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2 av. de la Forêt de Haye BP 160, F-54504 Vandoeuvre lès Nancy,

FRANCE.

(Dated: 23 January 2012)

The pipe flow of purely viscous shear-thinning fluids is studied using numerical sim-

ulations. The rheological behavior is described by the Carreau model. The flow field

is decomposed as a base flow and a disturbance. The perturbation equations are then

solved using a pseudospectral Petrov- Galerkin method. The time marching uses a

fourth-order Adams-Bashforth scheme. In the case of an infinitesimal perturbation,

a three-dimensional linear stability analysis is performed based on modal and non

modal approaches. It is shown that the pipe flow of shear-thinning fluids is linearly

stable and that for the range of the rheological parameters considered, streamwise

independent vortices are optimally amplified. The nonlinear computations are done

for finite amplitude two-dimensional disturbances, which consist of one pair of longi-

tudinal rolls. The numerical results show that for a given wall Reynolds number, the

shear-thinning reduces the energy gain of the perturbation. This is due to a reduction

of the exchange energy between the base flow and the perturbation. Besides this, the

viscous dissipation decreases with increasing the shear-thinning effects.

PACS numbers: 47.20.-k, 47.50.-d, 47.50.Gj, 47.60.Dx
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I. INTRODUCTION

Non-Newtonian fluids, such as colloidal suspensions, polymers or macro-molecules solu-

tions are encountered in several industrial processes such as oil-well cementing, extrusion of

molten polymers, paper coating, transport of mined slurries, etc. Many of these processes

involve flows of non-Newtonian fluids through pipes. Knowledge of the flow structure is

essential for an accurate design of pipe flow systems. In the laminar regime, the flow can

be quite easily calculated. On the contrary, the transition to turbulence remains a genuine

scientific challenge. “Actually, there is a demand from industrial applications to predict the

Reynolds number at which transition occurs. Several phenomenological criteria for the tran-

sition to turbulence have been proposed in the literature (Brand, Peixinho and Nouar SPE

paper 7135). Periodically, other criteria appear particularly in the petroleum engineering

literature. However, when the rheological properties of the fluid depart significantly from

the Newtonian case, the predictions provided by such phenomenological criteria diverge, and

there is no way to decide which criterion is preferable (Nouar and Frigaard 2001). From

experimental point of view, the transition to turbulence is well determined from the mea-

surement of the turbulence intensity. Escudier et al. (2009) investigated the transition the

pipe flow of an aqueous solution of Xanthan-gum (semi-rigid polymer) and Polyacrylamyde

(flexible polymer). They found that the transition that the transition occurs at Reynolds

number (defined with the bulk velocity, diameter of he pipe and the wall shear-viscosity)

about 3000 for Xanthan gum and ≈ 4000 for Polyacrylamyde. For a Baryte suspension

(fluid used in oil cementing process) transition was found at Reynolds about 4000.

Actually, even for for Newtonian fluids, the transition to turbulence is a difficult problem,

despite the numerous works done since the Reynolds’ experiment in 1883. The Hagen-

Poiseuille flow is conjectured to be linearly stable for all Reynolds numbers and numerically

proven? so for Reynolds number up to 107, yet it exhibits transition to turbulence at moder-

ate flow velocities. A finite amplitude perturbation is therefore required to trigger transition

to turbulence. In the last decade two different modeling approaches of transition to turbu-

lence were proposed in the literature for Newtonian fluids. The first one is based on the

algebraic transient growth exhibited by the optimal perturbations, which consist of stream-

wise counter-rotating vortices. These two-dimensional rolls evolve into streaks via the lift-up

mechanism? . The resulting flow contains saddle points and can be unstable with respect
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to three-dimensional perturbations. This instability, which is typically studied by nonlinear

direct simulations, is termed as streak breakdown. It was shown that this modeling approach

is pertinent in parallel shear flows such as pipe Poiseuille flow? , plane Poiseuille flow? and

recently in magnetohydrodynamic channel flow? . The main goal of this approach is to

determine the threshold amplitude of a perturbation required to trigger transition. The

second approach seeks nonlinear wave solutions of the Navier-Stokes equations, by using

the Self-Sustaining Process, “SSP”, initiated by Waleffe? , and continuation methods. The

“SSP” employs streamwise rolls, streaks and traveling waves as a fundamental building unit.

Some unstable traveling waves solutions have been identified by Faisst and Eckhardt? and

Wedin and Kerswell? for Newtonian pipe flow.

Comparatively to the Newtonian case, very few studies have been devoted to the transition

to turbulence in a pipe for non-Newtonian fluids. This is perhaps not surprising, given the

inherent additional complexities involved. The existing literature reveals two interesting

and yet unexplained effects: (i) delay in the transition to turbulence, more precisely in the

onset of “puff”? ? and (ii) an asymmetry of the mean axial velocity profiles? ? ? ? in tran-

sitional regime, while in the laminar and turbulent regimes, the flow is axisymmetric. Here,

“mean” refers to time-averaged. This asymmetry suggests the existence of a robust coherent

structure characterized by two weakly modulated counter-rotating longitudinal vortices? ,

i.e. with an azimuthal wavenumber n = 1. All non-Newtonian liquids investigated exper-

imentally display two common rheological properties: shear-thinning (decrease of viscosity

with increasing shear-rate) and viscoelasticity. The asymmetry seems to be a shear-thinning

dependent. Indeed, non-Newtonian liquids with similar shear-thinning and different elastic

behavior show the same degree of asymmetry? . Recently, Roland et al.? examined the

effect of shear-thinning on the traveling waves found in Newtonian fluid. The authors fo-

cused only on the waves with an azimuthal wavenumber n = 3. They found that the critical

Reynolds number of the saddle-node bifurcation where these waves appear increases when

the shear-thinning come into play.

The present work focuses on the pipe flow of purely viscous shear-thinning fluids, i.e., fluids

without elasticity and for which the viscosity is a nonlinear function of the second invariant

of the strain rate tensor. Additional nonlinear couplings between flow variables, in addition

to the quadratic nonlinear inertial terms, appear in the momentum equations. The laminar

flows of such fluids are mainly characterized by a stratification of the viscosity between the
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wall and the pipe axis: the viscosity decreases from the axis to the wall. To our knowledge

the linear stability of the laminar flow of shear-thinning fluid has not been performed before.

Here it will be shown, for a wide range of the rheological parameters, that the flow is linearly

stable, and that the optimal perturbation is constituted of streamwise-independent counter-

rotating vortices. We will then study study, with direct numerical simulation, the nonlinear

development of the optimal perturbation, i.e. the first step of the transition scenarios de-

scribed above. More precisely, the objective is to examine the modification of the viscous

dissipation induced by the viscosity perturbation and its consequence on the disturbance

energy.

An outline of the paper is as follows. The governing equations of the problem and the Car-

reau law as a model for shear-thinning behavior are given in dimensionless form in section 2.

The characteristics of the base flow in terms of velocity and viscosity profiles are discussed.

The initial value problem for the perturbation field is stated. The presentation of the numer-

ical method is made in section 3. The dynamical system obtained is first solved in the case

of an infinitesimal perturbation (linear theory) in section 4. The validation of the numerical

procedure and the convergence analysis for nonlinear computations are given in section 5.

The results for a finite perturbation are discussed in section 6. Finally, conclusions on the

main findings of the present work are drawn in section 7.

II. GOVERNING EQUATIONS AND BASE FLOWS

A. Momentum equations - Dimensionless parameters

We consider the flow of an incompressible purely viscous shear-thinning fluid in a circular

pipe of radius R̂. Here and in what follows, the quantities with hat (̂.) are dimensional. The

governing equations in dimensionless form are

∇ ·U = 0, (1)

∂U

∂t
+ (U ·∇)U = −∇P +∇ · τ , (2)

where P is the pressure, including the gravity effect, and τ the deviatoric stress tensor. The

above equations have been rendered dimensionless using Ŵ0 the maximal velocity of the

laminar flow as velocity scale, the radius R̂ of the pipe as length scale, R̂/Ŵ0 as time scale and

ρ̂Ŵ 2
0 as stress and pressure scale. The velocity vector U is written as U = Uer+V eθ+Wez,
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where U, V and W are the velocity components in the radial, azimuthal and axial directions

respectively. For purely viscous fluid, i.e. fluids for which the viscosity depends only on the

shear rate, the deviatoric shear stress tensor

τ =
1

Re
µ γ̇ with γ̇ = ∇U + (∇U )T , (3)

the strain-rate tensor. The Reynolds number

Re =
ρ̂Ŵ0R̂

µ̂ref

, (4)

where the reference viscosity µ̂ref is defined afterwards. We focus on fluids of shear-thinning

type. Many models are proposed in the literature to describe the dependence of the viscosity

on the shear rate. Probably the most popular is the power-law model. However, this model

gives an infinite viscosity as the shear rate tends to zero. A more realistic model is the

Carreau-Yasuda model? for which the zero-shear rate viscosity µ̂0 is finite. Using µ̂0 as the

reference viscosity, µ̂ref = µ̂0, the Carreau-Yasuda model in dimensionless form reads

µ = µ∞ + (1− µ∞) [1 + (λ γ̇)a]
(nc−1)/a

, (5)

where µ∞ = µ̂∞/µ̂0 is the dimensionless shear viscosity at infinite shear rate, λ = λ̂R̂/Ŵ0

is the dimensionless constant time of the fluid (its inverse is the dimensionless shear rate at

which the onset of shear-thinning occurs), nc < 1 is the shear-thinning index, a is a constant

which describes the transition from the zero shear viscosity region to the power law region.

This five parameters model offers the possibility to fit a wide variety of experimental data.

However, for many polymer solutions, good fit is obtained with a = 2, referred to as the

Carreau model. One can note that the Newtonian fluid is recovered by setting any of the

limits: nc = 1, λ = 0 or µ∞ = 1. The dimensionless second invariant of the strain rate

tensor γ̇ is

γ̇ =

[

1

2
γ̇ij γ̇ij

]1/2

. (6)

B. Base flows

A one dimensional shear flow, U = Ub = Wb(r)ez is driven by a constant pressure

gradient, i.e. the pressure Pb = P 0
b − Gp z, with P 0

b and Gp some constants. The subscript
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b means base flow. Then, the axial momentum equation reads

0 = Gp +
1

Re

1

r

d

dr

(

r µb
dWb

dr

)

, (7)

where

µb = µ∞ + (1− µ∞)

(

1 + λ2

(

dWb

dr

)2
)(nc−1)/2

. (8)

The above equations are supplemented by the no-slip condition at the wall. An iterative

spectral method is used for solving the nonlinear Eq. (??). Since the center line velocity is

the characteristic velocity, Wb(0) = 1. Hence, a specific pressure gradient has to be applied

to produce Wb(0) = 1. Examples of the axial velocity profiles obtained at fixed λ and

varying nc, or fixed nc and varying λ are given in Fig. ??. Hereafter, the infinite shear-rate

viscosity is non-zero and is fixed, µ∞ = 2 × 10−3. This value is based on the rheological

data given by Escudier et al? . As expected, with increasing shear-thinning effects, the wall

shear rate increases, and the velocity profile flattens in the central region. Figure ?? shows

the influence of the shear-thinning effects with increasing λ or decreasing nc on the viscosity

profile. In order to highlight the viscosity sensitivity with respect to changes in the shear

rate we define the quantity vs = (1/µb)(dµb/dγ̇). As displayed in Fig. ??, vs increases

with increasing shear-thinning effects. Furthermore, the curves of Fig. ?? highlight a strong

sensitivity of the viscosity to change in γ̇ near the axis, particularly for large values of λ

(Fig. ??(b)).

C. Disturbance equations

The base flow is initially subjected to a disturbance (u, p): U = Ub+u and P = Pb + p.

The equations governing the time-evolution of the disturbance are obtained by subtracting

the base equations from (??), (??):

∇ · u = 0, (9)

∂u

∂t
= − (Ub.∇)u− (u.∇)Ub − (u.∇)u−∇p

+∇. [τ (Ub + u)− τ (Ub)] , (10)

with the no-slip boundary conditions on the pipe wall. In equation (??), the components of

the deviatotic stress tensor of the disturbed flow are:

τij (Ub + u) =
1

Re
µ (Ub + u) γ̇ij (Ub + u) (11)
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FIG. 1. Base velocity profiles. (a) λ = 30 and different values of the shear-thinning index (1)

nc = 1 Newtonian fluid; (2) nc = 0.7; (3) nc = 0.5; (4) nc = 0.3. (b) nc = 0.5 and different values

of the dimensionless constant time λ: (1) λ = 0 Newtonian fluid; (2) λ = 1; (3) λ = 30.
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FIG. 2. Base viscosity profiles. (a) λ = 30 and different values of the shear-thinning index (1)

nc = 0.7; (2) nc = 0.5; (3) nc = 0.3. (b) nc = 0.5 and different values of the dimensionless constant

time λ: (1) λ = 1; (2) λ = 4; (3) λ = 30.

As the fluid is supposed purely viscous, it was therefore assumed that the viscosity instan-

taneously adjusts the shear rate of the perturbed flow Ub+u. Physically, this assumes that

the characteristic time of the reorganization of the internal structure is much smaller than

the characteristic time of the perturbation.
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FIG. 3. Viscosity sensitivity. (a) λ = 30 and different values of the shear-thinning index: (1)

nc = 0.7; (2) nc = 0.5; (3) nc = 0.3. (b) nc = 0.5 and different values of the dimensionless

constant time λ: (1) λ = 1; (2) λ = 4 and (3) λ = 30.

III. NUMERICAL METHODS

The pseudo-spectral Petrov-Galerkin method of Meseguer and Trefethen? ? is used to

integrate the governing equations. Fourier expansions are used in the azimuthal and axial

directions, and Chebyshev-based functions are used in the radial direction. The expansion

of the velocity, which is truncated at order L in z, order N in θ and order M in r, is written

as :

us(r, θ, t) =
∑

k=1,2

L
∑

l=−L

N
∑

n=−N

M
∑

m=0

a
(k)
mnlΦ

(k)
mnl. (12)

The trial bases Φ
(k)
mnl are of the form :

Φ
(k)
mnl = exp (i q z + inθ) v

(k)
mnl(r), (13)

where q = 2πl/Q is the axial wave number based on the pipe length Q, n the azimuthal

wavenumber and v
(k)
mnl(r) a function based on the first kind Chebyshev polynomial T2m(r)

? .

The trial bases v
(k)
mnl(r) are given in Appendix ??. The coefficients a

(k)
mnl depend on time and

satisfy the property amnl = a∗m−n−l, since us is real. The star denotes the complex conjugate.

By construction, the trial bases are divergence free, satisfy the no-slip condition at the wall

and the regularity condition at the axis. Equation (??) combined with (??) is substituted

into Eq.(??) and a projection over solenöıdal test fields ψ
(k)
mnl, given in Appendix ?? which

include the weight 1/
√
1− r2 and satisfying the boundary and the regularity conditions, is
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performed. The pressure term −∇p cancels in the projection. The nonlinear inertial and

viscous terms are calculated using a pseudo-spectral method. To avoid aliasing error, i.e.,

the production of small scales, the 3/2 padding rule for de-aliasing? is employed. Setting

a the column vector containing the elements a
(k)
mnl, the dynamical system resulting from the

projection procedure can be written as :

Aȧ = Ba+ b (14)

where b, the column vector containing the nonlinear terms b
(k)
mnl, and the matrices A and B

are defined such as :

[Aȧ]
(k)
mnl = 〈∂tus,ψ

(k)
mnl〉 (15)

[Ba]
(k)
mnl = −〈(Ub · ∇)us + (us · ∇)Ub,ψ

(k)
mnl〉 (16)

b
(k)
mnl = −〈(us · ∇)us,ψ

(k)
mnl〉+ 〈∇ · τ (Ub + us)− τ (Ub),ψ

(k)
mnl〉 (17)

The scalar product 〈., .〉 is defined by the integration over the fluid domain of the functions

product:

〈Φ,ψ〉 =
∫ 2π/q

0

∫ 2π

0

∫ 1

0

Φ ·ψ r dr dθ dz, (18)

where Φ belongs to the physical or trial space and ψ is a solenoidal vector belonging to

the test space. The time discretization uses a fourth-order semi-implicit Adams-Bashforth

scheme. The nonlinear terms (??) are calculated explicitly, while the linear terms (??)

are integrated implicitly. Since the nonlinear viscous terms are integrated explicitly, the

maximum allowable time step ∆t which ensures the numerical stability decreases when the

number of azimuthal and radial modes increases.

IV. CASE OF INFINITESIMAL THREE-DIMENSIONAL

PERTURBATION: LINEAR STABILITY ANALYSIS

When the disturbance is infinitesimal, the nonlinear advective terms are neglected and

the quantity τ (Ub + u)− τ (Ub) is linearized around the base flow (Ub, Pb),

τ ′ = τ (Ub + u)− τ (Ub) = µ(Ub)γ̇ (u) + µ′γ̇ (Ub) . (19)

Using Taylor expansion at first order, the viscosity perturbation µ′ is given by

µ′ =
∂µ

∂γ̇ij

∣

∣

∣

∣

b

γ̇ij (u) . (20)
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Since Ub = Wb(r)ez, one has

τ ′ij = µ(Ub)γ̇ij(u) if ij 6= rz, zr, (21)

τ ′ij = µt(Ub)γ̇ij(u) if ij = rz, zr, (22)

where the ‘tangent viscosity’

µt(Ub) = µ(Ub) +
∂µ

∂γ̇rz
(Ub)γ̇rz(Ub). (23)

Indeed, for one-dimensional shear flow, with velocity Wb(r) in the z-direction, the tangent

viscosity is defined as µt = ∂τrz/∂γ̇rz. For shear-thinning fluids µt < µ. One can note

that the fluctuation stress stress tensor τ ′ is anisotropic, due to viscosity perturbation. The

initial value problem that results can be written

Aȧ = La, (24)

with

[Aȧ]
(k)
mnl = 〈∂tus,ψ

(k)
mnl〉 (25)

[La]
(k)
mnl = −〈(Ub · ∇)us + (us · ∇)Ub,ψ

(k)
mnl〉+ 〈∇ · τ ′,ψ

(k)
mnl〉 (26)

A. Modal approach: Long-time behavior

When the long time behavior is sought, the disturbance is assumed to behave exponen-

tially as exp(σ t). The initial value problem (??)-(??) is transformed into a generalized

eigenvalue problem, with σ as eigenvalue :

σAa = La. (27)

The numerical results show that for the range of rheological parameters considered here,

0 < λ < 30 and 0.3 < nc < 1, the real part of σ remains negative for all the eigenmodes. It is

therefore conjectured that the pipe flow of shear-thinning fluid (0, 0,Wb(r)) is linearly stable.

The asymptotic behavior of the least stable mode was determined for two different kinds of

perturbations n = 1, q = 0 and n = 1, q = 1. The same scaling as for Newtonian fluid is

found when the Reynolds number is defined with the wall shear-viscosity µw = µb(r = 1) :

Rew = Re/µw. (28)
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Hence, for the streamwise mode n = 1, q = 0, the least stable mode eigenvalue σ behaves as

Re−1
w and for n = 1, q = 1, the real part of the eigenvalues of the wall mode and the center

mode behave as Re
−1/3
w and Re

−1/2
w .

In the following, the results will be presented in terms of Rew. It is worthy to note that

the experimentalists? ? ? use µw in the Reynolds number definition. From practical point of

view, the tangential wall shear-stress τrz is determined from the measurement of the pressure

gradient. The wall viscosity is then calculated from τrz and the rheological law.

B. Non-modal approach: Transient growth

As the linear operator L = A−1L is non-normal, i.e. the eigenmodes are not orthogonal

under the energy norm, transient growth of the kinetic energy of the perturbation is expected,

before an exponential decay. To characterize the transient growth, we define the gain G of

the kinetic energy at given time t and non-zero initial condition, u(t = 0), as:

G(t, q, n,u(t = 0)) =
E (t,u)

E (t = 0,u)
, (29)

where E (t,u) is the instantaneous disturbance kinetic energy density, for a given mode,

defined by

E (t,u) =
q

4 π2

∫ 2π
q

0

∫ 2π

0

∫ 1

0

u.u r drdθdz. (30)

The maximum amplification of the kinetic energy over all non zero initial conditions and

over all times is

Gmax(q, n) = sup
t>0

G(t, q, n) with G(t, q, n) = sup
u(t=0) 6=0

G(t, q, n,u(t = 0)). (31)

The optimal amplification over all the azimuthal and axial wavenumbers is defined by

Gopt = sup
q,n

Gmax(q, n) (32)

The procedure to compute the optimal initial condition is outlined in? . For all the range

of the rheological and dynamical parameters considered here, it is found that the optimal

transient growth is reached for a streamwise homogeneous perturbation (q = 0), with an

azimuthal wavenumber n = 1 as in the case of a Newtonian fluid. Nonetheless, from a very

low axial wavenumber, the maximum amplification of the kinetic energy of the perturbation
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is reached for higher azimuthal modes as it is indicated by Fig. ??(a) at nc = 0.5, λ = 30 and

Rew = 4000. The amplification of the kinetic energy at Rew = 4000, n = 1, l = 0, λ = 30

and different values of the shear-thinning index is displayed in Fig. ??(b). As it can be

observed the shear-thinning reduces significantly the amplification of the kinetic energy as

well as the corresponding time where the maximum of the amplification is reached. These

results may be anticipated on the basis of those obtained in? . Numerical results show for

instance at λ = 30 that Gopt
nc 6=1 ∝ n1.66

c × Gopt
nc=1 and toptnc 6=1 ∝ n0.67

c × toptnc=1. For given nc and

λ, the dependence of Gopt and topt on Rew has been studied. It is found that Gopt increases

with Rew. The scaling with Re2w is recovered. Similarly the scaling of topt with Rew is

satisfied. The structure of the initial perturbation which ensures the optimal amplification

of the kinetic energy is represented in Fig. ??. It consists of two counter-rotating streamwise

vortices along the wall-normal direction. At t = 0, almost all the energy is in the azimuthal

and radial components and negligible part in the streamwise component. For instance for

nc = 0.5 and λ = 30, 67.87% of the energy is in the azimuthal component and 32.06%

in the radial component of the velocity. These vortices allow the transfer of energy to

the streamwise velocity components by the lift-up mechanism creating low and high speed

streaks, displayed in Fig. ??(b). The location of the maximum of the streamwise velocity

approaches the wall with increasing shear-thinning effects.

V. NONLINEAR TWO-DIMENSIONAL COMPUTATIONS: VALIDATION

AND CONVERGENCE.

A. Validation

At the beginning, Zikanov’s result? corresponding to the energy amplification of two-

dimensional perturbation, in the case of a Newtonian fluid, is reproduced in order to validate

the computational code. The initial perturbation is in the form of a pair of streamwise rolls

with azimuthal wave number n = 1. The normalized energy of an arbitrary perturbation u

is defined by

ǫ (u) =
E (t,u)

E (Ub)
, (33)

where E (Ub) = 1/6 in the case of a Newtonian fluid. Figure ?? shows the variation of

the energy amplification G(t). The results are in very good agreement with those given

12



Pipe flow of shear-thinning fluids

0 1 2 3 4 5
10

1

10
2

axial wavenumber, q 

G
m

a
x

n = 1

n = 2
n = 3

n = 5

(a)
0 100 200 300 400 500

0

200

400

600

800

1 000

1 200

n
c
 = 0.5

n
c
 =1 

t

G

n
c
 = 0.7

n
c
  = 0.8

n
c
 = 0.3

n
c
 = 0.4

(b)

FIG. 4. (a) Maximum amplification of the disturbance kinetic energy as function of the axial

wavenumber q for different azimuthal wavenumbers n at Rew = 4000, λ = 30 and nc = 0.5. (b)

Gain of kinetic energy for the optimal perturbation at Rew = 4000, λ = 30 and different values of

the shear-thinning index, nc.

by Zikanov? and Meseguer? . It is interesting to note that the numerical computations

started with the simplified expressions of the coefficients a(k)mn proposed by Zikanov? and used

by Meseguer? are not distinguishable from those obtained with the optimal perturbation,

within plotting accuracy.

B. Convergence

- Spatial convergence: In order to test the spatial convergence of the solution, com-

putations are performed for different truncation levels (Mi, Ni). The relative variation of G

with respect to the highest level of truncation (Mh, Nh) is defined by

∆G(t)Mi,Ni
=

|GMi,Ni
−GMh,Nh

|
GMh,Nh

. (34)

The truncation error is estimated by the maximum of ∆G(t) over all the time interval

considered, typically 0 ≤ t ≤ 1000. For instance, for an initial disturbance consisting of one

pair of longitudinal rolls, at nc = 0.5, λ = 30 and Rew = 4000, computations were done for

(M,N) = (6, 9), (12, 12) and (12, 16). Figure ??(a) displays ∆G vs time. For truncation

levels (M,N) = (6, 9) the error truncation is of 18% obtained at t = 54 while it is of

0.07% obtained at t = 87 for (M,N) = (12, 12). There is no significant gain in accuracy
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FIG. 5. (a) Optimal pattern of perturbation at t = 0 in the (r, θ) section, for nc = 0.5, λ = 30 and

Rew = 4000. The arrows represent the vectors uer + veθ. (b) Optimal streaks at t = topt = 150

time units: Iso-values of the axial velocity component w. Continuous lines for positives values of

w: 0.1 near the wall with a step of 0.2 until 0.9. Dashed lines for negative values of w: −0.1 near

the wall then with a step of −0.2 until −0.9.
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FIG. 7. Convergence test for a Carreau fluid nc = 0.5, λ = 30 at Rew = 4000. The initial

perturbation is in the form of streamwise rolls with an energy ǫ0 = 10−2. (a) Truncation error

for two different spatial resolutions: (1) (M1 = 6, N1 = 9) and (2) (M2 = 12, N2 = 12), with

(Mh = 12, Nh = 16). (b) Energy spectra over the azimuthal modes at t ≈ 70 and for the three

truncation levels tested: (�) (M = 6, N = 9); (o) (M = 12, N = 12) and (⊲) (M = 12, N = 16).

of the solution, if one considers truncation level (M ≥ 12, N ≥ 12). At an intermediate

time t ≈ 70, where ∆G is maximum, the spectral convergence of the solution is checked.

This is illustrated by the Figure ??(b) where the energy distribution Gn over the azimuthal

wavenumber n is displayed for the above three truncation levels. The ratio Gn of the kinetic

energy associated to an azimuthal mode n, to that of the initial perturbation is

Gn =
1

E (t = 0,u)

∑

k=1,2

M
∑

i=0

M
∑

j=0

[

a
(k) ∗
in0 a

(k)
jn0

∫ 1

0

(

v
(k) ∗
in0 (r).v

(k)
jn0(r)rdr

)

]

. (35)

The figure ??(b) shows that the spectral convergence is ensured when M ≥ 12 and N ≥ 12,

with Gn ∝ exp(−n). The test of spatial convergence described above is done for all the set

of rheological and dynamical parameters studied.

- Temporal convergence: The sensitivity of the computational results to the magni-

tude of the time step is examined by comparing the solutions G(t) obtained with two time

steps ∆t and ∆t/2. The convergence criterion is based on the maximum of the relative

variation |G(t)∆t − G(t)∆t/2|/G(t)∆t/2 which has to be less than 0.5%. Hence, for one pair

of longitudinal rolls, at nc = 0.5, λ = 30, Rew = 4000, with (M = 12, N = 12), the criterion

of temporal convergence is ensured with ∆t = 10−2.
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VI. NONLINEAR TWO-DIMENSIONAL COMPUTATIONS: RESULTS

AND DISCUSSION

The results section consists of four parts. Part (A) focuses on the shear-thinning effects

on the temporal evolution of the disturbance energy. Part (B) describes the flow structure

and the modification of the viscosity profiles. Part (C) gives the Reynolds-Orr equation and

highlights the additional terms arising from the viscosity perturbation. Part (D) analyses

the shear-thinning effects on each term of the energy equation. In the following, the dimen-

sionless constant time in the Carreau model is fixed at λ = 30. This value is chosen in order

to highlight clearly the shear-thinning effects. In addition, the results seem to be weakly

dependent on λ when λ ≥ 20.

A. Time evolution of the disturbance energy

The time evolution of the amplification factor G(t) for Carreau fluid with nc = 0.5 is

shown in Fig. ??(a). The initial energy E0 = E (t = 0,u) varies between 10−5 and 10−2

relative to the energy of the base flow. For low value of ǫ0 = E0/E (Ub), of the order of
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FIG. 8. (a) Energy amplification factor G(t) of a two-dimensional streamwise perturbation for a

Carreau fluid with nc = 0.5 at Rew = 4000 and different values of the initial energy ǫ0. The curve

obtained from linear transient growth is not distinguishable from that corresponding to ǫ0 = 10−5.

(b) Shear-thinning effects on the amplification factor G: (1) nc = 1 Newtonian case; (2) nc = 0.7;

(3) nc = 0.5 and (4) nc = 0.4.
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10−5, the contribution of the nonlinear terms can be neglected and we recover the transient

growth due to the non-normality of the linear operator. For ǫ0 > 2.5 × 10−3, two stages

can be distinguished in the evolution of finite amplitude perturbation. In the first stage, at

small t, the nonlinear curve follows the linear curve. The growth of the energy is mainly

due to a ‘pseudolinear’ growth? . It is found that the maximum growth time is of order

ǫ
−1/2
0 . The second stage is the nonlinear development of the perturbation. Because of

the z-independence of the perturbation, the rolls do not have an energy source and the

flow undergoes, for t → +∞, a viscous decay back to the laminar regime. Qualitatively,

the evolution G(t) is similar to that of Newtonian fluid. However, it is worthy to note

that for a given Rew the amplification factor decreases with increasing the shear-thinning

effects as it is illustrated in Fig. ??(b). This reduction of G is more significant when the

viscosity perturbation, µ′, is not taken into account as it is illustrated Fig. ??(a), where the

amplification factor is reported as a function of time and compared with the situation where

µ′ is artificially forced to zero. The relative variation of G(t) between the two situations,

where the viscosity perturbation is taken and not taken into account increases with increasing

the shear thinning effects as it is shown in Fig. ??(b). These different results can be discussed

in terms of the balance equation for the averaged disturbance kinetic energy equation. This

analysis is deferred to a later section, after having described the time evolution of the flow

structure and the modification of the viscosity profiles.

B. Flow structure and viscosity profiles

In order to emphasize the nonlinear effects, the amplitude of the initial disturbance has

to be sufficiently important. The results given in this section are obtained for ǫ0 = 10−2. In

the figure ??, we have represented the kinetic energy associated to each component u, v and

w of the perturbation velocity. The radial and azimuthal kinetic energy decrease strongly,

while the axial kinetic energy becomes rapidly dominant. Indeed, the counter-rotating

vortices drag slow moving fluid into faster moving fluid, and lift faster moving fluid into

slower moving fluid. This mechanism gives rise to apparition of inflection points in the

azimuthal profile of the streamwise velocity. This is clearly illustrated by Figs. ??(a)-??(c),

where we have represented contours of constant streamwise velocity at three different times:

t = 5 (first stage in G(t)), t = 15 (maximum growth time) and t = 150 (second stage in
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FIG. 9. (a) Energy amplification factor G(t) of a two-dimensional streamwise perturbation for a

Carreau fluid with nc = 0.5 at Rew = 4000: (1) the viscosity perturbation is taken into account, (2)

the viscosity perturbation is not taken into account. (b) Relative variation between G(t) calculated

when the viscosity perturbation is taken into account and that calculated without taking into

account the viscosity perturbation. This later case is called ‘purely stratified case’ and is indicated

by the subscript st.
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FIG. 10. Time evolution of the kinetic energy associated to: (1) axial E(w), (2) azimuthal E(v)

and (3) radial E(u), components of the velocity perturbation, at nc = 0.5 and Rew = 4000.

G(t)). They are analogous to that of Newtonian fluids. Nevertheless, for shear-thinning

fluids, the contours are squeezed at the top of the cross-section where the viscosity is lower.

The distortion of the axial velocity profile with respect to the base flow is shown in Fig.

??, for two azimuthal positions θ = 0 and θ = π/2. Here, θ is oriented counterclockwise,
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FIG. 11. Contours of constant streamwise velocity Wb(r) + w(r, θ, t) of the perturbed flow at

Rew = 4000 and ǫ0 = 10−2. (a) t = 5; (b) t = 15 and (c) t = 150. (top) Case of Carreau fluid

with nc = 0.5. (bottom) Case of Newtonian fluid.

with θ = π/2 the ‘vertical’ axis of symmetry of the initial perturbation, see Fig. ??(a).

As the fluid is advected downstream by a pressure-driven mechanism, the flow rate has a

tendency to drop. This is a natural consequence of the energy transfer from the mean flow to

disturbance. The distortion of the axial velocity profiles described above is accompanied by

a significant modification of the shear-rate. The incidence on the viscosity profiles is shown

in Fig. ??. At short time, (Fig. ??(a)), a strong decrease of the viscosity is observed in the

central zone of the pipe, due to the high sensitivity of the viscosity to shear rate described

in Fig. ??. Over time, the viscosity profile becomes more complex, but can still be analyzed

from the corresponding axial velocity profile. It is clear that this strong modification of the

viscosity profile affects the viscous dissipation.
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t = 5, (b) t = 15 and (c) t = 150.
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results are generated using M = 12 radial modes, N = 12 azimuthal modes and ∆t = 0.01. (a)

t = 5, (b) t = 15 and (c) t = 150.

C. Energy equation

It is useful to consider the Reynolds-Orr equation, to describe the time evolution of the

kinetic energy of the disturbance. For this, we take the dot product of Eq. (??) with u and

integrate over a cross-section. This yields

dE

dt
= −

∫ 1

0

∫ 2π

0

uw
dWb

dr
rdrdθ −

∫ 1

0

∫ 2π

0

1

2
[τij (Ub + u)− τij (Ub)] γ̇ij (u) rdrdθ. (36)
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Equation (??) can be written as

dE

dt
= J +D. (37)

The first term J on the right-hand side of Eq. (??) is the rate of production of disturbance

energy by the interaction of the Reynolds-stress uw and the mean velocity gradient dWb/dr.

The second term D is the rate of viscous dissipation. By introducing the viscosity pertur-

bation µ′ = µ(Ub + u) − µ(Ub), the dissipation term can be written as the sum of three

terms

D = D1 +D2 +D3, (38)

with

D1 = − 1

Re

∫ 1

0

∫ 2π

0

1

2
µb (γ̇(u) : γ̇(u)) rdrdθ

D2 = − 1

Re

∫ 1

0

∫ 2π

0

1

2
µ′ (γ̇(u) : γ̇(u)) rdrdθ

D3 = − 1

Re

∫ 1

0

∫ 2π

0

µ′γ̇rz(u)
dWb

dr
rdrdθ. (39)

D1 is the expression of the rate of viscous dissipation in the purely stratified case (µ′ is

artificially forced to zero). D2 and D3 are the modifications of the rate of viscous dissipation

due to the viscosity perturbation. These two former terms vanish in the Newtonian case.

D. Analysis

1. Energy-exchange between the base flow and the disturbance

The production of disturbance kinetic energy by the interaction of the Reynolds stress

with the base flow is examined by Fig. (??) for different values of the shear-thinning index.

We have represented J/E0 and GJ = 〈J〉t /E0, where 〈(.)〉t =
∫ t

0

(.)dt. The energy exchange

between the base-flow and the disturbance holds mainly in the “pseudo-linear” growth step.

It decreases with increasing the shear-thinning effects. One has to note that GJ evaluated in

the purely stratified case (µ′ forced to zero) is very close to that evaluated when the viscosity

perturbation is taken into account (Fig. ??b).
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FIG. 14. Shear thinning effects on the production of the disturbance energy by the interaction

of the Reynolds stress with the base flow. (a) Time evolution of the production rate J/E0. (b)

Time evolution of 〈J〉t /E0: (dotted line) purely stratified case, (continuous line) the viscosity

perturbation is taken into account.

2. Viscous dissipation terms

Figure ?? shows the time evolution of the additional terms D2 and D3. The following

observations can be made:

(i) At short time, D2 is large and positive because of the strong decrease of the viscosity as

explained previously.

(ii) As time increases, D2 becomes negative and tends to zero.

(iii) D3 is always positive. This term is the integral of the product of the “non-Newtonian

Reynolds stress”, µ′γ̇rz(u) with the mean velocity gradient. Actually, this product denoted

d3 is almost always positive. Using first order Taylor approximation for µ′ it can be shown

straightforwardly that

d3 = −µ′γ̇rz (u) dWb/dr ≈ −γ̇2
rz (u)

(

∂µ

∂γ̇rz

)

b

dWb

dr
(40)

is positive for shear-thinning fluids. This is confirmed by the numerical computations. In

Fig. ??, the distribution of d3 is displayed in a (r, θ) section at different times. It is not

surprising that, the maximal values of i4 are attained mainly near the wall where the axial

velocity gradient dWb/dr is larger.

(iv) The sum of these two additional terms is positive. It increases with increasing shear-

thinning effects. This can be related to the increase of the viscosity sensitivity to changes
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in the shear-rate as indicated by Fig. ??(a).

The importance of the additional terms D2 and D3 may be assessed by introducing the
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FIG. 15. (a) Time evolution of the additional terms D2 and D3 in the Reynolds-Orr equation

arising from the viscosity perturbation at nc = 0.5 and Rew = 4000. (b) Effect of the shear-

thinning on (D2 +D3)/E0: (1) nc = 0.4, (2) nc = 0.5 and (3) nc = 0.7.
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FIG. 16. Distribution in section r, θ of the non-Newtonian Reynolds stress at three different times

(a) t = 5; (b) t = 15 and (c) t = 150. The computation is done with Rew = 4000 and nc = 0.5.

quantity Rdst as:

Rdst =

∫ t

0
[D1(t

′) +D2(t
′) +D3(t

′)−D1st(t
′)] dt′

−
∫ t

0
D1st(t′)dt′

(41)

which represents the reduction of the viscous dissipation with respect to the purely strati-

fied case, where µ′ is artificially canceled). Figure ?? displays Rdst as function of time for

three different values of the shear-thinning index. It is observed that Rdst increases sharply,
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reaches a maximum within a short time then decreases asymptotically towards a constant

value nearing zero. We note also that Rdst increases with increasing shear-thinning effects,

i.e., with increasing the viscosity sensitivity. This reduction of the viscous dissipation with

respect to the purely stratified case can be viewed as an energy source term for the perturba-

tion that explains the difference between curves (1) and (2) in Fig. ??(a). The contribution

of the inertial term GJ is very close to that obtained for a purely stratified case, as it is

shown in Fig. ??(b).
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FIG. 17. Reduction of the viscous dissipation with respect to the purely stratified case: (1) nc = 0.4;

(2) nc = 0.5 and (3) nc = 0.7.

Finally, Fig. (??) displays the rate of viscous dissipation D/E0 = (D1 + D2 + D3)/E0

as well as GD = 〈D/E0〉t for different values of nc. It is observed that the shear-thinning

reduces the viscous dissipation.

E. discussion

Figure ??(b) shows that the production of disturbance kinetic energy by the interaction of

the Reynolds stress with the mean field, decreases with increasing the shear thinning effects.

This mechanism is at the origin of the reduction of the amplification factor G indicated in

the paragraph ??(A). This result can be considered as an extension to that obtained by

Govindarajan et al.? and Nouar et al.? when they studied the linear stability of the plane

channel flow of Carreau fluid. The authors? ? have shown that the stabilizing effect observed
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FIG. 18. Shear-thinning effects on the viscous dissipation.

for shear-thinning fluid, is primarily due to reduced energy intake from the mean flow to

the perturbation. Besides this, the total viscous dissipation given by

∫ t

0

(D1 +D2 +D3)dt
′

decreases as nc decreases.

VII. CONCLUSION

A pseudo-spectral Petrov-Galerkin computational code has been used to investigate the

influence of the nonlinear dependence of the viscosity on the shear-rate, on the receptivity

of pipe flow of shear-thinning fluid with respect to finite two dimensional disturbances.

The code has been validated for Newtonian fluid by comparison with Zikanov’s? and

Meseguer’s? results. The linear stability analysis performed for a wide range of rheological

parameters shows that the pipe flow of shear-thinning fluids is linearly stable. The optimal

perturbation is achieved for a two-dimensional perturbation with an azimuthal wavenumber

n = 1 similarly to the Newtonian case. It is then used as an initial condition for the non-

linear problem. For a sufficient initial energy ǫ0, the longitudinal rolls give rise to streaks

and inflection points. The viscosity profile is strongly modified by the perturbation. The

consequence of this modification is analyzed through the Reynolds-Orr equation. Two ad-

ditional terms arising from the viscosity perturbation appear which reduce significantly the

viscous dissipation, with respect to the purely stratified case (case where µ′ = 0). Globally,

the viscous dissipation decreases with increasing shear-thinning effects. The decrease of the

amplification factor with increasing the shear-thinning effects is ascribed to the reduced en-
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ergy intake from the mean flow. A natural perspective to the present study is to analyze

the influence of the shear-thinning effects on the stability of the 2D solutions obtained with

respect to three-dimensional perturbations.

Appendix A: Trial and test fields

The choice of the trial and test fields has been discussed in the papers? ? ? . For the

purpose of completeness, we list these functions here. They are defined in terms of the

functions :

hm(r) = (1− r2)T2m−2(r), gm(r) = (1− r2)hm(r) (A1)

with Tm the Chebyshev polynomial of degree m, and of the operators :

D =
d

dr
, D+ = D +

1

r
. (A2)

1. Trial fields

In the case n = 0,

v
(1)
m0l = rhmeθ,

v
(2)
m0l = −ilrgmer +D+(rgm)ez, (A3)

except that, if l = 0,

v
(2)
m00 = hmez. (A4)

In the case n 6= 0,

v
(1)
mnl = −inrσ−1gmer +D(rσgm)eθ,

v
(2)
mnl = −ilrσ+1hmeθ + inrσhmez, (A5)

with σ = σ(n) = 1 if n is odd, 2 if n is even.

2. Test fields

The test fields are of the form

ψ
(k)
mnl = exp [2π i lz/Q+ inθ] ṽ

(k)
mnl(r). (A6)
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W =
1√

1− r2
, (A7)

The functions ṽ
(k)
mnl(r) are: In the case n = 0,

ṽ
(1)
m0l = Whmeθ,

ṽ
(2)
m0l = W

{

−ilr2gmer +
[

D+(r
2gm) + r3hm

]

ez
}

, (A8)

except that, if l = 0,

ṽ
(2)
m00 = Wrhmez. (A9)

In the case n 6= 0,

ṽ
(1)
mnl = W

{

−inrβgmer +
[

D(rβ+1gm) + rβ+2hm

]

eθ
}

,

ṽ
(2)
mnl = W

(

−ilrβ+2hmeθ + inrβ+1hmez
)

, (A10)

except that, if l = 0,

ṽ
(2)
mn0 = Winr1−βhmez, (A11)

with, β = β(n) = 1 if n is odd, 0 if n is even.
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