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Abstract: The serine/threonine phosphatase PP2A and the cysteine protease Caspase 9 are two
proteins involved in physiological and pathological processes, including cancer and apoptosis. We
previously demonstrated the interaction between Caspase 9 and PP2A and identified the C9h peptide,
corresponding to the binding site of Caspase 9 to PP2A. This interfering peptide can modulate
Caspase 9/PP2A interaction leading to a strong therapeutic effect in vitro and in vivo in mouse
models of tumor progression. In this manuscript, we investigate (I) the peptide binding to PP2A
combining docking with molecular dynamics and (II) the secondary structure of the peptide using
CD spectroscopy. Additionally, we compare the binding affinity, using biolayer interferometry, of the
wild-type protein PP2A with Caspase 9 and vice versa to that observed between the PP2A protein and
the interfering peptide C9h. This result strongly encourages the use of peptides as new therapeutics
against cancer, as shown for the C9h peptide already in clinical trial.

Keywords: biolayer interferometry; PP2A; Caspase 9; circular dichroism; binding affinity; C9h
interfering peptide

1. Introduction

Targeting protein/protein interactions are considered a good therapeutic strategy
in several pathologies. Indeed, interfering peptides blocking a specific protein/protein
interaction are considered important tools to manipulate a given interaction. Moreover,
administration routes, stability, pharmacokinetic parameters, and safety of the peptides
have made these molecules an attractive new generation of drugs [1]. Several interfering
peptides have been identified and validated in vitro and in vivo [2–5] as new potential
medicaments, and some of them are in clinical development or already in the market
(PEP 010, clinical trial, NCT04733027, [6,7]).

Protein phosphatase 2A (PP2A), a serine/threonine phosphatase, has been shown
to have a pro-apoptotic, and also in some cases, an anti-apoptotic function [8,9]. PP2A is
deregulated in many types of cancers and a number of other human diseases, including
Alzheimer and cardiovascular diseases [10]. PP2A has been shown to be genetically altered
and functionally inactivated in many solid cancers and leukemias. Inhibition of PP2A
activity is critical to promote cell transformation, tumor progression, and angiogenesis,
which indicates that PP2A has a tumor suppressive role [11–13]. Recent reports show that
pharmacological restoration of PP2A tumor-suppressor activity effectively antagonizes
cancer development and progression.
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Several partners of the PP2A have been identified, including the cysteine protease
Caspase 9 [14]. Caspase 9 is the initiator of intrinsic apoptosis regulating physiological
cell death and pathological tissue degeneration. Clinical reports suggest that alterations in
Caspase 9 expression or activation can be involved in several diseases, including cancer [15].

We previously described the interaction between the Caspase 9 and PP2A and identi-
fied the binding peptide, also called interfering peptide, able to block this interaction [14].
This peptide (C9h) derived from Caspase 9 sequence, which includes residues involved in
binding to PP2A, has been validated in vitro and shows an anti-tumoral effect in vivo on
xenograft models of breast cancer [14].

In this manuscript, we analyze and compare the affinity of PP2A to its protein partner,
Caspase 9 and to C9h, the interfering peptide from Caspase 9 sequence, as well as the
molecular dynamics and peptide structure.

2. Materials and Methods
2.1. Peptide Synthesis and Sequence

The C9h peptide was synthesized in an automated multiple peptide synthesizer with
solid-phase procedure and standard Fmoc chemistry by GL Biochem (Shanghai, China). The
purity and composition of the peptide were confirmed by reverse phase high-performance
liquid chromatography (HPLC) and by mass spectrometry (MS). The sequence of the
peptide, isolated from Caspase 9 protein, is:

Y V E T L D D I F E Q W A H S E D L

2.2. Docking

To generate initial poses, we have used PEP-FOLD using the sOPEP2 force-field [16],
taking as constraints positions generated from the amino acids of PP2A identified by
PEPscan as being at the interface between catalytic subunits alpha of the PP2A (PP2Acα
and Caspase 9) similarly to the protocol previously described [17]. One hundred models
were generated and clustered using ligand RMSD as criterion. After the initial peptide
generation, a Monte-Carlo refinement was performed using 30,000 steps at 350 K. Since
previous studies have shown that PEPscan most overlapping fragments [18,19] usually
better correspond to the binding interface, and to accelerate calculations as well as confor-
mational sampling during simulations, only the central part of the peptide, corresponding
to sequence LDDIFEQWAH, has been considered.

2.3. Molecular Dynamics (MD) Simulation

Structure preparation and protonation were conducted using the pdbfixer module
of OpenMM package. The complexes were solvated in truncated octahedron boxes with
a padding of 1.0 nm and the TIP3P water model, as the Amber14SB [20] forcefield was
used to model the protein atoms; 6 and 11 sodium ions were added to counter the charge
of the C9h in aqueous solvent and C9h-PP2A complex systems, respectively. Simulations
were computed using the OpenMM 7.6 package [21]. Systems were minimized up to
1000 steps and equilibrated for 10 ns in NPT ensemble, and temperature and pressure were
equilibrated using a Monte Carlo barostat at a temperature of 300 K and a 1 atmosphere
pressure. We used a 4 fs integration time step using heavy hydrogen assigned a mass of
3 atomic mass units.

Simulations were performed using the OpenMM library, with the original OpenMM
script for simulated tempering (ST) simulations [22] written by Peter Eastman, modified
to implement the weight calculation of Park and Pande [23] and an on-the-fly weight
calculation developed by Nguyen et al. [24]. During simulated tempering (ST) simulations,
21 and 32 temperature ladders were chosen spaced exponentially between 300 and 400 K,
for C9h in aqueous solvent and C9h-PP2A complex systems, respectively. Temperature
exchanges were attempted every 2 ps. During C9h-PP2A complex ST simulation, and to
avoid high deformation of the protein during ST, position restraints were applied on the
PP2A Cα atoms of 10.0 KJ/mol/nm2, while the Caspase 9 fragment was free. However,
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to prevent the peptide from moving too far away from the initial position, some weak
distance restraints were applied on the peptide backbone atoms of 100.0 KJ/mol/nm2, if
the peptide backbone centroid moves more than 15 Å away from its initial position. Two
PEPFOLD poses were simulated with ST during 4.4 and 4.6 µs. MD simulations analysis
were conducted using the MDAnalysis python library [25]. For simulation in isolation, the
complete C9h peptide was considered.

2.4. Circular Dichroism Analysis

Wild-type Caspase-9-derived synthetic peptide covering PP2Acα binding site (corre-
sponding to residues 363–380) was synthesized. Circular dichroism was performed on a
Jasco J-010 spectropolarimeter to study the presence of α-helix.

The peptide was dissolved in 10mM sodium phosphate pH 7.5 prepared from 10 mL
solution A + 84 mL solution B in a final volume of 200 mL.

Solution A: 2.76 g NaH2PO4·3H2O. (0.0552 g/20 mL) (AppliChem, Darmstadt,
Germany).

Solution B: 5.365 g Na2HPO4·7H2O. (0.5365 g/100 mL) (Sigma, Darmstardt,
Germany).

Final pH of the mix was adjusted to 7.65.
To induce α-helix formation, a titration with trifluoroethanol (TFE) (Sigma) was per-

formed. Samples were prepared with 50 µM of peptide dissolved in a final volume of
300 µL with increasing concentrations of TFE (20%, 40%, 60%, and 80% v/v). Samples
were introduced in the spectropolarimeter in a Quartz Suprasil Precision cell 0.1 cm cu-
vette (Hellma), using 300 µL of buffer solution as blank. Measurements were repeated
10 times at 20 ◦C for each sample and 5 times for each blank. Data were processed with
spectropolarimeter software to subtract blank from sample spectra and millidegrees units
were further converted to molar ellipticity.

CD spectrum predictions from the MD simulations were performed using the
PDBMD2CD [26] web server. Conversion from delta ellipticity (DE) to molar elliptic-
ity (ME) was performed using the rule: ME = 3298 × DE.

2.5. Characterization of PP2A and C9h Peptide Interaction by ELISA

A total of 100 µL of biotinylated peptides diluted at 100 µM in PBS was incubated for
2 h at room temperature in a 96-well Streptavidine-coated plate (Pierce, Illkirch, Strasbourg,
France). Wells were washed five times with PBS/0.05% Tween-20 (PBST) and filled with
100 µL of PP2A (Sigma) diluted in PBS/2.5% BSA (Sigma) at the indicated dilutions. The
plate was incubated over night at 4 ◦C and washed five times with PBST. A total of 100 µL of
rabbit polyclonal IgG anti-human PP2Aα (Santa Cruz Biotechnology, Heidelberg, Germany)
was added at 5 µg/mL in PBS/BSA for 1 h at room temperature. Wells were washed 5 times
with PBST and filled with 100 µL of HRP conjugated anti-rabbit IgG (Sigma) diluted at
1:20,000 in PBS/BSA for 1 h at room temperature. Wells were washed 5 times with PBST,
and 100 µL of TMB substrate (Pierce) were added and incubated for 15–45 min. The
reaction was stopped with 50 µL of 2 N sulphuric acid, and the absorbance was measured
at 450 nm on a Multiskan EX plate reader (Thermo Scientific, Illkirch, Strasbourg, France).
The Caspase 9 peptide C9h was labelled with biotin at the N-terminal and C-terminal end
of the peptide.

2.6. Biolayer Interferometry and Kinetic Analysis

Kinetic analysis was performed based on biolayer interferometry (BLI) by using a
BLItz instrument (ForteBio, Bayonne, France) at room temperature. Prior to use, each
biosensor was hydrated in sample diluent (SD: PBS1X, pH 7.0, 0.02% Tween 20, 0.1% BSA)
for at least 10 min. Kinetic measurements of PP2A/Caspase 9 interactions were run with
Protein A biosensors (Fortebio) and consisted of seven steps, all performed in reaction
buffer, as follows: (i) initial baseline in 300 µL SD for 30 s was measured; (ii) 4 µL of
mouse anti-Caspase 9 or rabbit anti-PP2A were immobilized on the sensor for 150 s at
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133 nM; (iii) the immunosensor was washed with 300µL SD for 120 s; (iv) 4µL of purified
ligand Caspase 9 at 566 nM (Origen) or PP2A at 694 nM (LSBio) were loaded on the
immunosensor for 150 s; (v) the ligand-coated immunosensor was washed with 300µL SD
for 120 s; (vi) association of purified analytes diluted in SD at the mentioned concentrations
was studied for 150 s in 4µL; and (vii) dissociation step was then monitored in 300µL SD
for 120 s.

Kinetic measurements of PP2A against biotinylated C9h-Cter peptide were run with
Streptavidin biosensors (Fortebio, #18-5019). The initial step consisted of coating the
biosensor with the peptide diluted in SD at 100 µM for 180 s in 4µL (not shown) and was
followed by three steps for the kinetic study: (i) initial baseline in 300 µL SD for 30 s was
measured; (ii) association of PP2A at the indicated concentrations for 180 s in 4 µL was
used; and (iii) dissociation step was then monitored in 300 µL SD for 150 s.

Experiments using empty immunosensors (no ligand loaded) were run as control.
Sensorgrams were fit globally to a 1:1 binding model by BLItz Pro software, from which the
association (kon) and dissociation (koff) rate constants and apparent affinities (KD) were
calculated. X2 is the sum of squared deviations between the actual data point and the fitted
curve. Values close to zero indicate a good curve fit. The R2 coefficient of determination is
a statistical measure of how well the fitted curve approximate the real data points. Values
of R2 near 1 indicate a near-perfect fit.

3. Results
3.1. Dynamic Behavior of C9h Using ST Simulations

We first present the results of ST simulations of C9h in aqueous solvent for a 9.5 mi-
croseconds simulation. As can be seen from Figure 1A, the energy landscape at 300 K
is rather flat, the barriers between the different conformations being on the order of less
than 3 to 4 kJ/mol. One also observes a large variability in the conformations of the rep-
resentative conformations (depicted for each of the 11 clusters identified using k-mean
clustering algorithm). Over all 300 K frames, the average helical content is of 36%. The most
populated one (cluster 5–13%) shows propensity for helical conformations at the N- and
C-terminus, whereas less populated ones (cluster 8–8% or cluster 6–7%) adopt alpha-helical
conformations in the middle of C9h. Other ones (such as cluster 4–9%) adopt a largely
unstructured conformation. Over all 300 K MD frames, as shown Figure 1B, the central
part of the peptide shows the largest propensity to adopt helical conformations but for no
more than 60% of the frames, meaning that coiled conformations occur at frequencies of
more than 40% over all positions—no beta conformation being observed. It has to be noted
that the force field used for the simulations (Amber14SB [20]) is not designed to simulate
disordered peptides and may favor helical structures. Overall, our simulation suggests that
C9h is rather flexible with a strong tendency toward helix.

3.2. Peptide Secondary Structure Evaluation by Circular Dichroism (CD)

The circular dichroism (CD) has been exploited for protein and peptide folding, con-
formational changes, intramolecular interactions, and ligand binding studies. We were
interested in analyzing whether the interfering peptide (IP) C9h, a fragment of the hu-
man Caspase 9 involved in binding to the phosphatase PP2A, can maintain the secondary
structure shown in the context of Caspase 9 protein. To this end, a CD analysis of the
peptide was performed. Figure 2 shows that a concentration of 50 µM C9h peptide behaves
as a random coil in 10 mM of sodium phosphate pH 7.5. In the presence of increasing
amounts of trifluoroethanol (TFE), the structure pattern was progressively adopting a
higher percentage of alpha helical structure as indicated by circular dichroism spectroscopy.
The percentage of helix deduced from the CD spectra are of 2.62, 7.72, 21.58, 24.34, and
31.01% for TFE concentrations of 0, 20, 40, 60, and 80% v/v, respectively.
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Figure 1. Structural landscape explored during ST simulations of C9h in aqueous solvent: (A) Free
energy landscape at 300 K frames projected on principal component 1 (36% of variance) and 2 (10% of
variance). Principal component analysis (PCA) applied to the 300 K frames ST simulation dataset of
Caspase 9 peptide. Conformations representative of the clusters identified using k-means algorithm
with k = 11 clusters (k has been chosen using the minimum silhouette score value for k values between
2 and 20) are depicted for each cluster together with the population of each cluster (%). (B) Analysis
of the fraction of secondary structure adopted at each position of the peptide over all 300 K frames.
Assignment of secondary structures was computed using DSSP [27].
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Figure 2. CD of C9h peptide. Data of molar ellipticity versus wavelength in circular dichroism
(CD). Data obtained with peptide C9h in 10mM sodium phosphate pH 7.5 (Sky blue curve) are
shown together with CD data using 20% (purple), 40% (red), 60% (orange), and 80% (brown) v/v
of trifluoroethanol (TFE) in the same buffer. C9h shows a double CD signal at 208 and 222 nm
proportional to increasing amounts of TFE indicating a-helix secondary structure content.

It is possible to compare the experimental spectrum with that inferred from the MD
simulations (Figure 3A), although the correspondence between the experimental and
predicted CD spectra must be taken with caution. For 208 nm, the average molar ellipticity
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of the predicted CD spectrum value is to −15028, i.e., clearly showing a propensity toward
helix.
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Figure 3. Predicted CD of C9h peptide. Data of molar ellipticity versus wavelength predicted from
the MD simulation: (A) Spectra predicted for 702 frames periodically taken from the MD trajectory at
300 K (1 step out of 20). Color shades are attributed to the clusters as assigned in Figure 1A. The dark
curve corresponds to the average over all conformations. (B) Average CD spectrum for C9h in solvent
and simulations of C9h in interaction with PP2A starting from different positions. Clusters 1 and 2
correspond to the clusters described in Section 3.3.

3.3. Molecular Modeling of Peptide Interaction with PP2A

PEP-FOLD poses best target (i) the active site, (ii) a position between two helices at
positions 26–40 and 141–151 of PP2Aca, and (iii) a position on top of the loop encompassing
residues 175–193. The two latter positions in contact with the loop 175–193 have been
simulated using simulated tempering for 4.39 and 4.58 µs, respectively.

To obtain a better sampling of peptide position during MD simulations, we used the
simulated tempering method [22] starting from two different PEP-FOLD poses. During ST
simulation, starting on top of the loop encompassing residues 175–193, the peptide structure
moves rapidly after 300 ns and finds a stable position until the end of the simulation (for
4.2 µs). This position will be referred to as cluster 1 (Figure 4A). The RMSD of peptide
backbone atoms at 300 K frames, relative to the central structure of the cluster 1 after
300 ns, was 3.3 ± 1.2 Å. The low RMSD denotes a stable position of the peptide. To be
noted, the peptide was mainly structured in alpha helix, with the exception of the three
last residues. Concerning ST simulation starting from a position between two helices at
positions 26–40, the peptide position deviates slightly more, and a stable position could
be identified between 1.4 and 3.8 µs (for 2.4 µs). This position will be referred as cluster
2 (Figure 4A). The RMSD of peptide backbone atoms at 300 K frames, relative to the
central structure of the cluster 2 between 1.4 and 3.8 µs, was 4.3 ± 2.1 Å. The peptide
was also mainly structured as an alpha helix, with the exception of the three first residues.
The two ST simulations were aggregated and submitted to a PCA analysis (Figure 4B),
and frames from both simulations were then clustered using the HDBSCAN algorithm.
HDBSCAN identifies 11 clusters with 7.9% of frames not part of any cluster. The two main
clusters were cluster 1 (35.46% of all frames) and cluster 2 (26.93%), as the third biggest
cluster concerned only 8.4% of frames. For all clusters, the average structure of the peptide
was computed, the closest frame to this average structure was considered as the cluster
reference structure. Reference structures of clusters 1 and 2 are represented in Figure 4A.
In summary, the simulations strongly suggest the existence of stable poses of the peptide,
compatible with rather low affinity values. Both best poses are in the vicinity of the PP2A
loop identified by PEPscan as interacting with Caspase 9. However, even using advanced
sampling techniques, a unique binding site does not seem to emerge.
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Finally, it is also interesting to compare the behavior of the peptide in isolation and in
interaction with PP2A. As shown Figure 3B, the CD spectra predicted for clusters 1 and 2
clearly show that for cluster 2 the spectrum is similar to that of C9h in the solvent whereas
the helical signal is strengthened for cluster 1. This suggests that the cluster 1 pose might
have a higher entropic cost upon binding to PP2A than the cluster 2 pose, despite it being
the pose that contacts directly the PP2A loop identified by PEPscan. The possible impact on
the binding affinities of the two poses remains, however, largely speculative at this point.

3.4. Qualitative Interaction between PP2A and the Biotinylated C9h Peptide

Biotinylation of peptides is an efficient method to specifically bind peptides to streptavidin-
coated surfaces. Nevertheless, the positioning of the biotin tag in a peptide sequence can
markedly influence binding interaction. In this regard, we tested whether the biotin label should
be added on the N- or C-terminus of the C9h peptide. To this end, we tested by ELISA the
binding of PP2A protein to the biotinylated C9h-Nter and C9h-Cter peptides, immobilized on
streptavidin-coated plate. Figure 5 shows that the biotinylated peptides C9h-Cter and C9h-Nter
peptides bind to the PP2A protein in a specific manner. However, the biotinylated C9h-Cter
peptide shows stronger signal recognition than that of C9h-Nter. An irrelevant biotinylated
peptide was used as a negative control. According to this result, we used for further experiments
the biotinylated C9h-Cter peptide.
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Figure 5. Detection of PP2A binding to C9h peptide by ELISA. Biotinylated C9h-Cter and C9h-Nter
biotinylated peptides were immobilized on a Streptavidin-coated plate and incubated overnight with
PP2A catalytic subunit at 0.6 µg/mL. After washing, rabbit anti-PP2A was added in each well and
incubated 1 h at room temperature. Wells were washed and filled with a dilution of HRP-conjugated
anti-Rabbit secondary antibody. Binding activity of PP2A is expressed as mean OD at 450 nm of
duplicate wells, and bars indicate SD. These data are representative of two independent experiments.

3.5. Affinity of PP2A Protein to Caspase 9 Protein and C9h Peptide

Kinetic parameters of protein/protein (Caspase 9/PP2A or vice versa) or protein/peptide
(PP2A/C9h) interaction were measured by biolayer interferometry (BLI). BLI is an optical
characterization method used to monitor interactions between label-free molecules in real
time. It is based on the wavelength shift reflecting the change in thickness of the biological
layer caused by the binding of molecules to the probe. After ensuring the absence of unspecific
binding of Caspase 9 and PP2A to the protein-A biosensor, specific antibodies for Caspase 9
and PP2A were immobilized onto the probes. After a washing step, Caspase 9 and PP2A were
respectively loaded onto the probes to constitute the working biosensors of interest. First, the
relative PP2A interaction to the immobilized Caspase 9 molecule was studied (Figure 6A).
Affinity measurements were conducted with varying concentrations of PP2A to determine the
range of equilibrium binding constant values (KD = 8.94 × 10−8 M). In a vice versa procedure,
PP2A was immobilized onto the probe (Figure 6B) and different concentrations of Caspase 9
protein were used to determine the constant at equilibrium (KD = 2.28 × 10−7 M). Overall, in
both models, PP2A and Caspase 9 proteins were observed to bind with relatively good affinity
(close to 10−7 M). Figure 6C summarize the results of constants of association, dissociation,
and affinity.

Kinetic measurements of PP2A against biotinylated C9h-Cter peptide were run by
using streptavidin biosensors (Figure 6D). Different concentrations of PP2A protein were
loaded onto the immobilized C9h-Cter peptide to determine the constant at equilibrium
(KD = 7.8 × 10−7 M). Unspecific binding of PP2A to the sensor tip in absence of peptide
was checked using PP2A at the same working concentrations. It is of note that the abrupt
increase in signal looks like a bump artifact occurring when the streptavidin biosensor
moves during the transition from the association to the dissociation step. In this conforma-
tion, the dissociation rate of PP2A was approximatively one log higher than those observed
with the immobilized Caspase 9 protein resulting to a slightly lower affinity. Figure 6E
summarize the values of constants of association, dissociation, and affinity.

In conclusion, these results demonstrate an effective interaction between PP2A and
Caspase 9 proteins, as well as a good affinity between PP2A and the interfering peptide
corresponding to the sequence of Caspase 9 involved in binding to PP2A. Therefore, C9h
peptide can be used as a tool to manipulate this interaction.
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Figure 6. Blitz sensorgrams of PP2A/Caspase 9 interaction. The biolayer interferometry (BLI) signal is
given in relative intensity units (nm): (A) Caspase 9 ligand was immobilized at 566 nM onto a Protein
A biosensor previously coated with a mouse anti-Caspase 9 monoclonal antibody. The association
and dissociation steps of the PP2A analyte injected at concentrations of 649, 347, and 173 nM were
shown. (B) PP2A ligand was immobilized at 694 nM onto a Protein A biosensor previously coated
with a rabbit anti-PP2A polyclonal antibody. Association and dissociation of the Caspase 9 analyte
loaded at 694, 347, and 173 nM were shown. (C) Binding rate constants and apparent affinities of
PP2A/Caspase 9 interactions in BLI were calculated with BLItz Pro Software. (D) PP2A was used
at 463, 556, and 694 nM as indicated, and sample diluent (PP2A, 0 nM) was designed as sample for
reference subtraction. Unspecific binding of PP2A to the sensor tip in absence of peptide was checked
using PP2A at the same concentrations. (E) Binding rate constants and affinities of C9h-Cter peptide
and PP2A were calculated with BLItz Pro Software.

4. Discussion

In this study, we have first investigated the behavior of C9h in isolation, using both
in silico and in vitro techniques. Circular dichroism (CD) spectroscopy is a widely used
technique for the study of protein/peptide structure [28]. In the past decade, several
algorithms based on quantitative analysis of CD spectroscopy have been proposed to
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predict the secondary structure content [29,30]. In the absence of high-resolution structures,
CD is regarded. The isolated C9h peptide does not seem to show its natural helical structure,
which was, however, achieved easily in the presence of an alpha helical inductor, such as
TFE. This result suggests that, despite being isolated from its natural environment within
Caspase, C9h still has the ability to maintain its helical character, which may be important
to exerting biological and biochemical actions. MD simulations suggest for their part a
much stronger helical content although associated with a large conformational diversity.
The direct comparison between the two approaches is, however, complex, because the
impact of the force field used for simulations is not well quantified, and CD prediction
from structure also comes with uncertainty. These predictions have, however, interest as a
means to compare the conformation ensembles of the peptide in isolation or interacting
with PP2A.

In a second part, we have turned to the interaction of the peptide with PP2A. Two
poses compatible with low affinity values were identified. Compared to classical MD,
the ST approach we have used has improved sampling ability, but no convergence of
the two MD simulations starting from two different poses could be observed. Longer
simulations might be needed to conclude more strongly on the putative peptide affinities,
and in parallel, using higher maximum temperature during the ST simulations could also
allow a better sampling of the peptide structure. It is also possible that the peptide might
interact with different patches on PP2A surface. However, the conversion of the time
they bind to a patch in terms of affinity remains presently out of reach. Of note, however,
both poses identified are close to the PP2A loop identified, and none really explored the
region of the catalytic site of PP2A. Interestingly, also in the two proposed poses, a helical
conformation is observed in different regions of the sequence suggesting that the peptide
could be rather flexible. Indeed, additional clusters identified during ST simulations show
intermediary non-structured forms of the peptide, which is consistent with the results of
the CD experiment and suggest that the peptide could adopt a helical conformation only
when binding to PP2A.

Finally, we have measured the affinity of two interacting proteins, Caspase 9 and
PP2A, as well as the interaction between PP2A and the interfering peptide C9h, which has
been previously identified as Caspase 9 binding site to PP2A using PEPscan approach [14],
This interfering peptide was used to measure the affinity for its partner, the PP2A protein,
showing a similar affinity to that obtained using the whole protein Caspase 9. To our
knowledge, this is the first affinity binding constant reported between PP2A and Caspase 9.

Biolayer interferometry approach has proven effective in measuring the binding affin-
ity of different partners, such as protein/protein or protein/peptide molecules [31–33].
Studying the interaction between proteins and their ligand partners using conventional
methods often requires large amounts of substrates and multistep experimental methods.
These concerns prevent the easy and accurate quantification of the strength of an inter-
action [34,35]. BLI is an optical technique for real-time measurement of macromolecular
interactions. The objective is achieved through the analysis of interference with the white
light, reflected by the biosensor surface. In a typical BLI experiment, the ligand is im-
mobilized on the biosensor tip and then allowed to interact with the analyte [36]. Using
BLI, a quantitative set of equilibrium binding affinities (KD) and rate of association and
dissociation (Kon, Koff) can be measured in minutes using nanomolar quantities of sample.
Thereby, in this work, PP2A/Caspase 9 interaction studies were conducted in the range
of 173 to 694 nM and 283 to 1133 nM for PP2A and Caspase 9 proteins, respectively. The
results showed that the binding affinity of PP2A to Caspase 9 is in the range of 150 nM,
which can be considered as a good affinity between two protein partners. Moreover, PP2A
binds to the C9h peptide with a slightly lower affinity, around 800 nM, i.e., slightly worse,
which might possibly be related to C9h helical structuration upon binding.
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5. Conclusions

In conclusion, our work suggests that the interfering peptide C9h, isolated from its
molecular environment into the Caspase 9 protein, remains able to associate with PP2A in
a manner relatively comparable to that observed when using the whole Caspase 9 protein.
This is the first time that the interaction affinity between two proteins involved in tumoral
transformation, PP2A and Caspase 9, has been measured. Overall, these results may explain
the efficacy observed in vitro and in vivo of the use of C9h peptide to block PP2A/Caspase
9 interaction. Finally, our result opens the possibility to the use of peptides as tools to
manipulate protein/protein interaction and its use of therapeutic peptides, as it is the case
for C9h peptide.
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