 Yin et al., 2020 investigated a case study for microscopy-based pathogen
561.30 Angizi et al., 2019 detection. Accuracy of the optimized network proposed in
SOT-MRAM 310.00 Fan and Angizi, 2017 the study is similar to previous works with oating-point
2975.34 Tang et al., 2017 precision but exhibits memory savings in the order of5 .
OXRAM 566 *This work We further analyzed the benets of realizing such networks
using in-memory computing based on emerging non-volatile
The value in bold refers to estimated value from the current work. memory devices. We studied in detail the impact on network

. _— . performance in terms of accuracy, energy due to levels of
OXRAM XNOR bitcell array. As shown ifigure SE multiple . quantization and network architecture changes. The proposed

kilobit arrays of 2T-2R cells can be arranged in a matr'xarchitecture shows up to 1,000 reduction in energy
structure in order to allow parallel computation. We assume

a 32 32 matrix of tiles of 3232 2T-2R bitcell arrays (shown and weight memory savings of 11 compared to the

i Fi 50, Weiaht ST ¢ d with i1 standard architectures. An end-to-end methodology from
in Figure 5G). VEIgt Mapping IS performed with respect 1o training algorithm to dedicated hardware implementation is
the block matrix multiplication with the division of weights

having a block size of 32. For computation within each blockfelISO discussed.

it is assumed that only a single row can be computed in each

cycle, thus requiring 32 cycles for completing computatiomas DATA AVAILABILITY STATEMENT

the complete block. Therefore, only a single ve-bit look-up

table would be required for each block, leading to lower ared@he datasets analyzed for this study can be found in the fatigw
utilization. For performing energy estimations favat andint8  links: (i) CIFAR-10: https://www.cs.toronto.edu/~kridfiar.html
precisions, an Nvidia Turing GPU-enabled server and the Egeri (ii) Automated Laboratory Diagnostics Dataset: http://agl
v2 chip Chen et al., 200)9are used as reference platforms.microscopy!/.

These two platforms store synaptic weights in o -chip dynamic

RAM. Furthermore, for stochastic computing implementation,rﬁu_l_HOR CONTRIBUTIONS

we assume that each input is sampled simultaneously fro
VP and BP performed the BNN simulations. MS and DQ planned

the stochastic circuit shown ifrigure 5A. Results comparing
implementations of networks with varying bit precisions are_ 4 supervised the project. All authors participated in data
analysis and writing of the manuscript.

described inTable3 As shown in Table3 converting a
conventional accelerator-based 8-bit computation to séstic
binarized in-memory computation wittNpre D 32 results in
savings of 1,000 in energy and 11 in memory. Reduced FUNDING

version of the SBCNN o ers savings of 36% in memory and

17% in energy, while still maintaining comparable accuracyThis work was supported by DST SERB CORE Research
A comparison of the proposed hardware with regard to othergrant (CRG/2018/001901), IIT-D FIRP grant, CNRS-PICS,

techniques of the literature for implementing BNN hardwase i the European Research Council grant NANOINFER (grant

shown inTable 4 no. 715872).
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