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ABSTRACT 17 

Additive genetic variance in fitness is a prerequisite for adaptive evolution, as a trait must be 18 

genetically correlated with fitness to evolve. Despite its relevance, additive genetic variance in 19 

fitness has not often been estimated in nature. Here, we investigate additive genetic variance in 20 

lifetime and annual fitness components in common terns (Sterna hirundo). Using 28 years of data 21 

comprising ca. 6000 pedigreed individuals, we find that additive genetic variances in the Zero-22 

inflated and Poisson components of lifetime fitness were effectively zero, but estimated with high 23 

uncertainty. Similarly, additive genetic variances in adult annual reproductive success and survival 24 

did not differ from zero, but were again associated with high uncertainty. Simulations suggested 25 

that we would be able to detect additive genetic variances as low as 0.05 for the Zero-inflated 26 

component of fitness, but not for the Poisson component, for which adequate statistical power 27 

would require c. two more decades (four tern generations) of data collection. As such, our study 28 

suggests heritable variance in common tern fitness to be rather low if not zero, shows how studying 29 

the quantitative genetics of fitness in natural populations remains challenging, and highlights the 30 

importance of maintaining long-term individual-based studies of natural populations.  31 

 32 

Keywords: adaptive potential, additive genetic variance, heritability, lifetime reproductive 33 

success, log-normal fitness 34 
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INTRODUCTION 35 

Fisher’s Fundamental Theorem of Natural Selection postulates that “the rate of increase in fitness 36 

of any organism at any time is equal to its genetic variance in fitness at that time" (Fisher 1930). 37 

As such, additive genetic variance in fitness, being equivalent to the change in mean fitness 38 

resulting from selection, has been considered the single most useful statistic quantifying selection 39 

(Burt 1995). Genetic variation in fitness also is a prerequisite for adaptive evolution, as a trait must 40 

be genetically correlated with fitness to evolve through natural selection (Robertson 1966; Price 41 

1970). Hence, understanding the quantitative genetics of individual variation in fitness is arguably 42 

one of the most important aims in evolutionary ecology (Burt 1995; Ellegren and Sheldon 2008; 43 

Walsh and Blows 2009; Gomulkiewicz and Shaw 2013; Shaw and Shaw 2014; Hendry et al. 2018). 44 

Considerable debate has surrounded the question of whether or not additive genetic variation 45 

in fitness is expected be low (e.g., Jones 1987; Burt 1995; Houle et al. (1996), Merilä and Sheldon 46 

1999; Shaw and Shaw 2014), and particularly, under which conditions (e.g., Cheverud and 47 

Routman 1995; Whitlock et al. 1995). Empirical estimates of additive genetic variance in fitness 48 

from wild populations are relatively scarce (e.g., Gustafsson 1986; Kruuk et al. 2000; Merilä and 49 

Sheldon 2000; McCleery et al. 2004; Coltman et al. 2005; Brommer et al. 2007; Foerster et al. 50 

2007; Teplitsky et al. 2009; Wheelwright et al. 2014; McFarlane et al. 2014, 2015; Wolak et al. 51 

2018; de Villemereuil et al. 2019), and have so far not shed much light on this debate, since 52 

estimates vary substantially, with many estimates close to zero, and few large estimates (review 53 

by Hendry et al. 2018). Overall, Hendry and colleagues (2018) tentatively concluded that the 54 

evolvability of fitness (measured as the square of the coefficient of additive genetic variance in 55 

fitness) is usually less than 0.2. 56 
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Data constraints might partially explain the paucity of studies testing for the heritability of 57 

fitness in the wild and the heterogeneity among estimates of additive genetic variance, although 58 

steadily growing datasets collected from long-term study populations gradually alleviate the 59 

problem (Clutton-Brock and Sheldon 2010). This increased data availability was recently 60 

accompanied by the development of (i) statistical tools designed to deal with the non-Gaussian 61 

distributions that often characterize fitness data (de Villemereuil et al. 2016; de Villemereuil 2018), 62 

as well as (ii) theoretical frameworks that facilitate the evolutionary inference of quantitative 63 

genetic parameters based on these data distributions (Morrissey and Bonnet 2019). To date, only 64 

four studies have modelled the quantitative genetics of fitness in wild populations assuming a non-65 

Gaussian distribution (McFarlane et al. 2014, 2015; Wolak et al. 2018; de Villemereuil et al. 2019). 66 

Additive genetic variance in fitness was estimated to be very small in North American red squirrels 67 

(Tamiasciurus hudsonicus) (VA ~ 0, 95% = 5.2 x 10-07 - 1.1, McFarlane et al. 2014, see also 68 

McFarlane et al. 2015). In birds, de Villemereuil et al. (2019) showed that hihis (Notiomystis 69 

cincta) in New Zealand had negligible additive genetic variance in lifetime fitness (VA Zero-Inflated 70 

component ~ 0, 95% CI = 1.4 x 10-11 - 0.0038 and VA Poisson component =0.0078, 95% CI = 2.3 x 10-10 - 71 

5.7), while Wolak et al. (2018) found that the song sparrows (Melospiza melodia) of Mandarte 72 

island in Canada harbored substantial additive genetic variance in female and male fitness (VA 73 

female = 2.01, 95% CI = 0.21 - 3.93; VA male = 1.72, 95% CI =0.27 - 3.39). 74 

Here, we present phenotypic and pedigree data obtained from a 28-year individual-based study 75 

on common terns (Sterna hirundo). The common tern is a Nearctic and Palearctic colonially 76 

breeding, serially monogamous and migratory seabird. The study colony is located in the north of 77 

Germany; common terns from this colony spend their winters in western Africa and return to the 78 

breeding colony in early spring to breed or prospect potential breeding locations (Becker and 79 
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Ludwigs 2004). Common terns breed annually, both parents incubate and feed the chicks, and 80 

extra-pair paternity is rare (González-Solís et al. 2001; Becker and Ludwigs 2004). Applying a 81 

series of “animal models” to data from almost 6000 pedigreed individuals across five generations, 82 

we investigate additive genetic variance for lifetime fitness (assessed as the total number of 83 

fledglings produced by a locally-born fledgling), and two of its underlying annual components: 84 

annual reproductive success and adult annual survival.  85 

 86 

METHODS 87 

Study System 88 

Fitness and pedigree data were collected between 1992 and 2019 as part of a long-term study of a 89 

common tern population located at the Banter See on the German North Sea coast (53°36´N, 90 

08°06´E). The Banter See colony consists of six concrete islands, each of which is surrounded by 91 

a 60-cm wall. Walls are equipped with 44 elevated platforms, each containing an antenna which 92 

reads transponder codes. The individual-based study at the Banter See was initiated in 1992, when 93 

101 adult birds were caught and marked with individually-numbered subcutaneously-injected 94 

transponders. Since 1992, all locally hatched birds are similarly marked with a transponder shortly 95 

before fledging and the presence and reproductive performance of marked individuals is monitored 96 

following a standard protocol (Becker and Wendeln 1997). As part of this protocol, the colony is 97 

checked for new clutches every 2–3 days throughout the breeding season (Zhang et al. 2015). 98 

Parents are identified using portable antennae placed around each nest for 1–2 days during 99 

incubation, which is shared by both partners. Pairs can rear up to three chicks per brood (mean 100 

successful brood size 0.41 ± 0.65 SD chicks), and can produce replacement clutches after loss of 101 

eggs or chicks. Second clutches are extremely rare (Becker and Zhang 2011).  102 
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 103 

Fitness Data 104 

Our initial data selection included individuals that fledged between 1992 and 2016, because 105 

previous work showed that 97% of fledglings, if they returned, did so within the first 3 years 106 

(Vedder and Bouwhuis 2018). Since there is little standardized monitoring in areas around the 107 

focal colony, we cannot directly quantify juvenile dispersal. However, we do know that there is (i) 108 

a relatively high local return rate (26% of chicks fledged between 1992 and 2016 returned to the 109 

colony, of which 14% recruited), and (ii) only rare reporting of external recruits (between 1992 110 

and 2016, 32 fledglings from the Banter See were observed a total of 105 times in other European 111 

breeding colonies). In addition, although we cannot directly observe an individual’s death, we can 112 

reliably assume it, because adult breeders at the Banter See are highly site-faithful, evidenced by 113 

a resighting probability of breeding individuals close to one (Szostek and Becker 2012), and 96% 114 

of breeders not skipping recording by the antenna system for two or more consecutive years after 115 

first reproduction (Bouwhuis et al. 2015; Zhang et al. 2015). Based on this knowledge, we removed 116 

all birds that were observed in 2018 and/or 2019 and were younger than 11 years old, because (i) 117 

they are known to not be, or cannot yet be assumed to be, dead, and (ii) lifetime fitness of 118 

individuals older than 10 years and those dead showed a high correlation (r > 0.8) in our dataset. 119 

Hence, we included birds that have completed their life histories (n = 5836), as well as birds that 120 

were still alive but older than 10 years (n = 163) to avoid introducing a cohort truncation bias by 121 

non-randomly removing longer-lived birds (Hadfield 2008; Morrissey et al. 2012). To control for 122 

any potential confounding effect, we modelled whether an individual was considered dead or alive 123 

as a fixed effect (see below). 124 



7 
 

We quantified lifetime fitness as the number of local fledglings that a locally-hatched 125 

fledgling produced during its lifetime, for a total of 5999 locally-hatched fledglings (Fig. 1A) and 126 

decomposed it into two major components: juvenile survival and adult lifetime reproductive 127 

success. Juvenile survival captures survival from fledgling to age 1, inferred from whether a 128 

fledgling became a local recruit in later years, whereas adult lifetime reproductive success captures 129 

adult survival and reproductive success from age 1 onwards. These two fitness components 130 

correspond to the two mechanisms captured by the Zero-inflated Poisson distribution of lifetime 131 

fitness. We further decomposed adult lifetime reproductive success into its two components: 132 

annual reproductive success (ARS) and adult annual survival (AAS). ARS was measured as the 133 

number of fledglings that an individual produced each year between age 1 and last registration, 134 

assigning zeroes for years of skipped reproduction or registration, and for years prior to recruitment 135 

(Fig. 1B). Similarly, AAS was adult survival (1/0) to the following breeding season, measured 136 

every year from age 1 to last registration (inferring missing direct observations prior to recruitment 137 

from later observations). In total, our data comprised 836 individuals with 6873 observations for 138 

ARS and AAS. 139 

 140 

Pedigree 141 

The pedigree was constructed by assigning all fledged offspring to their social parents, then pruned 142 

to remove individuals who were either not phenotyped or not ancestors to phenotyped individuals. 143 

For the purpose of this study, the pruned pedigree comprised 6290 records. The maximum depth 144 

was five generations, the number of paternities and maternities 2417 and 2520, respectively. The 145 

numbers of full, paternal and maternal siblingships were 2594, 10229 and 9807, respectively (see 146 

Supplementary Material for further information on the population relatedness structure). This 147 
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social pedigree is a good approximation of the genetic pedigree, because common terns exhibit 148 

very low levels of extra-pair paternity (González-Solís et al. 2001). 149 

 150 

Quantitative Genetic Models 151 

We applied an animal model approach that combines the phenotypic information on individual 152 

fitness components with information from the social pedigree (Kruuk 2004). As such, we fitted a 153 

series of univariate animal models where fitness, or one of its components, was the response 154 

variable. 155 

To model lifetime fitness, we fitted a univariate animal model with a Zero-Inflated Poisson 156 

error distribution. We fitted a Zero-Inflated Poisson distribution to better capture the nature of our 157 

metric of lifetime fitness. Zero-inflation is often the result of a process that determines whether an 158 

event occurs or not, which differs from the Poisson process that determines how many times an 159 

event occurs. In this case, a Zero-Inflated Poisson model can explicitly model the two different 160 

processes, as opposed to a Poisson model that assumes only a single process to be generating the 161 

data (Korner-Nievergelt et al. 2015). We fitted random intercepts for individual identity linked to 162 

the pairwise relatedness matrix and for hatch-year (to account for cohort effects; e.g., Vedder and 163 

Bouwhuis 2018). Because we modeled lifetime fitness with a Zero-Inflated over-dispersed Poisson 164 

distribution, we could estimate the covariance between the Zero-inflated and Poisson components 165 

for each variance component. However, a model including additive genetic and hatch-year 166 

covariances between the Zero-Inflated and Poisson components of the trait did not provide a better 167 

fit to the data, hence we do not model such covariances. The main models presented also did not 168 

control for shared environmental effects between siblings (maternal, paternal, or brood effects), 169 

because we did not have information on parental identity for all individuals (maternal identities = 170 
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2382 and paternal identities = 2481; 1271 individuals have both maternal and paternal identities 171 

known, see Supplementary Material for detailed information on the population relatedness 172 

structure), and because most fledglings came from broods where only a single individual had 173 

successfully fledged (3027 broods fledged one chick, 1145 broods two, 226 broods 3, while 4 174 

individuals could not be assigned to a brood). However, we did explore the potential effects of a 175 

shared environment (due to maternal, paternal effects, or brood effects) by running two additional 176 

animal models which included one or two shared environmental effects as random effect(s). We 177 

found that there was no major influence on our estimate of additive genetic variance in lifetime 178 

fitness components, as expected given that the model presented in the main text returned a very 179 

low (close to or zero) estimate of additive genetic variance (see Suppl. Material, Tables S1 and 180 

S2). 181 

As fixed effects, we modelled the trait intercept and whether the individual was alive or 182 

dead at the end of the study period (categorical variable with two levels). Additionally, we 183 

performed data simulations to investigate (i) whether we can effectively detect small, but 184 

substantial additive genetic variances in fitness (sensu de Villemereuil et al. 2019) given our data 185 

and pedigree structure, and (ii) the improvement of our statistical power to detect small additive 186 

genetic variances in both components of lifetime fitness when the dataset and pedigree would 187 

increase in size and depth (Supplementary Material, Figs. S1-S5). 188 

To model ARS, we assumed a Poisson error distribution with a log link function and 189 

checked whether the trait was underdispersed, which was not the case. We fitted random intercepts 190 

for individual identity linked to the pairwise relatedness matrix, individual identity not linked to 191 

the pedigree (to account for permanent environmental effects) and year of observation (to account 192 

for temporal variation across years). As fixed effects, we modelled the trait intercept and age 193 
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(continuous trait ranging from 1 to 23 years), as fledgling production is known to linearly increase 194 

with age (Zhang et al. 2015) (but see Supplementary Materials, Table S3, for results of the same 195 

animal model without age effects). 196 

To model AAS, we assumed a binary error distribution with a logit link function and fixed 197 

the residual variance to one. We fitted random intercepts for individual identity linked to the 198 

pairwise relatedness matrix, individual identity not linked to the pedigree (to account for 199 

permanent environmental effects) and year of observation (to account for temporal variation across 200 

years). As fixed effects, we modelled the trait intercept and age (continuous trait ranging from 1 201 

to 23 years), as AAS is known to linearly decrease with age (Zhang et al. 2015; Vedder et al. 2021) 202 

(but see Supplementary Materials, Table S3, for results of the same animal model without age 203 

effects).  204 

All quantitative genetic models were fitted using a Bayesian framework implemented in 205 

the statistical software R (v. 3.6.1, R Core Team 2019) using the R-packages MCMCglmm 206 

(Hadfield 2010) and QGglmm (de Villemereuil et al. 2016). Posterior distributions were plotted 207 

using the R-package wolakR (github.com/matthewwolak/wolakR). Narrow-sense heritabilities (h2) 208 

were conditional on the variance explained by fixed effects and were estimated as the proportion 209 

of the total phenotypic variance explained by the additive genetic variance. Evolvabilities (IA) were 210 

estimated by dividing the additive genetic variance by the squared population mean (Houle 1992; 211 

Hansen et al. 2011).  212 

For all models we used parameter-expanded priors (Hadfield 2010). We fitted different 213 

priors for each fitness component (see Supplementary Material). The number of iterations and 214 

thinning intervals were chosen for each model so as to ensure that the minimum MCMC effective 215 

sample size for all parameters was 1000. Burn-in was set to a minimum of 5000 iterations. The 216 
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retained effective sample sizes yielded absolute autocorrelation values <0.1 and satisfied 217 

convergence criteria based on the Heidelberger and Welch convergence diagnostic (Heidelberger 218 

and Welch 1981). We drew inferences from the posterior mode and 95% credible intervals (95% 219 

CI). To facilitate evolutionary inference (Bonnet et al. 2019; Morrissey and Bonnet 2019), we 220 

back-transformed the latent-scale posterior distributions of the quantitative genetic parameters to 221 

the data-scale (de Villemereuil et al. 2016).  222 

 223 

RESULTS 224 

Quantitative Genetics of Lifetime Fitness Components 225 

Among the 5999 common tern chicks that fledged between 1992 and 2016, lifetime fitness ranged 226 

between 0 and 29 fledglings (Fig. 1A). 5231 (87.19%) fledglings obtained zero fitness, such that 227 

the distribution of fitness was strongly zero inflated (Fig. 1A).  228 

Raw mean fitness was 0.72 ± 2.52 SD fledglings. Although this would indicate the 229 

population to be in overall decline (a mean lifetime breeding success of two fledglings would be 230 

required for the population to be stable), population size actually varied dramatically across years 231 

and did not decline (Fig. S6), partially because there was a substantial influx of non-locally hatched 232 

breeders that immigrated into the population (ca. 74% ± 1 of breeders was estimated to be 233 

immigrant in any given year between 1992 and 2020). Since we do not capture or mark immigrants, 234 

we can quantify the proportion of immigrants present in our colony in a given year but we cannot 235 

include them in the pedigree or our individual-based models. 236 

Simulations showed that, given our data structure and pedigree, we would not be able to 237 

detect what might be considered a small, but substantial signal for the Zero-inflated component of 238 

lifetime fitness: we generated a Zero-inflated component of fitness with an additive genetic 239 

variance of 0.01, and found that the average posterior mode was similar to the simulated value of 240 
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VA (average = 0.012 across the 100 replicates, Fig. S1), but the lower 95% CI limit was on average 241 

zero across replicates (95% CI = 0 – 0.023 and lower 95% CI exceeded a value of 0.0001 only 72 242 

times across the 100 replicates, Fig. S1). When we simulated larger values of additive genetic 243 

variance (i.e., VA = 0.05 or 0.1), our simulations showed that we would be able to detect those 244 

(average = 0.053 and 95% CI = 0.028 – 0.083 across the 100 replicates for a simulated value of 245 

0.05; and average = 0.102 and 95% CI = 0.064 – 0.145 for a simulated value of 0.1). Lower 95% 246 

CI always exceeded a value of 0.0001 in both simulated cases (Figs. S3 and S4).  247 

Our quantitative genetic analysis of empirical data suggested that the additive genetic 248 

variance in the Zero-Inflated component of lifetime fitness was not different from zero, as the 249 

posterior mode of the additive genetic variance was very close to, and the lower 95% CI limit 250 

leaning towards, zero (Table 1, Fig. 2A-C). Taken together, our combination of analyses of 251 

empirical and simulated data therefore suggested there to be low (lower than 0.05) to null additive 252 

genetic variance in the Zero-inflated component of lifetime fitness, but that we lack power to 253 

determine with higher precision whether such variance is effectively zero, or non-zero but very 254 

small. 255 

The results for the Poisson component of lifetime fitness are less straightforward. 256 

Simulations showed that, given our data structure and pedigree, we would not be able to detect 257 

either small, but substantial or larger signals for the Poisson component of fitness: we generated a 258 

Poisson-component of fitness with a series of evolvability values (IA = 0.00, 0.01, 0.05 and 0.1), 259 

and found that the lower 95% CI limit was on average zero in all cases (i.e., lower 95% CI did not 260 

exceed a value of 0.0001 in the vast majority of the 100 replicates, Fig. S1-4). Our analysis of the 261 

empirical data suggested that the additive genetic variance of the Poisson component did not differ 262 

from zero, given that the associated lower 95% CI limits of VA, h2 and IA converged towards zero 263 
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(Table 1, Fig. 2D-F). Altogether, the combination of empirical analyses and data simulations 264 

showed that we lacked power to determine where the additive genetic variance in the Poisson 265 

component of lifetime fitness falls within a rather large range of values (between “larger than 0.1” 266 

and zero). 267 

Finally, simulation of a larger dataset with a deeper pedigree structure indicated that 268 

increasing our study to include four more generations of pedigreed individuals would lead to an 269 

important increase in statistical power, such that we would be able to detect additive genetic 270 

variances of at least 0.05 in both components of lifetime fitness. Estimated values of additive 271 

genetic variance were of similar magnitude to that of the simulated value (average posterior mode 272 

of 0.05 across the 100 replicates for both components of lifetime fitness), with non-zero lower 273 

95% CI in both cases (95% CI = 0.031- 0.064 for Zero-Inflated component, and 95% CI = 0.009 -274 

0.197 for Poisson component, Fig. S5). 275 

 276 

Quantitative Genetics of Annual Fitness Components 277 

We investigated the Annual Reproductive Success and Adult Annual Survival of 836 fledglings 278 

that survived to adulthood and bred in our population (Table 2). Raw mean annual reproductive 279 

success was 0.70 ± 0.81 SD with a maximum of three fledglings (Fig. 1B). The posterior 280 

distribution of VA for ARS converged toward zero (Table 2, Fig. 4A-C), suggesting that VA is not 281 

different from zero. Raw mean adult annual survival probability was 0.85 ± 0.36 SD. The posterior 282 

modes of all quantitative genetic parameters for AAS were very close to zero (Table 2, Fig. 3A-283 

C), with the lower 95% CI limit of all parameter estimates converging towards zero, again 284 

suggesting that VA in AAS is not different from zero. 285 

 286 
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DISCUSSION 287 

The most direct measure of the adaptive potential of a population is its standing additive genetic 288 

variance in fitness (Fisher 1930). Here, we estimated additive genetic variances in lifetime and 289 

annual fitness components in a wild colony of common terns. On the one hand, our empirical 290 

findings indicated no evidence for substantial (or different from zero) additive genetic variance in 291 

lifetime fitness components, adult annual survival or annual reproductive success. On the other 292 

hand, data simulations demonstrated an overall lack of statistical power to detect small, but 293 

substantial signals (i.e., VA = 0.01), although statistical power differed between the two 294 

components of lifetime fitness: we would have power to detect slightly larger signals (additive 295 

genetic variances of, at least, 0.05) for the Zero-inflated, but not Poisson, component of fitness. As 296 

such, our work demonstrated that estimating additive genetic variance in fitness is very difficult in 297 

wild populations, partly due to the expected low values of genetic variation in fitness in locally 298 

adapted populations, but also to the challenges associated with collecting sufficient phenotypic 299 

and pedigreed data. 300 

 301 

Quantitative Genetics of Lifetime and Annual Fitness Components 302 

There have been around 30 studies testing for additive genetic variance in fitness in the wild, with, 303 

to our knowledge, only four using non-Gaussian animal models (McFarlane et al. 2014, 2015; 304 

Wolak et al. 2018; de Villemereuil et al. 2019). Our estimate of the additive genetic variance for 305 

the Zero-inflated component of lifetime fitness on the data-scale was effectively zero, with a zero 306 

lower 95% CI limit (posterior mode VA data-scale = 0.004, 95% CI = 0 - 0.008, Table 1), similarly to 307 

results for another bird species, the hihi (posterior mode VA data-scale ~ 0, 95% CI = 1.4 x 10-11 - 308 

0.0038, de Villemereuil et al. 2019). For the Poisson component, de Villemereuil et al. (2019) 309 
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found a posterior mode of 0.0078 (95% CI = 2.3 x 10-10 - 5.7). Our posterior mode estimate was 310 

overall larger (posterior mode VA data-scale = 2.29, Table 1), but associated with high uncertainty 311 

(95% CI = 0.002 - 12.3), such that the estimates from both studies remain qualitatively similar. 312 

Given that our estimates of additive genetic variance in fitness showed very low or null values, 313 

our study implies that the adaptive potential of this natural population of common terns will be 314 

extremely limited, although the actual potential remains partially unknown as our estimates were 315 

associated with high uncertainty. Moreover, it is important to note that we could only investigate 316 

the evolutionary potential of local recruits, as we did not have phenotypic and pedigree data to 317 

investigate the evolutionary potential of the total colony (i.e., local recruits and immigrants).  318 

Additive genetic variance in lifetime fitness can theoretically be decomposed into the 319 

additive genetic variances in its underlying components. The two primary components of our 320 

measure of lifetime fitness are juvenile survival and adult lifetime reproductive success. Our zero-321 

inflation in lifetime fitness is mainly due to low juvenile survival (i.e., 74% of fledglings did not 322 

locally return to the colony), while the Poisson process generating the observed fitness distribution 323 

is mostly capturing adult lifetime reproductive success. If we compare our nominally zero additive 324 

genetic variance in the Zero-inflated component of lifetime fitness (Table 1) with estimates from 325 

other studies that tested for additive genetic variance in juvenile survival, we observe some 326 

differences. For instance, the study of Wolak et al. (2018) on the song sparrow population of 327 

Mandarte Island reported evidence for non-zero VA for juvenile survival.  328 

Adult lifetime reproductive success is the sum of annual reproductive events across the life 329 

of an individual, and hence, can be decomposed into annual reproductive success and adult annual 330 

survival. Our quantitative genetic analyses of these two annual fitness components revealed a lack 331 

of substantial additive genetic variance for both (Table 2). This finding again contrasts with one 332 
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from Mandarte’s song sparrows, where there was evidence for moderate levels of additive genetic 333 

variance in ARS (especially for males) and close to zero in AAS, indicating that heritable ARS 334 

was the primary component of heritable adult lifetime reproductive success in that population 335 

(Wolak et al. 2018).  336 

 337 

Limitations of studying quantitative genetics of fitness in the wild 338 

Estimating quantitative genetic parameters with precision is a data-hungry endeavor. Researchers 339 

therefore are faced with the challenge of collecting hard-to-quantify lifetime fitness data from an 340 

unbiased sample of the population (i.e., avoiding the “missing fraction” bias) that comprises a 341 

sufficiently large number of individuals of known relatedness (Burt 1995; Merilä and Sheldon 342 

1999; Hendry et al. 2018). In addition, even when a large pedigree is available, additive genetic 343 

variance in fitness is often expected to be low, for instance, when populations are locally adapted, 344 

such that the power to detect small, close to zero, additive genetic variation in fitness may be low 345 

as well. As pointed out by Burt (1995): “it is very difficult to get an estimate that is statistically 346 

distinguishable from zero, and the sample sizes required to do so might easily lead to despair”. 347 

Our data simulations reveal that we would need at least four more generations of terns to 348 

statistically differentiate between an underpowered and a true zero estimate of additive genetic 349 

variance for the Poisson component of lifetime fitness. Increasing our pedigree by four more 350 

generations would require roughly two more decades of data collection, i.e. a non-negligible 351 

amount of funding and logistic effort. This extrapolation should, however, be taken with care, as 352 

it is challenging to predict the population dynamics for the next twenty years, and/or whether the 353 

relatedness structure of the population will increase or decrease as the rates of emigration and 354 

immigration may change with population growth (e.g., Szostek and Becker 2014). In light of the 355 
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multiple constraints posed by data requirements and expected low values, negative results with 356 

respect to additive genetic variation in fitness should be discussed with caution. Nevertheless, 357 

simulations aimed at determining the statistical power of a given dataset and pedigree structure 358 

will help to distinguish a true negative result from a zero parameter estimated with high uncertainty 359 

(e.g., de Villemereuil et al. 2019). 360 

In addition to the difficulty of estimating the heritability of fitness with precision, our 361 

knowledge of the genetic architecture of fitness components is limited. Extending our genomic 362 

understanding of fitness variation in wild populations will bring important insights into how 363 

genetic variation underpinning fitness may be maintained, and overall will help to better predict 364 

the evolutionary dynamics of natural populations (Merilä and Sheldon 1999; Mackay 2001; Huang 365 

and Mackay 2016). Despite the clear benefits, genomic research based on quantitative trait loci 366 

(QTL) approaches or genome-wide associations in natural populations was a challenge (Slate 367 

2004; Slate et al. 2010; Jensen et al. 2014), partially due to the low power to detect QTL, for 368 

instance because studies suffered from low-density linkage maps and/or relatively few genotyped 369 

individuals. Nowadays, the use of powerful next-generation genomic techniques, however, allows 370 

to increase the power in such studies. 371 

A better understanding of the genetic architecture of fitness will also provide added 372 

benefits, as, for instance, it would allow a deeper understanding of the genetic underpinnings of 373 

complex traits such as fitness, which might be subjected to different pleiotropic effects (Mackay 374 

2001). For instance, antagonistic pleiotropy is often assumed to underlie the negative phenotypic 375 

correlation between the two main components of lifetime fitness: survival and reproductive 376 

success (also observed in the terns: Vedder et al., 2021). 377 

 378 
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Conclusion 379 

Our quantitative genetic study of fitness in a wild population of common terns reported low to zero 380 

estimates of additive genetic variance in lifetime and annual fitness components, which were at 381 

the same time associated with high uncertainty. Those analyses, however, were overshadowed by 382 

a lack of statistical power to detect additive genetic variation in fitness more accurately and 383 

precisely. The continuation of long-term individual-based studies should be safeguarded (also see 384 

Clutton-Brock and Sheldon 2010), such that the maturation of long-term studies will offer 385 

improved opportunities for testing genetic variation in natural populations, which, thanks to the 386 

recent development of appropriate statistical and theoretical frameworks (de Villemereuil et al. 387 

2016; Bonnet et al. 2019; Morrissey and Bonnet 2019), will help to improve our understanding of 388 

the genetics of fitness in the wild. Ultimately, a robust quantification of the standing additive 389 

genetic variation in fitness will inform us about the rate of adaptation of populations, and allow a 390 

better understanding of their viability in the face of the deleterious environmental effects resulting 391 

from current climate and global changes.  392 
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FIGURE LEGENDS 540 

Figure 1. Phenotypic distributions of A) lifetime fitness measured as the total number of fledglings 541 

a locally-hatched fledgling produced in its lifetime (with the inset showing the distribution for non-542 

zero fitness in more detail), and B) annual reproductive success, measured as the number of 543 

fledglings an adult breeder produced in a year. 544 
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Figure 2. Posterior MCMC samples (bars), kernel density estimation (solid black line), posterior 545 

mean (red dotted line), 95% Credible Intervals (black dashed lines) and prior (solid blue line) for 546 

the A) additive genetic variance (VA), B) heritability (h2) and C) evolvability (IA) of the Zero–547 

Inflated component of lifetime fitness, and the D) additive genetic variance (VA), E) heritability 548 

(h2) and F) evolvability (IA) of the Poisson component of lifetime fitness. Distributions are reported 549 

on the data scale. 550 

 

 

 

 

 

 



27 
 

Figure 3. Posterior MCMC samples (bars), kernel density estimation (solid black line), posterior 551 

mean (red dotted line), 95% Credible Intervals (black dashed lines) and prior (solid blue line) for 552 

the A) additive genetic variance (VA), B) heritability (h2) and C) evolvability (IA) of adult annual 553 

survival (AAS). Distributions are reported on the data scale. 554 
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Figure 4. Posterior MCMC samples (bars), kernel density estimation (solid black line), posterior 555 

mean (red dotted line), 95% Credible Intervals (black dashed lines) and prior (solid blue line) for 556 

the A) additive genetic variance (VA), B) heritability (h2) and C) evolvability (IA) of annual 557 

reproductive success (ARS). Distributions are reported on the data scale. 558 

 559 

560 
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TABLES 561 

Table 1. Posterior modes and 95% Credible Intervals (in brackets) for data-scale variance estimates from quantitative genetic analyses 562 

of lifetime fitness components. 563 

Fitness 

component 
Nindividuals Pop. Mean VP VA h2 IA 

Zero-inflated  

5999 

0.854 

(0.777,0.908) 

0.119 

(0.083,0.173) 

0.004 

(0,0.008) 

0.031 

(0.003,0.059) 

0.006 

 (0,0.012) 

Poisson 
5.71 

(3.86,10.2) 

17.2 

(20.4,549) 

2.29 

(0.002,12.3) 

0.023 

(0,0.126) 

0.088  

(0,0.242) 

 

The results are shown for the Zero-inflated and Poisson components of the model. All statistics (Pop. Mean, population mean; VP, 564 

phenotypic variance; VA, additive genetic variance; h2, heritability; IA, evolvability) presented in the table are reported on the data-scale. 565 
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Table 2. Posterior modes and 95% Credible Intervals (in brackets) for data-scale variance estimates from quantitative genetic analyses 566 

of annual reproductive success (ARS) and adult annual survival (AAS). 567 

Fitness 

component 
Nobservations Nindividuals Pop. Mean VP VA h2 IA 

ASS 

6873 836 

0.940 

(0.855,0.972) 

0.056  

(0.029,0.126) 

0.000         

(0,0.001) 

0.0001        

(0,0.012) 

0.000        

(0,0.001) 

ARS 
0.142 

(0.108,0.236) 

0.157  

(0.115,0.365) 

0.000 

(0,0.003) 

0.000  

(0,0.012) 

0.000 

(0,0.094) 

 

All statistics (Pop. Mean, population mean; VP, phenotypic variance; VA, additive genetic variance; h2, heritability; IA, evolvability) 568 

presented in the table are reported on the data scale. 569 


