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Abstract: The aim of this paper is to provide new perspectives on relative finite element accuracy which is
usually based on the asymptotic speed of convergence comparisonwhen themesh size h goes to zero. Starting
from a geometrical reading of the error estimate due to the Bramble–Hilbert lemma,we derive two probability
distributions that estimate the relative accuracy, considered as a random variable, between two Lagrange
finite elements Pk and Pm (k < m). We establish mathematical properties of these probabilistic distributions
and we get new insights which, among others, show that Pk or Pm is more likely accurate than the other,
depending on the value of the mesh size h.
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1 Introduction
The past decades have seen the development of finite element error estimates due to their influence on
improving both accuracy and reliability in scientific computing. However, in these error estimates, an
unknown constant is involved which depends, among others, on the basis functions of the considered
finite element and on a given semi-norm of the exact solution onewants to approximate. Moreover, error esti-
mates are only upper bounds of the approximation error yielding that the precise value of the approximation
error is generally unknown. Due to quantitative uncertainties which are generated in the process of the mesh
generator and, as a consequence, in the corresponding approximation too, it gave us the idea of considering
the approximation error as a random variable. Therefore, we were able to evaluate the probability of the
difference between two approximation errors corresponding to two different finite elements, and then, we
got a probabilistic way to compare the relative accuracy between these two finite elements.

The paper is organized as follows. We recall in Section 2 the mathematical problem we consider and
a corollary of the Bramble–Hilbert lemma to propose a geometrical interpretation of the error estimate which
appears in this lemma. In Section 3 we derive two probability distributions to interpret and estimate the
relative accuracy, considered as a random variable, between two Lagrange finite elements Pk and Pm (k < m).
Several mathematical properties of these probabilistic distributions are established in Section 4. Concluding
remarks follow.
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2 The Problem Model and a Geometrical Interpretation of an Error
Estimate

Let Ω be an open bounded, and nonempty subset of ℝn and Γ its boundary which we assumed to be
C1-piecewise, and let u be the solution to the second order elliptic variational formulation:

Find u ∈ V solution to a(u, v) = l(v) for all v ∈ V , (VP)

where V is a given Hilbert space endowed with a norm ‖ ⋅ ‖V , a( ⋅ , ⋅ ) is a bilinear, continuous and V-elliptic
form defined on V × V, and l( ⋅ ) a linear continuous form defined on V. Classically, variational problem (VP)
hasoneandonly solution u ∈ V (see for example [4]). In this paper and for simplicity,wewill restrict ourselves
to the case where V is a usual Sobolev space of distributions. Let us also consider an approximation uh of u,
solution to the approximate variational formulation:

Find uh ∈ Vh solution to a(uh , vh) = l(vh) for all vh ∈ Vh, (VP)h

where Vh is a given finite-dimensional subset of V. To state a corollary of Bramble–Hilbert’s lemma and
a corresponding error estimate, we follow [6] or [5], and we assume that Ω is exactly recovered by a mesh Th
composed by NK n-simplices Kμ (1 ≤ μ ≤ NK), which respect classical rules of regular discretization (see for
example [4] for the bidimensional case and [6] inℝn). Moreover, we denote by Pk(Kμ) the space of polynomial
functions defined on a given n-simplex Kμ of degree less than or equal to k (k ≥1). Thenwehave the following
result:

Lemma 2.1. Suppose that there exists an integer k ≥ 1 such that the approximation uh of Vh is a continuous
piecewise function composed by polynomials which belong to Pk(Kμ) (1 ≤ μ ≤ NK). Then uh converges to u
in H1(Ω):

lim
h→0
‖uh − u‖1,Ω = 0.

Moreover, if the exact solution u belongs to Hk+1(Ω), we have the following error estimate:

‖uh − u‖1,Ω ≤ Ck hk |u|k+1,Ω , (2.1)

where Ck is a positive constant independent of h, ‖ ⋅ ‖1,Ω the classical norm in H1(Ω) and | ⋅ |k+1,Ω denotes the
semi-norm in Hk+1(Ω).

Let us now consider two families of Lagrange finite elements Pk and Pm corresponding to a set of values
(k,m) ∈ ℕ2 such that 0 < k < m. The two corresponding inequalities given by (2.1), assuming that the solu-
tion u to (VP) belongs to Hm+1(Ω), are

‖u(k)h − u‖1,Ω ≤ Ckhk|u|k+1,Ω , (2.2)

‖u(m)h − u‖1,Ω ≤ Cmhm|u|m+1,Ω , (2.3)

where u(k)h and u(m)h denotes the Pk and Pm Lagrange finite element approximations of u, respectively. Now, if
one considers a given mesh for the finite element of Pm which would contains whose of Pk, then, for the par-
ticular class of problems where (VP) is equivalent to a minimization formulation (MP) (see for example [4]),
one can show that the approximation error of Pm is always lower than those of Pk, and Pm is more accurate
than Pm for all values of the mesh size h corresponding to the largest diameter in the mesh Th. Then, for
a given mesh size value of h, we consider two independent meshes for Pk and Pm built by a mesh generator.
So, usually, to compare the relative accuracy between these two finite elements, one asymptotically considers
inequalities (2.2) and (2.3) to conclude that, when h goes to zero, Pm finite element is more accurate that Pk,
as hm goes faster to zero than hk. However, for any application h has a static fixed value and this way of com-
parison is not valid anymore. Therefore, our point of view will be to determine the relative accuracy between
two finite elements Pk and Pm (k < m), for any given value of h for which two independent meshes have to be
considered. To this end, let us set

Ck = Ck|u|k+1,Ω and Cm = Cm|u|m+1,Ω .
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Figure 1: Curves fk and fm and existence domain of ‖u(i)h − u‖1,Ω , i = k or i = m.

Therefore, instead of (2.2) and (2.3), we consider in the sequel the two next inequalities:

‖u(k)h − u‖1,Ω ≤ Ckh
k , (2.4)

‖u(m)h − u‖1,Ω ≤ Cmh
m . (2.5)

Let us remark that inequalities (2.4) and (2.5) show that the two polynomial curves defined by fk(h) ≡ Ckhk
and fm(h) ≡ Cmhm play a critical role regarding the values of the two norms ‖u(k)h − u‖1,Ω and ‖u(m)h − u‖1,Ω.
More precisely, these inequalities indicate that the norm ‖u(k)h − u‖1,Ω (respectively ‖u

(m)
h − u‖1,Ω) is below the

curve fk(h) (respectively below the curve fm(h)) (see Figure 1). As we are interested in comparing the relative
positions of these curves, we introduce their intersection point h∗ defined by

h∗ ≡ ( CkCm
)

1
m−k

. (2.6)

Now, as often in numerical analysis, there is no a priori information to surely or better specify the relative
distance between ‖u(k)h − u‖1,Ω (respectively ‖u

(m)
h − u‖1,Ω), and the curve fk or its precise value in the interval

[0, Ckhk] (respectively the curve fm and the interval [0, Cmhm]). Moreover, we have to deal with finite element
methods that returnquantitativeuncertainties in their calculations. Thismainly comes from theway themesh
grid generator will process themesh to compute the approximation u(k)h , leading to a partial noncontrol of the
mesh, even for a givenmaximummesh size. As a consequence, the corresponding grid is a priori random, and
the corresponding approximation u(k)h too. For all of these reasons, wemotivate that a probabilistic approach
can provide a coherent framework for modeling quantitative uncertainties in finite element approximations.
This is the purpose of the following section where we will establish two probability distributions which will
allowed us to estimate the relative accuracy between two Lagrange finite elements.

3 The Two Probabilistic Models for Relative Finite Elements
Accuracy

In this section, we will introduce a convenient probabilistic framework to consider the possible values of the
norm ‖u(k)h − u‖1,Ω as a random variable defined as follows:
∙ A random trial corresponds to the grid constitution and the associated approximation u(k)h .
∙ The probability space Ω contains therefore all the possible results for a given random trial, namely, all

of the possible grids that the mesh generator may processed, or equivalently, all of the corresponding
associated approximations u(k)h .
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Then, for a fixed value of k, we define by X(k) the random variable as follows:

X(k) : Ω → [0, Ckhk], ω ≡ u(k)h 󳨃→ X(k)(ω) = X(k)(u(k)h ) = ‖u
(k)
h − u‖1,Ω . (3.1)

In the sequel, for simplicity, we will set X(k)(u(k)h ) ≡ X
(k)(h).

Now, regarding the absence of information concerning the more likely or less likely values of the norm
‖u(k)h − u‖1,Ω in the interval [0, Ckhk], we will assume that the random variable X(k)(h) has a uniform distri-
bution on the interval [0, Ckhk]. So, our interest is to evaluate the probability of the event

{‖u(m)h − u‖1,Ω ≤ ‖u
(k)
h − u‖1,Ω} ≡ {X

(m)(h) ≤ X(k)(h)},

which will allow us to estimate the relative accuracy between two finite elements of order k and m (k < m).
To proceed it, let us now introduce the two random events A and B as follows:

A ≡ {‖u(m)h − u‖1,Ω ≤ ‖u
(k)
h − u‖1,Ω}, (3.2)

B ≡ {‖u(k)h − u‖1,Ω ∈ [Cmh
m , Ckhk]}. (3.3)

Then we have the following lemma:

Lemma 3.1. Let A and B be the events defined by (3.2) and (3.3). Then we have

Prob{A} = Prob{B}
Prob{B/A} for all h < h∗. (3.4)

Proof. Let us use the following splitting:

Prob{A} = Prob{A ∩ B} + Prob{A ∩ B̄}, (3.5)

where B̄ denotes the opposite event of B. Now, by the definition of the conditional probability we have

Prob{A ∩ B} = Prob{A/B} ⋅ Prob{B} = Prob{B},

since the probabilistic interpretation of the Bramble–Hilbert lemma in the case h < h∗ corresponds to

Prob{A/B} = 1.

Then equation (3.5) can be written as

Prob{A} = Prob{B} + Prob{A ∩ B̄}, (3.6)

which can be transformed by the help of the conditional probability as follows:

Prob{A} = Prob{B} + Prob{B̄/A} ⋅ Prob{A},

or equivalently,
Prob{A} = Prob{B}

1 − Prob{B̄/A}
=

Prob{B}
Prob{B/A} , (3.7)

which corresponds to (3.4).

Then we have two options regarding the nature of the dependency between the events A and B which will
lead us to get two different distribution laws of probabilities of the event {X(m)(h) ≤ X(k)(h)}. The next two
subsections are devoted to the dependency modeling between A and B.

3.1 The Two Steps Model

The first case we will consider states that since, a priori, no information is available in numerical analysis to
consider any kind of dependency between the events A and B, we assume in this subsection that these events
are independent.
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Corollary 3.2. Let A and B be the two events defined by (3.2) and (3.3) and let us assume they are independent.
Then the probability distribution of the event {X(m)(h) ≤ X(k)(h)} is given by

Prob{X(m)(h) ≤ X(k)(h)} =
{
{
{

1 if 0 < h < h∗,
0 if h > h∗.

(3.8)

Proof. As the events A and B are supposed independent, we have

Prob{A/B} = Prob{A}.

As a consequence, by Lemma 3.1 equation (3.7) gives after simplification

Prob{A} = 1 for all h < h∗.

With the same kind of arguments, when h > h∗ we get

Prob{A} = 0 for all h > h∗.

Let us now examine the main properties of probabilistic distribution (3.8):
∙ For any h smaller than h∗, Pm finite element is not only asymptotically better than Pk finite element as h

becomes small, but they are almost surelymore accurate for all these values of h such that h < h∗.
∙ For any h greater than h∗, Pk finite element becomes almost surelymore accurate than Pm finite element,

even if k < m.
This last feature upsets the widespread idea regarding the relative accuracy between Pk and Pm (k < m) finite
elements. It clearly indicates that there exist cases where Pm finite elements surelymust be overqualified and
a significant reduction of implementation and execution cost can be obtained without a loss of accuracy.
Furthermore, one may expect to get a probabilistic distribution where more variations would appear, as it
is in this two steps model, between the probability of the event {X(m)(h) ≤ X(k)(h)} and the mesh size h. It is
certainly due to the assumption we considered regarding the independency between the events A and B.
The purpose of the next subsection we will be devoted to relax this assumption by directly computing the
probability of the event {X(m)(h) ≤ X(k)(h)}.

3.2 The “Sigmoid” Model

To avoid the hypothesis of independency between the events A and B defined by (3.2) and (3.3), we will
directly evaluate the probability of the event A without considering anymore the splitting we wrote in for-
mula (3.6). However, wewill assume that the two randomvariables X(i)(h) (i = k or i = m) defined by (3.1) are
independent and uniformly distributed on [0, Cihi] (i = k or i = m). This is the aim of the following theorem.

Theorem 3.3. Let u be the solution to the second order variational elliptic problem (VP) and u(i)h (i = k or i = m,
k < m), the two corresponding Lagrange finite element Pi approximations, solution to the approximated formu-
lation (VP)h. We assume the two corresponding random variables X(i)(h) (i = k or i = m) defined by (3.1) are
independent and uniformly distributed on [0, Cihi], where Ci are defined by (2.4)–(2.5). Then the probability
of the event {X(m)(h) ≤ X(k)(h)} is given by

Prob{X(m)(h) ≤ X(k)(h)} =
{{{{
{{{{
{

1 − 12(
h
h∗ )

m−k
if 0 < h ≤ h∗,

1
2(

h∗

h )
m−k

if h ≥ h∗.
(3.9)

Proof. Let us first consider a fixed value of h such that h < h∗. In this case, fm(h) < fk(h), or in other words,
0 < Cmhm < Ckhk and due to the Bramble–Hilbert lemma (see Figure 1), one must deal with the following
inequalities:

X(k)(h) ≤ Ckhk and X(m)(h) ≤ Cmhm < Ckhk . (3.10)
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Figure 2: Area corresponding to X (m)(h) ≤ Xk(h).

Then, to compute the probability such that X(m)(h) ≤ X(k)(h), we consider inequalities (3.10) in the plane
(0; X(m)(h), X(k)(h)) (see Figure 2) in which the two random variables belong to the rectangle Rt defined on
[0, Cmhm] × [0, Ckhk]. Our purpose is to characterize the points in Rt that satisfy X(m)(h) ≤ X(k)(h). Obviously,
it only concerns the points which are above the bisector X(k)(h) = X(m)(h), namely the points which belong
to the trapezium Tu (see Figure 2) whose surface is given by

S(Tu) = Cmhm(Ckhk − Cmhm) +
C2mh2m

2 ,

while the total surface of the rectangle Rt is equal to CmCkhm+k. As we assume that the two random vari-
ables X(k)(h) and X(m)(h) are independent and uniformly distributed, the probability Prob{X(m)(h) ≤ X(k)(h)}
corresponds to the ratio between the two surfaces of Tu and Rt and we have

Prob{X(m)(h) ≤ X(k)(h)} = S(Tu)
S(Rt)
=
Cmhm(Ckhk − Cmhm) + 1

2C
2
mh2m

CmCkhm+k
,

= 1 − 12
Cm
Ck

hm−k .

Using the definition (2.6) of h∗, we get

Prob{X(m)(h) ≤ X(k)(h)} = 1 − 12
Cm
Ck

hm−k = 1 − 12(
h
h∗ )

m−k
for all h < h∗.

Let us consider now the second casewhere h > h∗. The curve fm(h) = Cmhm is above the curve fk(h) = Ckhk
and by the same arguments we used above, one must deal with the following inequalities:

X(m)(h) ≤ Cmhm and X(k)(h) ≤ Ckhk < Cmhm .

Then, if we change the role between k and m, we can directly write

Prob{X(k)(h) ≤ X(m)(h)} =
Ckhk(Cmhm − Ckhk) + 1

2C
2
kh

2k

CmCkhm+k

= 1 − 12
Ck
Cm

hk−m .

Hence, the probability of the complementary event X(m)(h) ≤ X(k)(h) which interests us is given by

Prob{X(m)(h) ≤ X(k)(h)} = 1 − Prob{Xk(h) ≤ X(m)(h)}

=
1
2
Ck
Ck
⋅

1
hm−k
=
1
2(

h∗

h )
m−k

,

where we used the definition (2.6) of h∗.
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Figure 3: Case m − k ̸= 1: shape of the sigmoid distribution (3.9) and the two steps corresponding one (3.8),
(P(h) ≡ Prob{X (m)(h) ≤ X (k)(h)}).

The global shapes of the two probabilistic distributions (3.8) and (3.9) are plotted in Figure 3 and particular
features of (3.9) are described in the next section.

4 Properties of the sigmoid probability distribution
We give now the main properties of the sigmoid probability distribution given by (3.9). To this end, we will
denote by P(h) the probability defined by

P(h) ≡ Prob{X(m)(h) ≤ X(k)(h)}.

(1) The first feature we observe concerns the global shape of P(h) together with (3.9), drawn in Figure 3 for
m − k ̸= 1,which looks like a kindof sigmoid roughly approximatedby a stepwise function givenby (3.8) from
Lemma 3.1. In this way, we achieve our objective to relax the dependency assumption between the events A
and B. As a consequence, nonlinearity appears in the relation described by (3.9) between the probability of
the event “Pm finite element is more accurate than Pk finite element” and the mesh size h.

(2) Behavior of P(h) in the neighborhood of 0+. Directly, we get
lim
h→0+

P(h) = lim
h→0+

Prob{X(m)(h) ≤ X(k)(h)} = 1, (4.1)

which corresponds to the classical understanding of the error estimate in (2.1) which derives from the
Bramble–Hilbert lemma, namely asymptotically when the maximum of the mesh size h goes to zero. Indeed,
in these cases h “is sufficiently small”, and despite the unknown values of the constants Ck and Cm which
appear in (2.4) and (2.5), one concludes as expected that the finite element Pm is more accurate than the
finite element Pm, if k < m. But, the question is to determine what does it meanwhen h “is sufficiently small”.
We will partially discuss about this in the next point regarding the behavior of P(h) at the neighborhood
of h∗ given by (2.6). From a probabilistic point of view the result (4.1) is also intuitive because, when h
goes to 0+, the quantity Cmhm goes to 0 faster than Ckhk (k < m). Depicting the relative position of X(m)(h)
and X(k)(h) in a one-dimensional way (see Figure 4), it is clear that the probability of the event {X(m) ≤ X(k)}
goes to 1 when h goes to zero, as X(m) ≤ Cmhm due to the Bramble–Hilbert lemma. However, the interest of
any probability distribution is to get additional information concerning the relative accuracy between two
given finite elements, not only when h goes to zero, as we will see further. Here, we just mentioned that
we find again the well known conclusion to compare two finite elements when the mesh size is arbitrarily
small. Indeed, finite element Pm is not only asymptotically more accurate than Pk as k < m. Indeed, for all
h ≤ h∗, the probability for Pm to be more accurate than Pk is between 0.5 to 1. It means that Pm ismore likely
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Figure 4: Relative one-dimensional position between X (m) and X (k) (h < h∗).

accurate than Pk for all of these values of h. We also notice that we have not anymore the event “Pm is more
accurate than Pk” as an almost sure event as we got in subsection 3.1 with the law (3.8). This is because
we dropped the hypothesis of dependency between the events A and B which leads to a more general and
realistic probabilistic distribution.

(3) Behavior of P(h) in the neighborhood of h∗. The probabilistic stepwise law (3.8) did not described the
case h equals h∗. However, here, the sigmoid probability distribution (3.9) can be extended by continuity to
h = h∗ as we simply have

lim
h→h∗−

P(h) = lim
h→h∗+

P(h) = 12 ,

and then, we extend P(h) by continuity at h∗ by setting

P(h∗) = Prob{X(m)(h∗) ≤ Xk(h∗)} ≡ 12 .

This feature illustrates that when h = h∗, Ckh∗k = Cmh∗m, and the two norms ‖u(k)h − u‖1,Ω and ‖u
(m)
h − u‖1,Ω,

which measures each approximation error of the two corresponding Lagrange finite elements, are some-
where below the two curves (see Figure 1), or in other words, somewhere in the same interval as we here:
[0, Ckh∗k] = [0, Cmh∗m]. Then the probability to get {X(m)(h∗) ≤ Xk(h∗)} is equal to 0.5. This new behavior
claims that when h approaches the critical value h∗ the event “Pm finite element is more accurate than Pk
finite element” is equally likely to occur or not to occur. As a consequence the accuracy between the two finite
element Pk and Pm is equivalent. It is clearly a new theoretical information because, as wementioned above,
the values of the two constants Ck and Cm are totally unknown. Indeed, we already suspected and pointed
out by data mining techniques (see for example [1], [2] and [3]) that this situation would occur. Here, we
complete this suspicion by a theoretical probabilistic framework.

(4) Despite the usual point of view which claims that Pm finite element are more accurate than Pk ones, we
get here that Pk finite element ismore likely accurate than Pm when h > h∗. This new point of view allows us
to recommend that for specific situations, like for adaptive refinement meshes for example, Pk finite element
would be locally more appropriated as long as one will be able to detect the case h > h∗.

5 Conclusions
In this paper we present a new way to investigate the relative accuracy between two finite elements. Indeed,
leaving the classical asymptotic point of view usually considered to compare the speed of convergence for
different approximation errors, we got new insights for understanding error estimates. The way we thought
the error estimates is not restricted to the finite element method but can be extended to other approximation
methods. Indeed, the underlying idea is that, given a class of numerical schemes and their corresponding
error estimates, one is able to rank them, not only in terms of asymptotic speed of convergence as usual, but
also by evaluating the almost surelymost accurate. For instance, considering numerical schemes that approx-
imate solution to ordinary differential equations, one could argue, why (or why not!) RK4 scheme would be
implemented rather than another simplest one. More generally, based on such novel probabilistic interpreta-
tion of approximation errors, the classical error estimates (not only limited to ODEs or PDEs approximations)
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have to overcome and rethink. For example, it can also be successful for numerical quadrature integrations.
Indeed, in that case, the structure of the error estimate also enables to proceed to a similar geometrical inter-
pretation as we proposed for finite element error estimates. As the central keys in our methodology are the
ability to get a geometrical point of view of the error estimates, on the one hand, and the handling of the
random nature of the approximation implementations, on the other hand, this could bring new insights to
sort numerical quadrature formulas, by evaluating the almost surelymost accurate.

Acknowledgment: The authorswant towarmlydedicate this research to payhomage to thememory of Profes-
sors André Avez andGérard Tronelwho largely promote the passion of research and teaching inmathematics.

References
[1] F. Assous and J. Chaskalovic, Data mining techniques for scientific computing: Application to asymptotic paraxial

approximations to model ultra-relativistic particles, J. Comput. Phys. 230 (2011), 4811–4827.
[2] F. Assous and J. Chaskalovic, Error estimate evaluation in numerical approximations of partial differential equations: A pilot

study using data mining methods, C. R. Mecanique 341 (2013), 304–313.
[3] F. Assous and J. Chaskalovic, Indeterminate constants in numerical approximations of PDEs: A pilot study using data mining

techniques, J. Comput. Appl. Math 270 (2014), 462–470.
[4] J. Chaskalovic,Mathematical and Numerical Methods for Partial Differential Equations, Springer, Cham, 2013.
[5] P. G. Ciarlet, Basic error estimates for elliptic problems, in: Handbook of Numerical Analysis. Vol. II, North Holland,

Amsterdam (1991), 17–351.
[6] P. A. Raviart and J. M. Thomas, Introduction à l’analyse numérique des équations aux dérivées partielles, Masson,

Paris, 1982.

Authenticated | jch1826@gmail.com author's copy
Download Date | 1/21/19 8:49 AM


	A New Probabilistic Interpretation of the Bramble–Hilbert Lemma
	1 Introduction
	2 The Problem Model and a Geometrical Interpretation of an Error Estimate
	3 The Two Probabilistic Models for Relative Finite Elements Accuracy
	3.1 The Two Steps Model
	3.2 The ``Sigmoid'' Model

	4 Properties of the sigmoid probability distribution
	5 Conclusions


