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Abstract:  
 

The present work focuses on the study of mixed convection of a purely viscous shear-thinning fluid in a 

horizontal annular eccentric duct. The inner and outer cylinders are heated with constant and uniform heat 

flux densities. The objective of this work is to study the effect of the variation of eccentricity, rheological 

behavior of the fluid as well as the thermo-dependency of the rheological parameters on the reorganization 

of the flow and thermal stratification caused by the buoyancy forces. At the entrance of the heating zone, 

the dynamic regime is assumed to be established and the temperature profile uniform. The conservation 

equations are solved numerically using a finite difference method with implicit schemes. A secondary 

azimuthal flow, induced by natural convection, develops downstream of the inlet section. This flow creates 

a stratification of the thermal field on a given section of the duct, which intensifies downstream from the 

entrance. On the other hand, the decrease in consistency with increasing temperature near the heated walls 

produces a centrifugal radial flow towards the walls. The presence of an eccentricity induces in turn a 

significant effect on the main dynamic field and the stratification of the thermal field. Two cases of upward 

and downward eccentricity are treated. These show that an upward shift increases the stratification of the 

thermal field, while the stratification begins to weaken from a certain amount of eccentricity in the case of 

downward shift. This represents an important result in terms of possible industrial applications. We may 

indeed conclude that an appropriate choice of downward eccentricity can reduce the thermal stratification, 

observed experimentally in the case of a concentric heated annular duct [1], when this stratification is 

undesirable. The choice of this eccentricity depends on rheological and thermal properties of the fluid. 

 

Keywords: Shear-thinning fluid, Annular geometry, Eccentricity, Mixed convection, Thermodependency. 
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List of Symbols: 

 

a:      Location of the positive pole p of the bipolar system (m) 

B :    Thermal expansion Coefficient (°C
 -1

)  

Br :   Brinkman number  
22

0 1 21dU r R    

Cp:    Specific heat (J .Kg
-1

.°C
 -1

) 

Gr :   Grashof number 2 3 2
2 0e gB TR    

h:     Coordinate scale factor (m) 

K :    Fluid consistency (Pa.s
n
) 

n :    Shear-thinning index 

Nu :  Nusselt number =2 (1- r1) /(θ-θm) 

Pe :   Péclet number =Re.Pr 

Pn :  Pearson number =b R2 / λ 

Pr :   Prandtl number =µ0CP / λ  

Re :  Reynolds number =ρe Ud  R2 / µ0 

R1:   Inner cylinder radius (m) 

R2:   Outer cylinder radius (m) 

r1:    Radius ratio=R1/R2 

Te :   Inlet temperature (°C) 

U:    Dimensionless radial velocity 

Ud:    Mean axial velocity (m.s
-1

) 

V:     Dimensionless azimuthal velocity 

W:    Dimensionless axial velocity 

z :     Dimensionless axial coordinate 

z
*
 :    Axial coordinate (m) 
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Greek symbols 

 

 :    Radial bipolar coordinates 

 :    Azimuthal bipolar coordinate 

ρ :     Fluid density (Kg .m
-3

) 

λ :     Thermal conductivity (W .m
-1

.°C
 -1

)  

 :     Dimensionless eccentricity 

θ  :    Dimensionless temperature 

θm:    Mean dimensionless  temperature  

 :    Heat flux density (W.m
-2

) 

T :  Temperature difference = (R2 - R1) / λ 

:a   Dimensionless Apparent viscosity 

µ0 :   Wall-shear viscosity at the entrance section (Pa.s)  

 

 

Subscript 

 

1,2 : Cylinders index, (1:inner, 2:outer) 

fd : Fully developed 
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1. Introduction 

 

 

Thermization of non-Newtonian fluids is of great importance in many industries such as papermaking, 

food and chemical processes. This thermization is generally performed in tubular heat exchangers. Knowing 

the distribution of the dynamic and thermal fields of the fluid is essential for an optimal control of the 

thermization process. This depends on the geometrical parameters of the exchanger, the dynamical 

parameters of the flow, the physical characteristics of the fluid and its rheological behavior. 

In certain industries, heating is conducted in horizontal annular ducts [2]. The heated fluids are typically 

non-Newtonian, with high Prandtl number values and temperature dependent density and consistency. The 

presence of natural convection generates a secondary azimuthal flow that induces a thermal stratification 

within a given flow section. Another secondary radial flow arises starting from the inlet section, due to the 

change of consistency with temperature, and in turn contributes to the phenomenon of thermal stratification. 

Thermization problems in annular geometry with two concentric cylinders have been extensively 

studied. For the case of mixed convection, Kotake et al. [3] examined the problem using a Newtonian fluid; 

two thermal conditions of Neumann type have been selected. Nazrul et al. [4] treated the problem for the 

case of heating air and water, with constant heat flux density applied on the inner cylinder and an adiabatic 

outer cylinder. The effects of rheological behavior and thermodependency were very well exposed in the 

study of Nouar et al. [1]; the fluid investigated was a pseudoplastic fluid with temperature dependent 

viscosity. Boundary conditions of Neumann type were considered, with constant heat flux densities applied 

on both cylinders. Many results have been presented and the authors have very clearly shown, numerically 

and experimentally, that a secondary azimuthal flow develops starting from the inlet section owing to the 

effect of buoyancy forces. This flow becomes the dominant heat transfer mechanism starting from a critical 

axial position, causing the stratification of the thermal field between the top and bottom of the duct which 

increases downstream. In their experiments, the temperature difference between the two parts can well 

exceed 20°C at a moderate distance from the entrance of the heating zone (see Fig. 14 (b) p447 in [1]). 
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Thus, the fluid in the upper (warmer) part could reach a high enough temperature to be denaturized, which 

is highly undesirable in many cases such as food processing industries. From these results and in order to 

solve this problem, the application of an eccentricity between the two cylinders (upward or downward) is 

proposed as a solution. The objective is to seek a proper eccentricity choice for minimizing thermal 

stratification depending on the rheolgical, geometrical and dynamical parameters.   

For heat exchangers of eccentric annular geometry, the forced convection case is analyzed by many 

authors. Feldman et al. [5] have treated the problem of the dynamic regime establishment in a horizontal 

eccentric annular duct; the Navier-Stokes and continuity equations are solved using bipolar coordinates 

system. Their results give the required establishment length for different eccentricities and geometrical 

ratios, as well as the variation in the pressure gradient and axial velocity along the entrance zone. Fang et al. 

[6] have examined the effects of eccentricity on the distribution of axial velocity, pressure gradient and 

friction factor for a fully developed flow of a shear-thinning fluid; no heating of the walls is considered. 

Manglik et al. [7] have treated the same problem presented in [6], but for a Newtonian fluid with two 

thermal conditions (imposed flux and imposed temperature) on the inner cylinder, the outer cylinder being 

considered adiabatic. The same authors have extended their study to the case of a shear-thickening fluid [8]. 

Feldman et al. [9] have studied the problem of the thermal entrance region for the case of an incompressible 

Newtonian fluid; the dynamic regime is supposed fully developed and the temperature uniform at the entry, 

different thermal conditions being considered. When viscous dissipation is taken into account as it is 

encountered in polymers (non-Newtonian fluids) melting manufacturing, annular eccentric geometry is 

largely present, because the die mandrel is displaced downward to get a uniform annular shape at the exit as 

possible, this kind of problem have been studied numerically and analytically by several authors (see for 

instance [10,11]). For an eccentric curved annulus, Nobari et al. [12] study numerically the problem for a 

Newtonian fluid using a second order finite difference method. The governing equations are written in the 

bipolar-toroidal coordinate system. Different eccentricities and curvature radii with four different thermal 



7 

 

boundaries are considered. Several results are given with the main one being the enhancement of heat 

transfer rate for a curved annuli compared to the straight one at large Dean numbers ( Re . ha D ). 

 The case of natural convection alone has also benefited of many studies. Ho et al. [13] have examined 

the effects of Prandtl and Rayleigh numbers as well as eccentricity on the temperature distribution and the 

average Nusselt number between the two cylinders in the case of a Newtonian fluid. El-Shaarawi et al. [14] 

have numerically solved the problem of natural convection inside vertical open-ended annuli with different 

eccentric ratios. The governing equations are simplified into parabolic ones by neglecting the diffusion term 

in the main flow direction. Their results show the velocity profile, axial pressure defect, and other heat 

transfer parameters in detail. Following a different approach, Mokheimer et al. [15] have addressed the 

same problem numerically by solving the equations of motion based on an analytical solution of the energy 

equation. The main results reflect the induced flow due to buoyancy forces, the temperature field and the 

evolution of Nusselt number with a presentation of the effects of eccentricity and radius ratios variation. In 

a different study, the same authors have developed a number of correlations for the same problem using a 

standard regression technique for determining the maximal induced flow rate, the heat flux absorbed by the 

fluid and the Nusselt number [16]. Such correlations are of great interest for technical design of heat 

exchangers when numerical solutions are difficult to implement and experimental results lacking. An 

experimental study of a similar configuration where the flowing fluid is air is presented by Hosseini et al. 

[17]; a constant heat flux is imposed on the outer cylinder while the inner cylinder is fully insulated. The 

results show the variation of the heated wall temperature and average Nusselt number along the duct for the 

case of a single cylinder, two concentric and two non-concentric cylinders for different values of heat flux. 

The case of an annular geometry with a heated outer cylinder, an insulated inner cylinder and arbitrary 

eccentricity is treated by Shu et al. [18]. The numerical resolution is performed with a differential 

quadrature method which has the advantage of converging to very accurate results with a simple mesh; the 
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flow structure is presented in the form of isotherms and stream lines with many validations with 

experimental results. 

Nevertheless, the problem of mixed convection in eccentric annular geometries has not yet received 

enough attention, especially in the case of non-Newtonian fluids. The existence of an eccentricity has a 

great effect on the profile of the main dynamic field as well as on the stratification of the thermal field 

caused by the combined effects of natural convection and the variation of viscosity with temperature.  As 

indicated above, our purpose is to investigate the possibility of overcoming the stratification phenomenon 

by an appropriate choice of eccentricity, according to the rheological and process parameters. 

 

2. Description of the problem  
 

A laminar flow of a pseudoplastic fluid in an eccentric horizontal annular duct, where both cylinders are 

heated with constant heat flux densities, is considered (Fig.1). Changes in the density  and consistency K 

with temperature T are assumed to be described by the following relations ρ=ρe(1-B(T-Te)) and       

K=Aexp(-bT), where B is the thermal expansion coefficient, ρe and Te are the density and temperature at the 

inlet section. The specific heat Cp, thermal conductivity   and shear-thinning index n are assumed constant.  

In addition, the following assumptions are adopted: (i) The Peclet number is large enough (>10
3
) so that 

axial diffusion can be neglected in the momentum and energy equations; (ii) the Brinkman number is small 

enough (<10
-3

) for neglecting viscous dissipation; (iii) the variation of density is considered only in the 

buoyancy term (Boussinesq approximation); (iv) the radial and azimuthal variation of pressure in a given 

flow section is weak. Therefore, the pressure is modeled by P
*
=P

*
m(z

*
)+P’*(α,β), where P

*
m(z

*
) is a mean 

pressure at a given flow section and P’*(α,β) a variable pressure term at the same section. The flow is 

assumed symmetric about the vertical plane containing the axes of the two cylinders. At the entrance of the 

heating zone, the dynamic regime is assumed to be fully developed and the temperature profile uniform.  

 

*** Fig.1 *** 
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3. Governing equations 

 

The present work deals with the case of an upward and downward eccentric annular geometry.  The 

solution of the dynamical and thermal fields with a particular attention to the effect of eccentricity on the 

latter is presented. For the problem formulation, we have used bipolar coordinate system (α, β, z
*
) 

([5,10,12,16,19]). This system is related to the Cartesian coordinate system by the following relations: 

* * * *.sin ; .shx h y h    

; 0 2         

With: h
*
=a / (chα

 
- cosβ), where a is the location of the positive pole p defined as 

 

 

1/2
2

2 2
22 1 2 1 2

2

2 1 2 1

4

2

R R R R R
a

R R R R






   
    

   

 

 

R1 and R2 the inner and outer cylinders radii; ε is the non dimensional eccentricity defined as ε=e / (R2- R1), 

with e being the distance between the two cylinder axes; β=0 always corresponding to the widest part of the 

cross section by convention (Fig.2).  

 

*** Fig.2 *** 
 
 

Following the methodology of Gray et al. [20], it can be shown that the condition under which the 

Boussinesq approximation applies is given by BФ R2/ λ ≤0.1, a condition which is considered to be 

satisfied in the present study. The governing equations of the problem can then be written as:  

 

Continuity equation: 

 

 
                                                                                                                                   (1)  
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2 2

1 1
. . 0
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hU hV

zh h 
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α momentum equation: 

 

 
 

           

 

                             

(2) 

 

 

β momentum equation: 
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z momentum equation: 
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Energy equation: 
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Integral continuity equation: 
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Boundary conditions: 

The flow is assumed to be symmetrical with respect to the vertical plane containing the duct axis. In the  

dimensionless coordinates system, the computational domain is (α,β,z) [α1, α2]×[0,π]×[0, zf ], where zf is 

the non dimensional length of the computational domain. 

 

         (7a) 

       (7b) 

     (7c) 

      (7d) 

Equations (1) to (7) are made dimensionless by using the following scales:  

 
 

 

 

                                                                                                                                                  (8) 

 

 

It should be noted that the above mentioned stared quantities are dimensional. L is a typical axial scale 

length for temperature variations and is given by L=ρeCPUd (R2-R1)
2
/λ. It can be viewed as a length over 

which downstream convection balances transverse conduction, i.e.  L/R2(1-r1)
2
=Pe [1,21]. The reference 

scales for the radial and azimuthal velocities are determined from the continuity equation. This change of 

variables is adopted in order to have dimensionless variables of order 1. 

In the present study, it is assumed that the rheological behavior of the fluid is described by the power law 

model: 

τ= 2μa D                                                                             (9) 

Where τ and D are the deviatoric extra-stress, and deformation rate tensors. The apparent viscosity μa is 

given by: 

μa = K (4DII)
(n-1)/2

                                                                  (10) 
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Where: 

DII =1/2 trace (D
2
) 

         

                                                                                                                   (11) 

 

 

The scalar DII is the second invariant of tensor D. A singularity occurs in equation (10) as DII →0. To 

overcome this difficulty, a modified version of the rheological equation is used. When the value of DII is 

less than a critical value DIIc , the apparent viscosity is ‘frozen’ at a value calculated with DIIc. This method 

was adopted by several authors [1]. The value of DIIc must be sufficiently small in order to describe the 

rheological behavior of a pseudoplastic fluid, but without creating numerical difficulties, due to too abrupt 

changes in the apparent viscosity near the point where DII=0. In the present work, a value of DIIc =2.5 10
-3

 

is used, for which the results are insensitive to the cut-off value. 

 

      

4. Numerical procedure 

 

The conservation equations with their boundary conditions are discretized by a finite difference 

technique with an implicit scheme, where partial derivatives in the radial and azimuthal directions are 

approximated by a centered scheme; those in the axial direction are approximated by a forward upwind 

scheme. Neglecting axial diffusion makes the problem parabolic and the system of equations (2) to (5) can 

be solved by a stepwise integration in the axial direction starting from a specified set of upstream initial 

conditions. The momentum and energy equations are discretized using the two-step alternating direction implicit 

method (A.D.I).The solving algorithm is based on that proposed by Briley [22]. This algorithm allows 

treating the three-dimensional parabolic problem as if it were two dimensional. The basic idea is to assume 

the pressure field at the entrance of the duct to be known (i.e ∂Pm/∂z, ∂P'/∂α and ∂P'/∂β), making it possible 

to solve the momentum equations separately. Three steps are followed:  
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           
           

           
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-First step: Calculate the axial velocity W
n+1

  at section n+1 from equation (4) using the axial pressure 

gradient in the downstream section (∂Pm/∂z)
n
. The calculated axial velocity is used to verify the overall 

continuity equation (6). The residual flow (Res) defined by equation (12) associated with the secant method 

is then used to correct the axial pressure gradient. Both processes are repeated until Res ≤ 10
-7

. Simpson's 

rule is used for the calculation of the double integral in (12)  

          
     

2

1

2 2 2

0 2 1

1 1

2ch cos sh sh

W
d d






 

   

 
  
   

  Res                                                   (12) 

- Second step: Calculate velocities U
n+1

and V
n+1

 from equations (2) and (3) using (∂P'/∂α)
n
 and (∂P'/∂β)

n
. 

The two velocities Up and Vp (Provisional velocities) which are obtained are corrected to verify the local 

continuity equation (1):  

U=Up+Uc ;                      V=Vp+Vc                                                                      (13) 

It is assumed that the correction velocities (Uc, Vc) are irrotational, they derive therefore from a potential χ 

so that:  

1 1
;

c c
U V

h h

 

 

 
 

 
                                                                                     (14) 

Equations (13) and (14) are substituted into (1); thus we obtain a Poisson equation:  

      f                                                                                                       (15) 

Where: 
2

1 1
sh sh sin

p p

p p

U VW
f U V

z h h
  

 

  
      

   
 

noting that:
2 2

2 2 2 2

1 1

h h 

  
   

  
 

The method of successive under-relaxation (SUR) with double sweep (following α and β) is used to 

solve equation (15). Once the two transverse velocities are corrected, (∂P'/∂α)
n+1

 and (∂P'/∂β)
n+1

 are 

determined from an equation of Poisson constructed after rearrangement of equations (2) and (3).  

ΔP S                                                                                                     (16) 
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Where:   1 2

1 2

1 1
sh . sin .S

h h

 
 

 

 
   

 
  

As for equation (15), the successive under-relaxation method (SUR) with double sweep is used to solve 

equation (16).  

The convergence criterion for χ and P' are:  

Max| χ
k+1

- χ
k
|/Max| χ

k+1
|≤10

-5
                   Max| P’

k+1
- P’

k
|/Max| P’

k+1
|≤10

-5
                          (17) 

- Third step: Solve the energy equation using equation (5) to determine θ
n+1

.  

Because the fluid consistency (K) is temperature dependent, the three steps are repeated until convergence.  

After several preliminary tests on the dependence of the solution in relation to the mesh size (Fig.3), a 

regular grid of 101 × 101 points within the radial direction   and the azimuthal direction  is adopted (see 

discussion in the next section). Increasing the eccentricity complicates the problem further, leading to 

different axial meshes choices. Furthermore, the choice of the axial mesh size is also affected by rheological 

behavior of the fluid especially for low values of n (<0.5); it must be increasingly refined as n decreases. In 

order to overcome these constraints, axial step values ∆z=2.5.10
-4

/L, ∆z=10
-4

/L and ∆z=10
-5

/L
 
are used.   

 

*** Fig. 3 *** 
 

Furthermore, due to the fact that the transformation from the Cartesian to bipolar coordinate system 

presents a singularity in the computations if ε is taken exactly equal to 0 [5,14], a very small value of ε must 

be chosen to reproduce the concentric case. Tests performed for ε=10
-3

, 10
-4

 and 10
-5

 show that the last 

value gives a good representation of the concentric case. Therefore, computations of the concentric case are 

actually performed for ε=10
-5

, noting that ε=0 is written instead of ε=10
-5 

for the sake of simplicity. 

Remark: For a better presentation, the results in the radial direction are presented in terms of r instead of α 

(r1 ≤ r ≤1.0). This has no incidence since the radial mesh is regular. 
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Validation of the computing code 

 

At the entrance of the heating zone, the velocity profile is assumed fully developed, this assumption 

being adopted by several authors [3, 4, 8, 9, 23, 24]. Yet, this profile is strongly affected by the 

eccentricity ε between the two cylinder axes. Solving for the fully developed flow in the isothermal case 

using equations (1) and (4) allows for the determination of the axial velocity profile and the axial pressure 

gradient ∂Pm/∂z for each ε at the heating zone entrance. The results show, as expected, that with 

increasing eccentricity, the velocity increases in the widest part (Fig. 4.a; β = 0) and decreases in the 

narrowest part (Fig. 4.b; β = π) where the flow is almost blocked for eccentricities greater than 0.6. In the 

case of a Newtonian fluid and for ε=0.2, the maximum velocity in the wide part is 33.3% greater than in 

the concentric case and 38.7% lower in the narrow part. These values become respectively 54% and 

89.7% for an eccentricity of 0.6. For this type of fluid, the results are validated by comparing them with 

the results of Escudier et al. [25] for eccentricity values of 0.2, 0.5 and 0.8 (see [26], p65) and with those 

obtained by Feldman et al. [5] for different eccentricities and different radii ratios (Table 1).  

***Table 1*** 

 
The shear-thinning index n has also a great effect on the axial velocity profile. This is due to increased 

parietal gradient with decreasing n; this increase leads to a decrease of the apparent viscosity of the fluid 

which leads to greater uniformity of the flow (for this reason, the axial velocity profile becomes flatter as n 

is smaller). A large eccentricity can cause the blockage of the flow in the narrow part, even more so when 

the shear-thinning index is low. This effect is presented for three values of the shear-thinning index in 

figure 4. A comparison for n = 0.6 and n = 1.0 with the results obtained by Manglik et al. [7] is also 

presented in [26] where other validations are made for different situations, including mixed convection, in 

the concentric case by comparison with the results of Benaouda-Zouaoui [21]. All these show a good 

agreement with the results obtained by the computational procedure used in the present study and more 

extensively presented in [26].  

***Fig. 4*** 
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Effect of the mesh size 

 

  In order to test the effect of the transverse mesh (α×β) on the results, computations are performed for 

the case of mixed convection with ε=0.2 and  ε=0.7  for five transverse mesh sizes (51×51, 86×86, 

101×101, 126×126 and 141×141). The results are compared in terms of the mean interior Nusselt number 

( 1Nu ) in figure 5. As it can be observed, after just a short distance from the entrance section (z 

approximately equal to 10
-5

; corresponding to a dimensional distance of approximately 3 mm for the 

presented case with Pe=33440, R1=20 mm and R2=40mm), all the curves for mesh size greater than 51x51 

almost coincide. The results become sensitive to the effect of the mesh size when approaching the entrance 

of the heating zone. This is not surprising, since the thermal boundary layer, is thinner in this area. 

However, if we accept a variation of 1% at positions greater then z≈3 10
-6

 after the entrance, the grid (101 x 

101) is sufficient. Following these considerations, a regular transverse mesh size of 101×101 is finally 

chosen in the present work since any further refinement does not improve results very much while 

considerably impeding computing time. 

***Fig. 5 ***    

5. Results and discussion 

 

In order to highlight the effect of eccentricity, that of the rheological behavior and thermodependency of 

the fluid and that of natural convection on the velocity and temperature profiles, the analysis of the flow is 

presented in two parts. The first part deals with the forced convection case and the second part is dedicated 

to the mixed convection case.  

All results are presented in nondimensional form, except for the outer cylinder wall temperature variation 

along the duct length (T2 vs. z*) which is presented dimensionally for the sake of comparison with reference 

[1] (all computations are made for a computational domain of length z
*

f  =3m, R2=40 mm and a radius ratio 

r1=0.5 for the same purpose). This also allows a better grasping of one of the main objectives of the present 

work which deals with the temperature difference between the upper and lower parts of the duct. The 
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variation of Nu along the heated zone is presented using a logarithmic scale for both Nu and z, which brings 

to evidence the axial position from where natural convection becomes the dominant mechanism of heat 

transfer. 

 

5.1. Forced convection 
  

Introducing an eccentricity in the annular duct has a great effect on the profile of the main flow, which 

results in an acceleration in the wide part and a deceleration in the narrow part. The orientation of the 

eccentricity (upward or downward) does not matter in this case and all results are linked to the width of the 

cross section (narrow and wide) whether it is positioned on top or bottom. The acceleration of the flow in 

the wide part enhances heat exchange in this part. In the narrowest part, the fluid heats up more rapidly, due 

to the decrease of the fluid stream thickness there. The rapid heating is well noted for eccentricities greater 

than 0.2, and the heat exchange tends to be more conductive than convective in this part.  

Furthermore, for high eccentricities (ε >0.6), particularly with low n values when the axial velocity 

becomes almost zero in the narrow part of the annular section, the assumption of neglecting axial thermal 

diffusion can lead to unexpected errors. Feldman et al. [9] note that for Peclet numbers < 50, the assumption 

of neglecting thermal axial diffusion is no longer valid, especially for either low radii ratios or low shear 

thinning indexes (see also [8], p813). The development of the thermal boundary layer will be much faster in 

the narrow region than in the wide region (Fig. 6). On the other hand, the temperature difference between 

top and bottom increases strongly with eccentricity, thus creating a stratification of the thermal field 

between the two zones (Fig. 7). 

*** Fig. 6 *** 

 

 

***Fig. 7 *** 
 

 

 

The decrease of consistency K with increasing temperature T induces a reorganization of the flow. This 

is characterized by a radial displacement of fluid particles from the central zone toward the heated walls. 
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The wall velocity gradient increases, thus promoting heat exchange near the walls, whereas the axial 

velocity decreases in the central zone in order to insure flow rate conservation (Fig. 8.a). This has been well 

demonstrated by Nouar et al. [1] for the concentric case and it is shown here to remain valid for the 

eccentric case for low eccentricities (ε <0.2). For high eccentricities, a new phenomenon appears. The flow 

which was accelerated close to the wall and decelerated in the central zone begins to accelerate in the 

central zone too; this being observed only in the narrow part. This acceleration is mainly due to the decrease 

in viscosity because of the strong propagation rate of heat. The acceleration of the whole flow in this part 

contributes to promote heat exchange and to reduce the problem of flow blockage observed for high 

eccentricities (Fig. 8.b). The phenomena observed in the wide part of the duct remain unchanged (Fig. 8). 

 

***Fig. 8*** 

 

 

The radial motion of colder fluid particles from the central zone toward the walls tends to cool them and 

a significantly less pronounced temperature difference between the top and bottom parts of the outer wall is 

observed compared to the non thermodependent case (Fig. 9). 

 

*** Fig. 9*** 

 The heat exchange coefficient (Nu) decreases along the heating zone; this is due to the increase of 

the bulk fluid temperature. The presence of an eccentricity induces a more rapid increase of the bulk fluid 

temperature, thus accentuating the reduction of the transfer coefficient. The evolution of the external 

circumferential average Nusselt number ( 2 21
2(1 ) / ( )

m
Nu r     ) along the duct is presented in Figure 10 for 

different eccentricities (ε=0; 0.2 and 0.4) and the effect of the eccentricity is very well observed. A similar 

result is obtained for the internal circumferential average Nusselt number ( 1 112(1 ) / ( )mNu r     ) [8]. 

 

***Fig. 10 *** 
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Figure 11 shows an improvement of the Nusselt number which is more and more marked as shear-thinning 

is important. This improvement is due to an increased axial velocity gradient with decreasing shear-thinning 

index n. 

*** Fig. 11*** 
 

 

The acceleration of the main flow near the walls due to the effect of thermodependency leads to improved 

values of Nusselt number compared to the non thermodependent case (Fig.12). This improvement is even 

more marked as the Pearson number increases [1]. 

 

  

***Fig. 12 *** 
 

 

5.2. Mixed Convection 

 

This part of the study focuses on the case of mixed convection for a thermodependent shear-thinning 

fluid. The decrease in fluid density ρ with temperature induces an upward azimuthal flow (V> 0) of hot fluid 

along the walls and a downward flow (V <0) of cold fluid in the central zone. Fluid particles enter the 

boundary layer in the bottom of the duct and leave it in the upper part (Fig.13). 

 

***Fig. 13 *** 

 

For the case ε=0 (concentric case), the analysis of the tangential velocity profiles V at a given axial 

position and for different azimuthal positions underlines an azimuthal acceleration of the fluid from the 

bottom of the duct to the mid plane where β=π/2, then a deceleration toward the top of the duct (Fig.14). 

This remains valid for the case of upward and downward shift for low eccentricities. For large 

eccentricities, the plane position of maximum tangential velocity can move beyond β=π/2. The azimuthal 

flow increases in intensity along the heating zone, and natural convection becomes increasingly the 

dominant mechanism in heat transfer. 

***Fig. 14 *** 
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The shear-thinning of the fluid (n) induces a decrease of V. This evolution can be explained by the fact 

that shear-thinning induces an increase of the wall axial velocity gradient. Consequently, the thermal 

boundary layer thickness -of the main flow- decreases, and associated with it, that of the secondary flow. 

The temperature difference between the wall and the fluid decreases, leading to a decrease in the intensity 

of recirculation (Fig.15) [1]. This phenomenon is observed for the eccentric cases for all values of β and z. 

*** Fig. 15*** 
 

 

The decrease of consistency K with temperature reduces sheering stresses, causing an increase in 

intensity of the recirculating secondary flow. On the other hand, it increases the gradient of the axial 

velocity near the walls, thus reducing the thickness of the thermal boundary layer and reducing the average 

wall temperature relative to the non thermodependent case. Figure 16 shows the development of thermal 

boundary layer for the case of mixed convection for different eccentricity values. In the case of upward shift 

(Fig. 16.a), the thermal boundary layer develops more rapidly in the upper part of the duct than in the lower 

part. The profile that was somewhat regular in the case of forced convection (with or without 

thermodependency) is distorted by the ascending warm streams and downward flow of colder streams. 

Thermodependency adds more to this distortion because of the radial flow generated by the motion of fluid 

particles from the mid zone of the flow section toward the walls. In the case of the downward shift 

(Fig.16.b), and for eccentricities of less than or the order of 0.2, the thermal boundary layer develops more 

rapidly in the upper part than the lower part, due to the same phenomenon of ascending warm streams. For 

larger eccentricities, the opposite phenomenon is observed. This is due in part to the closeness of the two 

cylinders in the bottom part of the annular gap and secondly to the increased thickness of fluid layers in the 

upper part. We note that for this second case, the development of the thermal boundary layer in the bottom 

is much slower compared to the first case of upward shift. 

 

***Fig. 16 *** 
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As in the case of forced convection with K = f (T), the main flow is accelerated near the heated walls due 

to the decrease in consistency. On the other hand, it is decelerated in the central zone due to the generation 

of a radial motion of colder fluid particles from the center toward the walls. But because of the secondary 

flow generated by buoyancy forces, the warmer fluid tends to accumulate in the upper part along the pipe 

leading to an acceleration of the main flow in this part in order to satisfy continuity (case ε=0). The upward 

shift increases the fluid temperature in the upper part, leading to an increased acceleration in this part (Fig. 

17.a). Comparing with the case of thermodependent forced convection; acceleration in the case of mixed 

convection is indeed more intense (Fig.8 and Fig.17.a). For a downward shift (Fig. 17.b) and eccentricities 

of less than or about 0.2, acceleration is observed in the lower part very close to the inlet section when the 

dominant mechanism in heat transfer is forced convection. When natural convection becomes the dominant 

mechanism, the reverse phenomenon is observed. The flow slows down progressively in the lower part and 

accelerates in the upper part due to stratification of the thermal field. For larger eccentricities, a rapid 

acceleration of the main flow is observed in the lower part near the inlet section. A gradual deceleration in 

this part is then observed away from the inlet section with the intensification of the secondary flow due to 

buoyancy forces. In the upper part (wide region), a small reacceleration is encountered far from the inlet 

section. This is due to the increased thickness of the layers of fluid in this part. 

 

***Fig. 17 *** 

 

The variation of the average external circumferential Nusselt number along the heating zone in the case 

of an upward shift with ε=0.2 along with the case of a downward shift is presented in Figure 18. Near the 

inlet section, forced convection is the dominant mechanism in heat transfer, 2Nu  decreases along the duct 

with increasing z. The effect of natural convection is weak, and all the curves fall on that corresponding to 

the forced convection. Far from the inlet section, natural convection becomes the dominant mechanism in 

heat transfer and the curves corresponding to the mixed convection rise above those corresponding to forced 

convection starting from a certain critical axial position [1]. The downward shift enhances the effect of 
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natural convection. Consequently, the curves corresponding to mixed convection rise above those 

corresponding to forced convection much closer to the inlet section compared to the concentric case (ε=0) 

[26]. This phenomenon is further marked with increasing eccentricity. For the upward shift case, the 

divergence between the two curves (forced and mixed convection) tends to take place farther away from the 

inlet section compared to the concentric case. This can be explained by the fact that when eccentricity 

increases, the remoteness of the two cylinders in the lower part (wide part) slows down the development of 

the thermal boundary layer, consequently weakening the effect of natural convection. 

*** Fig. 18 *** 

The ascending azimuthal flow which begins right at the entrance of the duct creates a stratification of the 

thermal field between the top and bottom of the duct. This stratification is observed for both cases of 

upward or downward shift. In the case of an upward shift, the intensity of the ascending flow decreases with 

increasing eccentricity because of the increased distance between the two walls in the lower part which is 

more and more enlarged. However, the closeness of the walls on the top makes the fluid in the top become 

more heated than the one in the bottom, therefore increasing stratification with increasing eccentricity 

(Fig.19.a). In the case of a downward shift, a rapid increase in temperature of the outer wall (inner wall too) 

in the lower part due to the closeness of the two cylinders is observed. This increase is even stronger when 

eccentricity increases. The ascending flow starts right at the entrance, and a gradual increase in temperature 

of the outer wall on the top is observed. Far from the entrance, natural convection becomes the dominant 

mechanism in heat transfer and the temperature of the outer wall on the top becomes higher compared to the 

bottom. For this case of shift, there are two distinct phenomena. One for small eccentricities (<≈ 0.2), where 

an increase in stratification between the top and bottom of the duct compared to the concentric case is 

observed. This is mainly due to strong heating of the fluid in the lower part caused by the closeness of the 

two cylinders associated with the significant effects of natural convection in the top. The second 

phenomenon is observed for higher eccentricities, where stratification becomes increasingly low when 

eccentricity increases. In fact, there is a decrease in the mass of the more highly heated fluid in the bottom 
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where the walls are closer. This fluid must in turn exchange heat with more and more important layers of 

less intensely heated fluid (in the wide part of the duct) during  its ascending flow, thus leading to a weaker 

contribution of the azimuthal flow to the heating process. As a result, a considerable decrease of thermal 

stratification between the top and bottom parts of the duct can be observed at a moderate distance from the 

entrance of the heating zone (Fig.19.b). 

Moreover, fluid thermodependency (decrease of K with T) on the one hand reduces friction forces near 

the heated walls, which induces an increase in intensity of recirculation of the secondary azimuthal flow. On 

the other hand, it increases the gradient of the axial velocity near the walls, leading to a decrease of the 

thermal boundary layer thickness and a decrease of the mean wall temperature relative to the non 

thermodependent case. This can clearly observed by comparing Fig.19 and Fig.17 (for r=1; Top and 

Bottom).  

***Fig. 19 *** 

  

Figure 20 shows the variation of the local external circumferential Nusselt number (Nu2=2(1-r1)/(θ2- θm)) 

for β=0 and β=π, for an upward and downward eccentricity (ε=0.2). Away from the inlet section, the 

secondary flow caused by buoyancy forces becomes increasingly intense. This explains the deterioration of 

the heat transfer coefficient in the upper part of the annular gap and its improvement in the lower part. Near 

the inlet section, the difference between Nu2(β=0) and Nu2(β=π) is rather small as the dominant mechanism 

of heat transfer is forced convection. 

Far from the inlet section, the difference becomes more marked, thus reflecting the dominant effect of 

buoyancy forces. This difference is even greater when eccentricity increases for the downward shift case 

(Fig.20.a). The opposite phenomenon occurs for an upward shift (Fig.20.b). The solid line curves 

correspond to the non thermodependent case (Pn=0) and the dotted ones are for the thermodependent case 

(Pn=8). For both cases presented, Nu2 is higher in the thermodependent case compared to the non 
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thermodependent case. This is due to increased wall gradient of axial velocity and reduced walls 

temperature (reduction of θ1,2 - θm). 

 

***Fig. 20 *** 

 

 

6. Conclusion 

 
 

The problem of mixed convection for the laminar flow of a shear-thinning fluid with variable 

consistency in a horizontal eccentric annular duct is solved numerically. The results show that:  

 The application of an eccentricity between the cylinders strongly affects the axial velocity by 

accelerating the flow in the wide part and decelerating it in the narrow part; ultimately almost 

reaching blockage of the flow in the narrow part particularly for low values of n (n <0.5). 

 In the case of forced convection alone, bringing the two cylinders closer in the narrow part 

enhances the heating of the fluid. This leads to a fast development of the thermal boundary 

layer, thus creating stratification between the wide and the narrow part of the duct. 

 The decrease of K with T close to the hot walls generates a radial motion of cooler fluid particles 

from the core of the flow section toward the walls, leading to an increase in the wall gradient of 

axial velocity and thus an acceleration of the fluid near the walls. Subsequently, a deceleration in the 

core zone occurs in order to ensure the conservation of mass. This is only valid for small 

eccentricities. For high eccentricities, acceleration is observed across the entire narrow part due to 

the sharp decrease in viscosity throughout this part. The radial flow contributes to the cooling of the 

walls and a less pronounced stratification is observed compared to the previous case. 

 The decrease of ρ with T for the mixed convection generates an ascending stream of hot fluid 

near the walls and a downward flowing stream of cooler fluid in the core zone. An azimuthal 

boundary layer is thus created. The enhancement of the ascending hot streams creates a thermal 

stratification between the top and the bottom parts of the duct. This stratification is intensified in the 
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case of an upward shift of the inner cylinder, or a downward shift with low eccentricities (ε <≈0.2). 

However, this stratification decreases at a moderate distance from the entrance of the heating zone in 

the case of a downward shift with eccentricities greater than 0.2. 

 For K = f (T), the secondary azimuthal flow generated by the decrease of ρ is enhanced. This is due to 

the decrease of the viscosity near the walls. A secondary radial flow occurs from the core zone 

toward the walls, contributing to their cooling. The thermal boundary layer grows for the two cases 

of mixed convection faster in the upper part than in the bottom, except for large eccentricities 

(ε>0.2) when a downward shift is applied. 

 From the work performed and the results obtained, it can be deduced that a proper choice of a 

downward eccentricity level (>0.2) reduces the thermal stratification observed at a moderate 

distance from the entrance of the heating zone for the concentric case. The choice of the adequate 

eccentricity value depends on rheological and thermal properties of the fluid. For the presently 

studied case, a value of eccentricity ε ≈ 0.4 seems appropriate as it satisfies the abovementioned 

condition while still being farther enough from the flow blockage limit of 0.6. 

The alternative of applying an eccentricity between the cylinders which is proposed in the present study 

is justified by its easy integration in industrial processes. Nevertheless, it would be interesting to extend this 

study to other geometries (two concentric or off centered ellipses, an ellipse and a cylinder ...) in order to 

propose the most suitable geometry for offsetting the thermal stratification phenomenon observed in the 

concentric annular duct case. This can be of great importance in cases of industrial processes where uniform 

temperature distribution at the exit of the heat exchanger is a sensitive issue. This is particularly critical 

when thermal stratification can have a denaturing effect on the fluid, because of the temperature differences 

it induces in the flow, and is therefore highly undesirable. 
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Figures captions 

 

Fig. 1 Geometry of the heated duct.  

Fig. 2 Bipolar coordinate system. 

Fig. 3 Mesh of the studied geometry. 

Fig. 4 Effect of eccentricity (ε) and shear-thinning index (n) on the fully developed axial velocity profile 

used at the duct entrance (Re=40). (a) β= 0 : wide part of cross section ; (b) β= π : narrow part of 

cross section.   

Fig. 5 Axial variation of 1Nu  for a thermally developing flow (mixed convection) for various transverse 

meshes (α×β). Upward shift; ε=0.2 and ε=0.7; r1=0.5; Re=38.30; Pr=873.02; Gr=985.95; n=1.0; 

Pn=1.96. 

Fig. 6 Development of the thermal boundary layer along the heated duct for β= 0 and β=π. Case of forced 

convection; n=0.7; Pn=0; Re=40.5; Pr=1410. (a) ε=0; (b) ε=0.6. 

Fig. 7 Effect of eccentricity ε on outer wall temperature evolution. Case of forced convection; n=0.7; Pn=0; 

Re=40.5; Pr=1410;  Te=20°C ; (----narrow part of cross section,       wide part of cross section). 

Fig. 8 Variation of the axial velocity along the duct for =0 and = . Case of forced convection; n=0.7; Pn=8;   

          Re=40.5; Pr=1410; Te= 20°C. (a) ε=0; (b) ε=0.6. 

Fig. 9 Variation of outer wall temperature T2 along the heating zone for ε=0.6 and n=0.7. Case of forced 

convection; Pn=8; Re=40.5; Pr=1410; Te= 20°C; (----narrow part of cross section,       wide part of 

cross section).  

Fig. 10 Effect of eccentricity (ε) change on 2Nu along the heating zone. Case of forced convection; n=1.0; 

Pn=0 ; Re=27 ; Pr=891. 

Fig. 11 Effect of shear-thinning index (n) change on 2Nu along the heating zone for ε=0.2. Case of forced 

convection; Pn=0 ; Re=27 ; Pr=891. 



29 

 

Fig. 12 Effect of thermodependency (K(T)) on 2Nu along the heating zone. Case of forced convection; 

n=1.0; Pn=8; Re=27; Pr=891.  

Fig. 13 Structure of the azimuthal flow at z=1.75 .10
-3 

for n=0.7; Pn=0; Re=40.5; Pr=1410; Gr= 7497. 

Fig. 14 Tangential velocity profile at z=3.50 10
-3

 for n=0.7; Pn=0; Re=40.5; Pr=1410; Gr= 7497. 

Fig. 15 Effect of  n on the tangential velocity profile for =0 ; z=5.25 10
-3

; =/2; Case of : mixed    

            convection Pn=0 ; Re=40.5 ; Pr=1410 ; Gr= 7497. 

Fig. 16 Development of the thermal boundary layer along the duct for β= 0 and β=π and different  values  

            for n=0.7; Pn=8; Re=40.5; Pr=1410; Gr=7497.  

Fig. 17 Variation of the axial velocity along the duct for β= 0 and β=π for different  values for n=0.7;  

              Pn=8; Re=40.5; Pr=1410; Gr=7497; Te=20°C. 

Fig. 18 Variation of 2Nu  along the heating zone for  =0.2; n=1.0; Pn=0; Re=27; Pr=891 ; Gr=4258.  

Fig. 19 Variation of outer wall temperature T2 along the duct for different  values for n=0.7; Pn=8;  

             Re=40.5; Pr=1410; Gr=7497; Te=20°C ; (---- Top,       bottom). 

Fig. 20 Effect of thermodependency (K(T)) on Nu2 for =0 and = ; n=1.0; Re= 27; Pr= 891; Gr= 4258 ;  

                            
 Pn=0; 

- - - -
 Pn=8.0. (a) Downward shift; (b) Upward shift. 
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Table 1: Variation of Wmax/Wm for n=1 and =0 with eccentricity (values between brackets are for a more 

refined mesh); (a) present results; (b) results of Feldman et al. [5], p239. 
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