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Abstract. The Smaller Alignment Index (SALI) is a very useful and efficient indicator that can distinguish rap-
idly and with certainty between ordered and chaotic motion in Hamiltonian systems. This is based on the differ-
ent behavior of the SALI in the two cases, as it fluctuates around non-zero values for ordered orbits and con-
verges exponentially to zero for chaotic orbits. In this paper we present a detailed numerical study, comparing 
the advantages of the SALI to those of the Maximal Lyapunov Exponent (MLE), which is the traditional indica-
tor of chaos detection in dynamical systems. Exploiting these advantages, we demonstrate how the SALI can be 
used to identify even tiny regions of order and chaos in Hamiltonian systems of 2 and 3 degrees of freedom. 
 
 
1 INTRODUCTION 

The distinction between ordered and chaotic motion in dynamical systems is fundamental in many areas 
of applied sciences. This distinction is particularly difficult in systems with many degrees of freedom (dof), basi-
cally because it is not feasible to visualize their phase space. So, we need fast and accurate tools to give us in-
formation about the chaotic or ordered character of orbits, especially for conservative systems. 

Many methods have been developed over the years trying to give an answer to this problem. The in-
spection of the successive intersections of an orbit with a Poincaré surface of section (PSS)[1] has been used 
mainly for 2 dimensional (2d) maps and 2 dof Hamiltonian systems. One of the most common methods of chaos 
detection is the computation of the maximal Lyapunov Characteristic Number (LCN)[2,3], which can be applied 
for systems with many degrees of freedom. Another very efficient method is the “Frequency Map Analysis” de-
veloped by Laskar[4,5]. In recent years new methods have been introduced such as the study of spectra of “Short 
Time Lyapunov Characteristic Numbers”[6,7] or “Stretching Numbers”[8,9] and the “Spectral Distance” of such 
spectra[10], as well as the study of spectra of helicity and twist angles[11-13]. In addition, Froeschlé C., et al.[14] in-
troduced the Fast Lyapunov Indicator (FLI), while Vozikis et al.[15] proposed a method based on the frequency 
analysis of “Stretching Numbers”. 

Recently, a new, fast and easy to compute indicator of the chaotic or ordered nature of orbits, has been 
introduced[16] and was applied successfully in different dynamical systems[16-23], the so-called “Smaller Align-
ment Index (SALI)”. In the present paper, we first recall the definition of the Smaller Alignment Index and then 
we show its effectiveness in distinguishing between ordered and chaotic motion, by applying it to Hamiltonian 
systems of 2 and 3 dof. 

 
2 DEFINITION OF THE SMALLER ALIGNMENT INDEX (SALI) 

Let us consider the n -dimensional phase space of a conservative dynamical system, which could be a 
symplectic map or a Hamiltonian flow. We consider also an orbit in that space with initial condition 

1 2 nP(0)=(x (0),x (0), ,x (0))… and a deviation vector 1 2 nξ(0)=(dx (0),dx (0), ,dx (0))… from the initial point P(0) . In 
order to compute the SALI for a given orbit one has to follow the time evolution of the orbit with initial condi-
tion P(0)  itself and also of two deviation vectors 1 2( ),  ( )t tξ ξ which initially point in two different directions. The 
evolution of these deviation vectors is given by the variational equations for a flow and by the tangent map for a 



Chris G. Antonopoulos, Athanasios E. Manos and Charalampos D. Skokos 
 

discrete-time system. At every time step the two deviation vectors 1( )tξ and 2 ( )tξ are normalized and the SALI is 
then computed as 
 

 1 2 1 2

1 2 1 2

( ) ( ) ( ) ( )
( ) min ,

( ) ( ) ( ) ( )
t t t t

SALI t
t t t t

ξ ξ ξ ξ
ξ ξ ξ ξ

⎧ ⎫⎪ ⎪= + −⎨ ⎬
⎪ ⎪⎩ ⎭

 (1) 

 
The properties of the time evolution of the SALI clearly distinguish between ordered and chaotic mo-

tion as follows: In the case of Hamiltonian flows or n − dimensional symplectic maps with 2n ≥ , the SALI fluc-
tuates around a non-zero value for ordered orbits, while it tends to zero for chaotic orbits[16-20]. In the case of 2d 
maps the SALI tends to zero both for ordered and chaotic orbits, following however completely different time 
rates[16], which again allows us to distinguish between the two cases. 

In 2 and 3 dof Hamiltonian systems the distinction between ordered and chaotic motion is easy because 
the ordered motion occurs on a 2d or 4d torus respectively on which any initial deviation vector becomes almost 
tangent after a short transient period. In general, two different initial deviation vectors become tangent to differ-
ent directions on the torus, producing different sequences of vectors, so that SALI does not tend to zero but fluc-
tuates around positive values[19]. On the other hand, for chaotic orbits, any two initially different deviation vec-
tors tend to coincide in the direction defined by the nearby unstable manifold and hence either coincides with 
each other, or become opposite. This means that the SALI tends to zero when the orbit is chaotic and to a non-
zero value when the orbit is ordered. Thus, the completely different behavior of the SALI helps us to distinguish 
between ordered and chaotic motion in Hamiltonian systems with 2 and 3 dof and in general in dynamical sys-
tems of higher dimensionality. 

 
3 APPLICATION OF THE SMALLER ALIGNMENT INDEX 

3.1 The Hénon-Heiles 2 dof Hamiltonian system 
In order to illustrate the effectiveness of the SALI method in the determination of the dynamical charac-

ter of orbits (e.g. chaotic or ordered), we consider the 2 dof Hénon-Heiles Hamiltonian: 
 

  2 2 2 2 2 31 1 1( , , , ) ( ) ( )
2 2 3x y x yH x y p p p p x y x y y E= + + + + − ≡  (2) 

 
where 1 8E =  is the constant total energy of the system, x , y  are the generalized coordinates and xp , yp are 
the generalized conjugate momenta[25]. 

For the system (2) we consider three characteristic individual orbits and compute for each one the evo-
lution of the SALI. The first orbit with initial condition ( , , , ) (0,0.1,0.490578,0)x yx y p p =  we call it R, the sec-
ond orbit with initial condition ( , , , ) (0, 0.0135,0.499816,0)x yx y p p = −  we call it S and finally the orbit with 
initial condition (0, 0.015,0.499773,0)−  we call it C. We also use 1(0) (1,0,0,0)ξ =  and 2 (0) (0,0,1,0)ξ = as ini-
tial deviation vectors. 

As we can see from figure 1(a) the SALI of the orbit R (solid line) fluctuates around SALI 1.25≈  re-
maining almost constant after 510  time steps indicating the ordered character of the orbit, while the SALI of 
orbit C (dash dot line) falls abruptly reaching the limit of the accuracy of the computer precision ( 1610− ) after 
about 1000  time steps. This implies that the two deviation vectors are represented by the same or opposite sign 
numbers in the computer and thus they have been aligned with the direction of the most unstable nearby mani-
fold. On the other hand, the SALI of orbit S (dot line) shows an intermediate behaviour. This orbit is called 
“sticky” as it remains at the borders of an island of stability for a long time but eventually enters the chaotic sea. 
Thus, the SALI shows the chaotic character of the orbit after about 5000  time steps when the “stickiness” phe-
nomenon stops to play the dominant role in the dynamics. After this time, the SALI shows again the same 
behaviour as for the chaotic orbit C. 

In figure 1(b) we see the evolution of the MLE of the same three orbits as a function of time (in loga-
rithmic scale). The computation of MLE does not help us to decide with certainty the nature of the orbit as fast 
as the SALI. This becomes evident by comparing the evolution of the MLE and the SALI in figure 1. We can be 
absolutely certain that orbit S is chaotic at 410t  where 16SALI 10−≈  or even at 5000t  where 6SALI 10−≈ . 
On the other hand, the corresponding MLE initially decrease and only after 5000t  start to show a deviation 
from this decrease, although, in order to get a clear evidence of convergence to a non-zero value, further compu-
tations are needed. Thus, using the SALI method we are able to determine the nature of orbits with great cer-
tainty and in general earlier than the computation of the corresponding MLEs. 
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Figure 1. Evolution of (a) the SALI and (b) the MLE with respect to time t  in log-log scale for the orbits named 
R, S and C (see text). 

In order to present the effectiveness of the SALI in detecting even tiny regions of chaos and order, we 
compute the SALI for a very large grid of equally distributed initial conditions on the PSS ( , )y py  of Hamilto-
nian (2), assigning a different color to each initial condition according to the computed value of the SALI (we 
refer to this procedure as the full PSS scanning). In this way, we obtain a clear picture of the dynamics of the 
system on the PSS as we see in figure 2. 

In particular, in figure 2(a) we compute the SALI of every individual initial condition on the grid for 
2000t =  and assign an appropriate color according to the value of the index: If -12SALI<10  the initial condition 

is colored black, if 12 -8SALI [10 ,10 )−∈  the initial condition is colored dark gray, if 8 -4SALI [10 ,10 )−∈  the initial 

condition is colored gray and finally, if 4SALI [10 , 2]−∈  the initial condition is colored light gray. In producing 
figure 2(b), we performed a slightly different procedure to speed up the whole process without having significant 
errors: we assign the final value of the SALI at 2000t =  and the corresponding color not only to the initial con-
dition but also to every subsequent intersection of the orbit with the PSS taking also into account the symmetry 
of the Hamiltonian (2) with respect to yp  (we refer to this procedure as the fast PSS scanning). In this way, or-
bits with initial conditions on the grid to which a color has already been assigned, as they were intersection 
points with the PSS of previously computed orbits, are not computed again and so the whole process is speeded 
up significantly. In figure 2, we see that the differences of the two panels are almost not visible. We note that 
following the above procedure we are able to distinguish very tiny islands of stability located inside the chaotic 
sea. 

Figure 2. Regions of different values of the SALI on the PSS 0x =  of the Hénon-Heiles system (2) for a grid of 
500 500×  equally spaced initial conditions. In (a) the SALI was computed for every initial condition (full PSS 

scanning) while in (b) the final value of the SALI is attributed not only to the initial condition but also to all suc-
cessive intersection points of the orbits with the PSS. 
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By applying the above procedure and assuming that an orbit is chaotic beyond any doubt if 
8SALI 10−< , we computed the percentage of the chaotic orbits in the whole PSS. Similar results can be found in 

the paper of Hénon and Heils[25] where the authors used a different numerical technique in finding the percentage 
of chaotic orbits. The results of the full and fast PSS scanning are presented in figure 3. In figure 3(a), we see 
that both algorithms indicate that for energy 1 8E =  the PSS of figure 2 consists of about 55% of chaotic orbits 
as for 2000t >  both curves stabilize close to each other and further computations do not practically change the 
results. In figure 3(b) we plot the corresponding evolution of the CPU time on a Pentium 4 2GHz PC (in sec) 
needed for assigning a value of the SALI to every grid point on the PSS of system (2) as a function of the total 
time t  needed to integrate all the individual orbits. Practically, this is the CPU time needed for obtaining the 
data of figure 2(b). The CPU time increases for small integration times t  but after 2000t  exhibits a plateau as 
time t  is long enough for assigning a SALI value to many grid points, that we do not take as new initial condi-
tions, since the computed orbits have many intersections with the PSS. As t  increases more, the CPU time 
slightly grows due to the increase of the integration time. 

Figure 3. (a): The percentage of the chaotic orbits (having -8SALI<10 ) with initial conditions on the PSS of 
Hamiltonian (2) for 1 8E =  as a function of the integration time t . (b): The evolution of the CPU time (in sec) 
needed for the fast scanning of the PSS. In panel (a) black line corresponds to the full scanning of the PSS while 

grey lines of both panels to the fast PSS scanning. 

So, we realize that although the fast PSS scanning is not absolutely accurate (the two curves of figure 
3(a) do not coincide) it is preferred for the complete study of big regions of the PSS as the CPU time required is 
significantly less than the CPU time needed for the full PSS scanning. For example, the full PSS scanning algo-
rithm needs about 68300 sec of CPU time to integrate all the initial conditions on the grid for 10000t = , while 
the fast PSS scanning algorithm needs only about 2100 sec! 

The SALI method can be used also to discriminate between order and chaos, not only on the PSS of a 
system, but also in any parameter space. As an example, in figure 4, we plot the SALI values on the plane ( , )y E  
for the Hamiltonian (2). In particular, we take orbits with initial conditions 0x = , [ 0.3,0.4]y ∈ − , 0yp =  and 

[0.08,0.18]E ∈  and calculate their SALI values for 2000t = . This is a similar plot to the one obtained by 
Fouchard et. al[26] using the FLI method for chaos detection. From figure (4) we see that as energy E  increases 
from 0.08  to 0.18  initial conditions with [ 0.3,0.4]y ∈ − that were initially ordered became chaotic, indicating 
that a lot of KAM tori (islands of stability) have been destroyed and in their position chaotic regions have been 
appeared. We stop our computations for 0.18E = as for 0.18E >  escapes are possible. 

 
3.2 The relation between the SALI and the Lyapunov exponents in a 3 dof Hamiltonian system 

In order to illustrate the relation between the SALI and the 2 MLEs 1L  and 2L  respectively, we con-
sider the 3 dof Hamiltonian system[27] 
 

 
3

2 2 2 2
1 2 3 1 2 3 1 2 1 3

1
( , , , , , ) ( )

2
i

i i
i

H q q q p p p q p q q q q E
ω

=

= + + + ≡∑  (3) 
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Figure 4: The SALI values for a grid of 500 500×  equally spaced initial conditions in the plane ( , )y E  for the 
Hénon-Heiles system (2) each integrated up to 2000t = . If -12SALI<10  the initial condition is colored black, if 

12 -8SALI [10 ,10 )−∈  the initial condition is colored dark grey, if 8 -4SALI [10 ,10 )−∈  the initial condition is col-

ored grey and if 4SALI [10 , 2]−∈  the initial condition is colored light grey. 

where 1 2,q q and 3q are the generalized coordinates, 1 2,p p and 3p are the generalized conjugate momenta and 
0.09E =  is the total constant energy of the system. Following [27], we use in our calculations 

1 21, 1.4142ω ω= =  and 3 1.7321ω =  for compatibility reasons. The characteristic property of system (3) accord-
ing to [27] is that the system possesses two kinds of chaotic regions in its phase space. It has a large stochastic 
region where the two MLEs are of the same magnitude, called the “big sea” and stochastic regions, which are 
apparently separated from the “big sea” called “small seas”. In these “small seas” the two MLEs are not of the 
same magnitude and they differ significantly. 

According to the recently published paper by Skokos et. al[20], the evolution of the SALI is related to the 
two largest Lyapunov exponents 1L  and 2L  of a 3 dof Hamiltonian system by 
 
 1 2( )( ) L L tSALI t e− −∝ . (4) 

Figure 5. (a): The evolution of the two largest Lyapunov exponents 1( )L t  and 2 ( )L t  for the chaotic orbit with 
initial condition 1 2 3 1 2 3(q ,q ,q ,p ,p ,p )=(0,0,0,0.14142,0.11892,0.29428)  of the 3 dof Hamiltonian (3). (b): Time 

evolution of the SALI for the same orbit (black solid line) and the functions 1 2( )L L tce− − (grey line) and 1L tce−  (light 
grey line) for 1 0.03747L = , 2 0.0105L =  and 3c = . Note that the t -axis is linear. 

In order to support the validity of equation (4), we consider the orbit of system (3) with initial condition 
1 2 3 1 2 3(q ,q ,q ,p ,p ,p )=(0,0,0,0.14142,0.11892,0.29428)  originated at the “big stochastic sea”. In figure 5(a) we plot 

the time evolution of the two largest Lyapunov exponents 1( )L t  and 2 ( )L t  of the orbit which are computed by 
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the method proposed by Benettin et. al.[28]. We note that at final time 53 10t ≈ ⋅  both exponents are of the same 
order of magnitude as 1 0.03747L ≈  and 2 0.0105L ≈ . In figure 5(b), we plot the SALI of the orbit as a function 
of time t  (in linear scale) as well as the approximated functions 1 2( )L L tce− −  and 1L tce−  for 1 0.03747L = , 

2 0.0105L =  and 3c = . We see that using the SALI method we determine the chaotic nature of the orbit much 
faster than the computation of the Lyapunov exponents as for 600t  we have 8SALI 10−  while 1( )L t  and  

2 ( )L t  still do not show clear evidence of convergence. We also note that the second Lyapunov exponent 2L  
plays a crucial role in describing the behaviour of the SALI, as 1 2( )L L te− −  approximates much better the values of 
the SALI than 1L te−  (see figure 5(b)). 
 
4 CONCLUSIONS 

In this paper we have illustrated the advantages of the SALI method in distinguishing between order 
and chaos in 2 and 3 dof Hamiltonian systems. Our results can be summarized as follows: 

• The SALI proves to be an ideal indicator of chaoticity independent of the dimensions of the system. It 
tends to zero for chaotic orbits while it fluctuates around non-zero positive values for ordered ones, dis-
tinguishing clearly between the two cases. 

• The SALI values characterize an orbit of being chaotic or ordered. Exploiting this feature of the index, 
we have plotted detailed phase space portraits for a 2 dof Hamiltonian system where the chaotic and or-
dered regions are clearly distinguished. We were thus able to trace very small islands of ordered mo-
tion, whose detection by traditional methods would be much more difficult and time consuming. 

• We have also presented an example of a chaotic orbit in a 3 dof Hamiltonian system, whose SALI tends 
to zero following an exponential rate which is related to the difference of the two largest Lyapunov ex-
ponents 1L  and 2L . In this particular case, although 2L  is smaller than 1L , both exponents have the 
same order of magnitude and so, 2L  cannot be neglected from the description of the time evolution of 
the SALI. 
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