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Modena e Reggio Emilia and Centro Interdipartimentale
En&Tech, Via Amendola 2 Padiglione Morselli, I-42122 Reggio

Emilia, Italy,
Centro S3, Istituto Nanoscienze-Consiglio Nazionale delle

Ricerche (CNR-NANO),Via Campi 213/A, 41125 Modena, Italy
Centro Interdipartimentale di Ricerca e per i Servizi nel settore

della produzione, stoccaggio ed utilizzo dell’Idrogeno H2-MO.RE,
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Abstract

Second-harmonic generation (SHG), linear electro-optic
effect (LEO) and electric-field induced second-harmonic
generation (EFISH) are nonlinear optical processes with
important applications in optoelectronics and photovoltaics.
SHG and LEO are second-order nonlinear optical processes described
by second-order susceptibility. Instead, EFISH is a third-order nonlin-
ear optical process described by third-order susceptibility. LEO and
EFISH are only observed in the presence of a static electric field.
These nonlinear processes are very sensitive to the symmetry of the
systems. In particular, LEO is usually observed through a change in
the dielectric properties of the material while EFISH can be used to
generate a “second harmonic” response in centrosymmetric material.
In this work, we present a first-principle formalism to calculate
second- and third-order susceptibility for LEO and EFISH. LEO is
studied for GaAs semiconductor and compared with the dielectric
properties of this material. We also present how it is possible for
LEO to include the ionic contribution to the second-order macro-
scopic susceptibility. Concerning EFISH we present for the first time
the theory we developed in the framework of TDDFT to calcu-
late this nonlinear optical process. Our approach permits to obtain
an expression for EFISH which does not contain the mathemati-
cal divergences in the frequency-dependent second-order susceptibility
that caused until now many difficulties for numerical calculations.

Keywords: non-linear processes, Second Harmonic Generation, Density
Functional Theory, semiconductors

1 Introduction

A deep understanding of the nonlinear optical properties of solids [1, 2] pro-
vides an opportunity to search for new materials which is crucial for the
improvement of nonlinear devices.

Among all nonlinear phenomena existing in nature, a major role is played
by second-harmonic generation (SHG), linear electro-optic effect (LEO) and
electric-field induced second-harmonic generation (EFISH).

SHG is a process in which two photons of frequency ω are absorbed by
the material and a photon of frequency 2ω is emitted. SHG is described by
the second-order macroscopic susceptibility χ(2)(−2ω; ω, ω). LEO is a second-
order nonlinear optical process as well, observed in the presence of a static
electric field. LEO can be seen as a process in which two photons are absorbed,
one at frequency ω and one at vanishing frequency and therefore it is described
by the second-order macroscopic susceptibility χ(2)(−ω; ω, 0). For this rea-
son, the electro-optic effect is usually observed by a change in the dielectric
properties of the system, proportional to the static electric field.
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SHG and LEO are only observed for systems which has no inversion sym-
metry, because χ(2) is equal to zero for centrosymmetric materials. As a
consequence, they are highly sensitive to the symmetry of the system. SHG
has been largely used as a probe to investigate the properties of bulk, surfaces,
interfaces and complex systems [3–8].

LEO has many applications in the development of optoelectronic devices.
In fact, the nonlinear photo-induced effects in the materials are related to the
fast or ultrafast response of charge carriers within the materials and it has
been shown that the electro-refractive effect is a promising route to realize effi-
cient high speed optical modulators [9]. Moreover, a giant electro-optic effect
has been observed in Ge/SiGe coupled quantum wells, therefore enhancing
the performance of optical modulators [10]. Fast LEO can be disentangled by
SHG in Si waveguides [11, 12]. On the other hand, applying an asymmetric
strain in crystals can induce non-centrosymmetry and it has been reported
that strain in a Si photonic crystal waveguide leads to strong nonlinearities and
enables electro-optic effects, showing that data processing could be potentially
performed by all-silicon components [13, 14]. Finally, because of its sensitiv-
ity to space symmetry, LEO can also be used as a sensitive, nondestructive
and noninvasive, probe for studying many kinds of surfaces and interfaces in
semiconductors [15, 16].

The presence of a static electric field inside a material also enables second
harmonic generation, through EFISH, a third order process, described by the
third-order macroscopic susceptibility χ(3)(−2ω; ω, ω, 0). Contrary to SHG
and LEO, EFISH can be used to generate a “second harmonic” response in
centrosymmetric material. Moreover, despite the fact that EFISH is a third-
order process, expected to be smaller than SHG, in materials such as surfaces
and interfaces, EFISH can be competitive to SHG. In fact, SHG and EFISH
processes can be present simultaneously and must be distinguished.

EFISH, as well as SHG and LEO, has many applications in the development
of optoelectronic devices. Recently, it was also reported that ultrafast recom-
bination together with carrier diffusion can be monitored by EFISH generated
by space charge accumulation in the material. [4, 17, 18].

The theoretical description of SHG, LEO and EFISH requires the knowl-
edge of the first-, second- and third-order susceptibility which is a formidable
task for an ab initio theory [19–21]. Some of the authors developed an ab
initio formalism in the framework of the time-dependent density functional
theory (TDDFT) to calculate χ(2) in order to describe SHG. Within this
approach, SHG is described with different levels of approximation for the elec-
tronic correlations : independent particle approximation (IPA), random-phase
approximation (RPA) and excitons [21, 22]. Moreover, the quasiparticle effects
have been included through a scissor operator. Recently, this formalism was
extended to describe LEO in IPA and including quasiparticle and excitons [23].

Concerning EFISH, most of the calculations have been performed using
phenomenological models [24, 25] in some cases integrated with group theory
formalism in order to investigate the relation of EFISH with the symmetry of
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the crystal [26]. A frequency-dependent formulation of the third-order suscep-
tibility was presented [27]. However, this equation was proven to be difficult
for computational calculations because of numerical divergences and it was
not used to calculate frequency-dependent spectra. Another derivation of the
EFISH frequency-dependent susceptibility from perturbation theory in inde-
pendent particle approximation (IPA) was proposed [28]. This formalism was
applied only in the energy range close to critical point energy gaps [28].

In this work, we present a first-principle formalism to calculate second- and
third-order susceptibility for LEO and EFISH. In the case of LEO we also show
how to include the ionic contribution to the second-order frequency-dependent
susceptibility. Concerning EFISH we show how it is possible to remove
the mathematical divergences in the frequency-dependent susceptibility that
caused until now many difficulties for numerical calculations.

The paper is organised as follows: in Sec. 2 we present the theory for LEO
and EFISH and in Sec. 3 we present results for LEO and EFISH and also
SHG in the case of GaAs, Si and SiC semiconductors. Conclusions are in
Sec. 4. The mathematical conventions used for the susceptibilities are given
in Appendix A and details of the calculation for the ionic contribution to the
LEO susceptibility are presented in Appendix B.

2 Formalism and methods

2.1 LEO

2.1.1 Electronic contribution

The macroscopic polarisation at frequency ω of a material irradiated by a time-
dependent electric-field E(ω) together with a static electric-field E is P(ω) =
P(1)(ω) + P(2)(ω). The i-th component (x, y, z) of the macroscopic first-order
polarisation is related to the j-th component (x, y, z) of the electric field as

P
(1)
i (ω) =

∑
j

χ
(1)
ij (−ω; ω)Ej(ω), (1)

where the first-order susceptibility χ
(1)
ij is a 9-component tensor. The i-th

component of the macroscopic second-order polarisation is

P
(2)
i (ω) =

∑
jk

χ
(2)
ijk(−ω; ω, 0)Ej(ω)Ek, (2)

where the second-order susceptibility χ
(2)
ijk is a 27-component tensor. Atomic

units are used throughout unless otherwise stated.
The number of independent and non-zero components of the susceptibil-

ities χ
(1)
ij and χ

(2)
ijk are entirely determined by the symmetry of the material
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studied. The mathematical conventions used to define the susceptibilities are
in Appendix A.

Considering the electric displacement D(ω) = E(ω)+4πP(ω) and replacing
P(ω) by the first- and the second-order macroscopic polarisation (Eq. (1) and
Eq. (2)), it is possible to write D(ω) = ε̃(ω)E(ω) in terms of an effective
dielectric matrix ε̃(ω) defined as

ε̃ij(ω) = εij(ω) +
∑
k

εEkij , (3)

where εij(ω) is the linear dielectric matrix

εij(ω) = δij + 4πχ
(1)
ij (−ω; ω) (4)

and
εEkij = 8πχ

(2)
ijk(−ω; ω, 0)Ek (5)

depends on the second-order susceptibility in the presence of a static electric
field E polarised along the k direction.

The quantity Ek give rise to additional terms than those already included in
the linear dielectric matrix εij(ω). This is easily observed considering systems
with zinc-blende symmetry. In this case, the dielectric tensor matrix εij(ω) is
diagonal and the presence of a static electric field E polarised along z direction

gives rise to the off diagonal term εEzxy = 8πχ
(2)
xyz(−ω; ω, 0)Ez. Hence, the effec-

tive dielectric matrix ε̃(ω) of Eq. (3) for systems with zinc-blende symmetry
becomes

ε̃ =

 εxx ε
Ez
xy 0

εEzyx εyy 0
0 0 εzz

 . (6)

where εxx = εyy = εzz.
The effective dielectric matrix ε̃(ω) is related to the LEO coefficients rijk(ω)

as

rijk(ω) = −
χ
(2)
ijk(−ω; ω, 0)

n2i (ω)n2j (ω)
. (7)

The calculation of the LEO coefficients rijk(ω) implies therefore the

calculation of χ
(2)
ijk(−ω; ω, 0). As mentioned earlier, some of the authors devel-

oped an ab-initio formalism in the framework of the TDDFT to calculate

χ
(2)
ijk(−ω; ω, 0) starting from IPA and then including quasiparticle (scissor

approximation) and excitonic effects. [23]

Within this formalism [23] the χ
(2)
ijk(−ω1−ω2; ω1, ω2) is expressed in terms

of the second-order response function which is

χ
(2)
0,GG′G′′(q,q1,q2, ω1, ω2) =

2

V

∑
n,n′,n′′,k

ρ̃nn′k+q(−(q + G))

(En,k − En′,k+q + ω1 + ω2 + 2iη)
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(fn,k − fn′′,k+q2)

ρ̃n′n′′k+q2(q1 + G′)ρ̃n′′nk(q2 + G′′)

(En,k − En′′,k+q2 + ω2 + iη)

+(fn′,k+q − fn′′,k+q2)
ρ̃n′n′′k+q2(q1 + G′)ρ̃n′′nk(q2 + G′′)

(En′′,k+q2 − En′,k+q + ω2 + iη)

+(ω1,q1)↔ (ω2,q2) ](8)

where G is a vector of the reciprocal lattice, fn,k are Fermi occupation numbers
(1 for occupied states and 0 for unoccupied states) labelled with the number
of bands (n) and k-points (k) in the first Brillouin zone, and V is the volume
of the cell. Moreover, in the above expression, the factor 2 accounts for the
spin and η is a small vanishing quantity. The wave-vectors q1 and q2 are along
the polarization of the incoming electric fields while q = q1 + q2 is in the
polarization direction of the outgoing electric field.

In Eq. (8) it also appears the quantity ρ̃ which is defined as the matrix
element ρ̃nn′k+q(q+G) = 〈φn,k+q|ei(q+G)r|φn′,k〉 in terms of Bloch wave func-
tions φn,k. In the case we considered the operator e−i(q+G)r in the calculation
we indicated the matrix element as ρ̃nn′k+q(−(q + G)). In the low frequency
range we consider the optical limit (q → 0) and we used the k.p perturbation
theory to evaluate the matrix elements.

The calculation of the second-order response function of Eq. (8) with G =

G′ = G′′ = 0 permits to find χ
(2)
ijk(−ω1 − ω2; ω1, ω2) in IPA. More details can

be found in [21] for SHG (ω1 = ω2 = ω) and in [23] for LEO (ω1 = ω, ω2 = 0).
To go beyond IPA in order to include excitonic effects, we solved the

TDDFT Dyson equation for χ(2) which is [21][
1− χ(1)

0 (ω1 + ω2)fvxc(ω1 + ω2)
]
χ(2)(ω1, ω2) =

χ
(2)
0 (ω1, ω2)

[
1+fvxc(ω1)χ(1)(ω1)

][
1+fvxc(ω2)χ(1)(ω2)

]
+ χ

(1)
0 (ω1 + ω2)gxc(ω1 + ω2)χ(1)(ω1)χ(1)(ω2), (9)

where we omitted the explicit dependence on the q and G-vectors for read-
ability. [21] Here, fvxc is the sum of the bare-coulomb potential v and of the
exchange-correlation kernel fxc. Besides fxc, another exchange-correlation ker-
nel gxc appears in the second-order TDDFT Dyson equation. In the framework
of TDDFT, the kernels are unknown quantities and have to be approximated.

Finally, χ
(1)
0 and χ

(2)
0 are the linear and second-order response functions in

IPA while χ(1) is the linear response function calculated via the following
linear-order Dyson equation [21]

[1− χ(1)
0 (ω)fvxc(ω)]χ(1)(ω) = χ

(1)
0 (ω). (10)
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2.1.2 Ionic contribution

The calculation of the LEO susceptibility and therefore of the LEO coef-
ficients requires also the ionic contribution in addition to the electronic
one.

The ionic contribution to the susceptibility is related to the ionic displace-
ments induced by the static electric field, denoted as R(E) and depends on the
variation of the dielectric tensor induced by these displacements. The sum of
the electronic and ionic terms is referred to as the clamped value and the ratio
of these two contributions is the Faust-Henry coefficient CFH = ri/re. Taking
into account the electronic and the ionic parts allows for a direct comparison of
the theoretical calculation with the experimental measurements. While some
experimental values of CFH have been published for typical semiconductors,
such as GaAs or GaN [29–31], very few ab initio calculations are available. In
a pioneering work, Veithen et al. [32] calculated ab initio both the electronic
and the ionic static contributions to the susceptibility. Their work is based
on the computation of the total derivative of the static dielectric tensor with
respect to the static electric field.

However, the numerical evaluation of the frequency-dependent Faust-Henry
coefficient is still missing. We have extended this formulation to the dynamical
case by considering the dielectric tensor as a function of the frequency ω, the
amplitude of the static electric field E and the ionic displacements R(E) As the
ionic displacements depend on the static electric field E , the total derivative
of the dielectric tensor with respect to E contains two terms: the first one is
obtained by considering the atoms at their equilibrium position R0 while the
second one depends on the ionic displacements

dεij(R(E),E, ω)

dEk
|R0,Ek=0 =

∂εij(R0,E, ω)

∂Ek
|Ek=0

+
∑
nα

∂εij(R, ω)

∂τnα
|R0

∂τnα
∂Ek
|Ek=0 (11)

where τnα = Rnα −R0,nα is the displacement of atom n in the direction α.
The first term in Eq.11, obtained by considering the atoms at their equilibrium
position R0, is the aforementioned electronic contribution

∂εij(R0, E , ω))

∂Ek
|Ek=0 = 8πχ

(2)
ijk(−ω; ω, 0), (12)

while the second term is the ionic contribution and involves the derivative of
the dielectric tensor with respect to the atomic displacements τnα and the
first-order electric field induced atomic displacement ∂τnα

∂Ek |Ek=0.
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Following [32], τnα is expanded in the basis of the zone-center phonon-mode
eigendisplacements and we get

∑
nα

∂εij(R, ω)

∂τnα
|R0

∂τnα
∂Ek
|Ek=0 =

∑
m

pmk
ω2
m

∂εij(R, ω)

∂τm
|R0

(13)

where the summation runs over the phonon modes m and pmk is the polarity
mode. For a detailed derivation see Appendix B.

We finally obtain that the clamped LEO susceptibility with electronic and
ionic terms is

χ
(2,clamped)
ijk (−ω; ω, 0) = χ

(2)
ijk(−ω; ω, 0) +

1

8π

∑
m

pmk
ω2
m

∂εij(R, ω)

∂τm
|R0 . (14)

2.2 EFISH

The macroscopic polarization of a material irradiated by a time-dependent
electric-field E(ω) together with a static electric-field E at the frequency 2ω is
P(2ω) = P(2)(2ω) +P(3)(2ω). The i-th component (x, y, x) of the macroscopic
second-order polarization is

P
(2)
i (2ω) =

∑
jk

χ
(2)
ijk(−2ω; ω, ω)Ej(ω)Ek(ω), (15)

which contains the second-order susceptibility tensor χ
(2)
ijk and contributes to

SHG. The EFISH is instead related to the macroscopic third-order polarization
as :

P
(3)
i (2ω) =

∑
jkl

3χ
(3)
ijkl(−2ω; ω, ω, 0)Ej(ω)Ek(ω)El, (16)

where the third-order susceptibility χ
(3)
ijkl is a 81-component tensor. As for

SHG, the number of independent and non-zero components are entirely deter-
mined by the symmetry of the material studied. In the case of EFISH, the

indices j and k are interchangeable χ
(3)
ijkl = χ

(3)
ikjl.

When the material is irradiated by a time-dependent electric-field E(ω)
together with a static electric-field E, we obtain an effective susceptibility
defined as

χ̃
(2)
ijk(−2ω; ω, ω) = χ

(2)
ijk(−2ω; ω, ω)

+
∑
l

3χ
(3)
ijkl(−2ω; ω, ω, 0) El. (17)

For simplicity, we consider only systems with cubic symmetry and where the
static electric field is applied in the z-direction, i.e. Ez. Using the Voigt nota-
tion, it is possible to write the effective susceptibility which is a 3×3×3 tensor
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in a more convenient way as a 3× 9 tensor which reads as

χ̃(2) =

 0 0 0 χ
(2)
xyz χ

(2)
xzy χ

(2)Ez
xzx χ

(2)Ez
xxz 0 0

0 0 0 χ
(2)Ez
yyz χ

(2)Ez
yzy χ

(2)
yzx χ

(2)
yxz 0 0

χ
(2)Ez
zxx χ

(2)Ez
zyy χ

(2)Ez
zzz 0 0 0 0 χ

(2)
zxy χ

(2)
zyx

 . (18)

Here the 9 columns correspond to components xx, yy, zz, yz, zy, zx, xz, xy,
yx, respectively.

Therefore, the effective susceptibility tensor contains the component χ
(2)
xyz

which is also the only second-order component different from zero for zinc-
blende symmetry together with the following three independent components
induced by the static field

χ(2)Ez
zzz (−2ω; ω, ω) = 3χ(3)

zzzz(−2ω; ω, ω, 0) Ez
χ(2)Ez
xzx (−2ω; ω, ω) = 3χ(3)

xzxz(−2ω; ω, ω, 0) Ez
χ(2)Ez
zxx (−2ω; ω, ω) = 3χ(3)

zxxz(−2ω; ω, ω, 0) Ez

. (19)

In practice, to calculate χ̃(2), it is necessary to know χ(2) and χ(3). We
have extended the methodology developed for the calculation of the χ(2) in
the framework of TDDFT to the calculation of the χ(3) in the IPA and for the
specific case of the EFISH process [33].

In order to calculate the χ(3) for EFISH we used the general expression for
the third order response function valid for any frequency of the incoming fields
and written in terms of the Bloch wave functions φn,k, which reads as

χ
(3)
0 (q,q1,q2,q3, ω1, ω2, ω3) =

2

V

∑
k

∑
n,n′,n′′,n′′′

ṽnn′k(q)ṽn′n′′k(q1)ṽn′′n′′′k(q2)ṽn′′′nk(q3)

ω ω1 ω2 ω3(Enn′,k + ω1 + ω2 + ω3 + 3iη)

×
[

1

(Enn′′′,k + ω3 + iη)

(
fnn′′,k

(Enn′′,k + ω2 + ω3 + 2iη)
+

fn′′n′′′,k
(En′′′n′′,k + ω2 + iη)

)
+

1

(En′′n′,k + ω1 + iη)

(
fn′′′n′,k

(En′′′n′,k + ω1 + ω2 + 2iη)
+

fn′′n′′′,k
(En′′′n′′,k + ω2 + iη)

)]
+
(
(q1, ω1)↔ (q2, ω2)↔ (q3, ω3)

)
, (20)

with ω = ω1 + ω2 + ω3, η being a vanishingly small quantity. In Eq.(20)
the limit q → 0 is already understood [21] and fnm,k = fn,k − fm,k is the
difference between the occupation numbers fn,k and fm,k, Enm,k = En,k −
Em,k is the difference between the band energies En,k and Em,k and ṽnn′k(q) =
〈φn,k|qv̂|φn′,k〉 is the matrix element of the velocity operator.

In the case of EFISH, the frequencies in Eq. (20) are ω1 = ω2 = ω and
ω3 = 0, which leads to an apparent non-physical divergence. The simplest way
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to remove the divergence is to evaluate the third-order response function for
EFISH in the following way

χ
(3)
0 (q,q1,q2,q3, ω, ω, 0) =

lim
δω→0

1

2
[χ

(3)
0 (q,q1,q2,q3, ω, ω, δω) + χ

(3)
0 (q,q1,q2,q3, ω, ω,−δω)], (21)

as limδω→0+ = limδω→0− . The calculation of the limit δω → 0 is done analyt-

ically using a first order expansion of the function χ
(3)
0 in terms of δω. The

physical interpretation of the EFISH process appears then clearly in Fig. (1).
After some tedious calculation, the final expression for the third-order response
function is obtained and is given in [33]. This result permits to calculate the
third-order susceptibility in IPA as

χ
(3)
ijkl(−2ω; ω, ω) = χ

(3)
0 (q,q1,q2,q3, ω, ω, 0). (22)

Fig. 1 Scheme of the EFISH process.

3 Results

We calculated SHG, LEO and EFISH for Si, SiC and GaAs bulk semicon-
ductors. We first calculated the electronic structure of the materials in their
ground-state within Density-Functional Theory (DFT) in the local-density
approximation (LDA), using norm-conserving and plane-wave basis set with
the ABINIT code [34–36]. In the case of Ga, we explicitly included the 3d
semicore states as valence states, giving the valence configuration 3d104s24p1,
while only valence states are considered for the other materials. We used the
experimental lattice constants 5.41Å for Si, 4.36Å for SiC and 5.63Å for GaAs
and the cutoff energy was 20 Ha for Si, 40 Ha for SiC and 50 Ha for GaAs.

Then, we calculated the electronic contribution of the optical susceptibili-
ties from the 2light code. In this code the third- and the second-order nonlinear
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optical response, in the framework of TDDFT, is implemented (see Eq. (8)
and Eq. (20)) using plane-wave basis set. [21, 33]

We used 27000 shifted k points for Si, SiC and GaAs. The number of
unoccupied bands was 16 for Si and SiC and 36 for GaAs, 965 G vectors for
the wavefunctions for Si and SiC and 5005 for GaAs. Crystal local-field effects
are not taken into account. In the case of LEO we used SO=0.85 eV for GaAs.

For the ionic contribution, the evaluation of the frequency of the phonon
mode ωm and the polarity mode pmk are obtained using the ABINIT code
[34–36], while the derivative of εij with respect to the atomic displacement is
evaluated through the calculation of εij(R, ω), with the linear TDDFT code,
DP [37], for fixed ionic positions R, obtained by moving the ions along the
phonon eigenmodes.

3.1 LEO

GaAs has a zinc-blende symmetry and therefore the dielectric tensor (see

Eq. (4)) is diagonal, with εxx = εyy = εzz and with χ
(2)
xyz the only nonvanish-

ing second-order component. As explained in Sec. 2 by applying an external
static electric-field along the z-Cartesian axis, the dielectric tensor acquires an

off-diagonal contribution which is εEz = 8πχ
(2)
xyz(−ω; ω, 0)Ez.

In Fig. (2) we show the imaginary part of the linear dielectric tensor and
the εEz for an electric field of 4. 105 Vcm−1, which is chosen to be weak enough
in order not to destroy the material (at the limit of the electrical breakdown).
The two components are displayed on different scales since the field-induced
one is much smaller and would be indistinguishable otherwise. Note that for
off-diagonal components the imaginary part does not need to be positive.

In Fig. (3) several contributions for the LEO second order susceptibility
are presented. The electronic (green curve) and ionic (red curve) contributions
are displayed as a function of the frequency of the electric field. For clarity,
only the absolute value is presented, but one should remember that they are
both complex quantities. It is important to stress that in the low energy part
of the spectrum, where the imaginary part is small, the electronic and ionic
contributions have opposite sign and therefore partially cancel each other.
This was already known from the experimental value of the Faust-Henry coef-
ficient CFH = −0.51, measured at ω = 1eV [29]. The absolute value of the
clamped susceptibility (electronic+ionic) is compared to the experimental val-
ues (blue points) [38], showing a good agreement. The frequency-dependent
Faust-Henry coefficient is displayed in the inset. One can conclude from these
results that the frequency dependence for all these quantities (ionic contribu-
tion and Faust-Henry coefficients) is far from being negligible. One also notes
the good agreement between the theoretical and experimental value for CFH

at ω=1eV.
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Fig. 2 Imaginary part of the dielectric function εxx (black curve) and induced εxz by a
static field of 4. 105 V.cm−1 along the z direction (red curve : electronic, green curve : ionic,
blue curve: total contributions). The intensity is scaled for the induced quantities.
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Fig. 3 The LEO second order susceptibility for GaAs : electronic, ionic and total compo-
nents. The total component is compared to the experimental results compiled in [38]

3.2 EFISH

Two components for χ(3)(−2ω; ω, ω, 0) corresponding to the EFISH process
for Si and SiC are shown in Fig. (4) and Fig. (5). We note that the intensity
of the susceptibility is much higher for Si than for SiC, note the change of
scale when comparing Fig. (4) and Fig. (5). The common feature of the two

compounds is the fact that one finds a factor close to 2 between χ
(3)
zzzz and

χ
(3)
zxxz.
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Fig. 5 zxxz and zzzz components of the EFISH susceptibility of bulk cubic silicon carbide.

The effective second-order susceptibility is χ̃
(2)
zzz(−2ω; ω, ω) =

3χ
(3)
zzzz(−2ω; ω, ω, 0)Ez. To compare the intensity of SHG and EFISH, we show

on the same plot, Fig. (6) the intensity of the induced second-order component

χ̃
(2)
zzz for both Si and 3C-SiC, which displays a factor 10 difference between the

two, clearly showing that the EFISH response in silicon is much larger than in
SiC. The strength of the static field is 5 ·105V/m and we see that we can actu-
ally compare the SHG and EFISH components on the same scale, unlike what
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was done for LEO, showing that the field-induced component, while smaller

than the χ(2), is far from being negligible in SiC. Note that there is no χ
(2)
xyz

contribution for Si due to centrosymmetry.

Fig. 6 Comparison for 3C-SiC between the two χ(2) components xyz coming from SHG
(black curve) and zzz coming from EFISH (red curve) with a static field of Ez = 5 · 105

V/cm. The zzz-component for Si is also shown for the same static field amplitude.

4 Conclusion

In this work we presented the ab initio formalism we developed for the cal-
culation of the second-order macroscopic susceptibility for LEO and of the
third-order macroscopic susceptibility for the EFISH. In the case of LEO we
have included in our theoretical approach the quasiparticle effect at the level
of the scissors correction and the electronic and ionic contributions to the
optical response. We have applied our method to the calculation of LEO coef-
ficients for the semiconductor GaAs and we have compared our results with
the experimental data presented in literature, finding a good agreement. We
can conclude from this comparison that it is important to account for the
frequency-dependent ionic contribution. Concerning EFISH we presented our
formalism where the mathematical divergences in the third-order susceptibil-
ity have been removed. We have presented numerical values for the EFISH
susceptibility for Si and SiC, showing in particular the high potential of Si as
a non-linear medium.

The ab initio calculation of LEO and EFISH shows that an high accuracy
can be reached both for the electronic and the ionic parts of the nonlinear
coefficients. Moreover, the analysis and comparison of the SHG, the LEO and
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the EFISH together with the dielectric properties for different systems open
the way for an accurate investigation of complex materials with technological
interest.

5 Appendix A

Writing a time-dependent electric field as

E(t) = E0

(
e−iωt + eiωt

)
(23)

the time-dependent second-order polarization induced by E(t) is

P(2)(t) = χ(2)EE = χ
(2)
SHGE

2
0

(
e−2iωt + e2iωt

)
+ 2χ

(2)
ORE

2
0 (24)

where the second-order susceptibility χ(2) relates the polarization to the elec-
tric field. The first term corresponds to the second harmonic generation
(SHG) and the second term to the optical rectification (OR).One can define a

frequency-dependent SHG an OR polarization as P
(2)
SHG(2ω) = χ

(2)
SHGE

2
0 and

P
(2)
OR = 2χ

(2)
ORE

2
0 .

In the general case, where the electric field contains two different frequen-
cies,

E(t) = E0,1

(
e−iω1t + eiω1t

)
+ E0,2

(
e−iω2t + eiω2t

)
(25)

the time-dependent second-order polarization becomes

P(2)(t) = χ
(2)
SHGE

2
0,1

(
e−2iω1t + e2iω1t

)
+ χ

(2)
SHGE

2
0,2

(
e−2iω2t + e2iω2t

)
+2χ

(2)
ORE

2
0,1 + 2χ

(2)
ORE

2
0,2 + 2χ

(2)
SFGE0,1E0,2

(
e−i(ω1+ω2)t + ei(ω1+ω2)t

)
+2χ

(2)
DFGE0,1E0,2

(
e−i(ω1−ω2)t + ei(ω1−ω2)t

)
(26)

where the last two terms correspond respectively to the sum frequency
generation (SFG) and the difference frequency generation (DFG).

For the linear electro-optic effect (LEO), the total field is

E(t) = E0

(
e−iω1t + eiω1t

)
+ Edc (27)

where Edc = lim
ω→0

E2(t) = 2E0,2. The polarization corresponding to the linear

electro-optic effect is then

P
(2)
LEO(t) = 2χ

(2)
LEOE0Edc

(
e−iω1t + eiω1t

)
(28)

One can generalize these conventions to the third order case and we get for
the EFISH process

P
(3)
EFISH(t) = 3χ3

EFISHEdcE
2
0

(
e−2iωt + e2iωt

)
(29)
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6 Appendix B

In this Appendix, we present the detailed derivation of the ionic contribution
to the LEO susceptibility. The frequency-dependent dielectric tensor depends
on the frequency ω, on the amplitude of the static electric field E and on the
ionic displacement induced by the static field R(E). The ionic contribution is
given by

dεionicij (R(E), E , ω)

dEk
|R0,Ek=0 =

∑
nα

∂εij(R, 0, ω)

∂τnα
|R0

∂τnα
∂Ek
|Ek=0 (30)

The evaluation of ∂τnα
∂Ek |Ek=0 has been proposed in [32]; it is based on the fact

that the electric enthalpy F (E) of a solid in an electric field is obtained by the
minimization

F (E) = min
R

F (E ,R(E)) (31)

Expanding the electric enthalpy in terms of the static field, we get

F (R(E), E) = F (R(E), E = 0)− Ω0

∑
k

Pk(R(E))Ek

−Ω0

2

∑
kj

χ
(1)
kj (R(E))EkEj + ... (32)

and, to first order in terms of E , the minimization leads to

∑
n′α′

∂2F (R, E = 0)

∂τnα∂τn′α′
|R0

∂τn′α′

∂Ek
|Ek=0 = Ω0

∂Pk(R)

∂τnα
|R0

(33)

By decomposing τn′α′ in the basis of the zone-center phonon-mode
eigendisplacements(q = 0):

τn′α′ =
∑
m

τmUm(n′α′) (34)

we get

∑
m

∂τm
∂Ek
|Ek=0

∑
n′α′

∂2F (R, E = 0)

∂τnα∂τn′α′
|R0

Um(n′α′) = Ω0
∂Pk(R)

∂τnα
|R0

(35)

Multiplying by Up(nα) and summing over nα

∑
m

∑
nα

∂τm
∂Ek
|Ek=0

∑
n′α′

∂2F (R, E = 0)

∂τnα∂τn′α′
|R0

Um(n′α′)Up(nα) = Ω0

∑
nα

∂Pk(R)

∂τnα
|R0

Up(nα)(36)
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we finally obtain

∂τm
∂Ek
|Ek=0 =

Ω0

ω2
m

∑
nα

∂Pk(R)

∂τnα
|R0

Um(nα) (37)

where we have used the fact that the second derivative of the enthalpy in Eq.
(36) corresponds to the inter-atomic forces Mn and the normalisation relation
for the phonon modes

∑
nαMnUm(nα)Up(nα) = δmp.

From Eqs.(30) and (37) and with the definition of the mode polarity, =

pmk = Ω0

∑
nα

∂Pk(R)
∂τnα

Um(nα), the ionic contribution becomes

dεionicij (R(E), E , ω)

dEk
|R0,Ek=0 =

∑
m

pmk
ω2
m

∂εij(R, 0, ω)

∂τm
|R0 (38)
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strategy to induce and enhance second-harmonic generation in centrosym-
metric and noncentrosymmetric materials. Phys. Rev. B 92, 075,204
(2015)

[9] G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, Silicon
optical modulators. Nature Photonics 4, 518 (2010)

[10] J. Frigerio, V. Vakarin, P. Chaisakul, M. Ferretto, D. Chrastina, X.
Le Roux, L. Vivien, G. Isella, and D. Marris-Morini, Giant electro-optic
effect in Ge/SiGe coupled quantum wells. Scientific Reports 5, 15398
(2015)

[11] M. Berciano, G. Marcaud, P. Damas, X. Le Roux, P. Crozat,
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