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A refined first-order expansion formula in Rn:

Application to interpolation and finite element error estimates

Joël Chaskalovic * Franck Assous �

Abstract

The aim of this paper is to derive a refined first-order expansion formula in Rn, the goal being
to get an optimal reduced remainder, compared to the one obtained by usual Taylor’s formula.
For a given function, the formula we derived is obtained by introducing a linear combination
of the first derivatives, computed at n + 1 equally spaced points. We show how this formula
can be applied to two important applications: the interpolation error and the finite elements
error estimates. In both cases, we illustrate under which conditions a significant improvement
of the errors can be obtained, namely how the use of the refined expansion can reduce the upper
bound of error estimates.

keywords: Taylor’s theorem, interpolation error estimates, finite element, approximation error es-
timates.

1 Introduction

Evaluating and improving the accuracy of approximation are very difficult problems in numerical
analysis. In this article, we are interested in describing a new point of view on approaching the
topic. In particular, we are concerned with the difficulty of accurately determining the error esti-
mate of numerical methods applied to partial differential equations.

From a mathematical point of view, the origin of this problem [2] can be found in Rolle’s theorem,
and therefore, in Lagrange and Taylor’s theorems [3]: this comes from the existence of a non unique
unknown point which appears in the remainder of Taylor’s expansion, as the heritage of Rolle’s
theorem, leading to a kind of “uncertainty”.

Now, let us consider more specifically finite element problems. Basically because of this uncertainty,
most of the results focus on the asymptotic behavior of the error estimates which strongly depends
on the interpolation error (see for example [7], [8]). Indeed, error estimates generally consider, for
a given norm, the asymptotic behavior of the difference between the exact and the approximate
solution, as the mesh size h tends to zero (cf. [24]).

However, several approaches have been proposed to investigate how to improve the accuracy of
approximation. For example, in the framework of numerical integration, we refer the reader to
[5], [6] or [20], and references therein. From another point of view, due to the lack of information,
heuristic methods were considered, basically based on a probabilistic approach, see for instance [1],
[22], [23] or [9] and [11]. This allows to compare different numerical methods, and more precisely
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finite element, for a given fixed mesh size, see [12]-[13].

Nevertheless, Taylor’s formula introduces an unknown point preventing to precisely determine the
interpolation error, and consequently the approximation error of a given numerical method. Hence,
the question still remains whether the error upper bounds are as small as possible. Therefore, we
focus in this article on the values of the numerical constants which appear in such estimates, aiming
to reduce them as much as possible.

To this end, we propose to refine the first order Taylor approximation formula of a function f in
Rn, at a given point a, using f(a) and its derivative. To do this, we consider more known values
of the first order derivative on intermediary equidistant points between a and another given point
b. These values of the first order derivative are conveniently weighted in order to diminish the
associated reminder. Then, we study the resulting properties in the interpolation error estimates
and in Lagrange finite element error estimates.

The paper is organized as follows. In Section 2, we present the main result of this paper which deals
with a new refined first-order expansion formula in Rn. Section 3 investigates the consequences in
interpolation errors. The case of dimension one and dimension n > 1 are separately investigated.
Application to finite elements errors estimates is studied in section 4. Some remarks are proposed.
Concluding remarks follow.

2 A new first order expansion formula in Rn

We consider a non-empty bounded and simply connected open domain U ⊂ Rn, (n ∈ N∗), and a
given point a ∈ U . We also consider a function f which is twice differentiable on U .

We recall that the second order differential D2f(x) at a given point x ∈ U belongs to the vector
space of linear and continuous forms L(Rn,L(Rn,R)) which can be identified to the space of bilinear,
symmetric and continuous form B(Rn × Rn,R).

In other words, we have

∀ (h, h′) ∈ Rn × Rn : D2f(x).(h, h′) =
n∑

i,j=1

hih
′
j

∂2f

∂xi∂xj
(x) .

Above, and in the rest of this article, we adopt the following writing convention: For any linear
form L, we denote by L.(h) or L(h) the action of L on a given vector h ∈ Rn, and by b.(h, h′)
or b(h, h′) the action of a bilinear form b on a given couple of vectors (h, h′) ∈ Rn × Rn (see for
example A. Avez [4]).

Moreover, we assume that there exist two constants (m2,M2) ∈ R2 such that

∀x ∈ U,∀(h, h′) ∈ Rn × Rn : m2∥h∥∥h′∥ ≤ D2f(x).(h, h′) ≤ M2∥h∥∥h′∥, (1)

where ∥.∥ denotes a given norm defined on Rn. Remark that condition (1) can be interpreted by
using the natural norm |||.||| of a bilinear and continuous form b, defined by:

∀ b ∈ B(Rn × Rn,R) : |||b||| ≡ sup
(h,h′)∈Rn∗×Rn∗

|b(h, h′)|
∥h∥.∥h′∥

. (2)

2



Then, applying this definition to the bilinear form b = D2f(x), inequality (1) can be written as:

∃M2 > 0,∀x ∈ U : |||D2f(x)||| ≤ M2, (M2 = max(|m2|, |M2|)).

We first begin with a straight consequence of the classical first-order Taylor formula.

Proposition 2.1 Let f be a twice-differentiable function defined on a non-empty bounded and
simply connected open set U ∈ Rn. Then, we have

f(a+ h) = f(a) +Df(a).(h) + ∥h∥ϵa,1(h), (3)

where ∥.∥ denotes a given norm on Rn, the remainder ϵa,1(h) satisfiying:

∥h∥
2

m2 ≤ ϵa,1(h) ≤
∥h∥
2

M2. (4)

Proof : For a given twice-differentiable function f , we have the classical Taylor’s expansion (see for
example [21]):

∃ ξa,h ∈ ]a, a+ h[ such that f(a+ h) = f(a) +Df(a).(h) +
1

2
D2f(ξa,h).(h, h),

where ]a, a + h[ denotes the open line segment bounded by the two points a and a + h. For h
sufficiently small, ]a, a+ h[∈ U . Then, by comparing this expression with (3), we have

∥h∥ϵa,1(h) =
1

2
D2f(ξa,h).(h, h). (5)

So, using (1) with h′ = h, we get (4) from (5).

Now, to derive the main result, let us first introduce the function ϕ defined as follows:

ϕ : [0, 1] −→ R
t 7−→ Df(a+ th).(h) .

(6)

First, we remark that ϕ(0) = Df(a).(h) and that ϕ(1) = Df(a + h).(h). Moreover, the remainder
ϵa,1(h) introduced in (3) satisfies the following result:

Proposition 2.2 Let ϵa,1(h) defined by the first order Taylor expansion (3). Then, we have

∥h∥ϵa,1(h) =
∫ 1

0
(1− t)ϕ′(t) dt. (7)

Proof : Using the first-order Taylor’s formula with the integral form of the remainder gives:

f(a+ h) = f(a) +Df(a).(h) +

∫ 1

0
(1− t)D2f(a+ th).(h, h) dt. (8)

Now, deriving function ϕ defined by (6) with respect to t, we obtain:

ϕ′(t) =
d

dt

[
Df(a+ th).(h)

]
=

d

dt

n∑
i=1

∂f

∂xi
(a+ th)hi,

=
d

dt

n∑
i=1

∂f

∂xi
(a1 + th1, . . . , an + thn)hi.
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Using standard rule of derivation [21] to derive a function of n variables, each depending on t, we
get:

ϕ′(t) =
n∑

j=1

[ n∑
i=1

∂2f

∂xj∂xi
(a1 + th1, . . . , an + thn)hihj

]
,

= D2f(a+ th).(h, h),

and finally, the first order Taylor’s formula (8) leads to:

f(a+ h) = f(a) +Df(a).(h) +

∫ 1

0
(1− t)ϕ′(t)dt.

As consequence, the remainder ϵa,1(h) in (3) satisfies (7).

Consider now a given m ∈ N∗, for which we define ϵa,m+1(h) by

f(a+ h) = f(a) +

m∑
k=0

ωk(m)Df

(
a+

kh

m

)
.(h) + ∥h∥ϵa,m+1(h), (9)

where ωk(m), 0 ≤ k ≤ m, denote real weights we want to determine to get a corresponding re-
mainder ϵa,m+1(h) as small as possible. Since we assumed that the domain U is open and simply

connected, the set of uniformly distributed points (xk)k=1,m defined by xk = a+
kh

m
belongs to the

segment [a, a+ h].

The following theorem constitues our main result, and is devoted to the refined first-order expansion
in Rn.

Theorem 2.3 Let f be a twice differentiable real mapping defined on a non-empty bounded and
simply connected open U ⊂ Rn, such that (1) holds, and let a ∈ U be a given point.

If the weights ωk(m), (k = 0,m), satisfy:

m∑
k=0

ωk(m) = 1,

then, the following refined first-order expansion formula holds:

f(a+ h) = f(a) +

(
Df(a) +Df(a+ h)

2m
+

1

m

m−1∑
k=1

Df

(
a+

kh

m

))
.(h) + ∥h∥ϵa,m+1(h), (10)

where the remainder ϵa,m+1(h) satisfies

∥h∥
8m

(m2 −M2) ≤ ϵa,m+1(h) ≤
∥h∥
8m

(M2 −m2). (11)

Moreover, for a uniform distribution of points, this result is optimal in the sense that the weights
ωk(m) in (10) guarantee the remainder ϵa,m+1(h) to be minimal.
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Remark 1

1. In the theorem above, we use the convention that, when m = 1, the sum
m−1∑
k=1

is identically

zero.

2. Remark that the error bounds in estimate (11) are 2m lower that the usual ones involved in
estimate (4).

In order to prove the theorem 2.3, we will need the following lemma obtained in [15]:

Lemma 2.4 Let u be a continuous function on R, and let (ak)k=0,m, (m ∈ N∗) be a sequence of
real numbers. We have the following formula:

m−1∑
k=0

∫ m

k
aku(t) dt =

m−1∑
k=0

∫ k+1

k
Sku(t) dt,

where

Sk =
k∑

j=0

aj .

Let us now prove Theorem 2.3.

Proof : From (3) and (9), we have

Df(a).(h) + ∥h∥ϵa,1(h) =
m∑
k=0

ωk(m)Df

(
a+

kh

m

)
.(h) + ∥h∥ϵa,m+1(h), (12)

that can be written, using the function ϕ introduced in (6),

ϕ(0) + ∥h∥ϵa,1(h) =
m∑
k=0

ωk(m)ϕ

(
k

m

)
+ ∥h∥ϵa,m+1(h). (13)

Using now Proposition 2.2, we get from (13) that the remainder ϵa,m+1(h) satisfies:

∥h∥ϵa,m+1(h) = ϕ(0) +

∫ 1

0
(1− t)ϕ′(t) dt−

m∑
k=0

ωk(m)ϕ

(
k

m

)
,

that can be written as (see details in [15], pages 5 and 6, Eq. (17)-(19))

∥h∥ϵa,m+1(h) =

(
1−

m∑
k=0

ωk(m)

)
ϕ(1)−

m−1∑
k=0

∫ k+1
m

k
m

tϕ′(t) dt+
m−1∑
k=0

∫ 1

k
m

ωk(m)ϕ′(t) dt. (14)

Let us now transform the last integral of (14) by the help of Lemma 2.4. We set:

∀ t ∈ R : u(t) = ϕ′
(

t

m

)
, ak = ωk(m), and Sk =

k∑
j=0

ωj(m) = Sk(m).

Then, after substitution, (14) becomes:

∥h∥ϵa,m+1(h) =

(
1−

m∑
k=0

ωk(m)

)
ϕ(1) +

m−1∑
k=0

∫ k+1
m

k
m

(Sk(m)− t)ϕ′(t) dt. (15)
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From now on, let us assume for simplicity (see Remark 2 below) that:

m∑
k=0

ωk(m) = 1, (16)

so (15) can be written

∥h∥ϵa,m+1(h) =

m−1∑
k=0

∫ k+1
m

k
m

(Sk(m)− t)ϕ′(t) dt. (17)

Using estimate (1) of the second order differential of f , and the definition (6) of ϕ(t), we get:

m2∥h∥2 ≤ ϕ′(t) = D2f(a+ th).(h, h) ≤ M2∥h∥2. (18)

So, to derive a double inequality on ϵa,m+1(h), we split the integral in (17)∫ k+1
m

k
m

(Sk(m)− t)ϕ′(t)dt =

∫ Sk(m)

k
m

(Sk(m)− t)ϕ′(t)dt+

∫ k+1
m

Sk(m)
(Sk(m)− t)ϕ′(t)dt. (19)

Then, considering the constant sign of (Sk(m)−t) on

[
k

m
, Sk(m)

]
, and on

[
Sk(m),

k + 1

m

]
, equation

(18) allows us to obtain:

∥h∥2m2

∫ Sk(m)

k
m

(Sk(m)− t)dt ≤
∫ Sk(m)

k
m

(Sk(m)− t)ϕ′(t)dt ≤∥h∥2M2

∫ Sk(m)

k
m

(Sk(m)− t)dt,

and,

∥h∥2M2

∫ k+1
m

Sk(m)
(Sk(m)− t)dt ≤

∫ k+1
m

Sk(m)
(Sk(m)− t)ϕ′(t)dt ≤ ∥h∥2m2

∫ k+1
m

Sk(m)
(Sk(m)− t)dt.

that lead to the next two inequalities:∫ k+1
m

k
m

(Sk(m)− t)ϕ′(t)dt ≤ ∥h∥2M2

∫ Sk(m)

k
m

(Sk(m)− t)dt+ ∥h∥2m2

∫ k+1
m

Sk(m)
(Sk(m)− t)dt, (20)

and,∫ k+1
m

k
m

(Sk(m)− t)ϕ′(t)dt ≥ ∥h∥2m2

∫ Sk(m)

k
m

(Sk(m)− t)dt+ ∥h∥2M2

∫ k+1
m

Sk(m)
(Sk(m)− t)dt. (21)

Since we also have the two following results:∫ Sk(m)

k
m

(Sk(m)− t)dt =
λ2

2m2
and

∫ k+1
m

Sk(m)
(Sk(m)− t)dt = −(λ− 1)2

2m2
, where λ ≡ mSk(m)− k,

inequalities (20) and (21) lead to:

∥h∥2

2m2
P1(λ) ≤

∫ k+1
m

k
m

(Sk(m)− t)ϕ′(t)dt ≤ ∥h∥2

2m2
P2(λ), (22)
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where two polynomials P1(λ) and P2(λ) are defined by:

P1(λ) ≡ m2λ
2 − (λ− 1)2M2 and P2(λ) ≡ M2λ

2 − (λ− 1)2m2.

Keeping in mind that we want to minimize ϵa,m+1(h), we find that the value of λ which minimizes

the polynomial P (λ) ≡ P2(λ)− P1(λ) = (M2 −m2)(2λ
2 − 2λ+ 1) is λ =

1

2
.

Then, for this value of λ, (22) becomes:

∥h∥2

8m2
(m2 −M2) ≤

∫ k+1
m

k
m

(Sk(m)− t)ϕ′(t)dt ≤ ∥h∥2

8m2
(M2 −m2) . (23)

Finally, by summing over k between 0 to m, we have from (17) and (23):

∥h∥
8m

(m2 −M2) ⩽ ϵa,m+1(h) ⩽
∥h∥
8m

(M2 −m2). (24)

Using first the definitions of λ and of Sk(m), and using also that the weights ωk(m), (k = 0,m),
satisfy (16), we have

∀m ∈ N∗, ∀k ∈ [0,m[: Sk(m) =

k∑
j=0

ωj(m) =
1

2m
+

k

m
, (25)

and the corresponding weights ωk(m) are equal to:

ω0(m) = ωm(m) =
1

2m
, and, ωk(m) =

1

m
, (k = 0,m− 1) . (26)

This completes the proof of Theorem 2.3.

To illustrate this refined first-order expansion formula, let us derive (10) when m = 2, (that is to
say with three points). In that case, we readily get:

f(a+ h) = f(a) +

Df(a) + 2Df

(
a+

h

2

)
+Df(a+ h)

4

.(h) + ∥h∥ϵa,3(h),

where
∥h∥
16

(m2 −M2) ⩽ ϵa,3(h) ⩽
∥h∥
16

(M2 −m2).

Remark 2 Condition (16) on the weights ωk(m), 0 ≤ k ≤ m, in Theorem 2.3 is a kind of closure
condition that helped us to determine wk(m). But it is not a restrictive one. Indeed, without this
condition, one would have to consider (15) in the place of (17).

Hence, f being twice differentiable, it also exists (m1,M1) ∈ R2 such that

∀x ∈ U,∀h ∈ Rn : m1∥h∥ ≤ Df(x).(h) ≤ M1∥h∥.

Then, using that ϕ(1) = Df(a+ h).(h), we obtain:

m1∥h∥ ≤ ϕ(1) ≤ M1∥h∥,
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that leads to, together with (15):

∥h∥
8m

(m2 −M2)−
M1

2m
⩽ ϵa,m+1(h) ⩽

∥h∥
8m

(M2 −m2)−
m1

2m
. (27)

Here, we used that the weights ωk(m), (k = 0,m), may be determined by the help of (25) without
taking into account anymore the closure condition (16).

More precisely, in that case, we get that the weights ωk(m), (k = 0,m), are equal to:

ω0(m) =
1

2m
and ωk(m) =

1

m
, (k = 1,m).

Consequently, we deduce from (27) that the bounds of the reminder ϵa,m+1(h) are m times lower
than the ones given using the classical first-order Taylor’s formula, see (4).

Finally, by considering the closure condition (16) and the corresponding weights ωk(m), (k = 0,m),
determined by (26), we improved the result of (27), since the bounds of the remainder given by (15)
are 2m smaller than the ones given by the first Taylor’s formula.

3 Application to the interpolation error

3.1 The case of dimension one

In this subsection, we consider the refined first-order expansion formula (10) with two points, (i.e.
m = 1) in the one-dimensional case, namely with U =]x0, x1[, (x0 < x1). More precisely, formulas
(10)-(11) give in this case, for x0 < a < x1:

f(a+ h) = f(a) +

(
Df(a) +Df(a+ h)

2

)
.(h) + ∥h∥ϵa,2(h), (28)

that can be simply written, in the one dimensional case, by using the derivative of f and the
absolute value as the norm in R:

f(a+ h) = f(a) +

(
f ′(a) + f ′(a+ h)

2

)
.h+ |h|ϵa,2(h), (29)

with
|h|
8
(m2 −M2) ⩽ ϵa,2(h) ⩽

|h|
8
(M2 −m2).

Now, for x0 < a < b < x1, let Π[a,b](f) be the usual interpolation polynomial of degree less than or
equal to one defined by:

∀x ∈ [a, b] : Π[a,b](f)(x) =
x− b

a− b
f(a) +

x− a

b− a
f(b).

Our aim is to investigate the consequences of formula (29) when we use it to estimate the error of
interpolation e(.) defined by

∀x ∈ [a, b] : e(x) = Π[a,b](f)(x)− f(x),

and to compare it with the error obtained by the first order Taylor formula (3), written for n = 1.
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Lemma 3.1 Let f be a function of C2(]x0, x1[). The following interpolation error estimate holds:

∀x ∈ [a, b] : |Π[a,b](f)(x)− f(x)| ≤ (b− a)

4
∥f ′∥∞ +

(b− a)2

16
∥f ′′∥∞, (30)

where ∥.∥∞ denotes the classical norm on L∞.

Proof : We showed in [15] (see Formula (56)) that the usual interpolation polynomial Π[a,b](f)
introduced above can be written, using (29), as:

Π[a,b](f)(x) = f(x) +

(
f ′(b)− f ′(a)

2(b− a)

)
(b− x)(x− a) +

(b− x)(x− a)

(b− a)

[
ϵx,2(b)− ϵx,2(a)

]
, (31)

where ϵx,2(b) and ϵx,2(a) are the remainders of (29) for a and b respectively.

Consider now these two remainders written in the integral form. Due to (17), for m = 1, we have

ϵx,2(a) =

∫ 1

0

(
1

2
− t

)
(a− x)f ′′(x+ t(a− x)

)
dt,

and

ϵx,2(b) =

∫ 1

0

(
1

2
− t

)
(b− x)f ′′(x+ t(b− x)

)
dt.

As a consequence, using that

∫ 1

0

∣∣∣∣12 − t

∣∣∣∣ dt = 1

4
, these two remainders are bounded by

|ϵx,2(a)| ≤
(x− a)

4
∥f ′′∥∞ and |ϵx,2(b)| ≤

(b− x)

4
∥f ′′∥∞ .

Now, using that sup
a≤x≤b

(x− a)(b− x) =
(b− a)2

4
, together with (31) yields

|Π[a,b](f)(x)− f(x)| ≤ (b− a)∥f ′∥∞
4

+
(b− a)2∥f ′′∥∞

16
. (32)

Considering now the usual Taylor’s formula, classically, the interpolation error e(.) is bounded by
(see for example [19], [17])

∀x ∈ [a, b] : |f(x)−Π[a,b](f)(x)| ≤
1

2
(x− a)(x− b)∥f ′′∥∞.

So, using again that sup
a≤x≤b

(x− a)(b− x) =
(b− a)2

4
, we get from this error bound that

∀x ∈ [a, b] : |f(x)−Π[a,b](f)(x)| ≤
(b− a)2

8
∥f ′′∥∞. (33)

Now, we aim at evaluating the improvement obtained in the upper bound involved in (30), compared
to the one deduced from the usual interpolation error estimate (33). Hence, we are looking for
functions f and for a positif number β < 1 such that

(b− a)∥f ′∥∞
4

+
(b− a)2∥f ′′∥∞

16
≤ β

(b− a)2∥f ′′∥∞
8

, (34)
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that can be rewritten as

∥f ′∥∞ ≤ ∥f ′′∥∞
Λ

, where Λ =
4

(2β − 1)(b− a)
. (35)

Hence, our goal is to identify values of β and class of functions f such that (35) is satisfied.
Obviously, (35) does not hold for 0 ≤ β ≤ 1/2. In addition, since we are interested by illustrating
(35), we will also restrict ourselves by looking for functions f solutions to:

∀x ∈ [a, b] : |f ′(x)| ≤ f ′′(x)

Λ
, (36)

which implies that, in the sequel, we will only consider convex functions, i.e. functions such that
f ′′(x) ≥ 0,∀x ∈ [a, b], since it is clear that solutions of (36) also satisfy (35).

The next lemma determines a necessary condition for inequality (36) to be verified:

Lemma 3.2 Let f be a convex function of C2([a, b]), which satisfies inequality (36). Then, we
have

∀x ∈ [a, b], f(x) ≥ max

(
f(a) +

f ′(a)

Λ

(
eΛ(x−a) − 1

)
, f(a)− f ′(a)

Λ

(
e−Λ(x−a) − 1

))
.

Proof : From differential inequality (36), we get the two following second order differential inequal-
ities, for all x ∈ [a, b]: {

f ′′(x)− Λf ′(x) ≥ 0,

f ′′(x) + Λf ′(x) ≥ 0,

that can be rewritten, setting F (x) = f ′(x),{
F ′(x)− ΛF (x) ≥ 0,

F ′(x) + ΛF (x) ≥ 0,

Now, multiplying the first inequality by the integrating factor e−Λ(x−a) and the second one by the
integrating factor eΛ(x−a), we obtain that

d

dx

[
F (x)e−Λ(x−a)

]
≥ 0 , and

d

dx

[
F (x)eΛ(x−a)

]
≥ 0 .

This means that both functions F (x)e−Λ(x−a) and F (x)eΛ(x−a) are increasing on [a, b], or in other
words, returning to function f ′:

∀x ∈ [a, b] : f ′(x) ≥ eΛ(x−a)f ′(a) and f ′(x) ≥ e−Λ(x−a)f ′(a).

It suffices to integrate thes two differential inequalities on the interval [a, x], (x ∈ [a, b]) to obtain
the inequality of Lemma 3.2.

The next lemma enables us to determine sufficient conditions to determine a class of functions f
satisfying condition (36), and consequently condition (34).

Lemma 3.3 Let δ > 0 be a real number and let f be the solution to the problem (P) defined by,
for all x ∈ [a, b]:

(P)


f ′′(x)− Λf ′(x) = δ,

f ′(a) ≥ − δ

Λ
.

(37a)

(37b)

10



Then, we have

∀β ∈ ]12 , 1] : f(x) = f(a) +
f ′(a)

Λ

(
eΛ(x−a) − 1

)
+

δ

Λ

[
eΛ(x−a) − 1

Λ
− (x− a)

]
. (38)

In particular, f given by (38) is a convex function which satisfies (36).

Proof : Two successive integrations lead to the solution f given by (38). Let us check now that
these functions f are convex. Their second derivative is equal to

f ′′(x) =

(
f ′(a) +

δ

Λ

)
ΛeΛ(x−a)

which is positive, since f solution to problem (P) satisfies condition (37b).

Furthermore, remark also that, due to condition (37b), f solution to problem (P) satisfies as well

f ′′(x) + Λf ′(x) ≥ 0,∀x ∈ [a, b]. (39)

Indeed, considering that f is given by (38), we have, for all x ∈ [a, b]:

f ′′(x) + Λf ′(x) = 2

(
f ′(a) +

δ

Λ

)
ΛeΛ(x−a) − δ.

Hence, for all x ∈ [a, b], f ′′(x) + Λf ′(x) ≥ 0 is equivalent to

eΛ(x−a) ≥ δ

2

(
f ′(a) +

δ

Λ

)
Λ

, ∀x ∈ [a, b],

which leads to f ′(a) ≥ − δ

Λ
, using the minimum of the exponential for x = a.

Finally, we obtained that solutions f of (37a)-(37b) determined by (38) fulfill inequality (39). In
other words, solutions f given by (38) satisfy inequality (36).

With Lemma 3.3, we have checked that condition (36) does not lead to an empty set of functions.
Indeed, functions determined by (38) satisfy condition (36), and then (34), for any value of β ∈]12 , 1].
For these functions, the interpolation error e(.) is β times smaller than the one found with the usual
first-order Taylor’s formula. So, the best we can obtain by the refined first-order expansion formula
(29) corresponds to a decrease of about 50 percents (β = 1

2).

3.2 The case of dimension n, (n > 1)

Let us now consider formula (28) together with the related classical one (3) in Rn, (n > 1).

First of all, let us rewrite both formulas by using the integral form of remainder. From propositions
2.1 and 2.2, for any function v ∈ C2(U), the classical Taylor formula can be written as:

v(a+ h) = v(a) +Dv(a).(h) +

∫ 1

0
(1− t)ϕ′(t) dt, (40)

where the function ϕ is defined in (6).

On the other hand, let us consider formula (17) of the remainder, corresponding to the refined

11



first-order expansion formula with two points, that is for m = 1. Using (25) and (26), we get the
following integral form of (28):

v(a+ h) = v(a) +

(
Dv(a) +Dv(a+ h)

2

)
.(h) +

∫ 1

0

(
1

2
− t

)
ϕ′(t) dt. (41)

Let us now consider an open-bounded and non empty subset Ω of Rn which is simply connected,
and let us denote by ∂Ω its boundary, assumed to be a simplicial complex (i.e. the generalization
to Rn of a polygon in R2; [25], Chapter IX).

We consider a generalized triangulation Th of Ω̄ composed by a finite number of n-simplicies Sk, (1 ≤
k ≤ N), which respects the classical rules of a ”regular” discretization: the set Ω̄ is expressed as the
set-theoretic union of a finite number of n-simplices Sk, (1 ≤ k ≤ N), whose interior are pairwise
disjoint, and such that, given any n-simplex of the triangulation, each one of its (n − 1)-face is
either a portion of the boundary ∂Ω, or an (n− 1)-face of another n-simplex of the triangulation,
(for more details, see for example [18]).

For all k ∈ [[1, N ]] 1, we denote by hk ≡ diam(Sk) the diameter of the n−simplex Sk, (the diameter
being the greatest distance between two points inside Sk), and by h the mesh size (h = max

k=1,N
hk)

of the corresponding triangulation Th.

Finally, we introduce the vertices A
(k)
i , i ∈ [[1, n+1]], associated to a given n−simplex Sk, k ∈ [[1, N ].

Then, we define by πh(v) the piecewise polynomial of degree less than or equal to one which belongs
to C0(Ω̄) such that

∀k ∈ [[1, N ]],∀P ∈ Sk : πh(v)(P ) = πSk
(v)(P ), (42)

where, ∀P ∈ Sk, we have

πSk
(v)(P ) =

n+1∑
i=1

λi(P )v(A
(k)
i ) . (43)

Above, λi are the barycentric functions which satisfy, ∀P ∈ Sk,

n+1∑
i=1

λi(P )OA
(k)
i = OP , with

n+1∑
i=1

λi(P ) = 1, (44)

O denoting the origin of Rn.

Therefore, πSk
(v) is the unique polynomial of degree less than or equal to one which interpolates

the function v at the vertices Ak, k ∈ [[1, n+ 1]], (see [16] for example).

On a given n−simplex S (we drop the subscript k for simplicity), our aim is now to evaluate the
distance between a ”smooth function” v and its interpolated polynomial πS(v), first by the classical
Taylor formula (40), then, by our new refined first-order expansion formula (41).

To this end, let us recall some classical notations: If |||.||| denotes the norm of the operatorD2(v)(P ),
(∀P ∈ S̄), defined in (2) and the corresponding one for D(v)(P ), and on the other hand, we define
the L∞-norm ∥.∥∞ for any integer p and a p-linear mapping fields L : P ∈ S̄ → L

(
(Rn)p;R

)
by:

∥L∥∞ = sup
P∈S̄

|||L(P )|||.

Then, we have obtained the following interpolation error estimates:

1. as usual, the notation [[1, N ]] denotes all the integers form 1 to N

12



Lemma 3.4 Let S be a given n−simplex in Rn defined by its vertices Ai, i ∈ [[1, n + 1]]. Let v be
a function of C2(S), we have the two following interpolation error estimates:

∀P ∈ S : |πS(v)(P )− v(P )| ≤ ∥D2(v)∥∞
2

diam(S)2, (45)

∀P ∈ S : |πS(v)(P )− v(P )| ≤ ∥D(v)∥∞
2

diam(S) +
∥D2(v)∥∞

4
diam(S)2 . (46)

Proof : Let us begin to prove the estimate (45) related to the classical Taylor’s formula. Using
formula (40) by taking for a any point P ∈ S, we obtain that

v(Ai) = v(P ) +Dv(P ).(hi) +

∫ 1

0
(1− t)ϕ′

i(t) dt,

where the functions {ϕi}1≤i≤n+1 are defined by:

∀t ∈ [0, 1], ϕi(t) = Dv(P + thi).(hi), and hi = PAi.

Let us compute now the quantity πS(v)(P ) defined by (43). We have

πS(v)(P ) =

n+1∑
i=1

v(Ai)λi(P ),

= v(P )

n+1∑
i=1

λi(P ) +

n+1∑
i=1

λi(P )Dv(P ).(hi) +

n+1∑
i=1

λi(P )

∫ 1

0
(1− t)ϕ′

i(t) dt,

= v(P ) +Dv(P ).

(
n+1∑
i=1

λi(P )hi

)
+

n+1∑
i=1

λi(P )

∫ 1

0
(1− t)ϕ′

i(t) dt. (47)

Above, we used that Dv(P ) is a linear form together with the second property of (44). Moreover,
due to the two properties of (44), we also have:

n+1∑
i=1

λi(P )hi =
n+1∑
i=1

λi(P )OAi −
n+1∑
i=1

λi(P )OP = OP −OP = 0.

Then, (47) leads to:

πS(v)(P ) = v(P ) +

n+1∑
i=1

λi(P )

∫ 1

0
(1− t)ϕ′

i(t) dt,

that implies the following inequality, ∀P ∈ S, and using that, ∀i ∈ [[1, n+ 1]], 0 ≤ λi ≤ 1:

|πS(v)(P )− v(P )| ≤ 1

2
max

i=1,n+1
∥ϕ′

i∥∞ . (48)

However, we also have the following property: ∀t ∈ [0, 1], ∀P ∈ S, ∀i ∈ [[1, n+ 1]],

|ϕ′
i(t)| = |D2(v)(P + t.hi).(hi, hi)| ≤ |||D2(v)(P + t.hi)||| diam(S)2,

≤ ∥D2(v)∥∞ diam(S)2, (49)

where we set above hi ≡ PAi.
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Then, using (49), inequality (48) leads to the following result, ∀P ∈ S:

|πS(v)(P )− v(P )| ≤ ∥D2(v)∥∞
2

diam(S)2 , (50)

that proves the estimate (45) of the lemma.

Let us prove now the estimate (46) related to the refined first-order expansion formula. In a similar
way, we consider now formula (41) to compute the interpolation polynomial πS(v) defined in (43)
at point P . We obtain that:

πS(v)(P ) = v(P ) +
1

2

n+1∑
i=1

λi(P )Dv(P ).(hi) +
1

2

n+1∑
i=1

λi(P )Dv(Ai).(hi)

+
n+1∑
i=1

λi(P )

∫ 1

0

(
1

2
− t

)
ϕ′
i(t) dt,

= v(P ) +
1

2

n+1∑
i=1

λi(P )ϕi(0) +
n+1∑
i=1

λi(P )

∫ 1

0

(
1

2
− t

)
ϕ′
i(t) dt, (51)

and finally, that

|πS(v)(P )− v(P )| ≤ 1

2
max

i=1,n+1
∥ϕi∥∞ +

1

4
max

i=1,n+1
∥ϕ′

i∥∞. (52)

Moreover, we also have, for the function ϕi(t):

|ϕi(t)| = |Dv(P + t.hi).(hi)| ≤ |||D(v)(P + t.hi)||| diam(S),

≤ ∥D(v)∥∞ diam(S),

that yields, using inequality (52):

|πS(v)(P )− v(P )| ≤ ∥D(v)∥∞
2

diam(S) +
∥D2(v)∥∞

4
(diam(S))2. (53)

To conclude this section, we can summarize the lemma (3.4) in the following way: ∀P ∈ S, the
interpolation error is lower than the minimum between the upper bounds of (45) and (46), namely

|πS(v)(P )− v(P )| ≤ min

(
∥D2(v)∥∞

2
diam(S)2,

∥D(v)∥∞
2

diam(S) +
∥D2(v)∥∞

4
diam(S)2

)
. (54)

The next section is devoted to investigate consequences of our main result, regarding finite elements
applications.

4 Application to finite elements error estimates

In this section, we consider the refined first-order expansion formula (41), namely the general
formula (10) for m = 1. Then, we study the impact of this formula in the context of Lagrange
finite elements error estimate.
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We first recall the mathematical framework. Let us consider again a non empty open-bounded
and simply connected subset Ω of Rn, as introduced in section 3.2, together with the generalized
triangulation Th of Ω̄. Classically, we denote by µ(Ω) the measure of Ω and by V a Hilbert space,
endowed with a norm ∥.∥V , made of functions defined on Ω.

Then, we consider a linear continuous form l(·) defined on V , and a bilinear, continuous and
V−elliptic form a(·, ·) defined on V × V . Particularly, ∃ (α,C) ∈ R∗

+ × R∗
+ such that

∀v ∈ V, α ∥v∥2V ≤ a(v, v) ≤ C ∥v∥2V . (55)

Now, let u ∈ V be the unique solution to the second order elliptic variational formulation (VP)
defined by:

(VP)

 Find u ∈ V solution to:

a(u, v) = l(v),∀v ∈ V,
(56)

and let also introduce the approximation uh of u, solution to the approximate variational formula-
tion (VP)h:

(VP)h

 Find uh ∈ Vh solution to:

a(uh, vh) = l(vh), ∀vh ∈ Vh,
(57)

where Vh denotes a finite-dimensional subset of V .

The first step to estimate the error between u and uh is given by Céa’s Lemma [7]:

Lemma 4.1 Let u denote the solution to (56) and uh the solution to (57). Then, the following
inequality holds:

∥u− uh∥V ≤ C

α
inf

vh∈Vh

∥u− vh∥V ,

where the constant C and α are respectively the continuity constant and the ellipticity constant of
the bilinear form a(·, ·) defined in (55).

From Céa’s lemma, it results that, to estimate the approximation error ∥u− uh∥V , we have to
choose an element v∗h ∈ Vh for which an estimate of ∥u− v∗h∥V can be computed. A convenient
well-known choice consists in choosing v∗h as an interpolation polynomial of a given degree.

In the sequel of this section, we will consider several choices of v∗h. We will study the consequences
of the refined first-order expansion formula compared to the classical Taylor formula.

4.1 The case of V
(1)
h

In this subsection, we consider the case when the Hilbert space V is the Sobolev space H1(Ω). As
a first choice for v∗h, we assume that the approximated variational space Vh is equal to the finite

dimensional polynomial subspace V
(1)
h ⊂ H1(Ω), defined by:

V
(1)
h =

{
v
(1)
h : Ω → R, v(1)h ∈ C0(Ω̄), v

(1)
h Sk

∈ P1(Sk)
}
, (58)

where P1(Sk) denotes the set of polynomials defined on a given n−simplex Sk whose degree is less
than or equal to 1.

In this case, we have the following error estimate for P1 finite element method:
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Theorem 4.2 Let Ω ⊂ Rn be an open bounded and simply connected domain, and let Th be a
regular finite element mesh of Ω. Assume that the exact solution u to (56) belongs to C2(Ω̄) and

let u
(1)
h ∈ V

(1)
h be the corresponding approximate solution to (57).

Then, we have the following error estimate:∥∥∥u− u
(1)
h

∥∥∥
L2(Ω)

≤ C

α
∥u− πh(u)∥L2(Ω) ≤

C

α
min

(
∥D2(u)∥∞

2
h2,

∥D(u)∥∞
2

h+
∥D2(u)∥∞

4
h2
)√

µ(Ω) .

(59)

Proof : Due to Céa’s lemma , we have

∀vh ∈ V
(1)
h :

∥∥∥u− u
(1)
h

∥∥∥
L2(Ω)

≤ C

α
∥u− vh∥L2(Ω) .

So, we choose as the particular element v∗h, the P1 interpolation function πh(u) defined by (42)

which belongs to V
(1)
h . This allows us to evaluate the L2− norm of the quantity u − πh(u) as

follows:

∥u− πh(u)∥2L2(Ω) =
∑

Sk∈Th

∫
Sk

|u− πh(u)|2dΩ =
∑

Sk∈Th

∫
Sk

∣∣∣u|Sk
− πSk

(u|Sk
)
∣∣∣2 dΩ, (60)

where we used the property that, ∀Sk ∈ Th, (πh u)
∣∣
Sk
= πSk

(u|Sk
). Moreover, due to the interpola-

tion error (54), we also have that∣∣∣u|Sk
− πSk

(u|Sk
)
∣∣∣ ≤ min

(
∥D2(u)∥∞

2
,
∥D(u)∥∞

2
+

∥D2(u)∥∞
4

)
. (61)

As a consequence, inequality (60) becomes:

∥u−πh(u)∥2L2(Ω) ≤
∑

Sk∈Th

min

(
∥D2(u)∥∞

2
diam(Sk)

2,
∥D(u)∥∞

2
diam(Sk)+

∥D2(u)∥∞
4

diam(Sk)
2

)2
µ(Sk) .

(62)
where µ(Sk) denotes the measure of Sk.

Finally, from (62) inequality (60) leads to the following error estimate:∥∥∥u− u
(1)
h

∥∥∥
L2(Ω)

≤ C

α
∥u− πh(u)∥L2(Ω) ≤

C

α
min

(
∥D2(u)∥∞

2
h2,

∥D(u)∥∞
2

h+
∥D2(u)∥∞

4
h2
)√

µ(Ω) .

Also in that case, this error estimate allows us to get a noticeable improvement of the upper bound
of the approximation error (around 50 percents smaller), as soon as the minimum involved in this

inequality is equal to
∥D(u)∥∞

2
h+

∥D2(u)∥∞
4

h2.

4.2 The case of V
(2)
h

We propose now a second example of element v∗h. We choose, as Hilbert space V , the the finite

dimensional polynomial subspace V
(2)
h ⊂ H1(Ω) defined by:

V
(2)
h =

{
v
(2)
h : Ω → R, v(2)h ∈ C0(Ω̄), v

(2)
h Sk

∈ P2(Sk)
}
,
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where P2(Sk) denotes the set of polynomials defined on a given n−simplex Sk whose degree is less
than or equal to 2.

Let S denote a given n−simplex in Rn. We first formulate an interpolation error result for a
polynomial function of degree less than or equal to two, but for a function v which only belongs to
C2(S). For our purpose here, we introduce the corrected interpolation polynomial of πS(v) defined
by:

∀P ∈ T : π∗
S(v)(P ) = πS(v)(P )− 1

2

n+1∑
i=1

λi(P )Dv(Ai).(PAi).

Corollary 4.3 Let S be a given n−simplex in Rn defined by its vertices Ai, (i = 1, n+ 1), and let
v be a function of C2(S). Then, the following interpolation error estimate holds:

∀P ∈ S : |π∗
S(v)(P )− v(P )| ≤ ∥D2(v)∥∞

4
diam(S)2, (63)

Proof : This is an immediate consequence of (51).

Now, if we compare the interpolation error estimate (63) to the classical one (45), this naturally

leads us to derive a new upper bound for the finite elements error in V
(2)
h . We have obtained the

following error result:

Theorem 4.4 Let Ω ⊂ Rn be an open bounded and simply connected domain, and let Th be a
regular finite element mesh of Ω. Assume that the exact solution u to (56) belongs to C2(Ω̄) and

let u
(2)
h ∈ V

(2)
h be the corresponding approximate solution to (57).

Then, we have the following error estimate:∥∥∥u− u
(2)
h

∥∥∥
L2(Ω)

≤ C

α
∥u− π∗

h(u)∥L2(Ω) ≤
C∥D2(u)∥∞

4α
h2
√

µ(Ω) . (64)

Proof : Again, by Céa’s lemma , we have

∀vh ∈ V
(2)
h :

∥∥∥u− u
(2)
h

∥∥∥
L2(Ω)

≤ C

α
∥u− vh∥L2(Ω) , (65)

and we choose for vh the interpolation function π∗
h(u) introduced above. So we evaluate the L2−

norm of the quantity u− π∗
h(u) as we did in Theorem 4.2:

∥u− π∗
h(u)∥2L2(Ω) =

∑
Sk∈Th

∫
Sk

|u− π∗
h(u)|2dΩ =

∑
Sk∈Th

∫
Sk

∣∣∣u|Sk
− π∗

Sk
(u|Sk

)
∣∣∣2 dΩ ,

that becomes, due to the interpolation error (63):

∥u− π∗
h(u)∥2L2(Ω) ≤ ∥D2(u)∥2∞

16

∑
Sk∈Th

diam(Sk)
4 µ(Sk), (66)

≤ ∥D2(u)∥2∞
16

h4 µ(Ω). (67)

Finally, using this last estimate, inequality (65) leads to:∥∥∥u− u
(2)
h

∥∥∥
L2(Ω)

≤ C

α
∥u− πh(u)∥L2(Ω) ≤

C∥D2(u)∥∞
4α

h2
√

µ(Ω).
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Remark 3

1. Using P2 finite element, that is when Vh = V
(2)
h , one can get [17] an error bound smaller than

what we got in (64). However, this result is obtained by assuming an additional regularity to
the exact solution u, namely u ∈ C3(Ω̄). In our case, only the C2(Ω̄)-regularity is requested,
and the classical result can not be applied anymore.

However, even if uh belongs to V
(2)
h , we can also choose here v∗h = πh(u), that is, the interpolate

function of degree less than or equal to one, see (42). By performing the same computations
as those used to derive the above theorem, we obtain that∥∥∥u− u

(2)
h

∥∥∥
L2(Ω)

≤ C

α
∥u− πh(u)∥L2(Ω) ≤

C∥D2(u)∥∞
2α

h2
√
µ(Ω) ,

which corresponds to an upper bound that is two times greater than those derived in (64).

2. A practical consequence of Theorem 4.4 is the possibility of using a coarser mesh for a given

accuracy. Indeed, assume that we want to ensure the approximation error
∥∥∥u− u

(2)
h

∥∥∥
L2(Ω)

to

be less than or equal to a given ϵ > 0, ϵ specifying the expected accuracy. Let h (respectively
h∗) denote the mesh size required to get this accuracy with πh(u) (respectively with π∗

h(u)).
Following (66) and (64), this requires

C∥D2(v)∥∞
2α

h2 ≤ ϵ, and
C∥D2(v)∥∞

4α
h∗2 ≤ ϵ.

Hence, h∗ can be
√
2 times greater than h for a given accuracy. Roughly speaking, it means

that the same accuracy can be reached by the two approaches, but with a size mesh with
approximatively 0.7 times fewer nodes in each direction. For instance in dimension three,
this allows us to use, for a given accuracy, a mesh with about 0.73 ≃ 0.34 which corresponds
to about 2/3 of nodes less than in the standard method.

5 Conclusions and perspectives

In this paper we derived a refined first-order expansion formula in Rn to minimize the unknown
remainder which appears in the classical Taylor’s formula. For a given function, this new formula is
composed by a linear combination of its first derivatives, computed at m+1 equally spaced points.
We showed that the corresponding remainder can be minimized for a suitable choice of the weights
involved in this linear combination. In particular, we proved that the new remainder is 4m smaller
than the one which appears in the classical first Taylor’s formula.

Afterwards, we considered two important applications: the interpolation error and the finite ele-
ments error estimates. In both cases, we showed that we can gain a significant improvement of
the error estimate upper bounds. For example, in the one-dimensional case, when m = 1 (with
two points involved in the refined formula), we showed that the upper bound of these errors is four
times smaller than the usual ones estimated by the classical Taylor formula.

Concerning the finite elements error estimates, for linear second elliptic PDE’s, since the approx-
imation error is bounded by the interpolation error, we proved that, by the help of the corrected
interpolation polynomial introduced in subsection (4.2), we obtained for the interpolation error, a
lower upper bound than the usual one.

Several other applications can also be concerned by this new refined first-order expansion formula.
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For example, the approximation error involved in ODE’s approximation where Taylor’s formula is
basically used to derive numerical schemes.

Homages: The authors want to warmly dedicate this research to pay homage to the memory of
Professors André Avez and Gérard Tronel who largely promote the passion of research and teaching
in mathematics of their students.
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