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Abstract

Three-dimensional linear stability analysis of Couette flow between two coaxial
cylinders for shear-thinning fluids with and without yield stress is performed. The
outer cylinder is fixed and the inner one is rotated. Three rheological models are
used: Bingham, Carreau and power-law models. Wide range of rheological, geomet-
rical and dynamical parameters is explored. New data for the critical conditions
are provided for Carreau fluid. In the axisymmetric case, it is shown that when the
Reynolds number is defined using the inner-wall shear-viscosity, the shear-thinning
delays the appearance of Taylor vortices, for all the fluids considered. It is shown
that this delay is due to reduction in the energy exchange between the base and
the perturbation and not to the modification of the viscous dissipation. In the non
axisymmetric case, contrary to Caton[l], we have not found any instability.

Key words: Circular Couette flow, Shear-thinning fluid, Stability analysis.

1 Introduction

Taylor-Couette flow, the flow between two rotating coaxial cylinders that are
infinitely long, is a paradigm for studies of stability and transition to turbu-
lence of sheared Newtonian fluids. For low velocities of the cylinders, the flow
is steady and purely azimuthal with U = V' (r)ey, where ey is the unit vector
in the azimuthal direction. When the angular velocity of the inner cylinder is
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increased above a certain threshold, the purely azimuthal flow becomes un-
stable, and a stationary axisymmetric flow characterized by the appearance of
counter-rotating toroidal vortices is observed. These vortices are separated by
inflow and outflow radial jets. The origin of this instability is the existence of
an adverse gradient of the square of the angular momentum, d(rV)?/dr < 0,
that allows centrifugal forces to overcome viscous forces. Taylor-Couette flow
has been the subject of numerous experimental and theoretical studies since
the pioneering paper of Taylor in 1923 [2]. Higher transitions as the angu-
lar velocity of the inner cylinder is increased beyond the critical value are
discussed in the review of Di Prima and Swinney [3]. For non-Newtonian flu-
ids, there was a considerable interest in inertialess viscoelastic Taylor-Couette
instability, driven by the first normal-stress difference that develops due to
stretching of the polymer molecules along the curved stream lines. The purely
elastic Taylor Couette instabilities, observed initially by Giesekus [4], were
analyzed by Muller et al. [5], Larson et al. [6] and Shaqgfeh et al. [7]. Groisman
and Steinberg [8] showed experimentally that the elastic instability leads to a
strong nonlinear flow transition. Thomas et al. [9] investigated the nonlinear
pattern formation using three dimensional dynamical simulation.

In some industrial processes, such as in oil-well cementing, the fluids used are
strongly shear-thinning and slightly viscoelastic. In order to isolate the effects
of shear-thinning, it is necessary to consider non-Newtonian purely viscous
fluids, i.e. fluids without elastic response and with an effective viscosity /i de-
creasing nonlinearly with the shear rate 4. Surprisingly, very few studies have
been devoted to this case. In the following, we give a brief literature review
relying on the main results. We choose to present them according to the most
commonly used rheological model namely the power-law, Carreau and Bing-
ham models. The last one is for shear-thinning fluid with yield stress.

For power-law fluids, Sinevic et al.[10] determined the onset of Taylor vortices
by measuring the torque exerted by the fluid on the rotating inner cylinder.
The results obtained by the authors for CMC solution and Carbopol solutions
are reported on Fig. 1. Jastrzebski et al. [11] have determined the critical
Reynolds number from a linear stability analysis. They conclude that the
shear-thinning has a destabilizing effect. Lockett et al. [12] used a 2D finite el-
ement code to simulate the transient flow, and a numerical criterion is used to
determine the first bifurcation. They found that the stabilizing or destabiliz-
ing effect induced by the shear-thinning behavior depends on the radius ratio
n= Rl / ]—?2, where Rl and Rg are the radii of the inner and outer cylinders
respectively. Escudier et al.[13] investigated the flow structure in a Taylor-
Couette geometry with a radius ratio of 0.5. Axial and tangential velocity
measurements were made using a laser Doppler anemometer for a an aqueous
solution of Xanthan gum, which is shear-thinning and slightly viscoelastic and
a Laponite/CMC blend which is shear-thinning and also thixotropic. The re-
sults reveal that the shear thinning behavior induces a significant radial shift



in the location of the vortex eye towards the centrebody. In the Figure 1,
we have represented the critical Reynolds number, Re., for the primary bi-
furcation, as function of the shear-thinning magnitude, given by the index n,
deduced from the literature review. The existing results show rather impor-
tant discrepancies. The relative difference may reach value up to 30%.

For Carreau fluids, Ashrafi and Khayat [14] and Li and Khayat [15], examined
the influence of the shear-thinning on the stability of circular Couette flow in
the narrow gap limit. The authors indicate that the shear-thinning tends to
precipate the onset of Taylor vortex flow and to modify the shape of bifurca-
tion branch. Coronado et al.[16] used 2D CFD code to determine the onset
of instability. They conclude that if the Reynolds number is defined with the
viscosity calculated at the inner rotating wall, the critical Reynolds number
calculated for Newtonian fluid is a good estimation for the onset of instability
for shear-thinning fluids. Nevertheless, in their study, the rheological param-
eters used are such that the viscosity profile departs slightly from that of a
Newtonian fluid.

For Bingham fluids, Graebel [17] was the first who performed a linear stabil-
ity analysis of a viscoplastic fluid flow. Using a narrow gap limit, the authors
found that the yield stress has a stabilizing effect. Peng and Zhu [18] and
Landry et al. [19] found that the yield stress can have a destabilizing effect in
wide gap co-rotating cylinders over a limited range of Bingham numbers. An
interpretation based on the exchange energy between the base flow and the
perturbation is proposed.

Recently, Caton [1], indicated that for power law fluids with shear-thinning
index less than 0.2, the least stable mode is non axisymmetric and consists
of a large number of columnar vortices. This surprising result has not been
discussed. Actually, non-axisymmetric instability in the Taylor-Couette flow
was observed experimentally by Andereck et al. [20] for Newtonian fluids when
the two cylinders are counter-rotating. This regime called laminar spiral flow
occupies a narrow region in the stability diagram. It was also obtained by Wan
Zhan-Hong et al. [21] for a fiber suspension using linear stability analysis. The
rheological behavior of the suspension is described by Ericksen model and the
ratio of the angular velocity of the outer cylinder to that of the inner cylinder
is less than —0.6 for a radius ratio n = 0.88. It should be noted that in the
case of counter-rotating cylinders, the sign of d(rV)?/dr changes within the

gap.

Circular Couette flows of shear-thinning fluids are mainly characterized by a
viscosity stratification in the annular space. The degree of viscosity stratifica-
tion is even more significant as the fluid is more shear-thinning and the radius
ratio n is small. Besides this, when an infinitesimal perturbation is imposed
on the base flow, the shear-stress and the shear-rate are disturbed by d7,¢
and 67,9, then the disturbance will feel the tangent viscosity p; = 97,.9/0%¢



Fig. 1. Critical Reynolds number defined by the equation (3) versus the shear-thin-
ning index n, for power-law fluids with a radius ratio n = 0.9. (o) Sinevic et al.
[10]; (O) Caton [1]; (V) Jastrebski et al. [11]. The error bars correspond to reading
uncertainties on figures published in the literature. Here, n = 1 is the Newtonian
limit and increasing shear-thinning corresponds to a decrease of n.

rather than the effective viscosity. This leads to an anisotropy of the pertur-
bation 7" of the deviatoric-stress tensor. More details on this point are given
in section 4. The objective of the present paper is to revisit the stability of
shear-thinning fluid flow between two coaxial cylinders. The influence of the
viscosity stratification and that of the anisotropy of 7/ will be highlighted. We
consider only the case where the inner cylinder is rotating and the outer is
at rest. As Caton [1] suggested the existence of longitudinal rolls for strong
shear-thinning fluids, we have then considered three types of perturbation:
(i) axisymmetric perturbation, (ii) homogeneous perturbation in the axial di-
rection and (iii) three dimensional perturbation. This paper is structured as
follows: in section 2, the mathematical formulation of the problem is provided.
Three different constitutive equations are considered: the Bingham model to
represent the viscoplastic fluids, and the Carreau and power law models to
represent the shear-thinning fluids without yield stress. Section 3 describes
the basic flows. The influence of the rheological parameters on the viscosity
stratification is discussed. In section 4, the perturbation equations are stated in
the frame of the linear stability analysis. Section 5 briefly outlines the solution
procedure for the eigenvalue problem that arises from the normal-mode linear
stability analysis. The results are discussed in section 6. Finally, conclusions
are presented in section 7.

2 Problem description

We consider the flow of an incompressible nonlinear viscous fluid between two
infinitely long concentric cylinders, with inner and outer radii, Ry and R,
respectively. The inner cylinder is rotating with a constant angular velocity
Q)1 while the outer is at rest. The governing equations in dimensionless form
are

V- -U=0, (1)

ou
E—FRB(U'V)U:—VP-FV'T. (2)
Here U is the velocity, P is the pressure and 7 is the deviatoric extra-stress
tensor. The velocity vector is of the form U = Ue, + V ey + W e,, where
€., eg and e, are unit vectors in the radial r, circumferential 8 and axial



z directions respectively. The above equations have been nondimensionalized
using the width of the annular space d = Rg — R, as the reference length
scale, the velocity of the inner cylinder 1Ry as Velomty scale, ,ureleQ /d
for stresses and pressure scale and diffusion time ,od /fires for time scale. The
viscosity reference fi,.¢ will be specified later. The Reynolds number Re is

defined by

Re = — . (3)

The dimensionless radii of the inner and outer cylinders are respectively:

A

| R
Ri=-—1 and Ry=-—— with n=-"
1_77 1_77 RQ

(4)

The quantities denoted with a hat () are dimensional while quantities without
(*) are dimensionless. In this work, we consider only the case of shear-thinning
fluids, i.e., fluids for which the effective viscosity ji decreases as the shear rate
increases. For the numerical computation, we consider three different models:
Bingham model (shear-thinning with a yield stress), power law model and
Carreau model. After scaling, the corresponding constitutive equations read:

For Bingham model

B

4=0+<= 71<B (6)

with a Bingham number defined by

-0 (7)
Href Rl Ql/ d

where 7y is the yield stress of the fluid, pu, = fi,/ftres is the dimensionless

plastic viscosity, 7 and 7 are respectively the second invariant of the strain-

rate tensor v and the deviatoric stress tensor 7. They are defined by the

following relations

. T . 1 1/2 1 1/2



For power-law model

~ Aoa o n—1
K
LD N (9)
Href

T=py=

where K is the consistency and n the shear-thinning index, 0 < n < 1.

For Carreau model

n—1

T = = oo + (Mo — o) [T+ (A ] 7 A (10)

where fioo = floo/flres 15 the dimensionless Newtonian plateau viscosity at high
shear rates, po = flo/fires is the dimensionless Newtonian plateau viscosity at
low shear rates, A = ARy Ql/d, where )\ is a time constant of the fluid. The di-
mensionless characteristic shear-rate for the onset of shear-thinning is defined
by 1/\. The infinite shear viscosity, fis, is frequently smaller (1072 to 1074
times smaller) than /iy (Bird et al. [22] and Tanner [23]) and will be neglected
in this study.

Concerning the reference viscosity, we have adopted in a first step, the ex-
pressions widely used in the literature which depend on the rheological model
considered. For Bingham model, the reference viscosity fi,.; used is the plas-
tic viscosity fi,. For Carreau model, the Newtonian plateau viscosity jip at
low shear rates is adopted as reference viscosity. For the power-law model,

o a oA oan—1
flrep = K (RlQl / d)n . The discussion on the choice of the reference viscosity
is deferred to a later section.

3 Basic flows

The basic flow is considered stationary and axisymmetric with a purely az-
imuthal velocity field U = (0, Ve(r), 05. The superscript b refers to the base
flow. The only non zero elements of the strain rate tensor are off-diagonal
Aty (r) = 4% .(r), so that the deviatoric stress tensor elements are all zero ex-

cept for 75 (r) = 75 (r) = u®4%. The momentum equations reduce to



with the nonslip boundary conditions at the inner R; and outer Ry walls

V'(R)) =1 and VP®Ry)=0. (12)

Integration of (11) gives

i) = (). (13)

T2
where 7 = 7%(R;) is the dimensionless shear-stress at the inner wall. It is

decreases from the

clear that 7% does not change sign in the annulus and ‘Tfa
inner to the outer cylinder. Using (13), the boundary conditions (12) and the
rheological laws, the velocity profiles V°(r) can be easily derived.

Bingham fluid: Case where all the annular space is yielded i.e. ‘Tf,’o(r)’ > B,
Vr e [Rl, RQ]

1 1
Voi(r) = §R%Tfr [RQ — 102] — Brln (RQ) : (14)

with

b 2 L—n
7 =7 [H—Bln(n)]. (15)

Using equations (5) and (14), it can be shown straightforwardly that

- (16)

pir) (1%1)2 W+ B
pb(r = Ry) r ) (Ry/r)*r?+ B

Samples of the basic velocity profiles VbA(r) and of the viscosity profiles are
given in Fig. 2 for radius ratio n = R;/Rs = 0.5 and different values of the
Bingham number.

Bingham fluid: Case where there is an attached layer at the outer cylinder: i.e.
Ry €] Ry, Ry[ such that 7%(Ry) = B, therefore TT:,)@(T)‘ < B for r €]Ry, Ry
Tfe(r)’ > B, for r € [Ry, Ry[. The radial position of the yield surface is

Ry. The no-slip condition at the external wall is replaced by V°?(Ry) = 0. The
basic velocity in the yielded zone reads

and




Fig. 2. Couette flow of a Bingham fluid in the case where all the annular space is
yielded for n = 0.5. (a) Basic azimuthal velocity profiles: (1) B = 0 Newtonian
fluid; (2) B = 0.5; (3) B = 1.23. (b) Basic viscosity profiles: (1) B = 0 Newtonian
fluid; (2) B = 0.5; (3) B =0.85; (4) B=1; (5) B = 1.23

Vo(r) = ;Rfffr [ L 1] — Brln (RO) : (17)

RZ  r? r

where 7 is determined using the boundary condition V*(R;) =1,

1:—BQR1 —|g|+1n (‘;j’) (18)
The viscosity profil expression is identical to that given by (16)
Power-law fluid
Vh(r) = — 1_<1 _ 1>1<1 _ 1), (19)
Ry R R rem Ry
and

w1 2

The base state for this rheological behavior is shown in Fig. 3.

Carreau fluid

For this model, we do not have analytical expression of the velocity profile.
Equation (11) combined with (10) is solved numerically using an iterative pro-
cess based on the classical Newton-Raphson method. Samples of velocity and



Fig. 3. Couette flow of a power-law fluid for n = 0.5. (a) Basic azimuthal velocity
profiles: (1) n = 1 Newtonian fluid; (2) n = 0.7; (3) n = 0.5; (4) n = 0.3. (b) Basic
viscosity profiles: (1) n = 1 Newtonian fluid; (2) n =0.7; (3) n =0.5; (4) n = 0.3.

Fig. 4. Couette flow of a Carreau fluid for n = 0.5, A = 1 and different values of the
shear-thinning index. (a) Basic azimuthal velocity profiles: (1) n = 1 Newtonian
fluid; (2) n = 0.7; (3) n = 0.5; (4) n = 0.3. (b) Basic viscosity profiles: (1) n =1
Newtonian fluid; (2) n = 0.7; (3) n = 0.5; (4) n =0.3.

viscosity profiles are given in Fig. 4 for fixed \ and varying n, and for fixed n
and varying \.

The velocity profiles are similar for the three fluid types, Fig. 2(a), 3(a) and
4(a). In overall, for increasing shear-thinning effects, i.e increasing B for Bing-
ham model or decreasing n for power-law and Carreau models, the velocity
gradient increases in absolute value at the internal wall and decreases at the
external one. Concerning the viscosity profile, as can be expected, ;i increases
from the inner to the outer wall, where the shear rate is lower. If the inner
wall shear viscosity is used as the reference, it can be observed that the overall
viscosity increases with the shear-thinning effect. For Bingham and power-law
fluids, the viscosity gradient du’/dr at the inner wall increases with increas-



Fig. 5. Couette flow of a Carreau fluid for n = 0.5, n = 0.3 and different values of
A. (a) Basic azimuthal velocity profiles: (1) A = 0 Newtonian fluid; (2) A = 1; (3)
A =10 and (--) power-law fluid. (b) Basic viscosity profiles: (1) A = 0 Newtonian
fluid; (2) A=1; (3) A =10; (4) A =100 and (--) power-law fluid.

ing B or decreasing n, Fig. 2(b) and 3(b). For Carreau fluid, Fig. 4(b) and
5(b), two behaviors are observed according to the value of A\. For A < O(1),
the viscosity gradient is maximum at the inner wall, whereas for larger A, the
viscosity gradient is maximum at the outer wall. This is consistent with the
fact that we can recover the power law model for large values of \.

4 Linear stability equations

An infinitesimal perturbation (eu’, ep’) is superimposed upon the basic flow.
{U,P,7} = {Ub,Pb,Tb} +e{u,p, 7'} . (21)

The momentum equations are linearized around (Ub, Pb> to yield

Vau'=0 (22)
35:, +Re[(U' V) u/ + (/. V) U = -V)/ + V.7 (23)

Using Taylor’s expansion at the first order of the effective viscosity about the
base flow, it can be shown that the perturbation of the shear-stress tensor is
expressed as:

= i [r(U"+ew) -7 (U} =5 () + (- ') A (20)
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where the tangential viscosity u; has been introduced:

= (V%) + 52 (U) 50 (U7). (25)

For Bingham and Power-law fluids, the explicit expressions of p; are given
respectively by:

%(n—l)

Lt Rl)
1: — i . 2
e =1; and Mb (r R1) n < . ( 6)

The components of tensor A are all zero except for Ajo = Ayy = A (W).
The anisotropy of the perturbation 7’ of the deviatoric stress tensor is a con-
sequence of the nonlinear rheological behavior p(¥) and the anisotropy of the
base flow.

The solution is sought under the shape of normal modes
{0} = {u(r),p(r)} exp ot +i(mb + kz)], (27)

u(r) = u(r) e,+v(r) eg+w(r) e,, k € R is the axial wave number and m € Z is
the azimuthal wave number. The real part of the complex pulsation Re (o) is
the growth rate and the imaginary part allows to define the axial and angular
phase velocities. Substituting the above solution ansatz into the linearized
continuity and momentum equations (22,23) yields

0=Dou+ % +ikw, (28)
r
b 2
ou= —ReK (imu — 2v) — Dp + p° [Au L amr u]
T 72 2
b 1m »\ [ = 1m
+2(Du)Du+r(ut—u)<Dv+ru>, (29)
b . 2.
ov=—Re <uD*Vb + Vimv) - @p + [AU + m;u - 1}2]
T r T r
+ (Dub) [Dv Y + zmu} + D, [(ut — ) (Dv—i— zmuﬂ
T r
1/~ mu
j— b —
=) [ (Do )] (30)
Vb
w = —Re—imw — ikp + p’Aw + (Dub) [Dw + ikul, (31)
r

d 1 1 5 1 m? 9
WhereD—d—D—D—l——D D—~-and A =D+ D———k
72

r
The system of equation (28, 31) can be rewritten in terms of two components

11



of the velocity (u,v) for k # 0 or (v, w) for m # 0. The different formulations
lead to a generalized eigenvalue problem which can be written formally as

Lg=0cMayg, (32)

where g = (u, U)T, (u, w)T depending on the formulation adopted. Operators
L and M are given in the appendix. If Re (o) < 0 for all eigenvalues, the base
flow is stable while if there exists a value of o such as Re (o) > 0, the base flow
becomes unstable. The condition Re (o) = 0 defines the critical threshold.

5 Numerical method

The eigenvalue problem is discretized by expanding the perturbation fields u
and v (u and w) in a truncated series of orthogonal Chebyshev polynomials
ny=2r—(1+n/01-n:u=S"yaT(y) and v = SN b6, T, (y). A
collocation method where the equations are evaluated at the Gauss-Lobatto
points is used. The eigenvalue problem is then transformed into its discrete
form. Errors in the spectrum introduced by an insufficient resolution of the
eigenvectors and which are characterized by a splitting of the spectrum [24],
affect only the eigenvalues with large |Re(c)|. For instance, at n = 0.5, Re = 70
and N = 50, for all the fluids considered in the paper, the splitting is observed
only for Re(o) < —3000, thus very far from the critical mode.

5.1 Convergence

To test the convergence of the numerical method, the computations of the
critical conditions are made for different truncatures N. The result is illus-
trated in Tables 1 and 2 for Bingham and power-law fluids respectively. It is
observed that thirty collocation points provide sufficient accuracy for the rhe-
ological parameters considered. The results given in the paper were obtained
with N = 40. Periodically, numerical tests were done to ensure convergence
and accuracy.

N 10 20 30 40 50

Re. | 127.73265 | 127.74943 | 127.74943 | 127.74943 | 127.74943

ke | 3.183604 | 3.183699 | 3.183708 | 3.183707 | 3.183706

Table 1
Convergence tests for a Bingham fluid at n = 0.5 and B = 1.
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Table 2

N 10 20 30 40 50
Re. | 71.99404 | 72.35036 | 72.35046 | 72.35046 | 72.35046
ke | 3.885593 | 3.867630 | 3.867602 | 3.867669 | 3.867670

Convergence tests for a power-law fluid at = 0.5 and n = 0.3.

Fig. 6. Critical Reynolds number of a Newtonian fluid versus the radius ratio 7.
(o) Our results; (O) Chandrasekhar’s [25] result at n = 0.5 and k& = 3.20; (— —)
Chandrasekhar’s [25] result using a narrow gap approximation and k = 3.12.

5.2  Validation

As a first test of validation we have compared the critical Reynolds numbers
for a Newtonian fluid at different radius ratios 7, given by our program, to the
ones of Chandrasekhar [25]. A very good agreement is found as can be seen
in Fig. 6.

6 Computational results

The results section consists of three parts. The first one deals with the case of
an axisymmetric disturbance (m = 0), the second one that of a homogeneous
disturbance in the axial direction (k = 0) and the third one that of a three-

dimensional disturbance.

6.1 Axisymmetric perturbation: m = 0

In the axisymmetric case, (u,v) formulation is used.

13




6.1.1 Figenvalues’ spectra

Eigenvalues spectra for Newtonian, power-law, Bingham and Carreau fluids
at the critical conditions and for n = 0.5 are shown in Fig. 7. The imaginary
part of most of the eigenvalues is zero, particularly the least stable modes,
i.e. the eigenmodes are not a traveling wave. One can note that the pairing of
the eigenmodes observed for Newtonian fluids disappears progressively with
increasing the shear-thinning behavior, this is particularly visible for power-
law and Bingham fluids.

Fig. 7. Eigenvalues’ spectra at the critical conditions for n = 0.5. (a) Newtonian
fluid Re, = 68.75 and k. = 3.12. (b) Power-law fluid with n = 0.3, Re, = 72.4 and
k. = 3.9. (c) Bingham fluid with B = 10, Re. = 950 and k. = 9.4. (d) Carreau
fluid with A =10, n = 0.3, Re. = 14.1 and k. = 3.69.

6.1.2 Chritical conditions

Case of power-law fluids

Figure 8(a) shows the variation of the critical Reynolds number as a function
of the shear-thinning index n for different radius ratios 7. Our results confirm
those obtained by Jastrzebski et al.[11]. The influence of shear-thinning ap-
pears stabilizing or destabilizing depending on the radius ratio and the range
of the shear-thinning index. If we use instead the inner wall shear viscosity

14



Fig. 8. Variation of the critical Reynolds number as function of shear-thinning index

for a power-law fluid at different radius ratios. (o) Our results; (*) Jastrzebski et

al.[11]. (a) The Reynolds number is defined with a nominal shear-rate viscosity
NN |

fires = K (lezl /d)" . (b) The Reynolds number is defined with the inner wall

shear-rate viscosity, Eq. (33).

[i(Ry) in the definition of the Reynolds number

RO d
Reg, = 222017 (33)
fi(Ry)
with the conversion factor form from Re. to Re., for Bingham and Power-law
fluids given respectively by:

Re, B Re, 21 1 ™
| = (34)

Recw _1_‘_?{) and Recw B ﬁﬁll_n
it will be observed that the shear-thinning behavior delays the appearance
of the Taylor vortices for all  as shown in Fig. 8(b). This effect increases
with decreasing 7. As expected, for 7 close to 1, the azimuthal velocity profile
is practically linear and therefore the shear rate and the shear viscosity are
practically constant in the annular space, leading to a critical Reynolds number
Re.,, almost independent of n.

The influence of the shear-thinning index on the critical wave number and
therefore on the size of the Taylor vortices is shown in Fig. 9. One can note
that for a given shear-thinning index, the axial wavelength decreases with
decreasing 7). For instance, at n = 0.4 and n = 0.3, the axial wavelength is
smaller than half that obtained in the case n = 0.9 and n = 0.3. This may be
related to the stronger viscosity stratification between the inner and the outer
cylinders as indicated by the curve (4) in Fig. 3(b).

The contours of iso-values of the radial velocity component for Newtonian

15



Fig. 9. (a) Variation of the critical axial wave number with the shear-thinning index,
for power-law fluid at different radius ratio. (b) Dimensionless size of the Taylor
vortices as function of the shear-thinning index.

Fig. 10. Equally spaced contours of the radial component u of the velocity perturba-
tion for a radius ratio n = 0.4. Continuous and dotted lines correspond to positive
and negative values of u. (a) Newtonian fluid at Re = Re, = 68.2 and k = k. =
3.18. (b) Power-law fluid with n = 0.3 at Re,, = Reg, = 405.1 and k = k. = 5.25.

and power law fluids, represented in Fig. 10, illustrate clearly the influence of
the shear-thinning behavior. For n = 0.3, the contours are strongly squeezed
against the inner wall, where the viscosity is lower. This behavior is also illus-
trated by the contours of azimuthal vorticity,

oo
or 92’

Wo (35>
which are displayed in the Fig. 11. Each vortex is bounded by radial inflow
and outflow jets. Over one axial wavelength, the vortices alternate in sign.
Regions of opposite sign vorticity exist outside each vortex. These regions
do not represent separate vortices but results from changing sign of dw/0r.
These regions are clearly represented for Newtonian fluid. For power-law fluid,
the region of opposite sign vorticity is very thin near the inner wall, and not
represented near the outer wall, because dw/0r is too weak.
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Fig. 11. Contours of azimuthal vorticity wy at the critical conditions for n = 0.4.
Continuous and dotted lines correspond to positive and negative values of wy. (a)
Newtonian fluid. (b) power-law fluid with n = 0.3.

Case of Bingham fluid

The variation of the critical Reynolds number with the Bingham number is
shown in Fig. 12(a). Once again, we note an increase of Re., with increasing
the viscosity stratification induced by the Bingham number (u = 1 + B/%).
Our results represented by dashed and dashed-dotted lines for n = 0.5 and
n = 0.883 respectively, confirm those given by Landry et al. [19]. The axial
size of the Taylor vortices is estimated from the critical wave number scaled
with the width of the yielded zone, k. = k. x (Ro — Ry), and is represented in
Fig. 12(b) as a function of the Bingham number. The vertical dotted line at
By separates the domain of B where the annular space is completely yielded
from that where a plug zone is attached to the outer cylinder. Below the limit
value, B, the variation is in agreement with that observed for power law fluids.
For large Bingham number, B > By, we also recover the behavior observed in
Fig. 9(a) at 7 close to 1. The present results are qualitatively compatible with
those obtained by Graebel [17] for n — 1. Figure 13 shows the contours of the
radial velocity and azimuthal vorticity for a large value of B. The viscosity is
almost constant in the very narrow yielded zone. Close to the yield surface, u
increases strongly and tends to infinite.

Case of Carreau fluid

As mentioned in the introduction, the data dealing with the critical conditions
for Carreau fluids are very limited. The results given by Coronado et al. [16] are
reported in Fig. 14. They were computed for A = 0.1, i.e, low shear-thinning
effect, and an aspect ratio defined by the gap length L to the width gap d
ratio, L / d = 10. For 7 close to 1, significant differences are observed with our
results which are practically independent of n due to the weak value of .
The discrepancies between our results and those given by Coronado et al.[16]
are expectable. Indeed, the computation domain considered by Coronado et
al. [16] is enclosed by endwalls that confine the fluid in the axial direction.
This confinement destroys the translation invariance and results in a basic

17



Fig. 12. (a) Critical Reynolds number versus Bingham number for two radius ratios:
n = 0.5: (o) Landry et al. [19], (¢) Caton [1], (A) Lockett et al. [12], (——) our results;
n = 0.883 (O) Landry et al. [19], (—.—) our results. (b) Scaled critical wave number
versus Bingham number for two radius ratios (—o—) n = 0.5 and (—0O—) n = 0.883.

Fig. 13. Bingham fluid with B = 100 at the critical conditions
Reqy = 2112, k. x (Ryp — R1) = 2.52. The radius ratio is n = 0.5. (a)
Equally spaced contours of the radial component u of the velocity perturbation.
(b) Contours of azimuthal vorticity wy.

flow which is not purely azimuthal as in our case, but also has axial and radial
components. The discontinuity of the velocity at the endwalls generates small
vortices adjacent to the endwalls which may propagate towards the center
of the domain, therefore modifying the critical conditions comparatively to
purely azimuthal base flow.

Li and Khayat [15] also calculated the critical Reynolds number for low shear-
thinning fluid. Using Taylor expansion around A?4? considered as a small
parameter, the viscosity is written as : u = 1+a?4?, with a = (1— oo /o) (n—
1)/2)\%. We have not reported their results in Fig. 14 or 15, because the values
of a considered by the authors lead to negative values of n, if pe/po = 0
and A is weak. We have not reported either the results of Ashrafi and Khayat
[14], because unlike here, they considered the unrealistic free (slip) boundary
conditions.

Our results are displayed in Fig. 15(a) for a wide range of A and different
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Fig. 14. Critical Reynolds number as a function of the radius ratio n for a Carreau
fluid at A = 0.1 and different values of n. (— —) Newtonian fluid, (e) Coronado et
al. [16] for n = 0.9; (M) Coronado et al. [16] for n = 0.8; (A) Coronado et al. [16]
for n = 0.6. For n < 0.8, the critical values of Re are very close for the three sets of
the rheological parameters considered. Our results () are almost independent on
n for the whole n range.

Fig. 15. (a) Critical wall Reynolds number and (b) wave number for a Carreau
fluid with n = 0.5 as a function of the dimensionless constant time A for different
values of the shear-thinning index: (o) n = 0.7, (O) n = 0.5 and (A) n =0.3. (— —)
Power-law fluid.

values of n. The increase of stability of the Couette flow with increasing the
shear-thinning behavior is clearly shown. From A = 0, the critical Reynolds
number increases and then tends asymptotically towards the value obtained
for power-law fluids. The evolution of the critical wave number with the the
dimensionless constant time A for different shear-thinning index is described
by Fig. 15(b). We note that the asymptotic values of k. at large A are different
from those obtained for a power law fluid (see Fig. 9a)

6.1.3 Energy equation

If the viscosity perturbation is not taken into account, the critical Reynolds
numbers are found to be higher as it is shown by Fig. 16. This can be inter-
preted by considering the energy equation, obtained using the scalar product
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Fig. 16. Critical conditions for a power-law fluid at n = 0.5 as a function of
the shear-thinning index n. (1) the viscosity perturbation is taken into account,
pe — p° # 0; (2) the viscosity perturbation is excluded artificially, u; — b = 0. (a)
Critical wall Reynolds number. (b) Critical wave number.

of the linearized momentum equation with the complex conjugate u* and by
integrating between the two cylinders

p WU+ uv

R>
Re(@)lull?=—Re [ =ty " ar
R1

Ra 1/ ) ) ) . )

—/ p’ [2 (Fel? + 1400 + 12212) + ol + 130> + 136,17 dr
Ry
Rs

[ (0 = ) Vgl (36)
Ry

where i = Ji; (), [Jull® = [57 (lul* + [o]* + Jw]*) rdr and [u]” = uu".

The third term of the right-hand-side originates in the viscosity perturbation.
It is positive definite and produces a reduction of viscous dissipation and thus a
decrease of the critical Reynolds number. A phenomenological interpretation
can also be made: when an infinitely small perturbation is imposed to the
flow, the stress 7,¢ is modified of 7,9 and the shear rate % of 0,4, so that
the perturbation only sees the tangential viscosity p; = 07.9/0%,4 and not the
effective viscosity.

The energy equation (36) can be written in symbolic form as

RG(O’)Il = Re IQ - I3 (37)

where ReZ, is a production term which corresponds to a transfer of energy
from the base flow to the perturbation, and Z3 is a dissipation term associ-
ated to viscous effects. Following Govindarajan et al. [26], it is convenient to

compute and compare the space-averaged production and dissipation terms
I'y defined by
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Fig. 17. Disturbance kinetic energy terms for a Newtonian fluid at criticality,
Re,, = 68.316 and k£ = 3.12. The production term ReZ; is plotted with a solid
line and the dissipation term Z3 is plotted with a dashed line. The space-aver-
aged production and dissipation terms are equal since the conditions are critical,
I'y =T_ =28.073.

f Iz dr r f Ig dr

't = Re .
f > Ty dr’ fRzLdr

(38)

At criticality, the transfer of energy from the base flow to the disturbance
motion is exactly balanced by viscous dissipation, I'; = I'_, as shown in Fig.
17 for the case of a Newtonian fluid. The effect of viscosity stratification on
the energy budget can be appreciated by comparing the results obtained for
a Newtonian fluid (Fig. 17) with those given in Fig. 18 for a power law fluid.
In the latter case we have Re, = 68.316, k corresponds to the critical wave
number value for n = 0.5 or 0.3. With increasing shear thinning behavior, we
observe that the average viscous dissipation remains close to that in Newtonian
fluid while the production term is strongly reduced, rendering the flow more
stable compared to the Newtonian case. This is clearly illustrated by Fig. 19.
Hence, The main factor determining stability or instability of the flow is the
exchange of energy between the base flow and the disturbance, which is driven
by the phase change between the two fluctuating velocity components, caused
by the viscosity stratification.

6.1.4 Discussion

In this section, we discuss the relevance of the different expressions of the ref-
erence viscosity used in the literature as well as the radial position where the
viscosity gradient has the largest effect on the flow stability.

Reference viscosity
The relevance of the reference viscosity i,y proposed in the literature can be
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Fig. 18. Effect of the viscosity stratification on the energy budget for a power-law
fluid, Re,, = 68.316 and n = 0.4. (Continuous line) Energy production ReZy and
(dashed line) energy dissipation Zz . (a) n = 0.7, k = 3.20, '} = 15.436 and
I'_ =23.450. (b) n =0.3, k =5.25, 'y = 1.456 and I'_ = 27.232.

Fig. 19. Space averaged (A) production I'y and (e) dissipation I'_ terms for a
power-law fluid with n = 0.4 as a function of shear-thinning index n.

assessed by plotting the radial position 7, where ji°(ry) = fi e £

- For power-law fluid with n = 0.4 and for a radius ratio n = 0.4, the radial
position r, where fi(r) = K (lell/ci) " is represented in Fig. 20 by a dotted
line. We have also represented ReZ, and Z3 at criticality. The viscous dissipa-
tion takes place mainly at the inner wall and the exchange of energy is also

localized near that wall. The reference viscosity K (ﬁ’,lfll /a?)n_l is attained
further in the gap, i.e. that is outside the region of interest.

- For Carreau fluid, 4%, is never zero in the annular gap, therefore it is coun-
terintuitive to use the zero-shear-rate viscosity iy as a reference viscosity.

- For Bingham fluid, using the plastic viscosity /i, as a reference viscosity is
not appropriate since fi, = fi, only if 4% — oco.

For all the three fluids considered, the reference viscosity is either outside the
region of interest or does not match the base viscosity at any point of the an-
nular gap. Since the viscous dissipation and exchange of energy between the
base flow and the disturbance takes place mainly at the inner wall, it seems
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more appropriate to use the viscosity at that wall as the reference viscosity.
This choice is supported by the second part of this section, where it is shown
that indeed, the region of interest is localized near the inner wall.

Position of viscosity gradient leading to largest effect on flow stability

It is interesting to note that the viscosity profiles Fig. 5(b) obtained for Car-
reau fluids with n = 0.3 and A > 10 lead to very close values of Re,. (Fig. 15a).
The analysis of the curves (3) and (4) in Fig. 5(b) indicates that the viscosity
gradient near the inner cylinder has a significant effect on the flow stability
while a viscosity gradient far from the inner wall has practically no effect on
the flow stability. To clarify this idea, we have used the approach proposed
by Govindarajan et al. [27,26] for plane Poiseuille flow that we have adapted
to the case of circular Couette flow. We consider the Couette-Taylor flow of
two fluids of viscosities iy and fis > fi1, Fig. 21(a). The least viscous fluid is
located near the inner rotating wall, Ry < r < h, and the most viscous near
the outer wall, h +e < r < R,. Viscosity evolves continuously at the interface
between the two fluids over a mixing layer, h < r < h + e, leading to the

viscosity profile u(r) = a(r)/fu,

p=11i Ri<r<h
pr) =14 -1 [10- 156 + 667 if 0<E<1, &= (r—h)/e (39)
pw=0 if h+e<r< Ry

that is plotted in Fig. 21(b). The expression of viscosity in the mixing layer
has been chosen as in Govindarajan et al. [27], so that the viscosity and its
two first derivatives are continuous in the whole gap. The base state is then
computed with a classical shooting method associated to a Newton Raphson
method. A stability analysis, in which the diffusion of one fluid into another is
neglected, is then conducted and the critical Reynolds number for instability
perturbation equations are obtained showing viscosity stratification. Even if
this approach leaves the viscosity profile unchanged when perturbating the
flow, unlike the shear-thinning models considered before, it remains relevant
to highlight clearly the viscosity stratification effect. The critical value of the
priQud
fia

layer locations h + e/2, widths e and viscosity contrast §. The results in Fig.
22 for a mixing layer of thickness e = 0.1 centered at r = h + e/2 = 0.55,
and a viscosity ratio of 9 = 1.1 show that the existence of a viscosity gradient
is a source of stabilization and that the closer the mixing layer to the inner
wall, the higher the stabilization, with a maximum at a distance close to the
wall. Some more simulations showed that for increasing m, the stabilization
increases even more near the wall. We may extrapolate from this simple study,
without diffusion at the fluids interface, that it is the region near the inner
wall that dominates the stability of the Couette-Taylor flow of a shear-thinning

Reynolds number defined as Re = is computed for several mixing
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Fig. 20. (Vertical dotted line) Position at which the apparent viscosity equals the
reference viscosity i’ = fiye ¢ for a power law fluid with = 0.4, n = 0.4 at critical
conditions (Re. = 72.6 and k. = 3.97). (Continuous line) Energy production ReZ;
(dashed line) energy dissipation Z3.

Fig. 21. (a) Scheme of the mixing layer joining two fluids of different viscosities.
(b) Viscosity profile for a radius ratio n = Ry/R; = 0.4, a mixing layer of thickness
e = 0.1 and centered at 7 = h+e¢/2 = 0.55, and a viscosity contrast 6 = pg/pu; = 1.1.

fluid.

6.2 Homogeneous perturbation in the axial direction

By setting & = 0, the linear stability equations given by the (u,w) formulation
in Appendix A.2 reduce to two decoupled differential equations: (i) a fourth-
order differential equation for u and (ii) a second order differential equation
for w:
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Fig. 22. Critical Reynolds number as a function of the location of the mixing layer,
centered at r = h + ¢/2, for a radius ratio n = 0.4, a layer thickness of e = 0.1 and
a viscosity ratio 6 = 1.1. The dashed line indicates the critical value of Re for a
Newtonian fluid.

2

1 ) 2 2
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r T T

We first consider the set of eigenmodes of (41). Using a variational formulation,
i.e., multiplying by the complex conjugate w* and integrating between the
outer and the inner cylinders, it can be shown that

R R b
Im(o) / ’ \w|*dr = —Rem / s lwl|? dr, (42)
Rl Rl r
and
R R 2
Re(o) / “ w2 dr = —/ C b <|Dw|2 + 2 |w|2> dr. (43)
Ry Ry r

It is clear that the eigenmodes of (41) are always damped, Re(o) < 0. Con-
cerning the eigenmodes of Eq. (40), the corresponding eigenvalues’ spectra
are displayed in Fig. 23, for Newtonian and shear-thinning fluids at two wall
Reynolds numbers: Re,, = 100 and 500. The eigenmodes associated with the
vertical branch have an angular phase velocity which decreases with increasing
the shear-thinning effects. Unlike Caton (2006) [1], for all the range of the rhe-
ological parameters considered in the paper, 0.1 <n < 1and 0 < B < 500, we
have not found any instability. This was confirmed by computations performed
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Fig. 23. Eigenvalues spectra at n = 0.5, k = 0, m = 1 and two Reynolds numbers
(o) Rey, =100 and (O) Re,, = 500. (a) Newtonian fluid. (b) Power-law fluid with
n = 0.3.

by anonymous referee. Actually, Caton [1] found that with increasing shear-
thinning effects, the shape of the critical mode changes sharply from toroidal
axisymmetric vortices to longitudinal vortices. This would mean a change in
the instability mechanism. We believe that at the linear level in the perturba-
tion equations, the shear-thinning does not alter the instability mechanisms.
The only effect of shear-thinning is to shift the critical conditions as indicated
in the existing literature, although for other geometrical configurations, (see
for instance [26-28]). As Newtonian Couette flow between two coaxial cylin-
ders, where the outer cylinder is fixed and the inner is rotating, is linearly
stable with respect to a homogeneous perturbation [29] in the axial direction,
it is therefore not surprising to find a similar result for a shear-thinning fluid.

6.3 Three-dimensional case

In the 3D situation, (u,v) formulation is used to compute the critical condi-
tions. Figure 24 shows marginal stability curves for different azimuthal wave
numbers m. It is clearly observed that Re. increases with increasing the az-
imuthal wave number. The minimum is always achieved for the axisymmetric
case, even for highly shear-thinning fluids (n = 0.1) or (B = 50). This is in
contradiction with the results of Caton [1]. The shape of the marginal stability
curves at low axial wave numbers confirms that the Couette flow is linearly
stable at £ = 0.

Fig. 24. Marginal stability curves at n = 0.5 and different values of the azimuthal
wave numbers. (a) Bingham fluid with B = 50. (b) Power-law fluid with n = 0.1
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Remark
n 3D situation, even for a newtonian fluid, our results confirmed by anonymous
referee are in disagreement with those given by Caton[1].

7 Conclusion

Three-dimensional linear stability analysis of the circular Couette flow of a
shear-thinning fluid with and without yield stress was investigated in this
paper. This study was motivated by some surprising results as well as dis-
crepancies in the results given in the literature. Part of these discrepancies
is due to the scaling of the viscosity which is addressed here. Three types of
rheological models were considered: power-law, Carreau and Bingham models.
Looking for normal mode solutions, the linearized perturbation equations lead
to an eigenvalue problem solved using pseudo-spectral collocation method.
An axisymmetric perturbation was first assumed and the critical Reynolds
number was computed for different shear-thinning strengths, n or B, and for
different radius ratios 7. The critical conditions were successfully compared to
several previous results of the literature. In all cases, it is observed that when
the viscosity is scaled with the inner wall shear-viscosity, shear-thinning has a
stabilizing effect, i.e. the appearance of the Taylor-vortices is delayed. Analysis
of the disturbance energy equation allows to show that this stabilizing effect
is due to the reduction of the energy exchange between the base flow and
the disturbance. Complementary study was carried out to highlight that the
viscosity gradient localized near the inner cylinder has the largest stabilizing
effect while a viscosity gradient far for the inner wall has practically no effect.
The wavelength k. of the most unstable mode was shown to depend on both
n or B and 7, especially for large gaps (low 7) for which Taylor vortices are
squeezed against the inner wall where the viscosity is lower. For a Bingham
fluid, the dependence of k. to the Bingham number B changes when a non-
yielded zone appears close to the outer cylinder.

Three dimensional perturbations were then investigated but it was found that
the most unstable modes are axisymmetric, even for very strong shear-thinning
fluids. This result is in contradiction to the work of Caton (2006) who pre-
dicted the appearance of vertical cells for low n or high B.
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A Operators involved in the linearized perturbation equations:

A1

(u,v) formulation
The eigenvalue problem reads

Lqg=ocMgq,

where g = (u, U)T and operators M and L are expressed below

S m D
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A2

(u,w) formulation
The eigenvalue problem reads

Lg=0Magq, (A.2)
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where g = (u, w)T and operators M and L are expressed below

v D4+ 1D, — ™ kD + 2ik
k D, ik 4 imt

L=Lr+Ly1+Lya+ Lys

%(2DVZ7+VI’D73V”D*+@) skt
£I:R€ 3 2 1/b
s (DVE = VD) m(m kv
im [_DV! 4 p2Vb—VPDD.|  Em(VPD+DV?)
+Re
0 0
o EE k[G D) (DD k) £ B2 (14 D) ]
vi= [
k(A+22)D. ik? (A 2D2)
b(<E+D)AD*+i(D2 D)y p, —ma - w o)
+p K
2km 0
r3
; 14D)D

0 0
D2 DD, + 75 1k D
0 0

r2

Lyz = (ue — p’ 2 :
ve = )< k[(2+D) D+ =] D. ik* (D+2) D

[(§+D)D+%+ 2’”2} DD. +m ik [T—f+%+(%+D) D] D)

(242D)DD, + % (D + D,) ik (2+2D)D

+D (pe — 1) ( )

n® L kDD, ik*D
2
DD, + 2  ikD
+D? (g — p*) ’ .
0 0

References

[1] F. Caton. Linear stability of circular Couette flow of inelastic viscoplastic fluids.
J. Non-Newtonian Fluid Mech., 134:148-154, 2006.

[2] G.I. Taylor. Stability of viscous liquid contained between two rotating cylinders.
Phil. Trans. R. Soc. London., A223:289-343, 1923.

[3] R. C. Di Prima and H. L. Swinney. Instabilities and transition in flow between
concentric rotating cylinders. In Hydrodynamic instabilities and the transition

29



to turbulence, pages 139—-180. Springer - Verlag, 1981.

[4] H. Giesekus. Zur stabilitt von strmungen viskoelastischer flssigkeiten 1. ebene
und kreisfrmige couette-strmung. Rheol. Acta, 5:239-252, 1966.

[5] S.J. Muller, R.G. Larson, and E. S. G. Shaqgfeh. A purely elastic transition in
Taylor-Couette flow*. Rheol. Acta., 28:499-503, 1989.

[6] S. J. Muller R. G. Larson and E. S. Shaqfeh. A purely elastic instability in
Taylor-Couette flow. J. Fluid. Mech., 218:573-600, 1990.

[7] E. S. G. Shagfeh, S. J. Muller, and R. G. Larson. The effects of gap width
and dilute solution properties on the viscoelastic Taylor-Couette instability. J.
Fluid. Mech., 235:285-317, 1992.

[8] A. Groisman and V. Steinberg. Mechanism of elastic instability in couette flow
of polymer solutions: Experiments. Phys. Fluids, 10:2451-2463, 1998.

9] D. G. Thomas, B. Khomami, and R. Sureshkumar. Nonlinare dynamics
of viscoelastic Taylor-Couette flow: effect of elasticity on pattern selection,
molecular and conformation drag. J. Fluid. Mech., 620:353—-382, 2009.

[10] V. Sinevic, R. Kuboi, and A. W. Nienow. Power numbers, Taylor numbers
and Taylor vortices in viscous Newtonian and non-Newtonian fluids. Chemical
Engineering Science, 41:2915-2923, 1986.

[11] M. Jastrzebski, H. A. Zaidani, and S. Wronski. Stability of Couette flow of
liquids with power law viscosity. Rheol. Acta., 31:264-273, 1992.

[12] T. J. Lockett, S. M. Richardson, and W. J. Worraker. The stability of inelastic
non-newtonian fluids in Couette flow between concentric cylinders: a finite-
element study. J. Non-Newtonitan Fluid Mech., 43:165-177, 1992.

[13] M.P. Escudier, I.W. Gouldson, and D.M. Jones. Taylor vortices in Newtonian
and shear-thinning liquids. Proceedings - Royal Society of London, A 449
(1935):155-176, 1995.

[14] N. Ashrafi and R. E. Khayat. Shear-induced chaos in Taylor-Vortex flow. Phys.
Rev. E, 61:1455, 2000.

[15] Z. Li and R.E. Khayat. A non-linear dynamical system approach to finite
amplitude taylor-vortex flow of shear-thinning fluids. International Journal for
Numerical Methods in Fluids, 45 (3):321, 2004.

[16] O. Coronado-Malutti, P. R. Souza Mendes, and M. S. Carvalho. Instability of
inelastic shear-thining liquids in a Couette flow between concentric cylinders.
Journal of Fluids Engineering, 126:385-390, 2004.

[17] W.P. Graebel. The hydrodynamic stability of a Bingham fluid in Couette flow.
Proceedings of International Symposium on 2nd Order Effects in FElasticity,
Plasticity and Fluid Dynamics, Haifa, Israel, April 2327, (ed. M. Reiner & D.
Abir). Jerusalem Academic Press., pages 636-649, 1964.

30



[18] J. Peng and K.Q. Zhu. Linear stability of Bingham fluids in spiral Couette flow.
J. Fluid Mech., 512:21-45, 2004.

[19] M.P. Landry, I.A. Frigaard, and D.M. Martinez. Stability and instability of
Taylor - Couette flows of a bingham fluid. J. Fluid. Mech., 560:321-353, 2006.

[20] C. D. Andereck, S. S. Liu, and H. L. Swinney. Flow regimes in a circular couette
system with independently rotating cylinders. J. Fluid Mech, 164:155-183, 1986.

[21] Z. H. Wan, J. Z. Lin, and Z. J. You. Non-axisymmetric instability in the Taylor-
Couette flow of fiber suspension. Journal of Zhejiang University SCIENCE.,
2005 6A:1-7, 2005.

[22] R. Bird, R. Amstrong, and O. Hassager. Dynamics of polymeric liquids. Wiley
- Interscience, New York, 1987.

[23] R. Tanner. Engineering rheology. Oxford University Press, New York, 2000.

[24] P. J. Schmid and D. S. Henningson. Stability and transition in shear flows.
Springer - Verlag, 2001.

[25] S. Chandrasekhar.  Hydrodynamic and hydromagnetic stability.  Dover
Publications, 1981.

[26] R. Govindarajan, V. S. L’Vov, 1. Procaccia, and A. Sameen. Stabilization of
hydrodynamic flows by small viscosity variations. Phys. Rev. E, 2003:026310.1—
026310.11, 2003.

[27] R. Govindarajan, V. S. L’vov, and I. Proccaccia. Retardation of the onset of
turbulence by minor viscosity contrasts. Phys. Rev. Lett., 87:174501, 2001.

[28] C. Nouar and I. Frigaard. Stability of plane couettepoiseuille flow of shear-
thinning fluid. phys. fluids 21 064104 (2009). Phys. Fluids, 21:064104.1—
064104.13, 20009.

[29] P. G. Drazin and W. H. Reid. Hydrodynamic stability. Cambridge University
Press, 1995.

31



