
HAL Id: hal-03800492
https://cnrs.hal.science/hal-03800492

Submitted on 6 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Statistical Comparison of Algorithm Performance
Through Instance Selection

Théo Matricon, Mario Anastacio, Nathanaël Fijalkow, Laurent Simon, Holger
H Hoos

To cite this version:
Théo Matricon, Mario Anastacio, Nathanaël Fijalkow, Laurent Simon, Holger H Hoos. Statisti-
cal Comparison of Algorithm Performance Through Instance Selection. International Conference
on Principles and Practice of Constraint Programming (CP 2021), Oct 2021, Montpellier, France.
�10.4230/LIPIcs.CP.2021.43�. �hal-03800492�

https://cnrs.hal.science/hal-03800492
https://hal.archives-ouvertes.fr


Statistical Comparison of Algorithm Performance
Through Instance Selection
Théo Matricon #

Univ. Bordeaux, CNRS, LaBRI, UMR 5800, F-33400, Talence, France

Marie Anastacio #

Leiden Institute of Advanced Computer Science, Leiden, The Netherlands

Nathanaël Fijalkow #

CNRS, LaBRI, Bordeaux, France,
The Alan Turing Institute of data science, London, UK

Laurent Simon #

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400, Talence, France

Holger H. Hoos #

Leiden Institute of Advanced Computer Science, Leiden, The Netherlands
University of British Columbia, Vancouver, Canada

Abstract
Empirical performance evaluations, in competitions and scientific publications, play a major role
in improving the state of the art in solving many automated reasoning problems, including SAT,
CSP and Bayesian network structure learning (BNSL). To empirically demonstrate the merit of a
new solver usually requires extensive experiments, with computational costs of CPU years. This
not only makes it difficult for researchers with limited access to computational resources to test
their ideas and publish their work, but also consumes large amounts of energy. We propose an
approach for comparing the performance of two algorithms: by performing runs on carefully chosen
instances, we obtain a probabilistic statement on which algorithm performs best, trading off between
the computational cost of running algorithms and the confidence in the result. We describe a set of
methods for this purpose and evaluate their efficacy on diverse datasets from SAT, CSP and BNSL.
On all these datasets, most of our approaches were able to choose the correct algorithm with about
95% accuracy, while using less than a third of the CPU time required for a full comparison; the best
methods reach this level of accuracy within less than 15% of the CPU time for a full comparison.
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1 Introduction

The amount of computational resources required to assess empirically whether a new auto-
mated reasoning algorithm exceeds state-of-the-art performance is growing as our ability
to run experiments on challenging benchmark instances expands. From the evaluation of
early algorithms against the human ability to solve given instances by hand [7] to extensive
competitions requiring CPU years to determine a winner [10, 24, 30], the demands for
computational power have grown along with the ability of state-of-the-art solvers to tackle
larger instances. Moreover, each published idea is often the result of a number of unsuccessful
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attempts, which developers either evaluated on a small set of instances, without a principled
way of knowing how representative this evaluation has been, or in a more extensive way,
implying days of CPU times.

This growth comes at a cost. By requiring large amounts of computational resources for
compelling performance comparisons, the community restricts the ability of researchers with
limited access to such resources to evaluate their ideas and publish their work. The energy
consumption of such computations is also an increasing concern. Our work addresses this
issue by proposing principled statistical methods to decide earlier when to stop running a
less promising solver.

We introduce the per-set efficient algorithm selection problem (PSEAS): Given two
algorithms, an incumbent Ainc and a challenger Ach, and a set of problem instances I, how
can we minimise the computational resources (here: CPU time) required to determine, at a
required level of confidence, whether Ach performs better than Ainc on I?

We are not aware of any prior work on this fundamental problem, but methods for
addressing variants of it are used in several contexts. This includes, for example, general-
purpose algorithm configurators, which compare the performance of several configurations
of a single algorithm. While most configurators, such as SMAC [14] or ParamILS [15],
simply look at the difference between their objective functions, the racing-based configurator
irace [20], inspired by prior racing procedures from machine learning [22], addresses the
problem of statistical confidence using a statistical test. However, all of them sample the
instances uniformly at random. Other related work comes from the area of per-instance
algorithm selection, for which Gent et al. [8] introduced a discrimination measure that we
adapted to our context.

We describe five methods for selecting on which instances to run the competing algorithms,
and three methods for deciding when to stop the evaluation. We compare the 15 resulting
approaches on four benchmarks for classic computational problems: the propositional satis-
fiability problem (SAT), the constraint satisfaction problem (CSP) and Bayesian network
structure learning (BNSL). On these datasets, our approaches can determine the better-
performing algorithm with up to 98% accuracy, while using less than a third of the CPU time
required for a full comparison, and the best methods achieve this level of accuracy within
less than 15% of the CPU time for an exhaustive comparison.

The remainder of this paper is organised as follows: In Section 2, we introduce the PSEAS
problem and present related work, and in Section 3, we describe methods for solving it.
Section 4 presents implementation details and the datasets used in our experiments. Section 5
explains some of our design choices with experimental results, and the results from our main
series of experiments are reported in Section 6. Finally, in Section 7, we draw some general
conclusions and discuss future work.

2 Background and related work

The PSEAS problem formalises the following question: How to compare a new solver against
the state of the art with as little computational power as possible? More specifically, how
to select on which instances to run the new algorithm to do this comparison and on which
criterion can this comparison be stopped if one algorithm performs significantly better than
the other? The PSEAS problem or small variations of it also appears in competitions, where
it could be used to disqualify low performing algorithms, or in algorithm configurators to
abandon less promising configurations faster. For simplicity, we consider an algorithm as a
method or solver with fixed parameter values and the state of the art as a single algorithm.
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To answer these questions, we suppose that we have prior knowledge about the performance
of the state-of-the-art algorithm, features describing the problem instances and performance
samples or performance distributions on those instances.

Definition of the per-set efficient algorithm selection problem (PSEAS)

We let I denote the set of instances, Tcut ∈ R+ the cutoff threshold, m the performance
metric that evaluates an algorithm on an instance, and c the cost function that evaluates the
cost of running an algorithm on an instance. We consider two algorithms: the incumbent
Ainc and the challenger Ach, and assume that the cost c(Ainc, I) and performance m(Ainc, I)
of running Ainc on an instance I is known for all instances, whereas these quantities are
unknown on all instances for Ach. This assumption is consistent with the fact that Ainc

represents the state of the art, hence can be assumed to have been evaluated on many
problems. The problem is to determine which of the two algorithms performs best according
to
∑

I∈I m(Ach, I) while running Ach only on a subset Irun ⊂ I that minimises the cost∑
I∈Irun

c(Ach, I).

Scope of this work

We pose A+ = A
⋃

{Ach} where A is a set of algorithms containing Ainc and providing
background knowledge. Unless stated otherwise, we write I for an instance in I and A for
an algorithm in A. For simplicity we consider the algorithms to be deterministic, hence for
an algorithm A ∈ A+, we define the running time as rt(A, I) ∈ [0, Tcut] for an instance I.
We define m(A, I) = c(A, I) = rt(A, I): the running time of an algorithm is considered as a
proxy for the energy cost of running it.

The performance of an algorithm is the sum on all instances of the running times
bounded by a fixed cutoff time. It is consistent with the typical performance metric used
in programming competitions, the Penalised Average Running time (PAR), which penalises
algorithms that do not solve an instance before the cutoff time by assigning them the score
of α times the cutoff time, for a constant α.

Some methods we describe rely on background knowledge about the set of instances. The
required knowledge varies from one to another but is similar to the one used in the algorithm
selection problem and thus readily accessible. We consider the following ways of specifying
the background knowledge:

Sample-based: for each instance I and algorithm A we have the running time rt(A, I) of
A on I.
Feature-based: for each instance I we have a feature vector fI .
Statistics-based: for each instance I we have a prior in the form of a probability distribution
δI over [0, Tcut], expressing that δI(t) is the probability that Ach solves the instance I at
time t. In practice, we obtain this prior by fitting a distribution to the running times
of A.

Note that above, A ̸= Ach, the background knowledge that is based on other algorithms.
The implicit assumption is that running times of algorithms from A and feature vectors of
the instances are both predictive of the running times of Ach: for instance, if all algorithms
in A solve an instance I very quickly, then so should Ach. In other words Ach is expected to
have similar behaviour as the algorithms in A. Similarly, if two feature vectors fI and fI′ are
close for two instances I, I ′, then their running times should be close. These assumptions are
prominently made in running-time prediction such as in Hutter et al. [16] and per-instance
algorithm configuration (see e.g. Kerschke et al. [17]). In other words, the key insights and
mathematical formalisation of our work are using the background knowledge described above
to evaluate the expected performance of Ach.

CP 2021
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Related work

To the best of our knowledge, the problem we address has not been studied as such in the
literature. However, similar questions appear in other settings.

In the early SAT Competitions (see e.g. the 2002 competition [27]), the competition
consisted of two stages: first they ran all the solvers on a subset of instances to extract the
top solvers, then the latter were run on all instances. The selection was done by experts: we
propose to address this problem in an automated manner on a solver pair basis.

In the context of instance generation for CP problems, Gent et al. [8] propose a way to
define how discriminating an instance is in order to generate instances for model selection
based on samples of running times. This method does not answer our aim to reduce the
running time but could lead to choose relevant instances. Thus, we included it in our
experiments with a minor change to account for running time minimisation.

When we decide on which instance to run our algorithm, a score is assigned to each
instance (see Section 3) which relates to the fitness functions used in evolutionary algorithms.
At the time of writing, we found no published method that could be easily applied to our
problem.1

For algorithm configuration (see e.g. Hoos [11]), which tries to find a set of parameter
that optimises the performances of a configurable algorithm, comparing the performance
of two configurations is a key element. SMAC and ROAR [14], as well as irace [20], pick
uniformly at random the instances on which they run it, without considering prior knowledge
they gathered. Racing procedures like irace are based on prior work from Maron and
Moore [22] which aimed at comparing many machine learning models on a subset of test
points to estimate their accuracy with a certain statistical confidence. In this line of work,
irace requires evidence in the form of a statistical test to decide when to stop running a less
promising configuration. SMAC and ROAR on the other hand compare the raw performance
metric. We included the statistical test from irace in our experiments.

Our problem is also related to the per-instance algorithm selection problem (see e.g.
Kerschke et al. [17]) in which one tries to know on which algorithm a specific instance should
be run to be solved with the best possible performance. There are key differences that prevent
us from using selection algorithms; typically their problem comes with prior knowledge in
the form of instances features, that we do not always assume to have, and running time of
the algorithms on other instances, which we do not have available for the new algorithm.
Also, our main goal is to reduce the time needed to evaluate which one is the best.

Finally, there is a significant link with problems tackled by active learning methods [29],
in particular the pool-based selective sampling problem, that tries to decide which instance
among a set of unlabeled instances should be evaluated next. Those methods are aimed
at a machine learning model and the choice of an instance is based on the impact it may
have on the model (e.g. reducing its variance or expected error). In this work we limit our
investigation to model-free methods.

3 Instance Selection and Discrimination Methods for PSEAS

Our goal is to define a strategy that sequentially chooses the instances on which to run
Ach and decides if the evidence so far gives sufficient confidence to stop the comparative
evaluation. Algorithm 1 formalises this iterative process using a score-based approach: each

1 We cover the recently published work of Bossek & Wagner [5] in Appendix B.
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instance is assigned a score, which may be updated along the comparison to – intuitively –
reflect the interest in running this instance. There are two main components in this algorithm:
one for score computation (lines 2, 4, 7, see Section 3.1) and one for confidence (lines 1, 3, 6,
see Section 3.2). The score enables to choose the best instance to run whereas the confidence
tells when to stop the comparison. These two components will be explained in more details
later.

Algorithm 1 Determine which of Ainc, Ach performs best on I with a confidence threshold of
Cthres; Ccurrent is the current confidence and depends on Ainc, Itorun are the instances on which
Ach has not been run.

1: set Itorun = I and Ccurrent = 0
2: compute score(I) for all I ∈ I
3: while Ccurrent < Cthres do
4: pick I∗ ∈ argmaxI∈Itorun

score(I) and remove I∗ from Itorun

5: evaluate rt(Ach, I∗)
6: update Ccurrent

7: update score(I) for I ∈ Itorun

8: end while
9: return best performing algorithm from (Ainc, Ach)

Strategy evaluation

We consider two metrics for evaluating strategies: the cost and the accuracy.
We measure the computational effort (which we want to minimise) as the ratio of the

total running time for instances in Irun, the set of instances on which Ach has been run
by the strategy, over the total running time over all instances; this results in a number
between 0 and 1. Note that the goal is not to minimise the number of instances Ach is run
on, but rather the total running time of Ach on these instances. To evaluate our strategy,
we determine this cost over many ordered pairs of algorithms (Ainc, Ach) and consider the
median. Formally, for a set of ordered pairs P:

cost(P) = median

(∑I∈I\Itorun
rt(Ach, I)∑

I∈I rt(Ach, I)

)
(Ainc,Ach)∈P

 ,

where Itorun are the instances that have not been run by the strategy during its execution,
as defined in Algorithm 1. We note that cost(P) only depends on Ach, since Ainc is assumed
to have already been run.

We measure the accuracy of a strategy (which we want to maximise), as the ratio of
correct guesses made by the strategy when deciding which algorithm from an ordered pair of
algorithms (Ainc, Ach) performs best. Formally, for a set of ordered pairs P:

accuracy(P) =
∑

(Ainc,Ach)∈P 1{Âbest=Abest}

|P|
,

where Abest is the true best performing algorithm in (Ach, Ainc), and Âbest is the best
algorithm given by the strategy. Our definition of accuracy uses the mean, since the median
over the results of the indicator function would produce too limited a range of results to be
useful for comparing strategies.

CP 2021
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We note that the choice made in line 4 of Algorithm 1 aims at balancing the effects of two
contradicting goals. The instance selection component tries to minimise the computational
effort by deciding on which instances to run Ach, based on a score given to each instance. The
discrimination component decides, based on the data gathered so far, whether the expected
accuracy, or confidence, is high enough to stop the comparison.

3.1 The instance selection component
With the aim of minimising the overall computational effort, our algorithm iteratively chooses
the most relevant instance, according to a score (lines 2 and 7 in Algorithm 1). Instances
with the highest score are expected to be the most relevant ones (i.e. intuitively giving the
most information at the lowest cost).

Baseline: Uniform random sampling

As a baseline, we use a random sampling approach. In our algorithm, this corresponds to
giving the same score to all instances, and thus to a uniform random choice at each iteration.

The discrimination-based selection method

This sample-based method is inspired by Gent et al. [8]; they developed it as a way to find
optimal parameters of instances in an instance selection method for automated constraint
model selection. The intuition is to choose the most discriminating instances first. Let
ρ > 1 be a constant; an algorithm A is ρ-dominated on an instance I if there exists another
algorithm A′ such that rt(A′, I) ≤ ρ · rt(A, I). The discrimination quality of an instance I,
denoted G(I), is the fraction of algorithms that are ρ-dominated on this instance. Using this
measure as-is would not take into account our goal of minimising the running time, so we
divide the discrimination quality by the mean running time of the instance. The obtained
score only needs to be computed once:

score(I) = G(I)
mean[(rt(A, I))A∈A] .

The variance-based selection method

This statistics-based method uses the intuition that the most interesting instances are the
ones most likely to have very different running times for Ainc and Ach. For each instance I

we have a prior δI , which is the running time distribution of Ach. We want to choose an
instance with the highest variance argmaxI∈Itorun

V(δI). As for the discrimination-based
selection method, since we want to minimise the running time we divide by the mean running
time of the instance. The obtained score only needs to be computed once:

score(I) = V(δI)
E[δI ] .

The information-based selection method

This statistics-based method is based on a similar intuition as the previous method. We are
interested in instances from which we gain as much information as possible; the variance is
only one (natural) indicator of this information. Following this approach, we can also estimate
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the information gained from a specific instance. The concrete information we are after2 is
given by the discrete random variable stating that Ach is better than Ainc, formally defined
as sign(∆tot). Let ∆I be the random variable defined as ∆I := rt(Ach, I) − rt(Ainc, I); we
compute the expected information brought by ∆I ; hence the information gain is defined as
follows for I ∈ I:

IGI(sign(∆tot)) := EeI ∼∆i
[DKL(P+i || P )] with

P = sign(∆tot)|∀J ∈ Irun, ∆J = eJ

P+i = sign(∆tot)|∀J ∈ Irun, ∆J = eJ , ∆I = eI

where DKL is the Kullback–Leibler divergence, with the eJ being realizations of the ∆J since
the difference for the instances in Irun is known.

As for the previous method, to balance information and running time, we divide by the
expected running time, and therefore use the following score function, which we update at
each iteration:

score(I) = IGI(sign(∆tot))
E[δI ] .

The feature-based selection method

In this feature-based and statistics-based method, we assume that for each instance I, we
have a feature vector fI ∈ Rn in some dimension n. The implicit assumption is that features
are predictive of the running times of Ach. We proceed in two steps:

Constructing a distance metric d : Rn × Rn → R≥0, such that if d(f, f ′) is small, then
two instances with features f and f ′ have similar running times.
Assigning a score to each instance I ∈ Itorun.

Constructing a distance metric. The objective is to define a distance predictive of the
running times; to this end, we introduce a weight for instance features, represented by a
weight vector θ ∈ Rn. Let us consider distances of the form:

dθ(fI , fJ) =

√√√√ n∑
x=1

(θ(x) · (fI(x) − fJ(x)))2
.

Intuitively, for a feature x, the parameter θ(x) determines the importance of x in predicting
the running times. Let us write mI for the median time over all algorithms on instance I.
We optimise over θ by considering:

θ∗ ∈ argmin
θ∈Rn

∑
I,J∈I

(dθ(fI , fJ)2 − |mI − mJ |)2;

i.e., dθ∗ is the best distance in this family for predicting differences in median running time.
The parameter vector θ∗ is the solution of a non-negative ordinary least square optimisation
problem and can therefore be computed efficiently [18]. Note that the space complexity is
quadratic in the number of instances and linear in the feature space dimension.

2 See Section 3.2 for one possible expression of this concrete information: the variable ∆tot.

CP 2021
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Assigning a score. Given a distance metric d, we now define a score for a given problem
instance. Here, it is convenient to minimise rather than maximise the following quantity
with respect to d:

S(I) =
∑

J /∈Itorun

rt(Ach, J)
d(fI , fJ) +

∑
J∈Itorun

E[δJ ]
d(fI , fJ) and score(I) = 1

S(I) .

The score is updated at each iteration. In all previous methods, the score of an instance
I only uses the information on I; the strength of this method is to gather and weight
information over all instances. Indeed, the score of I is a weighted average over all running
time predictions, meaning E[δJ ] when J ∈ Itorun and rt(Ach, J) otherwise, and the prediction
for J contributes to the prediction of I up to the multiplicative factor 1

d(fI ,fJ ) .

3.2 The discrimination component
The discrimination component aims at estimating the accuracy of the current decision of
which among Ainc and Ach performs best. However, this measure can never be accessed, since
the complete data is not available. Hence we introduce the expected accuracy, or confidence,
as a proxy for accuracy. We note that this is not an expectation in the statistical sense.
The confidence has a different meaning and is computed differently for each discrimination
method, as explained later. It provides a measure of the current state of the strategy. When
the confidence reaches a threshold Cthres (line 3 of Algorithm 1), the strategy stops and
returns the algorithm evaluated as being the best.

Baseline: Subset method

As a baseline, we use a fixed-size subset of instances: we fix γ ∈ [0; 1] and decide to stop
when Ach has been run on ⌊γ|I|⌋ instances3. The confidence for this method is 0 until all
instances of the subset have been executed then the confidence is 1.

Wilcoxon test

There is a large body of literature on statistical tests, and many of them can be used in the
context of racing algorithms [3]. For instance, the F-Race [2] algorithm uses a Friedman
two-way analysis of variance by ranks. However, this test concerns a family of candidates,
while here, we are interested in an ordered pair of algorithms. When only two configurations
remain, the F-Race algorithm switches to a Wilcoxon matched-pairs signed-ranks test [6],
because it is more powerful and data-efficient than the Friedman test in that scenario [26].

The test we want to apply should satisfy the following requirements: it should be
nonparametric, it should be applicable to paired data. Such a test would not need any
background knowledge. We chose the Wilcoxon test because it satisfies our requirement while
exploiting other properties of our data: data is measured on an interval scale, the differences
(between running times) are symmetric and the magnitudes of the differences between our
paired data is exploited. This test assumes that running times are independent and the two
samples are mutually independent, that is not truly the case; however, we find that assuming
independence is a good first approximation. This test is only based on observed data, it does
not take into account the remaining instances. Through hypothesis testing we can find out

3 Note that this does not ensure a ratio of γ for the total running time, as the total running time of Ach

over all instances is not available and therefore cannot be used for discrimination.
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when there is enough evidence to stop, at which point the best algorithm is the one with the
lowest mean running time. In this case, our confidence threshold Cthres is compared to the
p-value of the alternative two-sided hypothesis. Let us note that other statistical tests, such
as the Mann-Whitney U test, the permutation test, the Kolmogorov-Smirnov test, or the
paired t-test do not satisfy our assumptions.

The distribution-based discrimination method

This method requires statistics-based background knowledge. Let us consider the following
random variable computing the difference in performances:

∆tot =
∑

i∈Irun

rt(Ach, I) − rt(Ainc, I)︸ ︷︷ ︸
constant

+
∑

I∈Itorun

rt(Ach, I)︸ ︷︷ ︸
random variable

− rt(Ainc, I)︸ ︷︷ ︸
constant

.

We are interested in determining the sign of ∆tot, meaning which of the two algorithms
performs best. For a fixed confidence threshold Cthres = 1 − ε, we estimate P(∆tot > 0) and
stop if:

P(∆tot > 0) ≥ 1 − ε, in which case Ach performs worse than Ainc,
or P(∆tot > 0) ≤ ε, meaning P(∆tot ≤ 0) ≥ 1 − ε, i.e. Ach performs better than Ainc.

The confidence is P(∆tot > 0) for the former case and 1 −P(∆tot > 0) for the latter. Looking
at the definition of the random variable ∆tot, its probability law can be described using
translations and convolutions of the distributions (δI)I∈Itorun . In practice, many natural
classes of distributions (for instance Gaussian and Cauchy distributions) are closed under
translations and convolutions, so P(∆tot > 0) can be effectively computed or approximated.

Because running times are positive and algorithms are stopped when they reach the cutoff
time Tcut, the running times are bounded. A distribution matching this behaviour would be
a truncated distribution, but most are not closed under convolution, which we have stated
above as a necessary property, so they cannot be used directly. Nevertheless, the sum of the
bounds on individual running times can be used as bounds for ∆tot, which we can model as
a truncated distribution. For heavy-tailed distributions, such as the Cauchy distribution, the
confidence is higher with a truncated distribution than without, as impossible cases are not
taken into account, enabling to stop earlier.

4 Experimental setup

To empirically evaluate our approaches, we implemented them and ran them on all ordered
pairs of algorithms from well-known benchmark scenarios.

4.1 Datasets
We use ASlib [4], a benchmark library for algorithm selection that contains datasets from
competitions for various challenging problems, including Boolean satisfiability and constraint
programming. It provides very relevant data on which our strategies can be tested, because
such problems are the typical use-case scenario that we envisioned.

From ASlib, we use three datasets: the CSP MiniZinc 2016 (20 algorithms, 100 instances)
dataset, which comprises performance data from the 2016 MiniZinc Challenge (’Free Search’
Category) [19, 28]; the BNSL 2016 (8 algorithms, 1178 instances) dataset [21] from Bayesian
Network structure learning; the SAT18 (37 algorithms, 353 instances) dataset, which consists
of performance data from the EXP track of the 2018 SAT Competition [10]; and, to account

CP 2021
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Table 1 Discrimination difficulty of our datasets according to our metric.

Dataset CSP MiniZinc BNSL SAT 18 SAT 20

Mean 59.74 9.363 2458 78.88
Median 3.28 1.15 9.65 5.51

Top-3 mean 24.7 77.5 47.7 49.9

for more recent advances in SAT, we created the SAT20 (67 algorithms, 400 instances)
dataset from the results of the main track of the 2020 SAT Competition [1]. Those datasets
were chosen to cover a broad range of prominent problems and instance sets.

For our feature-based approaches, we decided to replace missing features by the mean
value, as done by Hutter et al. [16]. Hence, no information can be extracted from such
instances from a distributional point of view.

Discrimination difficulty

To get a sense of how difficult it is to discriminate between the algorithms from each dataset, we
introduce a measure of difficulty based on how different the algorithms behave on our set of in-
stances. We propose to use the following ratio: Ddiscr(Ainc, Ach) =

∑
I∈I

median[(rt(A,I))A∈A]∣∣∑
I∈I

rt(Ach,I)−rt(Ainc,I)
∣∣ .

This measure has been chosen, because it grows when the two algorithms have similar per-
formance, and it is invariant under scaling, so that the difficulty remains the same if running
times are multiplied by a constant factor. It is also symmetric: exchanging Ainc and Ach

leads to the same result.
In Table 1, we report the mean difficulty, the median difficulty over all pairs and the mean

difficulty of the subset of the best 3 algorithms for all of our datasets. Based on this measure,
we expect it to be easy to discriminate between algorithms from BNSL, while SAT18 should
provide a bigger challenge. The large discrepancy between the mean and median value, seen
for SAT18 in particular, is caused by small groups of algorithms with very close performances.
Pairs of algorithms from those groups usually have very high difficulty, reaching up to a
million for SAT18, which affects the mean.

4.2 Implementation details
Our implementation is available on GitHub (see supplementary materials).

To estimate the parameter of running time distributions, we use maximum likelihood
estimation; and we use a Cauchy distribution for the distribution-based discrimination
method, as motivated in Section 5.2. For the timeout correction, the seed was set to 0.

For the random instance selection method, the seed was also set to 0. The parameter
ρ for the discrimination-based selection method was set to 1.2. For the information-based
method, we use the expression of ∆tot defined for the distribution-based method, and to
compute the expected value, which is an integral, we use Simpson’s rule.

For the Wilcoxon discrimination method, Conover [6] recommends at least 20 samples;
however, this would represent up to 20% of our instance for the CSP Minizinc dataset.
Thus, we decided to follow irace [20], which requires 5 samples in a context similar to
ours. We found no significant performance change between different methods for managing
zero differences, when paired data from both population is equal, as such we report the
performance using Pratt’s method [23].
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5 Estimation of the running time distribution

Our approach relies heavily on our ability to estimate the distribution of running times of
algorithms on the instances. This distribution is used in 3 out of the 5 instance selection
methods and one of our 3 discrimination methods. As such, the choice of the distribution
could significantly impact the performance of those strategies. Fitting a distribution on our
data requires us to decide how to handle the cutoff time and which distribution to use.

We note that when predicting a running time, a log transformation is typically used [12, 16].
This transformation showcases better performance for predicting running times, because
running times distributions tend to be heavy-tailed as shown in the work of Gomes et al. [9].
Since in our case we are mostly interested in predicting the mean or the sum over instances,
we do not apply this log transformation.

5.1 Handling censored running times

As explained in the problem definition, after a given cutoff time Tcut, the given algorithm is
stopped. Running times are thus right-censored, which limits our ability to estimate the true
distribution.

Our method for handling time-outs is based on the one proposed by Hutter et al. [13],
which itself is based on a prior work from Schmee & Hahn [25]. The resulting algorithm is
Algorithm 2 for instance I, with parameters M ∈ N and tmax ∈ R+.

Algorithm 2 Correcting timeouts for a sample (tI,A)A∈A.

1: fit Distribution on (tI,A)A∈A without the timeouts
2: set N to the number of timeouts in (tI,A)A∈A and n to 0
3: while not converged do
4: set S to M · N + n samples from Distribution then increment n

5: for k = 1 to N do
6: set qk to quantile k

N+1 of S

7: replace timeout k with min(qk, tmax) in (tI,A)A∈A
8: end for
9: fit Distribution on (tI,A)A∈A

10: end while
11: return Distribution and (tI,A)A∈A

There is a slight difference from the original algorithm, in the fact that at each iteration,
we increment the number of samples used to enable convergence when there is a majority
of timeouts on an instance. The parameter M enables to reduce the sampling variance; it
is most important on instances with many timeouts. The parameter tmax prevents overly
large variations of the samples. There are two steps in this algorithm: first we estimate
the parameters of the distribution, second we replace the timeouts in the sample. They are
repeated until convergence, when the estimated parameters of the distribution are stable. We
decided to stop, when the squared difference between the parameters between two iterations
is less or equal to 1. Schmee & Hahn [25] use the mean instead of the quantiles of a sample;
however, heavy-tailed distributions such as the Cauchy distribution have an undefined mean.
We chose to use the sampling approach used by Hutter et al. [13] which enabled them to
translate the incertitude and improved the likelihood for their random forest models.
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Table 2 Median log likelihood of Maximum Likelihood Estimation for Levy and Cauchy distribu-
tions over the instances of each dataset. The highest likelihood for each dataset is shown in boldface.

CSP MiniZinc BNSL SAT 18 SAT 20

Levy -129.6 -58.08 -299.7 -573.5
Cauchy -107.5 -62.88 -183.8 -364.9

5.2 Choosing a distribution
What is the distribution satisfying the imposed constraints that gives the best performances?

In practice, since only a set of running times are provided, the distribution parameters
must be estimated. We explained how the parameters were estimated in practice in Section 4.2,
where here, we explain our choice of distribution. This choice can be motivated by choosing
the best candidate distribution that has the lowest error on the set of all instances.

Since many running time distributions are heavy-tailed, we tested two heavy tailed
distributions on our four datasets. We report on Table 2 the median log likelihood for each
distribution; the parameters of these distributions were estimated using maximum likelihood
estimation. The Cauchy distribution provides a clear advantage over the Levy distribution.
The only case in which the Levy distribution yields a higher likelihood shows a much smaller
difference between the two distributions.

6 Experiments

We designed and conducted extensive experiments, in order to answer the following questions:
Q1 – Can our strategies reduce the CPU time required for evaluating a new algorithm?
Q2 – How do the selection methods affect the accuracy of the strategies?
Q3 – Can our strategies discriminate well between top ranking algorithms?

A run consists of selecting an ordered pair (Ach, Ainc) and running the strategy. On each
run, all strategies have to compare the same Ach and Ainc. In all of our experiments, we ran
all of our strategies on each ordered pair of a given dataset.

6.1 General Performance Comparison
To answer Q1, we plotted our strategies in Figure 1, with a target confidence threshold
Cthres = 0.95 (see Algorithm 1). For each of them, the y-axis shows accuracy (in percent)
and the x-axis the median time used over all ordered pairs of algorithms, as defined in
Section 3. As this corresponds to a multi-objective setup, we highlight the Pareto fronts
induced by our results. This does not imply that we can produce a strategy that follows the
Pareto front between points; however, by changing the confidence threshold Cthres, we can
obtain local curves around the performance of each strategy (see Section 6.2). Note that
while we show the performance of our strategies without applying a penalty for timeouts,
using penalty coefficients from [|1; 10|] did not affect our findings.

On all datasets, we observe that our random baseline (random sampling a subset of 20%
of the instances) shows rather strong performance, with 89% to 100% accuracy for about
20% running time. Further investigation (see Section 6.2) shows that the accuracy of the
random baseline increases steeply as we add more instances, until reaching about 20% of the
instances, after which the increase in accuracy is substantially slower. Thus increasing the
amount of instances does not lead to significantly higher accuracy. Moreover, more than half
of the time, this strategy takes 17 to 22% of the running time, which means that the running
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times of the instances follow a distribution such that they are as many easy instances as
hard ones.We expect that this behaviour is linked to the nature of the competition datasets
we are using; instances were gathered by experts to be representative and to show various
levels of difficulty. We also note that the BNSL dataset, which is the one that gives the
largest advantage to the random baseline, contains very few instances that are not solved
within the cutoff time. Choosing these instances incurs a high penalty, because they offer no
new information for deciding between the two algorithms, while using up a large amount of
running time (see Appendix A).

On all datasets we see that the Wilcoxon method is superior and reaches the desired
accuracy in less than 15% of the time; it thus represents the left-hand side of our Pareto
front. The subset baseline uses consistently around 20% of the time but hardly reaches
90% accuracy on the hardest dataset; it contributes to the Pareto front only for BNSL. The
distribution-based method tends to be more conservative and run longer but often reaches
higher accuracies than the desired Cthres and thus marks the right-hand side of our Pareto
front on our two SAT scenarios; however, it performs very poorly on BNSL, which is the
scenario with the least background knowledge due to its low number of algorithms.

The instance selection methods do not show such a clear pattern. We notice, however, that
the information-based method lies near or on the Pareto front when combined with Wilcoxon,
whereas the discrimination-based and variance-based methods show strong performance when
used in combination with distribution-based discrimination.

The evaluated strategies reach up to 95.5% accuracy using 8.21% of the time on the
MiniZinc dataset, 95.6% accuracy using 12.3% of the time on SAT18, and 97.1% accuracy
using 4.96% of the time on SAT20. For the BNSL dataset, we observed a surprising 100%
accuracy while using only 0.0001% of the time using the discrimination-based selection with
Wilcoxon discrimination that is hidden behind on Figure 1b, running a median number of 6
instances. The observed performance of our strategies is consistent with the ranking of the
datasets according to our difficulty metric (see Table 1 in Section 4) for the distribution-based
methods, but not for Wilcoxon, where SAT20 should have been harder than MiniZinc.
Overall, in the worst-case, we manage to save 87.6% of CPU time while being 95.6% accurate
and in the best case, we saved 95.0% of CPU time while being 97.1% accurate.

6.2 Accuracy over time
To answer Q2, we ran our strategies without stopping criterion, measuring regularly the
percentage of accuracy and the time spent running Ach. Figure 2 shows the accuracy (in
percent) of the Wilcoxon and distribution-based discrimination methods on all our datasets.

Unlike Figure 1, which did not show any clear pattern regarding the instance selection
methods, this analysis reveals two groups of methods. On all but the BNSL dataset, the
information-based, variance-based and discrimination-based selection methods lead to a very
high accuracy after 55 to 60% running time. This is consistent with the ratio of instances for
which most algorithms time out, thus providing little discriminatory power. The feature-
based method shows the lowest accuracy, and the random sampling comes in second to last
after 40% of the running time.

The BNSL dataset is different, due to a low number of timeouts and large performance
differences between the algorithms. In this case, randomly sampling instances offers very good
accuracy after a few instances. None of the selection methods offers a clear advantage, because
all instances provide evidence towards the algorithm performing best. This suggests that
on easy datasets, the random method is a good choice, while on harder datasets containing
instances that are not solved within the given cutoff time, more sophisticated selection
methods can save running time.
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(b) BNSL 2016.
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(c) SAT 18.

0 20 40 60 80 100
% of time

75

80

85

90

95

100

%
 o

f a
cc

ur
ac

y

(d) SAT 20.

Figure 1 Accuracy over median running time. y-axis: percentage over all ordered pairs of
algorithms in the dataset. x-axis: the time spent running the new algorithm.

6.3 Top ranking

To answer our last question, we decided to keep the top 10 ranking algorithms of the SAT20
dataset and use our strategies on this new dataset; this reflects that fact that often, the
primary interest is in discriminating between top-ranking algorithms, be it to compare a new
algorithm to the state of the art or to discriminate between the winners of a competition. As
per our difficulty measure introduced in Section 4.1, the mean difficulty of the dataset thus
obtained is 163, and the median is 22, which is higher than for any of our other datasets.
Furthermore, the number of algorithms is reduced, which should reduce the performance
of our methods based on prior knowledge. We report the results in Figure 3 analogous to
what was done in Section 6.1; for comparative purposes, we also plot the performances on
the full SAT20 dataset. The performance of the subset method decreases by more than
10% in accuracy. The distribution-based discrimination method requires more time for
this subset, and the discrimination-based selection method drops out of the Pareto front.
Because they require prior knowledge, these methods encounter difficulties with this more
challenging dataset. The Wilcoxon method is least affected, since it is does not depend on
prior knowledge; consequently, 3 out of the 4 strategies on the Pareto front use this method.
The selection methods in combination with the Wilcoxon test are affected in different ways.
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(b) BNSL 2016.
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(c) SAT 18.
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(d) SAT 20.

Figure 2 Accuracy over running time used. y-axis: percentage over all ordered pairs of algorithms
in the dataset. x-axis: time spent running the new algorithm.

The information-based and variance-based approaches lead to a quick but less accurate
decision, while random sampling leads to a slower decision, achieving 94.4% accuracy for
37.0% of running time.

In this experiment, which compares algorithms with similarly good performance, the
information-based method using the Wilcoxon test suffers less than the other strategies, both
in terms of cost and accuracy. All other methods lead to either high cost or poor accuracy.

7 Conclusions and future work

In this work, we have investigated methods for reducing the computational effort required for
comparing the performance of two automated reasoning algorithms, while gathering sufficient
statistical evidence to correctly identify the solver that performs better on a given set of
problem instances. We defined the per-set efficient algorithm selection problem (PSEAS) in
Section 2. We studied the case in which the performance of a given algorithm is evaluated
based on its running time on a set of instances. We described a set of strategies in Section 3,
inspired by related problems from the literature and by novel considerations, and tested
these on four datasets covering SAT, CSP and structure learning in Bayesian networks. Our
experimental evaluation in Section 6 shows that on these datasets, some of our strategies
consistently return the correct answer with at least 95% accuracy, while using less than 15%
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(b) SAT 20, top-10 algorithms.

Figure 3 Accuracy over running time used for the full and reduced SAT20 datasets. y-axis:
percentage over all ordered algorithms’ pairs in the dataset. x-axis: time spent running the new
algorithm.

of the CPU time it would take to run the full comparison. In particular, using a Wilcoxon
test to decide when to stop, while deciding the next instance to run based on the expected
amount of information it can provide, is consistently near or among the best-performing
approaches.

A finer-grained analysis of our instance selection methods (see Section 6.2) provides addi-
tional insights. We found that deciding on which instance to run based on its discrimination
power, following the work of Gent et al. [8]), or simply on a notion of running time variance,
has the potential to reduce the time required to take a decision when a significant fraction of
the given instances are difficult.

Furthermore, we tested our methods on a smaller but more challenging set of algorithms,
keeping the 10 best algorithms of the SAT20 competition. While the overall performance is
lower than on the full dataset, the Wilcoxon method still reaches an accuracy of 94.4% in
37.0% of the overall running time. Overall, we found that for easy datasets, which discriminate
very different algorithms on instances that can be solved quickly, random sampling offers
good performance, but when facing hard instances or comparing well performing algorithms,
it is beneficial to use more sophisticated methods.

In future work, it would be interesting to consider randomised algorithms. Incorporating
empirical performance models [16] such as the ones used in algorithm configuration [14]
and algorithm selection [31] could also open new avenues, e.g., involving the use of active
learning methods. Finally, while the scope of our work presented here has been limited to
comparing two algorithms, one interesting area of future work is focused extensions to many
algorithms, in order to devise principles mechanisms for running competitions and other
large-scale performance comparisons more efficiently.
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on BNSL compared to the other datasets (see Figure 4b); here, our methods tend to select
instances with running times similar to or higher than instances selected uniformly at random.
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(a) CSP MiniZinc.
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(b) BNSL 2016.
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(c) SAT 18.
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(d) SAT 20.

Figure 4 Number of instances run over running time used. y-axis: number of instances run.
x-axis: time spent running the new algorithm.

B The ranking-based selection method

B.1 The instance selection method

The ranking-based selection method is a sample-based method, inspired by Bossek & Wag-
ner [5], who developed the explicit-ranking method as a fitness function for evolutionary
algorithms, in order to generate instances that follow a given ranking. Their ranking is a
lexicographical order, maximising three criteria in sequence: first, the similarity between the
algorithms’ ranking on the instance and the overall ranking, then two quantities that describe
how different the running times of the algorithms are on this instance. The intuition is that
given the samples, there is a ranking of algorithms over all instances; we want instances
that are good at predicting this ranking – that is, instances on which the algorithms have
a ranking closest to the overall ranking. Furthermore, we would also like that given two
instances that have the same ranking, the instance that has the highest variance in running
times between algorithms is chosen first.

In our case, the desired ranking is the ranking of algorithms with respect to their total
performance. We associate each algorithm of A with an integer, and introduce the desired
ranking π, such that π(j) is the jth best performing algorithm. Then, for a given instance I,
we can define the good pairs as GI = {(j, j + 1) | rt(Aπ(j), I) ≤ rt(Aπ(j+1), I)} and the bad
pairs as Bi = {(j, j + 1) | rt(Aπ(j), I) > rt(Aπ(j+1), I)}. The order in which the instances
are run is the lexicographical order of the scoring function over instances:

score(I) = (|GI |, fB(I)
median[(rt(A, I))A∈A] ,

fG(I)
median[(rt(A, I))A∈A] ),

CP 2021
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(a) CSP MiniZinc.
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(b) SAT 20.

Figure 5 Percentage of accuracy with over median running time for the ranking-based selector.
The Pareto front represents the front obtained from our results in Section 6.1. y-axis: percentage
over all ordered pairs of algorithms in the dataset. x-axis: time spent running the new algorithm.

where

fB(I) =
∑

(j,j+1)∈BI

(rt(Aπ(j+1), I) − rt(Aπ(j), I))

fG(I) =
{∑

(j,j+1)∈GI
(rt(Aπ(j+1), I) − rt(Aπ(j), I)) if |GI | > 0

−∞ else.

As a normalisation step in the context of running time minimisation, we divided the original
fB and fG by the median running time, which was not done by Bossek & Wagner [5]. The
score is computed once in the beginning of Algorithm 1 and does not need to be updated at
line 7.

B.2 Experimental results
Figure 5 shows the performance of the ranking-based selection methods combined with
the three discrimination methods described in Section 3.2 (Wilcoxon, distribution-based
and subset) on the CSP MiniZinc and on the SAT20 datasets. The results are presented
the same manner as those in Section 6.1 and compared to the Pareto front obtained from
the results of the methods presented there. As seen in the figure, in all but one case, the
ranking-based approach is dominated in terms of performance by our methods discussed
earlier. The one exception was observed on the SAT20 dataset, where combined with the
Wilcoxon discrimination method, the ranking-based approach exhibits very short running
time, but low accuracy, and thus shows performance to the lower left of our previously
observed Pareto front. On the CSP MiniZinc dataset, the same combination of methods
achieves good accuracy at the cost of high running time.

C Bias analysis

To better understand the behaviour of the discrimination component, we investigated the
confidence achieved by our discrimination strategy. This should be correlated with the
accuracy of the outcome (as described in Section 3.2). To test this, we ran our strategies,
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without stopping criterion, measuring regularly the percentage of accuracy with respect to
the confidence level of the discrimination component. Figure 6 shows the percentage of
confidence over the accuracy for the distribution-based discrimination method. The black
line indicates the desired behaviour where confidence is equal to accuracy. Points above this
line represent overconfidence, while points below the line reflect underconfidence.

The discriminator starts, after one instance, with a confidence level of 90% for MiniZinc
and 78% for SAT20, while the accuracy is around 75% in both cases. On CSP MiniZinc, it
stays highly overconfident until the end, though the gap between confidence and accuracy
diminishes. On SAT 20, confidence changes with accuracy, although we observe a tendency for
underconfidence, except for the feature-based instance selector. This confidence discrepancy
is clearly dependent on the dataset and does not seem correlated with our difficulty measure
of the dataset.

Compared to the general performance from Figure 1, the closer the strategies are to
correctly estimating the accuracy around our criterion of 95% of confidence, the better they
perform.
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(b) SAT 20.

Figure 6 Percentage of confidence with respect to percentage of accuracy of the distribution-based
discrimination for all instance-selection methods. y-axis: percentage of confidence over all ordered
pairs of algorithms in the dataset. x-axis: percentage of accuracy over all ordered pairs of algorithms
in the dataset.
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