Missing odd-order Shapiro steps do not uniquely indicate fractional Josephson effect - CNRS - Centre national de la recherche scientifique Accéder directement au contenu
Pré-Publication, Document De Travail Année : 2022

Missing odd-order Shapiro steps do not uniquely indicate fractional Josephson effect

Résumé

Topological superconductivity is expected to spur Majorana zero modes -- exotic states that are also considered a quantum technology asset. Fractional Josephson effect is their manifestation in electronic transport measurements, often under microwave irradiation. A fraction of induced resonances, known as Shapiro steps, should vanish, in a pattern that signifies the presence of Majorana modes. Here we report patterns of Shapiro steps expected in topological Josephson junctions, such as the missing first Shapiro step, or several missing odd-order steps. But our junctions, which are InAs quantum wells with Al contacts, are studied near zero magnetic field, meaning that they are not in the topological regime. We also observe other patterns such as missing even steps and several missing steps in a row, not relevant to topological superconductivity. Potentially responsible for our observations is rounding of not fully developed steps superimposed on non-monotonic resistance versus voltage curves, but several origins may be at play. Our results demonstrate that any single pattern, even striking, cannot uniquely identify topological superconductivity, and a multifactor approach is necessary to unambiguously establish this important phenomenon.

Dates et versions

hal-03857784 , version 1 (17-11-2022)

Identifiants

Citer

P. Zhang, S. Mudi, M. Pendharkar, J. S. Lee, C. P. Dempsey, et al.. Missing odd-order Shapiro steps do not uniquely indicate fractional Josephson effect. 2022. ⟨hal-03857784⟩

Collections

UGA CNRS NEEL ANR
28 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More