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Abstract  

In his prominent book, Regeneration (1901), T.H. Morgan’s collected and synthesized 

theoretical and experimental findings from a diverse array of regenerating animals and 

plants. Through his endeavor, he introduced a new way to study regeneration and its 

evolution, setting a conceptual framework that still guides today’s research and that 

embraces the contemporary evolutionary and developmental approaches. 

In the first part of the paper, we summarize Morgan’s major tenets and use it as a narrative 

thread to advocate interpreting regenerative biology through the theoretical tools provided 

by evolution and developmental biology, but also to highlight potential caveats resulting 

from the rapid proliferation of comparative studies and from the expansion of experimental 

laboratory models. In the second part, we review some experimental evo-devo 

approaches, highlighting their power and some of their interpretative dangers. Finally, in 

order to further understand the evolution of regenerative abilities, we portray an adaptive 

perspective on the evolution of regeneration and suggest a framework for investigating 

the adaptive nature of regeneration.  
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1. Introduction 

Thomas Hunt Morgan is considered one of the fathers of modern genetics. He is best 

known for demonstrating that chromosomes carry the mechanical basis of heredity, the 

genes. He also has the merit of introducing and developing a successful laboratory model 

for genetic studies, the fruit fly Drosophila. Yet, in his early career, while working at the 

Bryn Mawr women’s college (1891-1904), Morgan devoted a significant amount of time 

to studying the problem of regeneration, focusing on a diverse array of regenerating 

animals (Fig. 1). Morgan’s experimental and theoretical findings are synthesized in his 

now-classic book Regeneration[1]. Despite his extensive experiments and the diversity 

of the organisms studied, Morgan failed to identify a universal mechanism governing 

regeneration. Probably in a lighter moment, he allegedly said that since he had been 

unable to solve the problem of regeneration, he had decided to try something easier such 

as the problem of heredity[2]. The fascination and the struggle of understanding 

regenerative phenomena and their evolution remain as alive today as it was then.  

Over the last two decades, new cell and molecular biology tools have become available, 

allowing the exploration of a broader range of metazoan regenerative mechanisms and 

prompting a (re)expansion of the field of regenerative biology[3, 4]. A unifying theory of 

regeneration is nevertheless still lacking. Why do not all species regenerate? Does 

regeneration have a single or multiple (evolutionary) origin? Are the mechanisms of 

regeneration co-opted from other developmental phenomena (i.e. embryogenesis)? To 

what extent asexual reproduction, coloniality, cancer, and regeneration can be seen as 

different facets of the same phenomenon? Can we decipher the mechanisms of 
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regeneration and re-enable them in non-regenerating species? Such compelling 

questions are still waiting for satisfactory answers.  

Morgan’s book[1] is as relevant today as it was in the previous century, as, besides 

providing a historical perspective on regeneration studies across the 19th and the 20th 

century, it lays down the conceptual and theoretical framework guiding our current 

research on regenerative phenomena. 

2. The legacy of Morgan’s Regeneration 

In Regeneration, Morgan synthesized and critically revised the work of his colleagues and 

predecessors. By analyzing classical studies, including the work of Trembley, Spallanzani 

and Bonnet, and the ongoing work of his contemporary scholars, such as Roux, Barfurth 

and Driesch, Morgan realized how the results diverged significantly in relation to the 

organism studied and the methodology adopted, often leading to controversial 

interpretations. Through his exercise of synthesis, Morgan first attempted to group 

organism-specific processes into a general phenomenon of regeneration, framing his 

comparative approach into general questions concerning growth and differentiation, and 

eventually providing new insights to a theory of development. Indeed, one of the most 

important contributions of Morgan’s book was the idea that regeneration should be 

considered as a growth property, and therefore approached as a developmental 

phenomenon. This approach to regeneration actively opposed the adaptationist view 

endorsed by August Weismann[5, 6], who considered regeneration as a phenomenon of 

adaptation and not a primary quality of the organism[7], and supported the existence of a 

causal relationship between the tendency to be injured and the capacity to “re-grow”. With 
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the filter of time, the inflamed debate between the two scientists was most likely rooted 

on methodological and epistemological grounds, with Morgan criticizing Weismann for his 

adherence to a "theory", instead of starting from a purely experimental approach[5]. 

These originally discordant approaches are not mutually exclusive, and studying 

regeneration today as a form of development does not mean that this process has to be 

considered irrespectively of its adaptive value[8]. 

Morgan advocated and emphasized the importance of comparing the widest diversity of 

organisms in order to recast the questions about development in terms of experimentally 

testable hypotheses. His view of regeneration was supported by a striking array of 

experiments that he and his students performed on a substantial number of vertebrate 

and invertebrate species (Fig. 1). Undeniably, the tenet that emerges in Regeneration 

and that is still acutely pertinent 120 years later is to challenge any general hypothesis 

about regenerative phenomena by performing comparative experiments using different 

model organisms[1, 6, 9].  

2.1 Partial versus Whole-Body Regeneration  

In the pursuit of a coherent explanation of regenerative phenomena, one of the priorities 

in Morgan’s work was to introduce a clearer and more consistent terminology, able to 

reflect the variety of regenerative processes and to compare the many models that he 

and his students were describing. Even if Morgan’s most famous dichotomous subdivision 

of regeneration based on cellular rearrangements (morphallaxis) and cell proliferation 

(epimorphosis) turned out to be too restrictive[10], some of his terminology and 

classifications are still relevant today. For instance, Morgan classified regenerative 
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ontogenies according to the new anatomical structures that resulted from regeneration 

[1]. Another general classification provided by Morgan is based on the causality of the 

regenerative process. He distinguished between “restorative regeneration”, which include 

post-traumatic regeneration and is the result of some exogenous injury to the organism, 

and “physiological regeneration”, which occurs during body homeostasis, such as the 

turnover cycle of epithelial dermal cells in mammals, or during the “life-cycle of the 

individual’’, like for example during budding, molting or feather replacements.  

To our knowledge, the expression whole-body regeneration (WBR) was not used in 

Morgan’s work. It has been introduced relatively recently and spread widely in the 

scientific literature [11–18]. The term WBR has been loosely used to describe 

regenerative processes that involve a “large” portion of an animal body, without adhering 

to a strict definition. According to Cary and colleagues, an organism undergoes WBR 

when it “[...] can re-grow all body parts following amputation”, which is opposed to “partial 

regeneration”, when regeneration is restricted to only some body structure [16]. Bely and 

colleagues also define WBR as the ability to regenerate “all body parts”, and considered 

that regeneration of the primary body axis is not by itself sufficient to define WBR[4]. 

When using WBR most authors refer to restorative regeneration but it has also been used 

for physiological regenerative processes[19, 20]. The expression is also employed 

regardless of the stages of an organism's life cycle [16, 17].  

While venturing into a clearer definition of WBR we run into some classical philosophical 

problems. WBR brings to the forefront the problem of biological individuality and, more 

specifically, the issue of establishing criteria for the persistence over time of biological 

individuals[21, 22]: to which and how many changes an organism can go through and still 
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be considered the same individual? When WBR leads to two or more individuals how 

regeneration can be considered different from reproduction, and which one is the original 

individual? Indeed, the expression “WBR” is rather idiomatic since, if an injury leaves 

some cells or tissues behind, the regeneration then cannot be “whole”. It appears that the 

amount of regenerated material is the main property defining WBR, but what is the 

threshold above which regeneration can be labeled “whole”? We could consider, for 

example, that at least half of the original individual has to regenerate. Following this rule, 

in a beheaded Planaria maculata the head reforming the body would be a case of WBR, 

but not the body reforming the head[23] (Fig. 1B). Yet, such a threshold would be clearly 

arbitrary, leading to conclusions that would need to be justified.  

The term “whole-body regeneration” has become popular only in the last few decades. 

Just like the use of “regeneration”, it is rich in emphasis, but not accurate and nor fully 

definable. Regardless of the criteria to define it, WBR in different species clearly refers to 

different processes. 

2.2 Regeneration: function versus process  

While attempting to introduce a language that accommodates the various regenerative 

phenomena that had been studied so far, Morgan used the term regeneration to indicate 

diverse and heterogeneous phenomena of organ renewal, replacements of body parts, 

or asexual development[6]. He wrote that “regeneration” could constitute an umbrella 

term encompassing ‘‘not only the replacement of a lost part, but also the development of 

a new, whole organism, or even a part of an organism, from a piece of an adult, or of an 

embryo, or of an egg”, and even including instances of imperfect regeneration: “ [...] must 
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include also those cases in which the part replaced is less than the part removed, or even 

different in kind’’[1]. This broad definition of regenerative phenomena is still applied today. 

Just like WBR, it should however be regarded as a “working definition”, encompassing a 

heterogeneous class of events, not necessarily shared among taxa[24, 25]. Despite the 

complexity of the phenomena considered and the blurriness of definitions, often there has 

been a tendency to map regeneration as a character on phylogenetic trees. However, 

regeneration cannot be reduced to a single trait, and plotting onto an existing phylogeny 

its presence or absence has no more value than charting the capacity of animals to fly 

instead of focusing on the mechanisms and structures that allow the flight. Indeed, 

functions can arise convergently by multiple means rather than by historical continuity[26]. 

Instead, regeneration must be considered as a spatio-temporal organized process, or 

assemblies of processes into modules [27, 28] that can be used as individual evolutionary 

characters [29, 30]. Then, only characters on which we can do a reasonable hypothesis 

of primary homology[31], for example morphological, cellular, or molecular characters 

associated with regeneration, can be plotted on a tree.  

To identify characters associated with regeneration it may be convenient to move towards 

a more reductionist approach, and break down the regenerative process along its 

ontogenetic and evolutionary paths. In the first case, each regenerative process could be  

split into conserved sub-processes such as wound-healing (when present), precursor(s) 

mobilization, and morphogenesis[32]. The latter involves comparing these artificial 

ontogenetic steps between closely related phylogenetic clades, e.g. class, order or family, 

minimizing divergence time[25, 33, 34]. The definition and the breakdown of components, 
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and the identification of which, if any, descend from a common ancestor are among the 

key interests of the field of evo-devo. 

2.3 Help from evo-devo theoretical tools  

If, as Morgan firstly suggested, regenerative phenomena can be considered as 

developmental processes, then the conceptual and methodological approaches 

developed by evo-devo research are valuable also to explore the evolution of 

regenerative processes[3, 19, 25, 35]. First, the use of an extended concept of homology, 

such as “process homology” [29] or “character identity networks”[26], which links 

characters from different biological hierarchies (e.g. gene, GRN, morphological 

characters), and, for instance, can help to describe relationships between homologous 

proteins and homologous molecular pathways, even if they do not necessarily lead to 

homologous anatomical structures[29, 36]. This more nuanced concept of homology is a 

powerful tool to refine comparisons of apparently unrelated regenerative processes, 

potentially also among phylogenetically distant and divergent species.  

Second, another useful concept that captures the different levels and types of 

heterogeneity of an organism is the notion of modularity[27, 37, 38]. Regeneration, just 

like development can be divided into discrete and interacting modules, which can be 

tissues, fields (i.e. cells committed to forming the same structure), elements of gene 

enhancers, parts of gene regulatory networks, or any other “basic structural entities or 

regulatory phenomena necessary to assemble a complex morphological structure”[39]. 

The concept of modules also helps to distinguish the processes occurring during 

regeneration from the function of regeneration itself [25].  
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Third, conjointly with modularity comes the concept of developmental constraint, which 

restrains phenotype production due to a limited interaction among existing modules[29, 

40]. For example, a limited or restrained propagation of morphogens, or bioelectric signals 

through voltage gradients, due to the increased histological and cytological complexity 

could prevent regeneration[41, 42]. The possible inhibitory effect of the immune system 

on regeneration is also another little-studied potential constraint [43–45]. The existence 

of developmental constraints should also be taken into account when comparing 

regenerative processes across different species. 

The conceptual tools that regenerative biology can borrow from the field of evo-devo are 

powerful. Comparative approaches however entail interpretive caveats, as illustrated in 

the following examples. 

3 The difficult task of reconstructing WBR evolution 

The evolutionary questions concerning regeneration ultimately provide a complete 

narrative of the phenomenon. They are far from being just theoretical, and they can 

change the approach to the mechanistic study and guide the experimental design on a 

given model organism[8]. The three following examples illustrate the power of evo-devo 

experimental approaches to infer the evolution of regeneration - and of WBR in particular 

- but also point out some possible interpretive caveats. 

3.1. Far from basal: diversity of regeneration in sponges 

Sponges are emblematic organisms to study the early evolution of regeneration because 

they have excellent regenerative abilities[46] and likely represent the monophyletic sister 
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group of all other metazoans[47, 48]. Sponges are often considered as basal metazoans, 

or ancestral representative of animals. However, they are not more basal to eumetazoans 

than eumetazoans are basal to sponges (Fig. 2A), and there is no fossil evidence that 

their body plan represents an ancient state[49, 50]. As any organism, modern sponges 

are nothing but a mosaic of characters in their ancestral or derived state. This holds true 

for their regenerative mechanisms that show great inter-species variations. For instance, 

the proverbial ability of cell aggregates to generate a functional sponge varies even 

between closely related species[51–54]: Halisarca dujardini can reconstruct its body from 

cell suspension, whereas Halisarca panicea is unable to do so [53]. Whether are not cell 

re-aggregation is ancestral to Porifera will remain unsolved without phylum-level 

comparative studies. 

The mechanisms of WBR from body fragment also varies between the four sponges 

classes. Many demosponges use massive proliferation and migration of archaeocytes 

with the participation of dedifferentiated choanocytes, which all together form a 

regenerative blastema[55, 56]. In some other demosponges (e.g. Halisarca dujardini and 

Aplysina cavernicola) the cell plasticity is even greater, with dedifferentiation of various 

cell types that also participate in blastema formation[57, 58]. In contrast to demosponges, 

neither archaeocytes nor tissue regeneration have yet been observed in their sister group, 

the Hexactinellida[59]. Calcareous sponges, who also do not possess archaeocytes, 

regenerate through epithelial morphogenesis by spreading and transdifferentiation of 

pinacocytes and choanocytes (e.g. in Leucosolenia complicata) with minor cell 

proliferation and no blastema formation[60]. Finally, among the homoscleromorphs, the 

sister group of calcareous sponges, only Oscarella lobularis has been reported to 
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regenerate[61, 62]. As in Calcarea, it involves choanocyte transdifferentiation and tissue 

rearrangement, without blastema formation or local proliferation. Due to this phylum-level 

variability in regenerative capability and mechanisms, reconstructing the origin and 

evolution of WBR in sponges is far from being a straightforward task (Fig. 2A). 

Nevertheless, choanocyte dedifferentiation and/or transdifferentiation seem to be a 

common theme in regenerative species, which may be in line with the suspected stem 

cell nature of choanocytes[63]. Comparative investigations focused on choanocyte 

dynamics (e.g. time series of single-cell RNAseq) could unravel fundamental sets of 

genes regulating WBR potentially inherited from the last common ancestor of Porifera.  

3.2. Acoels and planarians: lessons from faraway cousins 

Recent work on acoels and Platyhelminthes has provided fresh insights on the possible 

ancestral mechanisms of WBR in the last common ancestor of Bilateria. Acoels are 

flatworms belonging to a larger clade named Xenacoelomorpha, together with 

Xenoturbellids and Nemertodermatids (Fig. 2B). Some authors consider 

Xenacoelomorpha as the sister group of all other Bilateria[64, 65] and others the sister 

group of Ambulacraria. Despite being distantly related, acoels share a superficial 

morphological resemblance with Platyhelminthes, a group of lophotrochozoan flatworms. 

Their regenerative mechanisms also show extensive similarities. In acoels and 

planarians, regeneration involves the proliferation-dependent formation of a regenerative 

blastema by mesenchymal multipotent and totipotent stem cells, the neoblasts, which 

express homologous genes such as Piwi paralogues and other members of the Germline 

Multipotency Programs[66–68]. In both acoels and planarians, muscles play a 
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contraction-independent role by secreting position control proteins (e.g. wnt and bmp 

ligands), thus providing positional information for correct body plan restoration upon 

WBR[69–72]. These shared characters suggest ancestral features inherited from the last 

common ancestor of Bilateria. However, proposing the homology of regenerative 

processes at such a large phylogenetic scale remains risky. For instance, while neoblast-

like stem cells are present in several bilaterian lineages[68], their phylogenetic distribution 

is much more parsimoniously explained by convergent acquisition, rather than as an 

ancestral presence with multiple losses. Transcriptomic and genomic characterization of 

neoblasts in various animals may additionally reveal shared molecular signatures that 

also result from convergent acquisition. Also, the orthology of the position-control genes 

expressed by muscles during planarian and acoel regeneration has not been 

established[69], and therefore it’s not clear if their role in regeneration is inherited from a 

common ancestor or not. 

To date, regeneration studies on acoels have been mainly done in species belonging to 

the Bursalia suborder (e.g. Hofstenia miamia, Isodiametra pulchra). But, to our 

knowledge, regeneration power is not yet reported in the ca. other 400 acoel species nor 

in other Xenacoelomorphs (Xenoturbellids and Nemertodermatids)[73]. The example of 

sponges clearly demonstrates the intra-phylum plasticity of WBR and highlights the 

importance of studying more related models. This may be the case for acoels too, as they 

are known to evolve relatively fast[74] and to harbor many derived characters among 

Xenacoelomorphs, such as the organization of body muscles, or the presence of 

epidermal eyespots[75, 76]. Consequently, acoels alone cannot be taken as a proxy for 



14 

Xenacoelomorpha and ancestral reconstruction of bilaterian WBR will not be possible 

without exploring anatomical, cellular and molecular diversity across Xenacoelomorpha. 

Despite these caveats, the comparison between acoels and planarians is highly relevant 

to reconstruct the ancestral mechanisms of WBR in Bilateria. It is important to note that 

this holds regardless of the position of acoels as the sister group of Nephrozoa or 

Ambulacraria, since in both cases the last common ancestor of acoels and planarians is 

the ancestor of all Bilateria (Fig. 2B).  

3.3. Plastic families: convergent acquisition of WBR in tunicates 

Increasing the phylogenetic resolution and comparing multiple closely related species is 

crucial to assign confidently the directionality of evolutionary transitions. Tunicates include 

so-called solitary species, where regeneration is limited to some tissue and organs[77] 

and colonial species, which are all able to undergo WBR via different types of budding[78]. 

Tracking WBR evolution in tunicates benefits from numerous anatomical studies on many 

species combined with well-resolved and robust phylogenies that allowed to infer multiple 

independent acquisitions of WBR in the whole subphylum[34, 78, 79]. For example, the 

evolution of budding in the family of Styelidae remained largely speculative until recently. 

Berrill[80] considered that all colonial species belonging to this family should be unified 

as a natural group because he assumed that they all perform the same kind of budding. 

In contrast, Kott suspected that budding modes may be more diverse than expected and 

advocated for “accurate resolution of their taxonomy [and] information on the process of 

vegetative reproduction”[81]. Recent phylogenetic reconstruction of Styelidae[34], as well 

as a closer look at the budding tissues in the species Polyandrocarpa zorritensis[82] 
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showed that the fundamental differences in the mechanisms of bud formation, as well as 

their phylogenetic distribution, are more parsimoniously explained by convergent 

acquisition[34]. Thus, according to these data, three modes of WBR have been 

independently acquired (Fig. 2C) from a solitary, non-budding, ancestor of Styelidae. 

Therefore, the question is to know whether homologous modules (e.g. GRN made of 

orthologous genes) have been convergently deployed in these three non-homologous 

budding modes. The discovery of such shared GRN or budding cell types between the 

different budding modes in Styelidae will be interpreted as independent co-options, as 

long as the phylogenetic topology makes the convergent acquisition of budding the most 

parsimonious hypothesis.  

3.4. A roadmap to investigate WBR evolution 

These three examples clearly show that, in the attempt to infer the evolution of 

regenerative phenomena, the phylogenetic relationships between the considered 

organisms must be used as an interpretative framework to formulate hypotheses on 

evolutionary trajectories. Then, each defined character should be first considered 

independently (e.g. presence/absence of neoblasts, expression of Wnt orthologues, a 

given morphogenetic movement, etc.) in order to reconstruct the mosaic of derived and 

ancestral states that make up the regenerative process and its phylogenetic distribution. 

Combining several lines of evidence such as histology, morphology, molecular signatures 

(e.g. by RNAseq) and phylogenetic analyses of genes of interest is, therefore, an 

informative way to refine homology hypotheses. When possible, multiple species must be 

considered in parallel to cover the diversity of the regenerative mechanisms (including 

absences) across the studied taxa. Finally, a particularly informative ontogenetic step to 
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collect characters related to regeneration may be the earliest steps after the injury, at the 

interface between the wound healing (when present) and the mobilization of the 

precursors (i.e. stem cells or dedifferentiating cells). For instance, recent RNA-seq and 

ATAC-seq analyses on fine-grained time series have shown that several species of 

bilaterian and cnidarians overexpress immediate-response genes such as EGR or Runt 

homologs, and establish Wnt signaling centers at the onset of regeneration[11, 83–86]. 

However, Wnt genes expressed in different regenerative contexts across species are not 

orthologous and are likely under the control of non-homologous mechanisms[83]. This 

and the patchy distribution of WBR may point toward an evolutionary scenario where 

WBR arose multiple times independently during metazoan evolution, often reusing similar 

modules co-opted from embryogenesis (e.g Wnt canonical pathway) while also 

assembling original modules specific to each regenerative strategy. 

 

4. What is the significance of WBR? An integrative and practical approach 

Regardless of the phylogenetic context - single or multiple acquisitions/losses of 

regenerative capacities - the advantages of regenerating a large portion of the body, or 

of multiplying individuals by budding, might seem self-evident. These advantages  were 

largely assumed by early scholars, as Reaumur[87] and Bonnet[88], long before any 

theorization of evolution by means of natural selection. Yet, trade-offs between costs and 

benefits of regeneration might exist - and sometimes the benefits themselves might be 

difficult to identify, as in the case of the constant cycles of zooids destruction and 

regeneration in the colonial ascidian Botryllus schlosseri[89]. The challenges in 
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understanding the evolution of WBR among metazoans depend thus also on the 

difficulties in answering an apparently elementary question: what are the consequences 

of regeneration on the survival and/or reproductive fitness of an individual? In other 

words, is regeneration, or the loss of it, adaptive? 

Following Darwin’s work[90], Weismann explicitly regarded regeneration as an adaptive 

phenomenon “the degree to which it is present is mainly in proportion to the liability of the 

part to injury”[7]. Morgan, who was skeptical of untested theoretical explanations, set out 

to validate experimentally this prediction. In order to test whether the regenerative 

potential of a body part correlated with its risk of being injured in nature, he chose as a 

study model the hermit crab Pagurus longicarpus (Fig. 1F), as its anterior appendages 

were exposed to damage, while its posterior ones were “naturally protected” by the host 

gastropod shell. All appendages proved to regenerate well, which led Morgan to reject 

any adaptive value for regeneration. Morgan’s experimental setup was however criticized 

for oversimplifying the parameters of the problem. Needham, in particular, argued that for 

a correct estimation of the evolutionary pressures, the "indispensability" of each 

appendage had to be considered. After recapitulating the experiments on Pagurus[91] 

and other crustaceans[92], Needham remarked that, i) the frequency of regeneration in 

posterior, more protected, appendages was indeed lower (in Pagurus it was 21 % vs. 83 

%), and that ii) each pair of posterior appendages was essential to locomotion (and thus 

for survival of the crab). Thus, not only there was a correlation between risk of injury and 

regenerative potential, but the maintenance of a complete pair of posterior appendages 

was likely under strong selective pressure, supporting the old idea that regenerative 

abilities had an adaptive value[92]. The question was thus far from being settled because 
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if purely adaptive interpretations could explain the patchy distribution of regenerative 

potential among metazoans, it remained difficult to account for the similarities among 

regenerative processes[8]. Goss crystallized this idea and argued that if regeneration was 

truly an adaptive phenomenon, it must have arisen (and been positively selected) from 

non-regenerating ancestors multiple times, which would entail substantial differences 

between developmental mechanisms[8]. Shared features between diverse regenerative 

processes had instead been demonstrated, such as the requirement for innervation[93, 

94]. Previous research had further highlighted a certain degree of similarity between 

embryonic and regenerating limbs, notably concerning patterning[95, 96] and 

morphogenesis[97]. Goss, like Morgan, favored a scenario where regeneration would be 

an inherent feature of metazoan life, and most likely a derivative of a core embryonic 

developmental program[98].  

In his view, the modern phylogenetic pattern of regenerating taxa could be interpreted as 

the result of repeated losses of potential - themselves the consequence of other adaptive 

processes, for instance, the evolution of better brains in vertebrates[99], or the transition 

from aquatic to terrestrial habitats[8]. While some similarities among regenerative 

processes do exist, for example with regard to wound healing[100], it is today clear that 

the comparison is far from being trivial, as also concluded by Morgan, and that the answer 

cannot derive from the “mere” addition of further, diverse types of data. The previous 

examples on sponges, flatworms, and tunicates show that the identification of the relevant 

comparisons, at all the different scales, is key. Regarding the shared features of 

regeneration and embryogenesis, for example, recent transcriptomic approaches have 

indeed highlighted some degree of conservation in sequential gene usage between 
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embryonic processes and regeneration[101–104]. On the other hand, regeneration is 

broadly thought to display specific features, such as an involvement of the immune 

response[105], of the nervous system[106], and perhaps of muscle cells[69].  

4.1 The puzzle of “restriction and absence” of WBR: eco-evo-evo perspectives 

Representatives of sponges, acoels, planarians, tunicates but also cnidarians, 

ctenophores, annelids, echinoderms, and placozoans display different WBR capacities. 

The ability to regenerate large portions of the body is conversely lacking in arthropods, 

which nevertheless can regenerate their appendages until they reach a terminal molting 

stage - suggesting a possible trade-off between a protective cuticle and WBR, probably 

emerging at the origin of Ecdysozoa[107]. The problem with the “restriction and 

absence”[108] of regenerative potential among taxa remains central to the study of the 

evolution of regeneration[4]. As highlighted in the previous sections, the fragmentary 

taxonomic sampling is a major limit in understanding the evolutionary trajectories of WBR. 

The absence of regeneration is particularly difficult to address, and any explanatory 

research would need to take into account three parameters:  

i. Evolutionary parameters, in the form of a robust and well-resolved phylogeny for 

discriminating between putative losses and de novo acquisitions;  

ii. Developmental parameters - for example, taxon-specific anatomical features, such 

as the cuticle of ecdysozoans.  
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iii. Ecological parameters - for example, the presence of environmental turbulence, 

such as the wind-generated waves fragmenting naked coral embryos after mass 

spawning events[109]. 

Habitat, body size, reproduction modes, anatomy, defense mechanisms might all be 

factors to consider. The intersection of ecological, developmental, and phylogenetic 

parameters poses a methodological challenge, and an eco-evo-devo approach has the 

potential for providing a common framework for tackling the issue[110]. 

Recent works have extensively discussed the ultimate causes of a reduced regenerative 

potential[4]. These works argue either that some selective pressure could play against 

the preservation of regenerative capacities, or that no particular pressure would maintain 

it, so that it becomes a neutral trait. The studies directly addressing the ultimate causes 

of regeneration are rare. A famous example is the loss of regenerative capacity in some 

groups of spiders, including the black widow (Latrodectus mactans). Spiders usually 

regenerate well their injured legs[111], with the notable exception of few orb-weaving 

genera, where it has been hypothesized that a regenerated appendage could impair web-

making more than a missing one[112]. In this case, a strong pressure, the need for a 

geometrically accurate spider-web, selected against the maintenance of regenerative 

capacities. Conversely, if no particular pressure maintains regenerative capacities, for 

example, if predation is low[113, 114], these could be lost. Neutrality could also emerge 

if regenerative phenomena were essentially a by-product (an epiphenomenon) of other 

developmental processes under selective pressure and if the molecular link between 

modules was lost, for instance due to the activity of selfish genetic elements[115]. 

Continued tissue growth[116], agametic reproduction, or core embryonic 
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mechanisms[117] have all been proposed as processes from which regeneration might 

have derived.  

A taxon-restricted loss of regenerative capacities does not necessarily imply an 

elimination of the genetic program for regeneration. Are there any latent or inhibited 

regenerative capacities in taxa that usually do not display them - and which could thus be 

re-activated? In naidine annelids, both comparative regeneration experiments and 

phylogeny indicate multiple events of loss of head regeneration. Interestingly, in one 

species, amputation during asexual fission within a small proliferative region harboring 

activated stem cells could elicit regeneration of a normal head[118]. This indicates that, 

despite the loss of regeneration, the capacity remained latent in these annelids, and could 

be re-activated. This study is a further reminder that a comparative experimental 

approach is essential for understanding the evolutionary trajectories of regeneration.  

The problems with the loss of regenerative capacities, its significance for the fitness of 

organisms, and the question of whether regeneration is an attribute of all organisms are 

not purely theoretical. Indeed, our hopes of inducing regeneration where it does not occur, 

for example in adult humans, ultimately rests on the assumption that potential for 

regeneration might remain latent in organisms who are currently unable to do it[119].  

4.2 Questions and approaches to investigate WBR evolution 

Regardless of the evolutionary scenario, WBR constitutes a particular category of 

regenerative phenomena, whose links to physiology and reproduction are blurred. Here 

we have considered WBR in its most inclusive sense, including physiological regeneration 

and asexual reproduction, and effectively adopting the functional definition of 
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regeneration that - by replacing essential body parts - significantly delays an organism’s 

death. But how to practically study WBR, placing this phenomenon in its evolutionary, 

developmental and ecological context? The questions raised through the Weismann vs. 

Morgan adaptive/innate debate are still highly relevant today. The criteria and strategies 

then proposed can represent today the starting points for practically shaping an 

integrative research program on the complex issue of whole-body regeneration. 

i. Does the regenerating structure/body part experience frequent injuries in nature? 

Injuries, for example, due to sub-lethal predation, are frequent in marine 

invertebrates, either planktonic or benthic[113, 120, 121]. In several 

demosponges, the rate of regeneration was shown to vary across species and to 

be inversely correlated to the frequency of injury[122], and, interestingly, not to be 

a consequence of phylogeny or physiological growth rate[122, 123]. 

ii. Is functionality fully recovered after WBR? Restoration of key functions, more than 

a perfect “replica” of the missing parts, is necessary for survival, as also identified 

by Needham[91]. The hydrozoan jellyfish Clytia hemisphaerica has recently been 

shown to efficiently recover buoyancy and feeding after large injuries, while the 

original body symmetry is not necessarily restored [124].  

iii. Is WBR significantly expanding the life-span of an organism? Arguably, recovering 

from large injuries extends an organism’s life expectancy, but other phenomena 

can be considered. The physiological regeneration of the colonial ascidian 

Botryllus schlosseri represents an interesting case, where the succession of 

generations could contribute to eliminating the senescence of the single 
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individuals, rejuvenating the tissues but preserving the pre-adaption of the colony 

to its surrounding environment[125]. An alluring corollary to this argument is that 

regeneration time is expected to be significantly shorter than the life-span of an 

organism.  

iv. How is WBR ecologically relevant? This question needs to consider that organisms 

are affected by their environment, and in turn, they modify it. Increasingly frequent 

episodes of mortality sweep through marine ecosystems due to extreme climatic 

events[126], which locally destroy benthic communities. The strategies of 

recovery, for example between marine invertebrates undergoing WBR or recruiting 

new larvae have a key impact on the dynamics of the benthic community. With 

regard to the second point, annelids have an important biogeomorphic impact on 

marine sediments, and regeneration negatively impacts their reworking of 

sediments[127]. Additionally, as WBR is tightly linked to the production of new 

individuals, it might represent a dispersal strategy[128], allowing organisms to 

colonize rapidly a novel or changing habitat, as it has been shown for forest 

recovery after fires[129]. The consequences of WBR on the invasiveness of a 

species and perhaps on the emergence of new species following reproductive 

isolation have been poorly studied, but constitute an interesting avenue for future 

research. 

The extreme nature of WBR poses unique challenges, in particular when we try to 

investigate and measure the ecological and physiological implications. The resources 

required during WBR cannot be made available to other processes [130] This suggests 

important trade-offs for the organisms concerned, which need to be identified and 
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quantified. These trade-off concern the regenerative events, but also the loss of a body 

part itself. With regard to the cost-benefits of the regenerative process itself, regeneration 

subtracts resources from growth and reproduction, the so-called regenerative load[131]. 

In sponges and corals, injuries inflicted when food is scarce or when the animal had been 

previously injured regenerate less well, showing that resource allocation is critical[132]. 

On the other hand, besides the obvious benefit in avoiding looming death, WBR might 

provide some specific advantages, for example, a rapid adaptation to changing 

environments[125, 133]. In heteromorphic colonies of hydrozoans and bryozoans, 

changing environmental conditions could cause the regression of existing individuals and 

the generation of a different type of specialized zooid[125, 134]. Interestingly, given the 

colonial nature of these organisms, the costs of the process would be reduced by the re-

utilization of regressing individuals[20] as a source of materials and energy for the 

growing ones. 

The loss of body parts is more difficult to quantify. Energy loss is a multifaceted variable, 

but the dry weight of the removed body part has been used as an estimate[135]. Short-

term, acute, costs include the loss of foraging or motility, of body mass, risk of infection, 

behavioral disruption, impaired self-, and non-self-recognition; while lower fecundity or 

growth (due to loss of germ cells or energy storage) might be seen in the long-term[136]. 

The loss of an arm, for example, has a greater cost for asteroids than for crinoids or 

ophiuroids, as they bear gonads[135]. As for the eventual benefits, it might seem difficult 

to imagine any advantage in losing a body part. Yet, autotomy, the active breaking of a 

body part along a predetermined “plane”, suggests a possible scenario: crustaceans, 

annelids, holothurians and other animals shed body parts as a defense mechanism, in 
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order to escape predators or to isolate infected or malfunctioning body parts (reviewed 

[137]). 

5. Conclusions 

When, later in his life, Morgan heard that a 24-year-old Norman John Berrill was working 

on marine worms and ascidian development and regeneration, he reproached him saying 

“You are being very foolish [...] At your age you cannot waste your time. We will never 

understand the phenomena of development and regeneration.”[138]. Perhaps, if he had 

access to the theoretical tools of eco-evo-devo and to the technological resources 

available today, he would have thought otherwise. Morgan’s emphasis on exploring the 

vast diversity of both developmental and regenerative phenomena, and experimenting 

with testable hypotheses in models, represents the assets of his legacy. The very same 

modus operandi could help to avoid hasty interpretation and to remove anthropomorphic 

biases in how we interpret natural phenomena. Luckily, the young Berrill did not take 

Morgan’s advice and “[...] continued watching in wonder to my heart's content and I am 

even more bewildered, though more sophisticated, by what I see”[138]. 
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8. Figure legends 
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Figure 1. Example of regenerating animal models reported in Morgan’s Regeneration 

(1901). (A) Hydra viridis, (B) Planaria maculata, (C) Gonionemus vertens, (D) Linckia 

multiformis, (E) Stentor coeruleus, (F) Eupagurus longicarpus, (G) Allolobophora fœtida, 

(H) Ciona intestinalis. Modified from Morgan (1901)[1]. 

 

 

 

Figure 2. Phylogenetic relationships between species cited in the text, and cell types 

involved in WBR, in sponges (A), xenacoelomorphs (B) and ascidians (C). The species 

that are reputed for their extensive ability to regenerate are represented in red. The cells 
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drawn represent the cell types known to supplement more tissues during regeneration, 

by proliferation and/or differentiation. On branches are shown ancestral reconstruction 

regarding the role of each cell type in WBR based on parsimonious optimization. 


