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Abstract

Bracoviruses and Ichnoviruses are endogenous viruses of parasitic wasps that produce
particles containing virulence genes expressed in host tissues and necessary for parasitism
success. In the case of bracoviruses the particles are produced by conserved genes of nudiviral
origin integrated permanently in the wasp genome, whereas the virulence genes can strikingly
differ depending on the wasp lineage. To date most data obtained on bracoviruses concerned
species from the braconid subfamily of Microgastrinae. To gain a broader view on the diversity
of virulence genes we sequenced the genome packaged in the particles of Chelonus inanitus
bracovirus (CiBV) produced by a wasp belonging to a different subfamily: the Cheloninae.
These are egg-larval parasitoids which means that they oviposit into the host egg and the wasp
larvae then develop within the larval stages of the host. We found that most of CiBV virulence
genes belong to families that are specific to Cheloninae. As other bracoviruses and ichnoviruses
however, CiBV encode v-ank genes encoding truncated versions of the immune cactus/IxB
factor, which suggests these proteins might play a key role in host-parasite interactions
involving domesticated endogenous viruses. We found that the structures of CiBV V-ANKSs
are different from those previously reported. Phylogenetic analysis supports the hypothesis that
they may originate from a cactus/IxB immune gene from the wasp genome acquired by the
bracovirus. However, their evolutionary history is different from that shared by other V-ANKs,
whose common origin probably reflect horizontal gene transfer events of virus sequences

between braconid and ichneumonid wasps.

Introduction

PolyDNAviruses (PDVs) are endogenous DNA viruses of parasitoid wasps that are used
as tools to transfer genes into their host, in most cases a lepidopteran larva. Virus particles are
produced in wasp ovaries from viral sequences integrated into wasp chromosomes [1, 2]. These
particles contain a segmented genome made of multiple dsSDNA circular molecules, a unique
organization for viruses, which inspired their name “polyDNAvirus” [3]. Unlike most viruses
that replicate in the cells after infection, these viruses have a life cycle split between two
organisms: the wasp and the parasitized host. The replicative phase occurs in specialized cells
in the wasp ovaries, where virus particles are produced. These particles consist of DNA circles
packaged in nucleocapsids embedded in a protein matrix and surrounded by an envelope [4].
Depending on the wasp species, each particle contains one [5] or several nucleocapsids [6]).

The infective phase begins by the introduction of the virus particles along with wasp eggs into



the parasitized caterpillar, followed by the entry of particles in host cells and release of viral
DNA in their nuclei [7]. The genome packaged in the particles is then expressed by infected
cells, which results in the production of virulence factors by the host cellular machinery [8, 9].
These factors induce a manipulation of parasitized host physiology, including an alteration of
host immune defense, allowing successful development of the wasp progeny within the host
body [10-12]. Unlike for most viruses, there is no particle replication in the infected tissues
because replication genes are not present in the packaged genomes and reside permanently in
the wasp genome. The virus is thus exclusively transmitted vertically as a part of the wasp
genome. Obviously, polydnaviruses are very particular viruses and ICTV has therefore recently
reclassified them as “viroforms” [13]. However, since they have retained many features of their
virus ancestor, we recently proposed instead to classify them as “domesticated endogenous
viruses” (DEVs) [14] to more clearly indicate their close relationship to viruses.

PDVs have been originally classified in two genera: ichnoviruses (IV) and bracoviruses
(BV) [15] reflecting a convergent evolution after wasp high-jacking of viruses from different
families. Bracoviruses are associated with over 46000 species [16] of 6 Braconidae subfamilies
(Microgastrinae, Cardiochilinae, Miracinae, Mendeselinae, Khoikhoiinae, Cheloninae) that
form a monophyletic group named the “Microgastroid complex” [17]. These viruses all
originate from a unique event of integration of a virus in the last common ancestor of this group
[18]. The virus originally integrated belonged to nudiviruses [19], a group of large DNA viruses
infecting insects and crustaceans closely related to well-studied baculoviruses used in biological
control against lepidopteran pests [13].

BV genomes have two components in wasp chromosomes. The first corresponds to
genes of nudiviral origin coding for particle structural components, the products of which are
necessary for particle production. These bracovirus genes named “nudiviral genes” because of
their clear phylogenetic relationship with nudiviruses, reside permanently in the wasp genome.
The second component corresponds to “proviral segments” which will allow production of the
DNA circles packaged in the particles [20]. These segments do not contain genes involved in
virus particle production but harbor genes expressed in the parasitized host. They are
collectively named “virulence genes” because of their role in parasitism success, although the
function of their products has been clearly determined for only some of them [21]. The size of
circles packaged in particles may differ tremendously depending on bracoviruses as clearly
visualized by the electrophoretic profile of virus DNA extracted from particles of wasps
belonging to Microgastrinae and Cardiochilinae respectively [22], indeed the largest circles are

46 kb and 14 kb long respectively for Cotesia congregata BV [20] and Toxoneuron nigriceps



BV [23]. This suggests that the content of bracovirus packaged genomes is highly variable
depending on the wasp lineage. It is thus likely that the arsenal of virulence genes that has
already been described does not reflect the diversity of virulence genes from bracoviruses
associated with parasitoid species belonging to different subfamilies and having different life-
styles [16]. Indeed, the packaged genome sequences reported to date mainly stem from
bracoviruses of a handful of species from Microgastrinae and one species of Cardiochilinae, all
parasitizing their lepidopteran host at the larval stage (named “larval parasitoids™).

The Cheloninae are egg-larval parasitoids which oviposit into eggs and develop within
the developing caterpillar. The biology and physiology of the parasitoid-bracovirus-host
interaction involving Chelonus inanitus-Spodoptera littoralis has been extensively studied
(reviewed in [24]). All stages of host eggs can be successfully parasitized and depending on the
stage, different strategies of host invasion are used [24, 25]. Analyses showed that up to 20
minutes before hatching of Spodoptera littoralis, Chelonus inanitus manages to successfully
parasitize its host. The latter is then an almost fully grown first instar larva, and Chelonus places
its egg into the haemocoel of the host. Presumably the host has then acquired an immune
defense from which the parasitoid would have to defend itself. Whereas most studied species
(from the genus Cotesia, Glyptapanteles or Microplitis) belong to Microgastrinae, a ~53
Millions years old group of larval parasitoids, Chelonus inanitus belong to Cheloninae a
subfamily that diversified earlier, ~85 Million years ago (Mya) [26]. The hypothesis that
Chelonus inanitus bracovirus (CiBV) circles have a unique gene content reflecting both life-
style and evolutionary history of Cheloninae was sustained by the previous sequencing of 9
CiBV circles packaged in CiBV particles [27, 28]. Indeed, viral sequences were found to encode
intron-rich specific genes sharing no similarities with available genes in data bank sequences
(including virulence genes from other bracoviruses).

In the present study we used a high throughput 454 pyro-sequencing approach to more
fully characterize the gene content of CiBV packaged genome. The annotation of novel
sequences confirmed that CiBV encodes mostly lineage specific genes as recently described for
CinsBV the polydnavirus of a related wasp Chelonus insularis, which was recently reported
together with the whole genome sequence of the wasp [29]. We also similarly identified viral
ankyrin genes (v-ank) sharing similarities to the conserved immune gene cactus of Drosophila.
We provide here a detailed analysis of these genes focusing on their structure and evolution.
Cactus is the homologue of the human IkB-alpha, a repressor of NfkB transcription factor that
plays a key role in Toll pathways involved in immune acute phase response and apoptosis [30].

Previously sequenced PDV (BV and IV) genomes all encode V-ANK proteins, but we report



here that the structures of CiBV V-ANKSs are different. Indeed, CiBV V-ANKSs are truncated
versions of Cactus corresponding either to all six repeats or to the first four ankyrin repeats of
cactus/IkB Ankyrin Repeat Domain (ARD), whereas previously described PDV V-ANKs are
composed of the last four repeats of Cactus/IxkB ARD [31]. We also identified another CiBV v-
ank gene (CcBV v-ank6), which is not clearly related to any reported ANK protein. We assessed
the expression of CiBV v-ank genes during parasitism using RT-PCR analysis, as a first
indication on whether they could play a role in Chelonus inanitus parasitism success. Finally,
we performed phylogenetic analyses to determine whether CiBV v-anks originated from a wasp
cactus gene, as well as to characterize the relationships between PDV v-anks. Overall, our
results reveal that v-anks are shared by all polydnaviruses. They are the only virulence genes in
this case, which suggests interaction of ankyrins with targeted host proteins might play an
essential role in the molecular dialogue between PDVs associated with parasitoids and their
hosts. However, the different structure of CiBV V-ANKSs and the lack of presence of a
previously reported PDV V-ANK conserved signature [31] indicate CiBV V-ANKs have
followed a different evolutionary trajectory from the one shared by PDV V-ANKs from other
braconid and ichneumonid lineages. We propose an evolutionary scenario that may explain the

unexpected phylogenetic relationships observed among PDV V-ANKs.

Material and Methods
Insect rearing

C. inanitus (Braconidae) is a solitary egg-larval parasitoid which was reared on S. littoralis
(Noctuidae) or Spodoptera litura. The biology and rearing of the parasitoid and the host have
been described in [32, 33]. Virus DNA extraction used for CiBV packaged genome sequencing
was performed in B. Lanzrein’s laboratory (Bern, Switzerland), v-ank genes expression was
studied in M. Nakai’s laboratory (Tokyo, Japan) using the same C. inanitus strain in Spodoptera

litura as their host and following the same rearing protocol.

DNA isolation and sequencing.

For CiBV packaged genome extraction calyx fluid was collected as described in Albrecht ef al.
[34]. Briefly the calyces from dissected ovaries were punctured with forceps and the calyx fluid
was collected with a Gilson pipet. The collected material from 25-50 females, was centrifuged

at 1000 g for 5 min to precipitate eggs and cellular debris. DNA from cleared calyx fluid was



extracted using QIAmp DNA midi kit (Qiagen). To produce the DNA quantity required for 454
sequencing purified DNA was amplified using the Illustra Templiphi kit (GE healthcare) for
circular DNA using Phi29 phage DNA polymerase and 3 ng of viral DNA in 68 separate
reactions. A total of 22 micrograms of amplified CiBV DNA was produced. The quality of
DNA was then assessed using Pulse field electrophoresis (FIGE, Biorad) and PCR
amplification of two previously characterized genes (CiBV17.7 and CiBV 15.8). Rolling circle
amplification (RCA) was shown to induce a significant bias in the representation of the different
segments of a multipartite virus genome [35] and of different bacterial genomes in
metagenomic approaches [36]. However, this bias generally does not exceed 2 to 3 folds of
over-representation and is less important when the amount of source DNA is not too low [37].
A 454 single read and mate pair libraries were prepared using viral DNA at “Genoscope”
sequencing platform (Evry, France) and CiBV packaged genome sequences were obtained from
7 pyrosequencing runs using Roche 454 GS FLX+. This sequencing was performed before Pr
B. Lanzrein retired and her laboratory was closed, at that time 454 pyrosequencing providing
relatively long reads was commonly used to sequence viral genomes [38]. The study could be
completed by V-ank genes expression analyses recently, thanks to the collaboration established

with M. Nakay, who had maintained the rearing of the Chelonus inanitus strain.

Assembly and finishing

Assembly was performed using newbler version 2.3 (Roche/454 Life Sciences). 193 primary
contigs were produced that were further reduced to 24 contigs among which 20 corresponded
to circular molecules and 4 could not be circularized corresponding to incomplete circles
(named linear contigs). We then compared primary contig sequences which had not been
retained in the final assembly to the recently sequenced Chelonus insularis BV proviral
sequences, to determine whether they could also be considered as parts of the bracovirus
genome. Indeed, positions of bracovirus proviral loci were previously shown to be stably
maintained in wasp genomes over 50 million years [2]). We thus estimated that 6 small primary
contigs corresponding to a total length of 8 kb had not been incorporated in our final assembly.
This allowed us to estimate that ~ 2.4 % of CiBV packaged genome sequence is probably

lacking from our assembly.

To resolve ambiguities in the assembly regarding closely related CiBV8 and 9.7 circles, total

DNA was extracted from females containing viral sequences and from males that do not



produce virus particles (as a negative control) using the Wizard Genomic DNA purification kit
(Promega). Three adult wasps were homogenized in 600 pl lysis solution with a Polytron
(Kinematica) and genomic DNA was extracted according to the protocol designed for animal
tissues. PCR reactions were performed with GoTaq (Promega, France) in a final volume of 25
pl containing 50 ng of wasp genomic DNA, 1,25 U of GoTaq, 3 mM MgCl; and 20 pmole of
each specific primer (see Fig. S1 for the sequence and position of primers) with the following
cycling conditions: 4 minutes of initial denaturation at 94°C, followed by 35 cycles of
denaturation at 94°C for 40 s, primer hybridization at 58°C for 40 s, extension at 72°C for 60
s, and final extension at 72°C for 10 minutes. The PCR products were cleaned with DyeEx
columns (Qiagen) and analysed with an ABI PRISM 3700 Avant Genetic Analyzer (Applied
Biosystems) using the BigDye sequencing kit (Applied Biosystems) according to the

manufacturer’s instructions.

Coverage

To assess the coverage of each assembled CiBV circle, sequenced raw reads were mapped on
assembled CiBV circles with Bowtie2 (v2.3.4.2) (default parameters, unpaired reads). Reads
that had been mapped on CiBV circles were then converted in read counts thanks to the
Rsubread package (v2.2.6). In total, 29328 reads (86.7%) were successfully mapped on CiBV
circles and 4501 reads (13.3%) could not be mapped. CiBV circle coverage was then assessed

using the Lander-Waterman equation.

Gene annotation

CiBV packaged genome gene predictions were performed using FGENESH software from the
SoftBerry platform with the Nasonia vitripennis training set (http:// softberry.com/all.htm).

Genes coding for predicted proteins of at least 50 amino acids were retained, given that a gene
coding for a protein of 50 amino acids was validated by expression data for CinsBV [29]. We
verified that all mRNA sequences of CiBV previously reported in the literature corresponded
to a gene predicted in this annotation. CinsBV genes sharing homology with CiBV genes (table
S2) were identified by blastP analysis.



Duplicated regions and virus regulatory sequences analyses

Analyses of duplicated regions among CiBV circles were performed using MULTIALIN,
MAFFT v. 7 (http://mafft.cbrc.jp/alignment/server/index.html)[39] and DIALIGN-TX
(http://dialign-tx.gobics.de/submission?type=dna)[40], and BLAST tools available at NCBI.

Results were displayed using the graphical tool WEBACT
(http://www.webact.org/WebACT/home).

BV Proviral segments are terminated by direct repeats at both extremities, named DRJs [6, 27,
41] and bracovirus circles contain a unique sequence named ‘“circle DRJ” produced by a
recombination event between these DRJs [20, 42, 43]. CiBV circle DRIJs were retrieved by a
Blastn analysis (NCBI) using a CcBV circle DRJ. Alignments were performed on 130 bp
containing these sequences using MULTIALIN (http://multalin.toulouse.inra.fr/multalin) [44].

Consensus motifs were generated using the MEME program suite [45] and visualized with
WEBLOGO [46]. Circle DRJs clustering was performed using maximum likelihood on the
Phylogeny platform (http://www.phylogeny.fr/version2 cgi/alacarte.cgi) with PhyML v. 3.0,
SH-like test and the substitution model HYKSS.

Analysis of CiBV V-ank genes expression

Spodoptera litura were parasitized at the egg stage. Depending on the larval stage of parasitized
caterpillars, total RN As were extracted either from whole body or different tissues (midgut, fat
body, hemocytes) dissected in PBS using Isogen-II (Nippon Gene, Toyama, Japan). The
samples were collected after molting the first day of each stage. All the samples (parasitized
larvae) were dissected to verify that they were actually parasitized. After two treatments with
Dnasel (Rnase free) (Takara) following supplier protocol, the quality of RNA samples was
assessed by Nonovue (GE Healthcare) and by the amplification of the B-actin genes (using
primers indicated in table S3). Specific primers were designed for the 5 CiBV V-anks (supl.
Mat. table 2) including V-ank2 and V-ank5, the sequences of which were highly similar. For
these genes the specificity of the amplification was verified by Sanger sequencing of a PCR
product thus further confirming the presence of two closely related copies in CiBV packaged
genome. Except CiBV V-ank6, CiBV V-ank genes contain introns and the primer pairs were
chosen such as to encompass an intron, thereby allowing to distinguish amplification products
resulting from cDNA or genomic DNA templates (primer sequences are shown in table S3). As

bracovirus DNA circles can be difficult to eliminate during the process of RNA extraction, this



difference in amplicon size enabled us to firmly conclude that the genes were expressed in
addition to the classical control sample corresponding to amplification of non-retrotranscribed
RNA (RT-). During initial experiments it was also verified that no amplification was obtained
using DNA extracted from unparasitized S. /itura (data not shown). Reverse transcription was
performed using Takara RNA PCR Kit (AMV) as described in the manufacturer protocol. PCR
was performed by 5 minutes of initial denaturation at 94°C, followed by 30 cycles of
denaturation at 94°C for 2 min, primer hybridization at 60°C for 60 s, extension at 72°C for 60

s, and final extension at 72°C for 5 minutes.

Phylogenetic analyses

To the exception of CiBV V-ANKs, cactus/IkB related proteins have been retrieved from
Genbank (nucleotide and whole genome sequencing) by blastP or tblastn using Drosophila
cactus and previously reported V-ANKs from domesticated viruses of wasps belonging to
Microgastrinae, Banchinae and Campopleginae as queries. Alignment of V-ANK proteins have
been performed using clustal omega at EBI (https://www.ebi.ac.uk/Tools/msa/clustalo) and
conserved amino acids highlighted using boxshade version 3.21

(http://arete.ibb.waw.pl/PL/html/boxshade.html) written by Kay Hofmann and M. Baron. A

first step of sequence alignment and curation was performed to ensure that different ANK
repeats were correctly aligned. Then phylogenetic analyses of V-ANK proteins were performed

at https://ngphylogeny.fr by maximum likelihood and 1000 replicates for bootstraping (using

“advanced workflow Fast tree”). Conserved PDV V-ANK sites were characterized form the
alignment of 50 proteins and conserved specific PDV V-ANK sites were identified by
comparing PDV V-ANK conserved sites to insect cactus and vertebrate IkB-alpha, [kB-epsilon

and NFxB p105 proteins.

Data availability

CiBV-annotated sequences from new circles and previously sequenced circles with the new

annotation have been deposited at Genbank (ON351504 to ON351527).
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Results and Discussion

CiBV encapsidated genome contain mostly intron-rich specific genes

After high throughput sequencing, 29368 reads were obtained of which 86.7% were
incorporated in the final assembly comprising 24 contigs ranging from 5419 bp to 24072 bp
(Fig. 1, Genbank ON351504 to ON351527). The 9 previously sequenced CiBV circles [27, 28]
were recovered. Interestingly 15 contigs corresponded to new CiBV sequences (those not
labelled * in Fig.1): 11 complete circles and 4 linear molecules (incomplete circles labelled L
in Fig.1). Further PCR and sequencing experiments were required to clearly differentiate CiBV
8 and CiBV 9.7 (that encode most CiBV V-ank genes) due to their high sequence identity (93%
identity on 80% of their length) (Fig. S1). We measured the sequence coverage of each circle,
which was found to vary from 6.56 (CiBV10.8) to over 202.81X (CiBV8) (Fig.1). These
differences are not surprising since the abundance of different circles within bracovirus
particles generally differs. Rolling circle amplification and NGS sequencing have been reported
to induce a significant bias in the representation of the different segments of a multipartite virus
genome. However, this bias did not exceed three folds over the estimated values [35]. Thus, the
coverage of CiBV circles obtained, although it does not constitute an accurate measure as would
be obtained by quantitative PCR, probably reflects the trend in the abundance of the different
circles. In particular, the two V-ank containing circles were among the most highly covered
circles, indicating that they are not minor components of the CiBV packaged genome.
Accordingly, the unique homologous circle recently described in Chelonus insularis bracovirus
is also among the most abundant [29]. The homology relationships that could be determined
based on similarities between CiBV and CinsBV are reported in table S1 and Figure 1.

Our sequencing approach with an aggregated size of 350.771 Kb comprising the new
molecules and those previously obtained provides a much more extensive view of CiBV
packaged genome the total size being similar to that of CinsBV (341 kb) [29]. We estimated
that only a low percentage of CiBV sequences were lacking (M&M) therefore having little
impact on the predicted protein content, which was our main interest in this approach. Larger
circles could result from incomplete resolution of smaller circles from molecules amplified
during replication, a phenomenon called “nesting” reported for another bracovirus [20], most
ichnoviruses [47, 48] and also specifically described in CiBV [27, 28]. The approach taken here
allowed to obtain unique assemblies for each molecule and thus for smaller circles, and
therefore did not allow to observe alternative organizations of viral sequences. Accordingly we

did not obtain the largest circles (over 30 kilobases) previously reported from the measurement
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of the sizes of circles released from CiBV particles using electronic microscopy [34] nor the
large circle in which CiBV 14 is predicted to be nested from a former Southern blot analysis

[27].

Gene annotation performed on the whole set of sequences identified 71 genes coding
for proteins of 50 to 760 amino acids. Unlike most viral genes, bracovirus genes contain introns,
and CiBV genes are no exception as they also contain introns from our gene prediction. The
intron abundance even exceeds that of previously annotated bracovirus packaged genomes.
Indeed 57 genes (80%) have an intron compared to ~60% for CcBV, GiBV and GfBV [20, 49].
Half of these genes (26 genes) have a single intron. The genes for which expression profiles
had been previously analyzed were all retrieved (Fig. 1). In comparison, 35 proteins have been
predicted from the annotation of CinsBV packaged genome of comparable size using
transcriptomic data [29], among which 30 proteins share homologous relationships with CiBV
proteins (table S2). We used a threshold to annotate genes based on the smallest CinsBV protein
predicted from expression data but this might overestimate the number of genes, in particular

those encoding less than 100 amino acids should be verified by functional approaches.

Previously reported bracovirus packaged genomes [49-52] contain gene families
common to microgastrinae encoding Protein Tyrosine Phosphatases (PTPs) [22, 53], Ben
domain containing proteins [54] and viral ankyrins (V-ANKSs)[55]) or proteins specific to
particular lineages such as Early expressed Proteins (EP1, EP2, EP3) [56] or C-type lectins
[57]. We found that CiBV packaged genome comprises 6 gene families, 5 of which are not
found in other bracoviruses. The number of genes in a family does not exceed 6 (family 6),
whereas they can comprise over 30 genes in other bracoviruses (for the PTP genes family)
[49]). Most CiBV genes encode for proteins having no significant similarities in public data
banks (except with homologous sequences from Cheloninae) and do not contain conserved
domains, which makes it difficult to predict their function. However, CiBV encode V-ank

genes, this gene family is the only one shared by all PDVs.

It should be remarked that the origin of most bracovirus packaged genes remains
undetermined. Indeed, only a handful of PDV packaged genes were clearly shown to derive
from wasp genes, and a few others were shown to derive from transposable elements inserted
in bracovirus sequences (such as sola2 [2] and HAT [58] or a retroelement [59]). CiBV

virulence proteins could have diverged to the extent that their phylogenetic relationship with
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the original TE, nudivirus, wasp genes or other sources have changed to the point their origin
is no longer recognizable. As an alternative hypothesis they may have evolved de novo. Indeed,
orphan genes have recently been hypothesized to originate from non-coding sequences in
primates, Drosophila [60] [61], yeast [62] and viruses [63]. A model predicts that recruitment
of new genes might emerge from the expression of very short species-specific open reading
frames (ORFs) located in non-genic sequences, which could sometimes provide adaptive

potential and thus by selection might gradually become genes [62].

Sequences involved in circularization are conserved among bracoviruses

Evidence from CiBV and recently reported CinsBV indicate chelonine BVs encode a
largely different inventory of virulence genes from microgastrine BVs, but nonetheless share
motifs identified to have essential functions in segment circularization. It has been initially
shown using a limited set of sequences that CiBV circles were circularized by a recombination
mechanism using specific direct repeat sequences [28, 42] later named DRIJs (Direct Repeat
Junctions) [43] or WIMs (for Wasp excision/integration Motifs) [64]) located at the extremities
of proviral segments. This was confirmed by extensive analyses for other bracoviruses (GfBV,
GiBV, CcBV, CsBV and MdBV) [1, 20, 49]. During bracovirus replication large DNA
molecules are produced from proviral segments. These amplified molecules contain the
sequence of several circles that are almost contiguous in the wasp genome, separated by short
spacer sequences [6, 28, 41, 65]. The amplified molecules are later resolved by site-specific
recombination events resulting in the production of a single DRJ [42, 43] in each circle
individually packaged in a nucleocapsid [34]. Analysis of the CiBV packaged genome
confirmed that each CiBV circle and each linear contig (except CiBV 18.8) contained a circle
DRIJ (Fig. S2). In consequence we can assume that there are at least 23 CiBV circles produced.
Alignment of these 23 CiBV sequences led to the identification of a full size conserved DRJ of
~120 bp. Within this DRJ we could more precisely identify the position corresponding to the
highly conserved 5 bp direct sequence motif (AGCTT), which constitutes the DRJ core in other
BVs [20]. However only the internal GCT is perfectly conserved among CiBV circles (Fig. 2),
the DRIJs of which display more divergence than among those of a microgastrine species, as
also reported in CinsBV [29]. It was previously shown, by comparison between proviral

segments and circular molecules for six CiBV circles, that the recombination between 5’ and
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3’ DRIJs, allowing circle excision from amplified molecules, occurs within the DRJ core [28,
42]. Even if the proviral segment sequence is not available it is still possible to identify DRJs
as 5’ or 3’ or as a circle junction (made of a left part originating from the 5’DRJ and a right part
from the 3 DRJ) because 5’ and 3’ DRJs although similar contain specific motifs. These
conserved motifs could indeed be identified in all CiBV circle DRIJs, thus confirming they
actually correspond to a recombination event (sup Figure 1 and Fig.2). More precisely, in the
alignment of CiBV DRIJs we could identify both the highly conserved 80 bp motif upstream of
the 3’DRJ core (gaAT in CiBV instead of TGAa/tT in the bracovirus of Cotesia congregata)
(Fig.2) and a 5’DRJ motif following the core (ATnnAAnTAAngA(a/t)(t/c)AAT(a/t)), the latter

is more divergent from bracoviruses of microgastinae than the two other motifs.

A sequence potentially involved in integration in host DNA is found in a single
circle

Bracovirus circles may also integrate into the DNA of infected host cells. Depending on
the wasp species, most circles (MdBV) [64] or only a subset of them, for the most part encoding
ptp and v-ank genes (CcBV) [66-68] integrate into the DNA of infected host cells during
parasitism. This integration occurs by a specific mechanism involving a bracovirus conserved
regulatory signal named Host Integration Motif (HIM) distinct from the circle DRJ. We could
identify a HIM-related sequence within the circle CiBV17.7, as in CinsBV 10 circle as recently
described [29] suggesting at least one CiBV circle may have the ability to integrate into the
DNA of infected cells using a HIM mediated mechanism. As described for other HIM sites
CiBV HIM is made of a palindromic structure (Fig. S3) having conserved extremities named
J1 and J2 and a less conserved central region, which was shown previously to be deleted during
integration [64]. The conservation of HIM sites between Cheloninae and Microgastrinae
suggests the integration mechanism may have been inherited from the originally captured
nudivirus. However, studies focusing on the integration of BV sequences in parasitized hosts
in vivo such as those recently performed using various approaches [66-68] will be necessary to

confirm that CiBV17.7 is actually able to integrate into the DNA of infected cells.

Chelonus inanitus bracovirus packaged genome contains large duplications

We performed comparisons of different CiBV circles and revealed that some of them
share extensive similarities suggesting they have been produced following one or several

duplication events.
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The highest similarity between CiBV circles concerns CiBV8 and C9.6 (encoding V-
ank genes) sharing 93% identity over their common sequence (Fig.3) suggesting they have been
produced by a recent duplication. CiBV12, 14 and 10.9 share less extensive identities 70%
between CiBV12 and 14 over their similar sequences (as previously reported [27]), 68%
between CiBV10.9 and both 12 or 14- suggesting that they have been produced by two steps of
duplication. CiBV21.4 and 22.5 share also 72% of similarity in aligned regions. All these
duplicated circles share closely related DRJs (Fig.S1 and DRJs clustering not shown),
suggesting that the duplicated regions have encompassed the whole sequences corresponding
to these circles in the proviral form including 5’ and 3° DRIJs. This is consistent with previous
observations in Microgastrinae that duplications of bracovirus sequences involve large regions
containing several proviral segments, the boundaries of which do not correspond to conserved
bracovirus regulatory sequences (DRJs or HIM) [20]. The viral mechanism resulting in
integration of whole viral circles back into the wasp genome flanked by specific sequences
(named J1 And J2), such as reported in C. sesamiae and C. typhae [68, 69] does not appear to
be involved in these duplications, which are more likely produced by genomic rearrangements.
Accordingly, some segments are partially duplicated, which occurs when the border of the
duplicated region is localized within a segment. For example, in CiBV14.4 only the first part
of CiBV24 is duplicated indicating the border of the duplicated region was localized within
CiBV24. Moreover, CiBV15 and 15.9 share 78% similarity in aligned regions, but their DRJ
circle junctions are not closely related, suggesting the duplicated region did not encompass the
two DRJs of the ancestral segment. Comparisons of CiBV circle sequences with the C. insularis
genome sustain the hypothesis that similarities between CiBV circles correspond to tandem
duplications since we could identify by blastn analysis that homologues of CiBV segments
sharing high similarities are localized in the same genomic regions in Chelonus insularis. In
particular the proviral sequences homologous to C10.9, C12, C14, C15 and C15.9 are all
localized in a C.insularis genomic region (contig 85) which appears to contain the largest
number of circle sequences [29]. However, Chelonus insularis BV was reported to display
extensive similarities between only two segments of the homologous locus (Locus 1) [29]

suggesting that more duplications have occurred in Chelonus inanitus lineage.

Analyses of human mutations have attributed some complex duplicated regions in the
genome to DNA replication errors. Replication fork stalling might cause the DNA polymerase
to switch from one template to another and to go backwards and forwards sometimes several

times [70]. The structure of proviral loci with tandem duplications (direct and/or inverted)
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suggests that a similar mechanism operating at the level of the genome could be involved in the
expansion of bracovirus proviral segments [20]. These tandem duplications are thought to
provide new copies allowing the selection of particular beneficial alleles after accelerated

mutation accumulation in duplicated genes, thus providing new weapons for the parasite [71].

The structure of CiBV viral ankyrins differs from that of other polydnaviruses V-
ANKs

To study the relationship between CiBV V-ANKSs and previously described proteins
containing Ankyrin domains, we first performed BlastP and tblastN searches to identify
proteins similar to CiBV V-ANKSs in public data bank sequences. In addition to the expected
cactus proteins from various insects, we identified ANK proteins from the annotated set of
proteins derived from the Chelonus insularis genome, corresponding to bracovirus proteins
encoded by the proviral form located in the wasp genome recently reported [29]. Surprisingly,
we also retrieved closely related proteins encoded by the genome of the Lepidoptera Chilo
suppressalis. This could be explained by promiscuous relationships of Lepidoptera with their
parasites. More precisely the presence of a bracovirus gene in a Lepidoptera might reflect a
contamination of the DNA used for genome sequencing [72]. According to this hypothesis
Chilo suppressalis Ank genes might belong to the bracovirus v-ank genes of Chelonus
munakatae a major parasitoid of the strip stem borer naturally present in southern Asia [73]. As
an alternative hypothesis these V-Ank sequences could have been integrated in Chilo
suppressalis genome by horizontal transfer. Bracovirus circles integrate into the DNA of
infected cells [64, 66-68] as a part of the parasitoid/virus life cycle and the presence of
bracovirus derived sequences in several genomes of Lepidoptera have been experimentally
confirmed [74, 75], indicating that circle integration events in the germline of butterflies and
moths do also occur. These sequences may reach fixation either because of the new function
they provide to the Lepidoptera [75, 76] or by genetic drift in small populations. In any case
Chilo suppressalis V-ANK sequences provide additional data on viral ankyrins from the

Cheloninae and were therefore retained for phylogenetic analyses.

We performed an alignment between the predicted sequence of CiBV ankyrins and a set
of similar proteins identified by blast analyses including human IxB, the crystal structure of
which has been determined [77]. The well-characterized domains of IkB (ank repeats
comprising alpha-helices and B-sheets) were used to predict the localization of potential

domains on homologous proteins.
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Drosophila cactus contains an ankyrin repeat domain (ARD) that consists of six ankyrin
repeats [78]. In addition, Cactus has a signal response region (SRR), N-terminal to the ARD,
which is involved in ubiquitination targeting the protein for degradation by the proteasome [79],
whereas the C-terminal domain contains a PEST domain (stretch of proline, glutamic acid,
serine, and threonine residues) implicated in protein degradation by calpain protease [80]. PDV
V-ANK proteins are much smaller because the ARD is reduced and they lack the N-terminal
and C-terminal regulatory domains [31, 55, 81]. Based on the alignment between cactus and
human IxB alpha we could deduce the structure of CiBV viral ankyrins. The longest proteins,
CiBV ANK2 and CiBV ANKS (differing by few AA residues in their N terminal part), contain
an entire cactus ARD followed by a C-terminal stretch the length of which is comparable to
those of hymenopteran cactus (Fig.4) but neither contain the typical PEST motif involved in
IkB calpain mediated degradation [82], nor the SRR motif involved in ubiquitin mediated
degradation. The shortest CiBV V-ANK proteins (CiBV V-ANK1, 3, 4) are composed of only
the first four ankyrin repeats of the ARD (Fig.4, Fig.5). The structures of CiBV V-ANK proteins
thus differ from that of previously sequenced bracovirus and ichnovirus V-ANKSs, which are
essentially composed of the last four ankyrin repeats of cactus ARD [31, 55, 81] (Fig.5). These
shorter CiBV V-ANK 1,3.4 protein sequences are closely related to CiBV V-ANK 2/5 (Fig.4).
Genes encoding these shorter V-ANK proteins likely correspond to duplicated versions of V-
ANK?2/5 that have been truncated and have diverged after duplication (accordingly they are
encoded by duplicated circles CiBV 8 and CiBV 9.7). Such complete and truncated ARD are
also found in CinsBV V-ANK proteins (Ank-CinsV1-3 ARD is complete while those of Ank-
CinsV1-1 and Ank-CinsV1-2 are truncated and the three genes are all located on the same
circle). Of note, unlike most PDV V-ank genes, these CiBV V-ank genes contain several introns
(Fig. 3). Finally, an additional CiBV v-ank gene located on a different circle encodes a protein
(CiBV V-ANKG6, which is Ank-CinsV3 homologue) made of a three repeat ARD according to
a pfam search but has diverged to such an extent that no clear phylogenetic relationship with a
particular ANK protein can be detected. Because of this high divergence CiBV V-ANKG6 was
not included in the alignment. Interestingly a V-ANK protein of Cotesia congregata bracovirus
(CcBV 26.5 gene product) was also shown to have similarly diverged to the extent that only a
few residues allowed the identification of its relationship with other CcBV V-ANKSs. We cannot
exclude that CiBV V-ANKG6 has further followed such a process of divergence rendering its
relationship with CiBV V-ANKs no longer detectable, but it could as well derive from the

capture of another wasp gene containing ankyrin repeats.
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CiBV V-ank genes are expressed in parasitized host Spodoptera littoralis
indicating a potential role of their products in the host/parasitoid interaction

We studied CiBV V-ank gene expression in Spodoptera littoralis during parasitism
using RT-PCR and specific primers for each gene (see M&M). Given the small size of the
larvae, whole larvae were used to extract RNA of the first three stages. From larval stage 4, we
could dissect the midgut and fat body, and at stage 5 (feeding stage before the precocious onset
of metamorphosis occurring during parasitism) we could also obtain the hemocytes. We did not
detect any CiBV V-ank gene expression before in the host eggs (data not shown) whereas in
first larval stages (L1, L2) a faint signal was sometimes detected, suggesting the possibility of
an onset of expression at very low level before L3 (data not shown). In later stages the onset of
expression differed between these genes: CiBV V-ankl and V-ank3 were detected from L3
(Fig.6 A), V-ank2, V-ank4 from the fourth instar (Fig.6 B), and V-ank5 and V-ank6 only in the
fifth instar (Fig.6 C, D). An amplimer of the expected size corresponding to the cDNA was
obtained for each CiBV V-ank gene in L5 stage indicating that all these genes were expressed
during parasitism at this stage (Fig.6 C, D). Except for CiBV V-ank6, the expression of which
was detected exclusively in the midgut, CiBV ank genes were expressed in the three tissues
assessed, suggesting they might be ubiquitously expressed (Fig.6 C, D). Altogether these results
indicate that CiBV V-ank genes were expressed during parasitism and readily detectable at late
stages, indicating that corresponding V-ANK proteins are likely produced by parasitized host
cells, and thus might play a role in the host-parasitoid interaction. Their biological functions
will require further characterization by functional approaches inspired by the functions of V-

ANK previously described, summarized below.

In Drosophila, the cactus protein regulates, as a repressor, several cellular responses
triggered by NF-kB/Rel transcription factors, such as the dorso-ventral patterning during
embryonic development, the release of antimicrobial peptides and apoptosis, involving Dif and
Relish proteins. Whether they contain only half or the complete set of cactus ank repeats, some
CiBV V-ANKs might have retained the ability to bind to NFkB-like transcription factors and
interfere with cactus binding. Their biological functions might rely on their capacity to compete

with and act as constitutive inhibitors of cactus, since they do not have N and C domains
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mediating cactus degradation by the 26S proteasome and calpains respectively. Accordingly, it
was shown previously by co-immunoprecipitation experiments that two V-ANK proteins from
Microplitis demolitor bracovirus (MdBV) were actually able to bind to Drosophila Dif and
Relish NF-«B proteins [55]. Moreover, MdBV V-ANKSs were shown to reduce NF-kB-driven
expression of reporter gene constructs in Hela cells according to their potential role as
transcriptional inhibitors [55].

However, as more studies were performed the picture of V-ANK potential functions has
become more complex. In particular, transcriptome analysis of M. sexta fat body and hemocytes
did not show an inhibition of NF-kB immune peptide induction after bacterial challenge in
parasitized larvae [83] as would be expected in the case of a constitutive repression of the NFxB
pathway. Moreover, although sharing a similar structure PDV V-ANKs can be involved in
various functions either inducing (TnBV1 [84]) or protecting from apoptosis (fat body
expressed CsIV V-ANKs, [85]) or interfering with prothoracic gland signaling causing
developmental arrest (TnBV1[86]). Such an impact on prothoracic gland could also apply to
CiBV, as this BV was shown, in synergy with venom, to cause an inhibition of host prothoracic
gland and reduction in ecdysteroids at a particular developmental stage (pupal cell formation)
[87]. Some Ichnovirus V-ANKSs have been shown to protect cells infected by baculovirus from
apoptosis [85], a property which was used to increase protein production in cultured cells using
recombinant baculoviruses containing these genes [88]. In addition, one might speculate that
integration of bracovirus ANK gene-containing-circles in the DNA of infected hemocytes [66]
might have an effect on the survival/death of infected cells as suggested by new findings on the

inhibition of Toll pathways on the regulation of cell fitness during infection [89].

Besides the original interaction of cactus with NFkB, PDV ANKs might have acquired
the ability to bind to new targets instead of the original NFxB by exploring mutational space.
In particular co-immunoprecipitation experiments recently showed that TnBVANKIT binds to
Alix, an interactor of apoptosis-linked gene protein 2 (ALG-2) resulting in induction of
apoptosis in host haemocytes [90]. This interaction is probably also responsible for the
impairment of the vesicular trafficking of the steroid precursor in the prothoracic gland causing
host developmental arrest [86]. In line with this, we can speculate that the highly divergent
CiBV ANK6 may have evolved to recognize a specific host protein target. Functional assays
have first been performed using heterologous systems such as Drosophila which have given
interesting clues but might be difficult to relate directly to actual interactions ongoing in vivo

during host parasitoid interactions [91]. Yeast two hybrid experiments [92] might allow to
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identify CiBV V-ANK targets among host proteins by using an approach without a priori
assumptions. Moreover, the development of functional assays in parasitoid wasps such as gene
knockout using CRISPER-cas9 [93] will probably allow us to characterize the role of V-ANKs,
reflecting more accurately their function in vivo during host-parasitoid interactions, but this is

the aim of future studies.

Phylogenetic analysis suggests that CiBV viral ankyrins originate from an insect
cactus gene

We performed a phylogenetic analysis including CiBV VANKS, similar sequences from
Chelonus insularis and Chilo suppressalis, cactus sequences from different insect orders, IkB-
alpha, IxB-epsilon and NfkB p105 of vertebrates. CiBV V-ANK2 was not included because its
sequence was almost identical to CiBV ANKS and VANK1-3-4 were also excluded because
these truncated proteins would have drastically reduced the length of the alignment used to
build the tree. The grouping of CiBV V-ANKS with insect cactus and vertebrate [kB-alpha,
was well supported consistent with the hypothesis of a cactus wasp gene origin of the V-ank
gene. This grouping is in accordance with results obtained using blastP analyses in which all
100 first retrieved sequences using CiBV V-ANKS5 as a query belong to insects (data not
shown). Surprisingly none of these sequences belong to those of other PDV V-ANKs. Of note
in the phylogenetic tree within the group of Insect cactus and vertebrate IkB-alpha, CiBV-
VANKS appears to be closer to proteins from the hemiptera Bemisia tabacci than from
Hymenoptera but the branches are not sufficiently supported to conclude on an actual closer
relationship, which is unlikely, this grouping is rather probably a consequence of long branches
attraction.

The structure of PDV V-ANKs composed almost exclusively of ANK repeats sharing
similarities with cactus/IxB already suggested that these genes originated from a cactus gene of
an ancestor wasp genome. However, we could not previously validate this hypothesis from a
phylogenetic tree having well supported nodes because of the short length and high divergence
of PDV V-ANK proteins, in contrast with the conservation of the ARD of cactus and IxB related
genes. Indeed, PDV V-ANKs are as similar to insect cactus as to vertebrate related ankyrins
except for a short stretch of amino acids (TYQLA in the 3’ end of the protein, Fig.8) which is
found in several other insects and very common in Hymenoptera. The high divergence with
insect genes is a characteristic feature of insect-related BV genes packaged in the particles [94],
and is thought to result from rapid evolution of virulence proteins [71, 95] interacting with host

targets which themselves undergo rapid modifications in the context of the co-evolutionary
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arms race between hosts and parasites. CiBV V-ANKS is also very divergent but thanks to its
larger size corresponding to the full cactus ARD group we could more clearly support a

phylogenetic relationship with cactus/IkB.

A cactus gene could have been acquired by a bracovirus proviral segment following a
wasp genome rearrangement or the integration of a cDNA after retro-transcription of a cactus
mRNA using the retrotranscriptase of an endogenous retroviral element. This would have
resulted in the presence of the gene in a circle and the possibility to express the corresponding
protein in host cells during parasitism which could have been later selected, if adaptive. Such
recent gene acquisition events of genes from the wasp genome have been already identified.
For example, sugar transporter genes in bracoviruses of Glyptapanteles species [49] are not
found in viruses of the sister genus Cotesia, suggesting a recent acquisition of these genes from
the hymenoptera gene set. Moreover, in the case of bracovirus cystatin genes, the lack of the
usually very conserved introns in these eukaryotic genes, suggests the mechanism of cystatin
gene acquisition by the bracovirus has comprised a step of cDNA retrotransposition [96]. This
type of mechanism was reported to be involved in the production of 8000 so-called “processed
pseudogenes” in the human genome originating from the integration of reverse transcribed

cDNAs by L1 retroelement retrotransposases [97].

CiBV viral ankyrins have a different evolutionary history than bracovirus and
ichnovirus V-ANKs

We compared CiBV and other polydnavirus V-ANKSs to determine whether CiBV V-
ANK 2/5 protein sequence shares the previously identified specific signature that is common
to many bracovirus and ichnovirus V-ANKs. This signature was originally reported to consist,
in addition to the conserved motifs shared by all cactus related proteins, in a typical “WLC”
motif together with five conserved amino acids present in different positions [31, 98] of the
PDV proteins. This signature is not present in CiBV V-ANKSs 1/3/4 since it is located in the
part of the ARD that has been lost in these proteins. Surprisingly, however, we found that this
motif is not present in CiBV V-ANK 2/5 either. In contrast, after retrieving V-ANK proteins
from a much larger set of PDVs and cactus genes from insects not available at the time of our
previous studies [31, 98] we confirmed the presence of the “WLC signature” in ~ 80% of PDV
V-ANKs (Fig 8, Fig.9). This motif is specific to PDV V-ANKs and was not found in
hymenopteran cactus proteins (having FLL or FIL in homologous positions) nor in the many

other insect cactus proteins for which sequences are now available or can be deduced by tblastn
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analysis of insect genomes. Moreover, we established a PDV V-ANKs consensus from 40
proteins (Fig. S4) and comparison of this sequence with cactus and related vertebrate proteins
revealed that 19 sites were specific of PDV V-ANKs (Figure 8 and Fig. S5), thus providing a
strong basis of their common grouping. Together with their common structure (ank3 to ank6
repeats), this confirms that V-ANK proteins from BVs and IVs share a common evolutionary

history [31, 98], whereas CiBV V-ANK 5 does not belong to this group (Fig.9).

However, the fact that virulence genes of bracoviruses and ichnoviruses share a common
history cannot be easily explained since the two PDV subfamilies evolved by convergence and
are associated with different wasp lineages. Whereas bracoviruses are present in all subfamilies
of the Microgastroid complex, members of the Ichnoviridae are associated with two subfamilies
of Ichneumonidae -Campopleginae and Banchinae- separated in the phylogenetic tree by
several subfamilies of wasps not associated with IVs [99]. Because of this patchy distribution,
it is unclear whether Ichnoviruses originated from a single ancient viral capture event and were
lost in some wasp subfamilies, or derive from independent captures of viruses in the two
subfamilies [100, 101]. The gene set of ichnoviruses involved in particle production is
conserved between Banchinae and Campopleginae [48, 100, 102], which indicates that if two
virus captures have occurred, these viruses belonged to the same family. Unlike for
bracoviruses however, these genes do not resemble those of any currently described pathogenic
virus, suggesting that ichnovirus ancestor(s) might belong to a virus family of arthropods the
free-living members of which have not yet been characterized or have become extinct [99, 100,
102]. Whatever the case, IVs and BVs clearly derive from viruses belonging to different
families. Consequently, virulence gene families such as V-ANKs that would be shared between
the two PDV families could not have been simply inherited from a common virus ancestor of

PDVs.

Instead, we hypothesize that shared structure and signature between PDV V-ANKs
might be explained by horizontal gene transfer events between PDVs during multi-parasitism
events in common lepidopteran hosts (Fig.10). Once acquired by a receiver PDV, a virulence
gene from the donor PDV can be readily used during parasitism since promoters of both PDV
genera are expressed by the lepidopteran transcription machinery, thereby favoring this mode
of acquisition.

Clues on how these horizontal events could take place are provided by several studies

that have shown that bracoviruses and ichnoviruses use specific integration mechanisms to
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insert packaged genome sequences into the DNA of infected cells [64, 66, 67, 103] [68]. A
likely, although indirect consequence of this mechanism of integration is the occurrence on the
one hand of horizontal gene transfer between wasps and Lepidoptera [75] and on the other hand
of the reintegration of PDV circles back into the wasp genome [68, 69]. We hypothesize that
rare events of integration of PDV circles in the genome of a wasp could also rarely occur in the
context of multi-parasitism. Indeed, a lepidopteran species could be simultaneously parasitized
both by IV and BV associated wasps. In consequence, an integration event occurring within the
proviral sequences of an ancient ichneumonid wasp might have resulted in the acquisition by
an IV of a bracovirus circle containing a gene encoding a V-ANK protein having the WLC

signature, or conversely.

The PDV WLC signature is not found in any hymenopteran or insect cactus proteins
(Hymenoptera having FIL or FLL in homologous positions) suggesting it was probably
inherited from a virulence gene having already diverged from a cactus of wasp origin in the
context of the host/parasite arms race. This signature has been lost in several PDV V-ANK
proteins (alignment and tree) indicating its presence is not necessarily required for V-ANK
function but could merely reflect that the ancestral sequence of the transferred gene is not yet
completely eroded by divergence. Depending on whether Ichnoviruses have a single origin or
derive from two independent captures of viruses from the same family, the widespread
distribution of V-ANK genes could be explained by a single or at least two events of horizontal

transfer that would have occurred between BVs and IVs (Fig.10).

In summary the phylogenetic analyses of CiBV V-ANK 5 sustain the hypothesis that
this gene and related CiBV V-ANK genes (V-ANK1-2-3) originated from the acquisition of an
insect cactus gene of probable wasp origin by proviral sequences leading to its incorporation in
the particles allowing its expression during parasitism and thus adaptive selection. In addition,
these analyses further highlight the common origin of other PDV ANKSs which was unexpected
given the different viral origins of BVs and IVs and suggest the occurrence of ancestral genetic
exchanges of PDV circles between wasps parasitizing the same host species. Chelonus V-ANK
genes have followed a different evolutionary history either from a unique ancestral acquisition
of a cactus gene that occurred in a common ancestor of the microgastroid lineage or from an

independent acquisition of wasp cactus gene in Cheloninae.
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Conclusion

This study provides an extensive view of a packaged bracovirus genome of a
Cheloninae, which are egg-larval parasitoids and is complementary to the recent analysis of
Chelonus insularis genome and its endogenous bracovirus. An inventory of the genes packaged
in CiBV virions shows that they share several features with the other Cheloninae BV analyzed (CinsBV)
but differ from BVs associated with wasps Microgastrinae and Cardiochilinae. In contrast, results from
this study lend further support that the regulatory sequences involved in circularization of the DNAs in
virions are conserved among all BVs. These elements suggest a strong conservation of the viral
functions probably inherited from the ancestral captured nudivirus, allowing these wasps to
produce DNA containing particles; contrasting sharply with the highly variable gene content
packaged in the particles. Indeed, most CiBV packaged genes are specific to Cheloninae to the
notable exception of V-ANK genes, the products of which have a different structure from the
one previously described for other PDV V-ANKSs. Phylogenetic analyses lend some support to
a cactus/IxB origin of CiBV V-ANKs despite the divergence of their sequences. They also
indicated they had a different evolutive history than that shared by other bracovirus and
ichnovirus V-ANKSs, the latter potentially driven by horizontal gene transfer through multiparasitized

hosts.
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Figure Legends

Figure 1: Linearized map of CiBV DNA circles packaged in bracovirus particles and
their genes represented as boxes (exon/introns structure is not shown). The sequencing coverage
of these molecules is shown on the upper right panel. It is supposed to indirectly reflect the
abundance of the different circles since a bias could be introduced by rolling circle
amplification of CiBV DNA and high throughput sequencing [35]. CiBV packaged genome
contains 6 gene families but only one (V-ank genes family) encodes proteins having a well-
known conserved domain (Ankyrin repeat domain -ARD-). V-ank genes encode proteins almost
completely made of a whole cactus/IkB-like ARD comprising 6 ankyrin repeats or of the first
4 ankyrin repeats only. The gene encoded by CiBV19.8 encodes a protein having a highly
divergent ARD. Most CiBV genes are specific to the Cheloninae. The black stars in the boxes
indicate that the annotated genes were found to be expressed during parasitism in this study (V-
anks) or in previous analyses [8, 9, 100-102]. Green stars indicate CiBV circles for which
sequences had been published previously by Pr B.Lanzrein’s laboratory and the names of which
have been conserved in this study. The names of the newly sequenced circles correspond to the
size of their sequence to the first decimal. Probable homologous CinsBV circles are also
indicated based on the similarities reported in table S. L: linear contigs corresponding to
incomplete circles.

Figure 2: Conserved sequences involved in CiBV segments circularization obtained
from the alignment of 23 CiBV circle DRJs and visualized using WEBLOGO (upper panel)
compared to those of CcBV circle DRJs (bottom panel [20]). The height of the stack at a
position indicates the sequence conservation, whereas the height of a base indicates the relative
frequency of this base at this position. Circle DRJs are produced by a recombination between
the direct repeats flanking the proviral form of a viral segment (5’DRJ and 3° DRJ) which are
similar but have specific conserved motifs (5° DRJ motif and 3°’DRJ motif). The left part of
Circle DRJ comes from the 3’DRJ and their right part from the 5° DRJ.

The comparison highlights the conservation of these regulatory sequences, between Cheloninae
and Microgastrinae with the 3° DRJ specific motif (GAAT in CiBV) then a central motif where
circularization occurs (aGCT) [28, 38]). The 5° DRJ motif differs but is adenine-rich in both
viruses. Based on data concerning genome packaging of other viruses, it was hypothesized that
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these motifs correspond to binding sites of site-specific recombinases [60] thought to resolve
amplified molecules produced during bracovirus DNA replication into circles individually
packaged in nucleocapsids. The proteins of nudiviral origin Int-1 and VIfl have been shown to
be involved in MdBYV circles excision/circularization [103].

Figure 3: Dot plot comparison of CiBV8 and 9.6 sequences sharing 93% identity in
aligned sequences (visualized by the slanted lines). The positions of v-ank genes encoded by
these circles and their intron/exon organization are shown on the axes. Note that unlike most
bracovirus V-ank genes those of CiBV contain introns.

Figure 4: Alignment of CiBV V-ANK proteins with closely related sequences in public
data banks (named here VANK-like-Chilo, VANKXIchelonus for CinsV1-3,
VANKX3chelonus for CinsV1-1) and with cactus proteins from a series of Hymenoptera
species, Drosophila and Human IkB homologue (the accession numbers of which are indicated
on the phylogenetic tree in figure 7). Above the alignment the secondary structure elements of
Human IkB are shown with arrows for B-strands, cylinders for alpha-helices, and H1, H2, loop
and B2 for the conserved structural elements of the ankyrin repeats. Amino acids highlighted in
grey, >50% amino acid similarity; amino acids highlighted in black, >50% amino acid identity.
Note that CiBV VANK?2 and CiBV VANKS5 ARD are identical; these proteins differ only in
their N-terminal region.

Figure 5: Schematic representation of the proteins encoded by CiBV V-ank genes and
closely related genes in public data banks, compared with the ankyrin repeats of human (Hum)
IxB-alpha, Drosophila cactus (Droso) and previously reported V-ANKSs, the structure of which
is shared by both bracovirus and ichnovirus V-ANKSs (represented here by 3 V-ANKSs from
Cotesia congregata bracovirus: CcBVankl, CcBVank4 and CcBVank6). For Drosophila, an
insertion of 26 aa in the ank3 repeat, conserved across insects, is denoted with a double slash.
The numbers under each protein representation indicate the amino acid positions delimiting the
different ankyrin repeats as deduced from the alignment with IkB-alpha (Fig. 4 and [31]).
Accession numbers of CcBVankl, CcBVank4 and CcBVank6 are AJ583542, AJ583545,
AM180416 respectively). Human IkB-alpha regulatory regions: SRR for Signal Response
Region which contains sites for phosphorylation by IKK (IKK: IkB kinase), for ubiquitination,
and for nuclear export; PEST for carboxy-terminal PEST region composed of Proline, Glutamic
acid, Serine and Threonine, responsible for protein turnover. SRR signals were not detected in
CiBV V-ANKs the N terminal sequences of which are short and not conserved. The size of
CiBV V-ANK2 and CiBV V-ANKS is only a little shorter than that of cactus proteins from
Hymenoptera but they do not contain typical amino acids of a PEST domain.

Figure 6: CiBV V-ank genes expression in 3rd (A) 4th (B) and 5th feeding stage (C and
D) instar larvae. (A) CiBV V-ank gene expression in 3rd instar larvae: To test the expression of
CiBV V-ank genes, RNA was extracted from 6 parasitized larvae. cDNA presence was tested
by detecting B-actin expression whereas viral genome DNA absence was indicated by no band
detection in the minus RT control (-RT). CiBV V-ankl and CiBV V-ank3 were expressed in 3rd
instar larvae. CiBV V-ank2 gene expression could not be detected in the 3rd instar larvae. No
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expression was detected for CiBV V-ank4, V-ank5 or v-ank6 in 3rd instar larvae (data not
shown). (B) CiBV ank gene expression in 4th instar larvae: RNA was extracted from 5
parasitized larvae. The expression was assessed in two tissues: midgut and fat body. In each
case, a control is shown to visualize the size of the amplimer obtained with Chelonus inanitus
DNA (genome) corresponding to that of viral DNA, CiBV V-ank genes containing introns. In
the upper part (+RT) results for CiBV V-ank gene expression is shown, and in the bottom part
(-RT) is presented the control showing no viral DNA contamination. CiBV V-ankl, 2 and 3
genes are expressed in the midgut and fat body. For CiBV V-ank4, only very weak bands (white
arrow) could be detected in midgut and fat body. No expression was detected fo CiBV V-ank5
and 9 in 4th instar larvae (data not shown).

(C and D) CiBV V-ank gene expression in 5Sth instar larvae: RNA was extracted from 3
parasitized larvae. The expression was assessed in three tissues: midgut, fat body and
hemocytes. In each case, the size of the amplimer obtained with Chelonus inanitus DNA
(genome) is shown. In the upper part (+RT) results for CiBV V-ank genes expression is shown
and controls are as indicated in B. (C): CiBV V-ankl, 2, 3 and 4 genes are expressed in midgut,
fat body and hemocytes. (D): CiBV V-ank5 gene is expressed in midgut, fat body and hemocytes
and CiBV V-ank6 only in the midgut.

Figure 7: Maximum likelihood tree of CiBV V-ANKS, closely related sequences
available in data banks, insect cactus proteins and vertebrate [kB-alpha, IkB-epsilon and NfikB-
pl05. The Human Gankyrin was used as the outgroup. Note that the group of insect cactus
including CiBV-ANKS and closely related sequences, is well supported despite the divergence
of bracovirus sequences and the high conservation of [kB and related genes from insects and
vertebrates, which supports the hypothesis that CiBV V-ANKSs originated from the gene set of
an ancestral wasp genome.

Figure 8: Subset of the alignments performed to compare PDV V-ANKs (shared
between bracoviruses and ichnoviruses) to CiBV V-ANKS, insect cactus and related vertebrate
proteins (IkB-alpha: other vertebrate proteins are shown in Fig.S5 alignment). Conserved sites
of V-ANK indicated in the penultimate line were identified using 40 proteins (Fig. S4). The 19
conserved PDV-VANK residues that are not found in corresponding sites of insect and
vertebrate proteins are indicated below the alignment. WLC signature: previously described
signature of PDV V-ANKs, note that this region of homology extends outside the signature
(consensus EALEWLC—PGIDLE). Insect signature: consensus “GLTAYQLA” shared
between PDV V-ANKSs and some insect cactus proteins, in particular Hymenoptera suggesting
that despite their divergence PDV V-ANKs originally derived from a gene of the hymenopteran
gene set, possibly following an integration of a cactus gene copy into the proviral form of a
virus circle.

Figure 9: Maximum likelihood tree of CiBV V-ANKS and a set of PDV V-ANKSs
previously sequenced. Note bracovirus and ichnovirus V-ANKs form a well-supported
monophyletic group to which CiBV V-ANKS5 does not belong. The group of cactus/IxB
proteins to which belongs CiBV V-ANKS is not as well supported as in Fig.7 tree because of
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the shorter length of sequences included in the alignment and the high divergence of CiBV V-
ANKS repeat 6 (Fig. 4).

Figure 10: Hypothetical scenario on the evolution of bracovirus and ichnovirus V-ANKSs
that may explain structural and sequence similarities between bracovirus and ichnovirus V-
ANKSs, whereas CiBV V-ANKs are different. 1°) The bracovirus might have acquired a copy
of a wasp cactus gene in a common ancestor of the group of bracovirus associated wasps (note
that cactus from braconid wasps have generally a stretch of amino acids “FLL” or “FIL” in the
ANKS repeat instead of the WLC motif specific of the other PDV V-ANKSs). This acquisition
might have occurred once at the basis of the group of bracovirus associated wasps
(microgastroid complex), as shown in the figure, or twice independently at the basis of
cheloninae and microgastrinae lineages respectively. 2°) This gene favoring parasitism success
would have then diverged in the context of the host-parasite arms race. In the lineage common
to the Microgastrinae and Cardiochilinae subfamilies the divergence would have led to a
sequence having the specific phylogenetic signature of V-ANKs (made of dispersed shared
amino acids and a “WLC” in the ANKS repeat) and to the reduction of the V-ANK to the second
half of the ARD. In Cheloninae the acquired cactus gene evolved differently since Chelonus
inanitus bracovirus V-ANKSs are made of the full ARD and do not display the V-ANK signature
(“FIL” in ANKS repeat) or are constituted of the first half of the ARD (ANKS and ANK6
repeats were lost). 3°) and 4°) One horizontal transfer event of bracovirus v-ank gene to the
common ancestor of Banchinae and Campopleginae lineages or two events to the ancestors of
each lineage (as shown in the figure) would have resulted in Ichnoviruses having V-ANKSs
similar to those of bracoviruses. The scenario presented here is one of the most parsimonious,
but alternative scenarii could be conceived involving the acquisition of bracovirus cactus from
a virus having evolved the WLC signature or the transfer of a cactus gene having WLC from
an ichnovirus to the other lineages. The phylogenetic tree is adapted from [96].

Table S1: CiBV Homologues of CinsBV genes

Table S2: Similarities and potential homologous relationships between CiBV and
CinsBV circles
Homologues of CiBV circles were deduced from high similarity blocks of NCBI blastn graphic
summary dispersed on the whole CiBV circle. Nd: not determined, i.e.: the similarities were
insufficient to conclude or several CinsV circles shared similarities with the same CiBV circle.

Table S3: primers used for CiBV V-ank genes expression analyses

Figure S1: Sequence of primers used to determine the sequence of CiBV8 (7931 bp) and
CiBV9.7 (9700 bp) from the assembly. Numbers in bold on top of the arrows are primary contig
names, numbers in italics below the arrows correspond to primary contig length (base pair),

primary contigs are not to scale.

Figure S2: Alignment of 23 circle DRJs identified in CiBV packaged genome
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Figure S3: Alignment of the putative HIM motif from CiBV17.7 to the homologous
sequence of CinsBV-10 and to functionally characterized HIM sites involved in integration into
the DNA of parasitized host cells of MdBV and CcBV circles.

Figure S4: Alignment of the 40 proteins used to identify conserved sites of bracovirus
and ichnovirus V-ANKs

Figure S5: Alignment comprising the different kB related proteins of vertebrates
highlighting the specific PDV V-ANK WLC and TAYQLA insect signatures indicating
respectively their shared evolutionary history.
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AOH69086-VANK-Microplitis-mediator-bracovirus-WLC
XP_008552716-VANK-Microplitis-demolitor-bracovirus-WMC
AOHB9091-VANK-Microplitis-mediator-bracovirus-WMC
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Initial assembly:

a5 43 _ 33 52 137 a5
470 227 2250 1187 \ / 378
<69 ~ ~ 37 <159
504 237 1029 /
169 ~ 183 - 39 ~_ \4152 -
3812 103 1966 396 3812
Final assembly:
] 45 43 33 52 69 37 159 152 166 45
CBY 8 s e TP »—— 7971 bp
) 169 183 39 69 37 159 166 169
CiBV 9.7 > > < < < < > > 9700 bp
Primers used for PCR/sequencing
Primary F39: TAACCCGACAAGCAGTTTACAAC R33: ATGCAGTCTAAAAACCTGACGATAC
contig F43: GTACAAACAGGAAAACAATCAGCTT R37: CCTTTAAAACAGATGGGACTTGAG
- 37 F45: CAAGACCCGGCTTACATAATTATT R45: TAATTTTAAAGCACACACTGGATCA
¢ F52: GTAATGAATATTGTGAGGAATCGGA R52: TAATGAATATTGTGAGGAATCGGAT
RR37 FF37 ; F137: TTTTATCGCACATAGGTATTAAGTTTG R69: AGATAGCTAAGATGCAGTCGAAGAA
p‘:i‘r’:;sre p‘r’irr:’:rr F146: ACGTCCATCTCTGTAGCTCATTGT R137:ACGTTTAAATGTAACAGGAATGCAG

F152: CTCAGAATACCAGAAATAAAACAGG
F169: TTTGCCCGATTAATAAAAGTAGAT
F183: GCCAATCACCAGTATGACGTCA

F69: AACGAGAAGGTATCTGACTATGCC

R152: TCATGGTGAAAATAATGTATTGTGC
R159: TCACTTGAGCCATAATGAATCTTG
R169:GGGCAAAGCTGGAATTTAAAGA
R183: TGACGTCATACTGGTGATTGGC

Figure S1: Sequence of primers used to determine the sequence of CiBV8 (7931 bp) and CiBV9.7 (9700 bp) from the assembly. Numbers in
bold on top of the arrows are primary contig names, numbers in italics below the arrows correspond to primary contig length (base pair), primary
contigs are not to scale.
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TGATGAARTAGTARTARAATATARATCATARTTCAARTTTAGTTCTGATGARATATTAARTATCATARTTATTGTAGATATTATAGGCTTTTTTG-TCTTGCACARAARATARGARRCARATACCTATTTGAAA
ATTCGAARTATCARTARAARARTTARARTTGGTTTTTTATTTARATCARARAARCACACAARATGATAARATTTAARCGTATATTTTARTAGCTTCCATGGTATAGARTARAAAGAARCGARTAARATACCTGATATTAA
TTTGAAATCCTAGATGTTTTCAGATARCTATTARAGAARRCATCARATATAGTTTTAARAATTAARATTARTACTTAGTTTTTATAGCTTACTCTTTTARAGATAGAARATARTGAARTAARATGTCTTAATTCGT
AGTGGAATAARTARAARACGATTAARAGTCTATTTTAATARCGTATARGATATCTTTTAATACTAARACARTATGTCARTTTTTGTTGCTARCTTAARTARTGTATTGAAATAGTGAARTARATATTTTCAGTTAC
CTTCGAATCACAATTGTGATTTTATCTGTARTTAARTARGGCCCTATTCACACTCTAATATGATATTATATGTTARTATTTGTAGCTARTATARGGCTGCATTGAACTARTGATCARATTCCTATCAARAGT
CTTTGAATCACAARTTATGAATTARTTATTARTTAGAGTCAAGTTATTTATACTCTAATGTAATATTAARATGTTATTTTTTCCAGCTTACACARCAARTGAATTAAATTTGTGATTAARATTCTTCCTGAAAA
TACCGTATTATARTTATGAATTARTTTGTARCTAATGTGAAGTTATTTACACTCTAATACTATATTAGATGTCATTATTTACAGCTTGTATARTGCATTACTAARACTAARCGATTAAATACTCTCTAAATG
CGTAGAATGACAARTCATGAGTTTATTTGTARTTAARTATARAGTTTCTGACGATCTAGTGTTAARACTAGACGTTATTATTTACAGCTTATATARTATTGCATTAARACTAARTGATTAARATTATTTGCAARGAG
CTTCGARTARCTATCGTGAATTTATTGGTARTTGATGTGAARGTTTCTGATGCTTCAARTGTTGTACTAGATGTTATTATTTA-AGCTCATACARTGTCACATTGAARCTARTGATTAGATTCTTGTTTCACC
CTGTGAATATCAARTCCTGAARTTTATCTTTGATTTATTTCACCTGATTAARCACCTTAATATAARCATTARATGTTATTACTTTAARGCTTATTTARTATCGCATTTAARATARTGATTTAATTTTTGTTACAAT
CTTTGARTTCCARTAGCGARTAGATTTTTARCTAARTATCGAATTACTTACGATCTCATACTATTTARARCACARTTACTTG-AGCTTGTAGGARTTTGGATCARATTAGTGATCARATTTTATCTAAGAC
CTTAGAARTTCAARTTTATGACTARARATTAGATGARATTGTTGTCTARTAARGATACTAARAAGTGTATARATGATAGTTATTTGGAGCTTTTTARATTTCATATCGAARATAARTGARTTAARTTCTCTCTAAAAA
TGTTGAARTARARGTATTARTCGARTATGAARGTAARATACARTATTAGTCTTGCTCTCAGARTGAATTAARTGATARAGTCTTAARTACTTGTTAGATGTTACATTGAAATARAGARTAARATTCTCTTARAGTA
TTTGGAARTAGARGGARCGTTCAATGTATGATGTAARTACCARTTTTGARTARAACTAARAAGCGTATARATARCARTTACTTATAGCTTCTTTTACA--GTATGAAAATARTGAARCARATARTTATTCAGTT
TTCCGAATGTTAGTGTTGAARTTARCATAGTTTTTATGTTCCACARATGACCTTTTTATGATARACARAACTTARTTAGTATACGCTTATCTARGAGACGATTGAAATAARTGARCAARATARACATTTAAAT
TTCCGAATGTTAGCGTAGAATTCATATAGATTATATGTTCCACAGCTTATCTCTCTATGATGAARCARGTCGTARATACTARTCGCTTATCTATARGGTAARTTTAAATARTAAACAARATTCATATCAACAT
TTCCGAARTATCGGAARATGATTARAAATAGATCTTTTGCTTCACAARCTAGTAGTTTCATGATGAARCAGATTARCARTATTARTAGCTTATCTARCAGGCAATCGGAATARTAAACAAATTTACGTTTGTAT
TATTGTATTGAARCGAATATTTCAARTTTGTCGTAGTGAATGAARTARAATCGARARAAATAGTGATCTTACGGAARAATTGTATARGCTACTACARTGCAGCATAGAAATAGTGAARTAAATTTTAGCAAGTAA
CATTGAATTCTCGTCARGATATTCTTGTGTATTAARTTGTTAATARTTGATARACAARATATGGTACTCTAGTARAGTTTTTACAGCTTTTTAGATTCTACATTTAGCTARAGARCAAAT-CTTATCTAGGA
AARTTGAATTTTGGTTARGATATTCTTGACTACTAARTTTTTGATATCTGCTGARTAARATATTGAACTTTGATARGGTGTTTACAGCTTTTTAGATGTCCCATTTAAGTGAARGARTAARATTCTTCTCTATTA
CCCAGAATTTGAGGTAGGATTGTGTARTARACARATTACTTATCTAGTGTTACTTAARTTATGATCARGGTTATARATATARGAGCTTATTARARACTAARTATTARACGARAGAARCARATAGGTCTTTAACT
ATCAGAATTTTAGGTARGATTGTATARTARACARAATCCTTATCTARTGTTATTTAATTGTGATCARGGTCACARATATARGAGCTTATTARARACTAARTATTAARACGARARGAARCARATAGGTCTTTAACT
TTCTATATGTTARTTATGTATTTCCTAARTTAC-ATTACTGAACGGTAARACAGARAATTGCTATGTARATARARARATTTGTTTTGCTARTATARTACATGARRARGAARTTTCTCTATAATTGTAGAARARATTA
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Figure S2: Alignment of 23 circle DRJs identified in CiBV packaged genome



1 10 20 60 70 80 90 100 120 130 136

HIM-MdBV-B GABEA ACABABCEA - TBETCC CTCHA TECANAMMGC ---------=-----~ AAAGC TTTTGTTAAAA TA BT BG TGA T T8 TTAG T
HIM-MdBV-C GABAT! TGCCEGACEACTHATGC ATGEA TEGAN TBlITC -———------——---- GAACABAC TG TTC TGGC TEG T~ GECGANEGHCAGGT
HIM-MdBV-E GABEA GTTHEGEAGA - TEAC TTCHA TEAABABEITC CAT-~ -———= —==== === -~ IC TATCG T TAAACBECC BCCCAEE- W TAGGT
HIM-MdBV-G GABAT! T TAA C BCEA - TEAC TCEMINENACC G TTTT TTGAAGT- -~ ---- TTGEA TEAAN TEMlITC - - -~ ----------- BECETEEGECETTA
HIM-MdBV-H GABEA T T THGEAET - GEET TGRSR GEC TCTC TCGAT TT--- ---- - TGHTTEA TH T8licC - ---- ---------- - GACGAMIGEC TAGT
HIM-MdBV-I GABEIT T TG TG ECEA - TEAC TCHMERENP C8 TAC TTAAGCA TT--- ---- TIGEAABAANANECC ---—- --——------- GATGGHEGECATGT
HIM-MdBV-] CABEA T TGANGEAET-CENA TCEGENCGEC-CTTAGTTAAT--- ---- TTIGHA TEGGEANMTC - -—-- -—----—--- - BTTEC AACECATCA
HIM-MdBV-K CABEA T TGC lGECHA - TEETAC/ESEN:CEA TTTA TGA TCAT--- ---- CAGHA TEAANCENCC - ——-- - ——---—---- BCGEGEE THG TAAT
HIM-MdBV-M GABEA T TA THGECHEA - CEET TC/BSENGCCEA TTTG GG TGA TA--- ---- TCCEA THCANAMMNG T--—-----—--——---——--——--— BGGEANEGE THTCA
HIM-MdBV-N CABEA T TGAEGEAMT - GEBEA TC| TTANACEAGH THMlITC - -----———~~----~ AATACABAA TGGAC TAGGG HBG- B TTEGAB TECETCA
HIM-MdBV-R GABEA AC THGEAGA - ABHIT TA AG T@AA TAANANMTC -——---------—---~- ATACABGC TTCCC G TGAG HBA BAAGGEIGHEC TAAT
HIM-MdBV-S CABAT TCG THGHEANA - TEAC CC| TTICET THAGHANMCC —----—---------~ ATACATTTATAGAC TARAMAAC BETECHA TECATCT
HIM-CcBV-1 C TREIT ACAAC BABA -AGHC TCIMEENCGHGGG TAG TACAAT--- ——-- AATHA TBAGEAAMCC —----—---——=-——————————————— BATETABGEGATC T
HIM-CcBV-4 C THEA ACA[C BABA - TG HG CCJlREGGBICGC TCAGTACAT- -~ - -~ ----- ————— - [lIG - ---- - - - - - ———- - BA TAGHEGEGETC T
HIM-CcBV-7 A TR ACANGHEARNA -CHEIT TCGENC TEAATTGG TTAGGA- -~ —-—- ATGHA THGGH THlG T----- -———-------- TATAGEAGEGHATTG
HIM-CcBV-10 T THRAR ACANTEANC -AGETCCHNEENTGECGC TCAGTACAT- -~ —---—----————— - [lIG---—- -----————-- BA T6GHEGEGETC T
HIM-CcBV-11 GCREC AGANC BGHA - CHEITACHETECGAG TA TAAGCAAAT-- - - - - - -GJA TEAABAMICC - —— - -—---——=-- - BAACGIIGEARTGT
HIM-CcBV-12 T TEET ATTHC BABA - GEEIT TASMGENAGC A TTTTAGACA TT--- -~~~ - TG HA TEGABANBGCA TCAG TTT-- ---~ CBA@ TN TEGHEAG T
HIM-CcBV-14 A THEA ACARGHEARA - CIEA GA GTCAA TEGANGHEAG —--~-~- ===~ =—====~ TATGGETT TTC TC TTGA THET- BATETEEGE TATG T
HIM-CcBV-16 TTETT TCABGEAGIT - AIGA CC ATGHEA TECAS THEICA - --—- --—-------- BAAGGHE TEGETCA
HIM-CcBV-17 T TREA ACAMTEABC -AGETCC BA TG MEGEGATC T
HIM-CcBV-26 TGABEA ACANGEABA-CEITT T BAAGTABGEGHEACT
HIM-CcBV-35 A THEA TACAMTCCHEA -ABITC TC| BAAETERGEGATC T
HIM-CinsBV-10 GABAT ATCEGH THA - TETA AR GEANTEEG- ---- A
HIM-CiBV-17.7 GATHT ATCHEGETTA- TRITAAA TC TAITHE T8 T@TTT
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Figure S3: Alignment of the putative HIM motif from CiBV17.7 and CinsBV-10 and to functionally characterized HIM sites involved in integration into the
DNA of parasitized host cells of MdBV and CcBYV circles.



VANK [Microplitis mediator bracovirus]
VANK [Cotesia glomerata bracovirus]

VANK [Cotesia vestalis bracovirus]

VANK [Glyptapanteles flavicoxis bracovirus]
VANK [Cotesia glomerata bracovirus]

VANK [Cotesia congregata bracovirus]

VANK [Cotesia vestalis bracovirus]

VANK [Glyptapanteles indiensis bracovirus]
VANK [Apophua simplicipes ichnovirus]
VANK [Glypta fumiferanae ichnovirusl

VANK [Apophua simplicipes ichnovirus]
VANK [Glyptapanteles indiensis bracovirus]
VANK [Glyptapanteles flavicoxis bracovirus]
VANK1 [Toxoneuron_nigriceps_bracovirus]
VANK [Glypta fumiferanae ichnovirus]

VANK [Microplitis demolitor bracovirusl
VANK [Microplitis mediator bracovirus]
VANK2 [Hyposoter didymator ichnovirus]
VANKd8.1 [Hyposoter fugitivus ichnovirus]
VANK4 [Hyposoter didymator ichnovirus]
VANK1 [Hyposoter didymator ichnovirus]
VANK1 [Diadegma semiclausum ichnovirus]
VANK-b17 [Hyposoter fugitivus ichnovirus]
VANK2 [Campoletis chlorideae ichnovirus]
VANK1 [Campoletis sonorensis ichnovirus]
VANK3 [Campoletis sonorensis ichnovirusl
VANK3 [Diadegma semiclausum ichnovirus]
VANK1 [Hyposoter didymator ichnovirus]
VANK3 [Campoletis sonorensis ichnovirus]
VANK4 [Campoletis sonorensis ichnovirus]
VANK1 [Campoletis sonorensis ichnovirus]
VANK4 [Diadegma semiclausum ichnovirus]
VANK5 [Hyposoter didymator ichnovirus]
VANK-d8.4 [Hyposoter fugitivus ichnovirusl
VANK-b3.1 [Hyposoter fugitivus ichnovirusl
VANK-b1 [Hyposoter fugitivus ichnovirusl
VANKS5 [Diadegma semiclausum ichnovirus]
VANK1 [Tranosema rostrale ichnovirus]
VANK2 [Tranosema rostrale ichnovirus]
VANK [Microplitis mediator bracovirus]
Conserved sites VANK Braco-Ichno
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Figure S4: Alignment of the 40 proteins used to identify conserved sites of bracovirus and ichnovirus V-ANKs



CiBV VANKS

Microplitis demolitor Cactus
Chelonus_insularis Cactus
Cotesia_congregata_Cactus
Drosophila_melanogaster Cactus
Ceratosolen_solmsi_Cactus

Diachasma alloeum Cactus

Melipona quadrifasciata Cactus
Eufriesea mexicana Cactus

Vespa mandarinia Cactus

Fopius arisanus Cactus

Bombyx mori Cactus

Manduca sexta Cactus

Galleria mellonella Cactus

Pieris rapae Cactus

Tribolium castaneum Cactus

Blattella germanica Cactus

Locusta migratoria Cactus

Bemisia tabaci Cactus

Python bivittatus IkB alpha

Orcinus orca IkB alpha

Corvus cornix IkB alpha

Homo sapiens IkB alpha

Homo sapiens IkB epsilon

Orcinus orca IkB epsilon

Corvus cornix IKkB epsilon

Python bivittatus IkB epsilon

Homo sapiens NF-kB p105

Orcinus orca NF-kB p105

Corvus cornix NF-kB p105

Python bivittatus NF-kB p105
Glyptapanteles_indiensis_Microgastrinae_BV
Microplitis_demolitor_Microgastrinae BV
Diadegma_semiclausum_Campopleginae_IV
Glyptapanteles_indiensis_Microgastrinae_BV
Cotesia_vestalis_Microgastrinae_BV
Cotesia_sesamiae_Microgastrinae_BV
Microplitis_mediator_Microgastrinae_BV
Glyptapanteles_indiensis_Microgastrinae_BV
Hyposoter_fugitivus_Campopleginae_IV
Microplitis_demolitor_Microgastrinae_BV
Cotesia_congregata_Microgastrinae_BV
Glyptapanteles_flavicoxis_Microgastrinae_BV
Campoletis_chlorideae_Campopleginae_IV
Apophua_simplicipes_Banchinae_IV
Hyposoter_fugitivus_Campopleginae_IV
Cotesia_plutellae_Microgastrinae_BV
Hyposoter_fugitivus_Campopleginae-IV
Hyposoter_didymator_Campopleginae_IV
Campoletis_sonorensis_Campopleginae_IV
Campoletis_sonorensis_Campopleginae_IV
Microplitis_demolitor_Microgastrinae_BV
Glypta_fumiferanae_Banchinae_IV
Hyposoter_fugitivus_Campopleginae_IV
Apophua_simplicipes_Banchinae_IV
Campoletis_sonorensis_Campopleginae_IV
Campoletis_sonorensis_Campopleginae_IV
Campoletis_sonorensis_Campopleginae_IV
Glyptapanteles_flavicoxis_Microgastrinae_BV
Glypta_fumiferanae_Banchinae_IV
Microplitis_mediator_Microgastrinae_BV
Campoletis_sonorensis_Campopleginae_IV
Apophua_simplicipes_Banchinae_IV
Microplitis_demolitor_Microgastrinae_BV
Hyposoter_didymator_Campopleginae_IV

—IV—— RYLLVGEID-PMSKDNWERT P
—RRLIGEN-PSVRDI EGNIPIL XS TGDYSAYALTDPLSNFERSHLGP—
—RRLIBGEIN-PALRD AN /XSS 1 GDALAARAL TEPLAPTERNYLGP—

KNNIDMETALTKAFEPLEIAKMQSK——————————-] KLTIPNLF KSIDMFIHNEETPLFIATEN--——GLLNVVKHIE-VNE
—NCKIPALP QD LEQRNIEQM

~HKRIPALP QD LEQNREEMELIVYAAR-
———————————— HCRIPALP QDL EQRY FKEQMETETYIKK
RILLIYFIE-PTVRORHETAML SETAGEKQCVRAL TEKFGATETHEAHRQYGHRSNDKAVSSLSYACLP ADLEIFIPIgaER|

DHVDIM
GHIDILRI]|

DHADIMREE-L RN L ETTEE L GEKFM I AT ESNCHSVLNFILNE-CRP———CFDTPNYJIEI]
DQVDIVREE-L R Y161 SEkIfYMIWAT EL GCRSVVQFLEE-CRP-——CLDATTYISVIERTII 1 YLD-TSLAH-
RO L RN E/TE6 L eI 11 ESNCTSVLNFILEE-CRP——~CFETRN YGMZALIWAACIN-QQLAN—
v s HE e I yi P 131 £G CNEDMN FlL DE-CEK——LNLETATY/YRERFIC IMNKSRMQN—

ENTIWAACIN-MQLAN—

TKITMSYRDERRPEY I FKGYKD I TEFILWH-YHA-——NPDKNTQFEYCYPEMITPLKQMGLEK-—-AFIRI---—-L———-R
—~RLVQFGANP-K

RRLVIEXE0-L TVRN P8 ISGDIYCVKAL TNQF TPAERTWLEP—- ~GKKLPSLP ONLEQIEa| GHV(ERVRHE-L oIV /IS L AN EHRRREVVHL ILNE—CRP——-QLEART YXRENHMARCLD-QQLAM—
- RRLIIGEIN-PSLRDSENHAMELX§AASDSAAZAL TYPLAPTERNYLGS— HKKIPALP QNLEQVINQEET] DQVDVREE- LRI E/YEE | SEkifMg 131 EHGCHSVVS FLKE-CRP———CLDAPNY/XERENTIIAI CLD-SQLAN
v —RRLVIEXIN-PTLRNF eI AN L XA TGDIASAKAL TDPLTLVERNYFLP— ~GKKIPPLP QNLEQRDIEa| GQVELVREE-L RN EMTTEA L ARKITYIIWNYERGCRSVVAFLQE-CRP--—CLDTQT YIS Ii/XWICFD-SQLAR~
v —RRL I[N PALRNFXEN AN L XA TGDMASAKAL TDPLTPVERNYLLP— ~GKKIPALP QNLEQRDIEE| GQVERVREE- L R E/TEAL ARKITYIWNYERGCRSVVAFLQE-CRP-——CLDTQT YIS 1N WICFD-SQLAR~
v —RRLIMIIN-PSLRNFXENAML TE TGDS CAKAL TDPLSPVERNYLLL— ~GKKIPALP QNLEQRDIga| GQVERVREE-vRETNL EMTEA L SEKITIMMAYERGCRSVVS FLHE-CRP———CLDTPT YIS IV YMICFD-GQLAR~
V: ~RRLI[IGEA0-PSLRDSTTAMLXGAANDIAARAL TDSLAPTERNHL GV —————=—————~f HKKIPALP QNLEQI NjQEET| NQVDVRME-L R £ ek 1 ENGCHSVVS FIELRE-CRP-——CLDAENYYRENTII I CLD-SQLAT—
T- ~RMLVIEID-16ARDCLBETPMEKETAARHIE CIKAL LAKVPEHQ! SKVL TVLEQKRR GSVETMKTE-IHYEAKEED DRER L ABWIN! L\ ER-AR AGGWRDQIERIPRWY[IRRNA-
T- RML VImS—LAInu.. KA TAARNQECIKALLAPVPEQ RKLS SILDQ (| GSVETLQTE-VYY TR L ABWIZNY: FERSR-CAG--AATRPRDY[XER{PRRIRRTK:
T RMLVIEERS-L W TETNQME CKALLQPVKEHPT- RKMS TILNQKIINEQT] GHIKTLQTI-vYYRRMeL. MP!}] (LALN LIS D FIYSRIIRRIIRRTS
KMLVEXFAS-ISVRDFY IV QKK YMKTIKLLLEPLKRTP~—————————————————————| REYFINVLDQKIINEQT GYIDEGRE-vS CRENIEKES L AGHIEXX A TRRROED[LRYIL TE-TVA---DRGVRD YJBRIIARHFIRK TT -~~~ —— -
—RWLVVIEIK-PCPRNIREDS P —PKQPYQE INLDQWINEEQT] GHIDVLRHE-vw Y RIIEEROE YTy S TVRGDERMIHFLSE-CTK--LNADAVTYGENSLIIGFPVP-ATIAE-
TPYVQELP PRFEEFNIDIEQM GHIEVLRHE-TwYEIINMIVIEEKSRYPIVT E Y G IHNVMKFLRD-DFVKFLKLETPTYISYIIRIMPACLG-SPFAR-
RTYQHHVP QDLEEKTTDIEQM] GNVEVEKHEV VW IRINKDEK MM C TEL GLAHVRFIVEE-LAT-GLQLEAATY]] AAVD-SALAR~
- RLLVACEIR-TNLRDRFENTAMGLBVDONQNEDCIEAL TNPVSNYEISALHLK' PAFKKVS LNIDYVINEEQY GDIAIMKRE-LWEEINED SKEYK CEYTPII YL RRDY EMIKY IL TE-TKC——-DIEEENYGERIZNQINSYD——-DTITS—
- ETLLKECD-AETRD FRNPIETISEQGHIRGVYVLTQYCQK: HQLH SLLQSATNSEHT] GYLATVEC-L TNV YQEP CNERTNWAYD L ONEGVS LALKH--GA
- EALLEECD-PELRD FRIENIIPIYLEEQGCMASVGVLTQPRGT- QHLH STLQATIINEHT] GYLGIVEE-vsEIHV oGP NI D L oNPO[VS LALKC--GA
—~EHLLK/XgcD-LETRD FIENIIPME TX0QGIRSVSVLTQY CQP HHLL AVLQAT JINEHT] GYLGIVEY[-LsEINVIoEP N0 L oNSDVS L BVKH-~GA--—DVNKVTYQEYSPIJETWGRDNSSIQE—
~EALLGYECD-PELRD FENIPILXEEQGCMASVGVLTQS CTT === —m e mm e PHLH STLKATJENEHT GYLGIVEEE-vSEINV IEoEP NI L oNPDVS LLKC--GA---DVNRVTYQEYSPIQIETWGRPS TRIQQ—
TSHS LDLQLQ LA P@q M- | R0 v QS TRIEKITIMIMAYE TQERGEVQFILQA--GA-—-QVDARMLNECTPLHIAGRGLMGISS—
——-—PPHS LDLQLQ, LA PIMENT- L oN IR e THEK MY THERGIVQFILQA--GA---RVDARMLNECHPLHIAGRGLRSISS—
- -QALIQKEVN-PGLQDRNENIPML[XSEQQHEQCAQQL LEGTATADG TTQPHRHH QDLQLQ LA GNIPMMSM-LES@MD\@@@PMECHNRRAVQF YVDAQMYNECTPLHIEVGRKDAATAA—
- EALIIKEVN-TALQDRNETAM]LXSEQQFIECVELLLPLKKSVS: ~DMKTRKTL QDLQLQIWQELT] GNLQMMAME-voNEITV QDE TEKTPIMAYENHDEVAVRH QVDSQMYN LHIVGRNDAATAA—
- EDLLREFID-LSLLORLEYSVEELAAKI ILLKH KKAA LLLDHPJGRIELNATL! NSO | BYVIGADNAVENNSGRTALHLAVZIDINE) Alddl HVDSTTYDETIPLHIJAGRGS TRLAA
~EDLLRYFAD-LTLLDRSENSAM ISILLKH KKAA QLINHPYGEELNATE! NSLPCLLIE-vGATTY TR ERI S EHON T SIAG L L E-GDA-—-HVDSTTYD[ETLPLHIJAGRGS TRLAA-
ATEGDDKI[SLLLKH ERVS PMVNLPYGEEL SATM] NSMSCLKQE-1AABVNY TR0 TSI = QENT PG L LE-GDA-—-DVDSTTYDETIPLHIJAGRGS TKLAA—
LNH K PYGEELTILEL] NSMPCLRQI-LAAGEVIVoE oK QNI SMAGCIL LE-GDA-—-FVDSITYDETIIPLHIJAGRGSAKLAA—

iGN Y FEYS0AGT WML RAAEWMD-
iGN Y FEXS0AGWYNNL RAAEWMD.
GiIY FIEXSQDNSMSIWRAADMVD.
SKAFSINITRAEEMID-
EIEFIELAKLGABKVIEYRIRERTP-
GLIYF| QANSTRIWRAAGMLD-
iGN Y F[E TBEAGTNYNMMRAEEWMD

DN FF[ZX8KASWI LIIRAENMID-

DITEIN'FEELAEVGMYRIRDNID —————————————————————————

TGAA AGLNTPINABQL SHEVEIV THRRWHAAK(ET]
FDAA AGLNTRITHNEQMALEVAIRV THDKL YAVKIEQV]
GSCT SILQQF YSRIEaF SHQVINIASHKGQHAI RN

QTHN PLLQQFIEEY Q@VERVIRHHRGOKAVQLEY]
RPTP SILTVINSEEQE I VKN-KDI YAQEMMNIV- N LGADINEE/TNE

RPIP SILTVROIRIER()
ESLP KILNVEDHNEAQ)

TREIVKN—KD FY TONMMEL V- LNEGRINGQEWL G|
TRRIAS—NVSYPIDMMDIV-L QNENNGREEL A
TL IVNI—KEIYAQDMMELV-LDEGIVIGQEACG]
TIVAKY YNGF LA DIEEVE-v SEIRL JGENS CA|
TERIATS-NVSCSIDMMNIV-LQIINGQEELA
ITREILVRN-KD I YAQEMMNIV-L KEIINGKEEL G|

RELGADINGVERIEGNTAL HETAVIGIENZ.

BNELGADINGUIEGIYEGNTYLHLAVEMNGEL AEWLZ IR0

RDLDNDDQEAFELJ!}]IEHQDHTM@EQ SQL

LmPuR@swmnvEE\/TmﬂuE ~TSV---NLEACDFSREKXTIVEWKRND LKMMD—
PIGI

()
(=]

FIPEG
HIPERIC]
THLE
EQVIERT]

(I HyfeV]

THL IVST-KDIYAQEMMKIV-LNEIEVIGQEACG]

FUPEG
q

Fi

[§50-PGI-—-HLELRNAKN{SS L EIYETNGNRKMIR—
DLETRNNDNIIPLEMJKSKKDKKMMK—
DMNAEDVD(JRZNTIWIQEKKDQQMMN—

A-PGI---DLEATNY/XE0]

VW ERKDNQIME—

ERNYERA PGI-—-DLEATNY/YSopViTMNIERKDNQIME—
MKKNY AIYEIE0A-PGI—-DVEAENFQEDPYDACKMGDRKMIE—
v PGI———NLEAVNYNQ VMECDEROIME—

[YKRNDEQLKE—

—ILKNGYNQR-R: =
~ILRMHGARC:
—~IFKKYHADC-D:
——MMKRAGAKC-D-
——MIKRAGAKC-D-
——ILEKYRKKC-E:

PMDML
[YERNY E[NYSIMERA-PGT VIQOFIERNDIQIME -
V—-PGI---NLEAVNYINQEVI{IMARECDEYQIME—

LI
ESFH STLQETINRIEES SHIAVKKHRGEHATKIVEVE-VSMERL J6 TME TRECIVRL 1]

~VRTIINNKV—
—PMDRAFKK~—

—VIGQVFSER-
—PMDGFKK~—
QNSVFTCER:
GIQQFTRK

NHE|

PVTFEELAYDGE!TVEKRIRDNLD
SCLEENYFIES
PLTENIRFIELAYVGTRTIIKRFRONLD-
PITENIRIF LAY IGTETEEKRFRNNLD:
GILETRFELAYVGERTIEYRFRONFD:
HISEANTFIEIARTGFVEMEYRIRDNYD-
YING

NTHEINGFERTATE G MIERVRONVN

EVSQESRKN PITENIRF IEAAKHGTREMEYRIRDNMD-
KIV{ZFERN: HAGEINEFIDIVREGTRTIERRIDEKVD-
GIQQfIF HNSEENIVRTG MRYRIRDNYG
~QIR TTEINEFEELAEVGIRTEYRIRONID
—QIRTIFEKN- RVT@FELAHAGWRVRDNID

NNGTEON D TEHHG SN RAEWLD:
NTMEINGFIEIATEGELMIERIRDNVN

T[EINRVEPFLD-

iEARGWYMIERAERWMD-

MSHT RLLTAZTHAEF QvIETYAONL
EPCT FILQQF Y CEEEF SHVAYMMHRGRHAT RIEIKIEE-RI

ESFR SFLQETINIESNSHIVINTHRGFHAIREEE
GPLD SLLQEFDNYE@SNETIVVAP THQGRHAISIEQY]

EN ARSIIAQSIN

-APID VLLRECINREDT(@TSTRNVYPLQRATDEVD II-VRIRIMSKNEF TN
GPLH FLLQEFDNY[EKNEIL Y30 THRGRHAIRIfIQV]
ESFH STLQETINJEESNIEAVKKHS GEHATKEEEV]
EPCS SILQEVYAREDY SHIVYIKTHRGQLAVRIFQVE-L EXINL JAKDRVWNFi
QTHD PLLQQF NEEYQEVERVARHHRGQKAV QL EAT-MERGML ITPORTHES]

[§RNGGVIDLTFRNAIN:

~GII[EFFEKN-
MDSSD--SSNLQYEFDTNWKRHEAYTIEE!
MPVF—————( QLPQSAKN-———-1

EQMD TYLSDTYDQEE T[SV

=N VREEGNELDIE

AT TEGDYSLNM
AMEEL JGTIETREC

HRGRLATEIET F-vGEEINGTON-EBN
DNNR YLLSEYJREIEKQEMEVVVTQ-DKVDPINKL THE-MKWEENS
GPLD SLLQEFDNHEENGTVIINTHRGRHAI CIHKV-MEXEEL YEPDORL LN IV
ENID FLLRESDREET@TIYNGRSEKTTIAMITEM F -V RITIIN -1 TEE]
EKTK ERLRKTNNHEN TELEETEEHRGRQATWIEEK[E-V{EYEL D EKKHCDED]
EPYY SILGEKINEIED TEIIVAVKKHTGLHAT SHVKV-VERIL YEKHE TEEY]

KDQKDEN]

JLHGAVIL
AD[UARDDIEENTL HIAVYDINL AL
[STEE T ARN-KNDDAWEMMY Tv-WKIIRINGQEMP TEYIIPEOE CIWERNY EEIMERRL PDT.
KPCT FILQQFYSHEEF SHEVINIHRGKHATRVEKIE-RENGEL DEp0QL ATV HRYEHRD Y THRKIEEQ-SQT
EPCT FILQQFYSRIEEFSHIVAYINVHRDLHATQVEENE-ROEEN)L DRo0oL GV TA]HY SD Y VQXMEAQ-SQI-

v VELYER0RS LMV TERYHHKD Y AIKTBRQQ-PNV—-—D INVKNF DEMFX{GICL ENDEEMMR—
(EXRL JAPoRL NIVl TRYHHKD Y TIRKMEQQ—PNL---DINVKS FORENIGMAR T EGDQEMMR—
KNYQ YLLNEY JREERK@TIIYAVMHKGQVATERIT I[1- LNF@/WLCTEDMIMLKDWRR SGI-——NINARNYVERPF]
EQUD TYLSDT YDQEETEIVEVADRHRGHLAT FEEI F-v NG TON-GENENEYT]
QPYY SILAEKINIIEETTIAVRKHMRLGAINIVKV-VERIL YAKHEL SEC|

RKDY TIIKITEEQQ-SRI-——NLHAKGWYEREXGHMEV I END EQMMD—
RRNY E[IYZMORQ-PNF———VTNVVNADD FJPE[TIRNND PKMSE—
Q-SQI---DINAEDVDEHEXLINAQMDHDQYMMD—
DLEATNS[] VERNDPIFKE-
DINAEDVDEHZTWIQMDHDQYMMD—
DINAEDVDH -!QNQDQUMMD‘

—=ILRLNHMKL-———————

0- PGI——WLNAANHDEEPLGMIQLNIQSMKA—
WRGDY E[YIME0Q-PGI———DMYATSWNSMEJVFHCIY INGDQRMLD—

VI HHKDY ARIKIME0Q-PNL:
VIV TIWRKDY TTKTMEQQ-SRI---NLHAKGWD[REICEM
VIEMAERDDYV|
WYY QDY EIVTIMEQE-SSV-——NLEACDYS TIRENTVAWKRND LKMID—
XY TFNEDHAMES Y QQ-PGI-—-NLNAANHDER]PL G TQLNIQGMKAFLDFLEAARAVL-—
/L TN Y EVEKETEEQQ-PGV-
[TRYHHKD Y TIAKIE0Q-PNL
PETYAYcNoNColIQIMEEQ-EST
VIMEYKKGD YK TIMEQQ-L S T---DLEVENYRSEIFEVIKRGDEKMME -
PELASTWRGDHEAVEIE0Q-PGI———NMYPTIQTSMMVFLCHLNGDQRILE-——ILLTAIDAD-D--G--N

[YKKKYKEI THMEAQ-PGI——-DLSVONNEKFEPFOMRVHLKSEKIMD—
DINAMSFOMIBFGIYSEGDYQMMI-
AT IENDKQMID—
IR HH-PQI-~—DLDARGWDEREAHE TSI TCNKEMMD—

DMEILNFHKPIUIACERAS TRMMD—
DINVKSFDEREN{GMIRIEGDQEMMR—
DLNAMNQHLIJPYJEMIT IRNSKDAAN—

WLC
signature

Insect
signature

ILWDNYFVC-K:
—~LLEATGAIF-H
—~ILLAAVDAA-D
—~LFYAVLIFK-K:
~MLRPN-—--
——IFQTHGAAR-A-
—IFRTDGVNR-A-
—IFTKFNADC-D

—~LLRKNGAQC-D
~ILLLNRIKL- N
—ILKYYYDLKFAKSGNDK
—ILETHGAII-Q——-E

| CiBV V-ANK5

Insect
Cactus

Vertebrate
lkB-alpha

lkB-epsilon
NF-kB p105

PDV V-ANKs

Figure S5: Alignment comprising the different IxB related proteins of vertebrates highlighting the specific PDV V-ANK WLC and
TAY QLA insect signatures indicating respectively their shared evolutionary history.
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P::::; Primer sequence (5’-3') C[;Ellg'(cgp) Igegl\glt:

(bp)

vank-1-F CGCTCAGAACCATGACGGAA 438 752

vank-1-R ACAACGTTAACGCATCCGAA

vank-2-F GCGTCTCTTCCTAGAGAGCCA 589 896

vank-2-R GTGGTCGACGTCCATCTCTG

vank-3-F CGCTCAGGACAAAGTCGGAA 270 360

vank-3-R TCGTTGCCCAATTGACATGC

vank-4-F TACGCTCAGAACGAAGACGG 106 483

vank-4-R ATGCTGGCCAGGTTTCATCT

vank-5-F CTCAGACGGAAAAACCTAAC 294 493

vank-5-R GAATACGACCCCAGTTGTC

vank-6-F CATCGTGCCCGTGTGTTAAT 380 380

vank-6-R TAGTGGCGACCATCCACGAT

B-actin-F GAGATCCACATCTGCTGGAAGGTGGACAG 842 842

B—actin-R AACTGGGATGACATGGAGAAGATCTGGC

Table S3: primers used for CiBV V-ank genes expression analyses




