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Abstract

In this paper, we focus on the first stage of transition to Rayleigh-Bénard convection in soft-

jammed systems (yield stress fluids) confined in a parallelepiped box heated from the bottom. Up

to yielding, the material is at solid-state with constant elastic modulus. By means of a linear

thermoelastic model, an analytical solution for stresses and strains induced by the gravity and the

temperature gradient is derived. The analytical solution allows to emphasize the appropriate dimen-

sionless parameters. The onset of plastic deformation is then investigated using the classical yield

criteria (Tresca, von Mises, Drucker-Prager). This analysis is subsequently applied to experimental

data of the literature dealing with Rayleigh-Bénard convection in Carbopol micro gels.
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I. INTRODUCTION

When a horizontal fluid layer is heated from below and cooled from above, a density strat-

ification appears because of the thermal expansion of the fluid. The fluid at the bottom will

be lighter than the fluid at the top and this top-heavy arrangement is potentially unstable.

When the temperature difference between the bottom and the top exceeds a threshold value

controlled by the viscosity and heat diffusivity, by a small amount, convection sets in. The

balance between buoyancy, and viscous and thermal diffusion is described by the Rayleigh

number:

Ra =
ρgα∆TH3

ηDt

, (1)

where, ρ is the fluid density, g the acceleration due to gravity, ∆T the temperature differ-

ence between the bottom and top walls, H the thickness of the fluid layer, α is the volume

expansion coefficient, η the viscosity and Dt the thermal diffusivity.

Yield stress fluids represent a large class of materials which display a solid-like behavior

as long as the applied stress does not exceed a critical value, τy, called a yield stress and a

fluid-like behavior beyond this threshold. The physical origin of the yield stress is related

to the microscopic nature of these systems (soft objects suspensions, polymer solutions or

emulsions). A review on yield stress fluids can be found in [1–3]. The onset of convection

in such materials is the subject of controversy in the literature. The main theoretical and

experimental results on this problem are reviewed in the following section.

A. Rayleigh-Bénard convection in a yield-stress fluid: Literature review

The first theoretical study of Rayleigh-Bénard convection in a yield stress fluid was

performed by Zhang et al. [4]. They have considered an inelastic yield stress fluid model

(Bingham model). Using an energy method, they have shown that for a finite yield stress,

the basic state (conductive regime) is linearly stable at all Rayleigh numbers and is condi-

tionally stable otherwise. In other words, convective instabilities cannot grow from a static

conductive state submitted to infinitesimal perturbations regardless the finite value of the

yield stress. The same problem was studied by Balmforth and Rust [5] using a weakly
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nonlinear stability analysis in the limit of a small yield stress. They have shown that there

is an unstable sub-critical branch for nonlinear convective states that bifurcates from infinite

Rayleigh number. Moreover, the threshold in amplitude above which the system must be

kicked to initiate convection becomes increasingly lower as the Rayleigh number increases.

Vikhansky [6] adapted a lattice-Boltzmann method to numerically study convection in yield

stress fluids heated from below. His works are mainly concerned with onset and stoppage of

convection in cavity. It is shown that if a perturbation is applied to the base state, it will

decay in a finite time.

Turan et al. [7] have used the regularized bi-viscosity model available in FLUENT to study

the Rayleigh-Bénard convection in a square enclosure. Due to the regularization of the

Bingham model, the motionless state corresponds to a shear-thinning fluid with a large vis-

cosity at zero shear-rate. The authors found that the critical Rayleigh number for the onset

of convection increases with Bingham number. The same approach was used for rectangular

and trapezoidal enclosures in [8] and [9] respectively and also extended to Herschel-Bulkley

and Casson fluids in [10, 11].

From experimental point of view, Balmforth and Rust [5] conducted a set of experiments

with Carbopol 940 in a rectangular tank filled to a depth between 4 and 11 cm. Different

concentrations of Carbopol were considered. They observed that the convection sets in with-

out imposing any external trigger for concentration of Carbopol of 0.05% where the yield

stress τy < 0.1Pa. According to the authors, a few air bubbles or a slight lateral variation

of temperature might easily be responsible for overcoming the threshold of convection. For

intermediate values of τy, say 0.3Pa < τy < 1Pa, convection can start if a perturbation of

substantial amplitude (injection air bubbles for instance) is applied. It is observed that the

amplitude of the perturbation required to initiate convection increases with increasing yield

strength.

Darbouli et al. [12] have also used Carbopol 940 at different concentrations filling a cylindri-

cal cavity with a depth of 2 cm. They did not apply any finite amplitude perturbation and

observed convection for 0.005Pa < τy < 0.1Pa. They found that the onset of convection

occurs when the yield number, Y defined by the ratio of the yield stress to buoyance force,

Y =
τy

ρgα∆TH
, (2)
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is about 0.01. Further experiments using Carbopol 980 heated from below in a rectangular

cavity with a depth of the fluid layer of 2 cm were performed by Kebiche et al. [13]. Again,

without introducing any external perturbation, a convection regime is observed. In their

experiments, the yield stress varies in the range [0.007, 1.7Pa]. They found that at criti-

cality, Yc ≈ 0.2, much larger than that given by Darbouli et al. [12]. This discrepancy is

probably due on one hand to the boundary conditions in the experiments of Kebiche et al.

[13], where the thermal conductivity of the wall is lower than that of the fluid and on the

other hand to a possible slippage of the fluid at the wall. It is well known in the literature

[14–18] that these two parameters contribute to the reduction of the criticality.

Experimental estimation of the critical value of the yield number in a cavity with differen-

tially heated side walls was obtained by Jadhav et al. [19]. Carbopol microgels with a yield

stress 0.01 Pa < τy < 0.16 Pa and a depth of 0.146m are considered. They have found that

the onset of motion occurs at Y ≈ 0.01.

Another type of experimental study of natural convection of viscoplastic fluids was per-

formed by Davaille et al. [20]. In their experiments, the convection is driven by a localized

heater positioned on the bottom wall of a rectangular tank. Three different regimes were

identified: conductive regime, cellular motion and plumes. The transition between the dif-

ferent regimes is characterized by the Yield number. The onset of convection (appearance

of cellular motion) occurs at Y ≈ 0.01, which is in agreement with Darbouli et al. [12].

Experimental observations of bifurcation to a convection regime from a motionless state

in RBC, implies the linear instability of this state. This is in contradiction with the theo-

retical studies of Zhang et al. [4] and Balmforth & Rust [5]. Variety of explanations of the

disagreement between the theory and the experiments have been proposed in the literature.

According to Darbouli et al. [12] and Kebiche et al. [13] this disagreement is due to the fact

that the Bingham model used in the theoretical approach does not capture the solid-liquid

transition. Ahmadi et al. [21] hypothesize that this disagreement may be associated with

the difficulties of measuring the yield stress accurately or creating ideal boundary conditions

in experiments. The authors [21] have conducted numerical simulations of two dimensional

natural convection of regularized Herschel-Bulkley model in a long rectangular cavity. They

illustrated that uncertainties in the temperature boundary conditions can eliminate this

conductive regime. Finally, regarding the microstructure of Carbopol gels, used in their ex-
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periments, Darbouli et al. [12] and Metivier et al. [22] consider the gel as a porous medium,

where the solid matrix consists in the swollen microgels and the fluid is the water. It is well

known in the literature that for RBC of a Newtonian fluid saturating a porous medium,

the critical conditions are independent of the permeability of the porous medium [23–25].

However, in Metivier et al.[22], the experimental assessments depend on the permeability

and largely underestimates the critical conditions (by more than three magnitude orders).

B. Objectives, methodoloy and outline of the paper

The yield stress is generally regarded as the transition between elastic solid-like behaviour

and viscous liquid-like behaviour, and is related to the internal particulate network struc-

ture. However, As indicated by Tiu et al. [26] this transition typically occurs not at a

single point, but instead over a range of stresses starting at a lower limit, corresponding to

progressive transition between elastic and plastic deformation and ultimately ending at a

higher limit, corresponding to the transition between plastic deformation and purely viscous

fluid. Therefore, in order to understand the onset of convection in soft jammed systems, it

is necessary to consider the different steps in the transition between elastic solid-like and

viscous liquid-like. Here we want to focus on the first step: transition between elastic and

plastic deformation. The hydrogel used in the experiments described previously behaves as

an elastic solid when the applied stress is below a critical value.

Under small strain assumptions, we consider that the material can be described by a linear

thermoelastic law. The onset of yielding will be analyzed on the basis of different criteria

provided by the literature. The paper is structured as follows. In Section 2, the effect of

a temperature gradient on stresses and strains field is highlighted by artificially cancelling

the gravity. In section 3, the full problem is considered. The onset of plastic deformation is

studied in section 4 and the analysis is applied to the particular case of experiments of RBC

in Carbopol microgels. In the conclusion section, we summarize the most relevant results

and we give some perspectives to our work.
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II. PROBLEM FORMULATION

We consider a viscoplastic fluid filling a rigid parallelepiped container of dimensions

2ℓ × 2L × H along x, y and z axes respectively (see figure 1). The z-axis is directed

upwards with the origin located at the bottom wall. The acceleration due to gravity reads

g = −gez, where ez is a unit vector along z. The viscoplastic fluid is modeled as a con-

tinuous medium obeying, under hypothesis of small transformations, a linear thermoelastic

constitutive equation. Initially, the temperature is uniform T = T2 throughout the vis-

coplatic fluid layer. This state represents the initial configuration of the system in the sense

of continuum mechanics theory. Then the bottom wall temperature T1 is slowly increased

in a quasistatic manner, and the upper wall temperature is maintained at T = T2. At

each step, it is assumed that a temperature gradient is established under equilibrium con-

ditions. The objective is to determine conditions for the appearance of the first signs of

irreversible (plastic) flow. For this, we express the basic thermoelastic equilibrium equations

and constitutive equation (i.e. stress-strain relationship) in terms of displacements, strains

and stresses. Subsequently, a second order ordinary differential equation for the vertical dis-

placement is derived and solved leading to an analytical solution. Subsequently, the stress

field in the viscoplatsic layer is calculated. The main yield criteria can therefore be used to

determine the limit of elasticity and the onset of plastic deformation.

A. Governing equations

In the framework of linear thermoelasticity [27], the Cauchy’s equation of motion reads:

ρ
∂2u

∂t2
= ∇ · σ + ρ g , (3)

with the constitutive equation

σ = λ Tr (ǫ) I + 2µǫ− k (T − T2) I , (4)

where

k = (3λ+ 2µ) α . (5)

In equations (3)-(5), λ is the elastic modulus (first Lamé’s parameter), µ the shear modulus

(second Lamé’s parameter), σ the Cauchy stress tensor, ǫ the strain tensor and u = uxex +
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uyey +uzez the displacement vector. In equation (4), it is assumed implicitly that there are

no residual stresses. The strain tensor is related to displacement gradient u by the relation:

ǫ =
1

2

(

∇u + (∇u)T
)

. (6)

Combining (3), (4) and (5), the problem can be written in displacement formulation (Navier

equations) as:

ρ
∂2u

∂t2
= (λ+ µ)∇ (∇ · u) + µ∇2u+ ρ g − k∇T . (7)

These equations are completed by mass and energy conservation equations:

ρ = ρ0 (1− Tr(ǫ)) (8)

and

ρCv

∂T

∂t
= K∇

2T + σ : ǫ̇p + r, (9)

where ρ0 is the density at the reference temperature T2, Cv the specific heat at constant

volume, ǫ̇p the plastic strain rate, K the thermal conductivity and r a possible internal heat

source.

B. Boundary conditions

The displacement vector u and the temperature have to satisfy the following boundary

conditions:

ux(x = ±ℓ/2, y, z) = 0 , (10)

uy(x, y = ±L/2, z) = 0 (11)

uz(x, y, 0) = uz(x, y,H) = 0 (12)

T (x, y, z = 0) = T1 , T (x, y, z = H) = T2 (13)

∂T

∂x
(x = ±ℓ/2, y, z) =

∂T

∂y
(x, y = ±L/2, z) = 0 . (14)

In the following, we consider mechanical and thermal equilibrium states such that we may

drop time derivatives. We assume that there is no internal heat source in energy equation

nor irreversible deformation, i.e. ǫ̇p = 0. The energy reduces to the uncoupled conduction

equation.
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III. THERMAL STRESSES AND STRAINS INDUCED BY A TEMPERATURE

GRADIENT

To highlight the contribution of the temperature gradient on stresses and deformations

generated inside the viscoplastic fluid layer, the acceleration gravity is cancelled artificially.

Sufficiently, far from the lateral walls, it can be assumed that the temperature T depends

only on z, with

T = T1 −∆T
z

H
, (15)

where ∆T = T1 − T2. Navier equations reduce to:

(λ+ µ)

(

∂2ux

∂x2
+

∂2uz

∂z∂x

)

+ µ

(

∂2ux

∂x2
+

∂2ux

∂z2

)

= 0 (16)

(λ+ µ)

(

∂2uy

∂y2
+

∂2uz

∂z∂y

)

+ µ

(

∂2uy

∂y2
+

∂2uy

∂z2

)

= 0 (17)

(λ+ µ)

(

∂2ux

∂x∂z
+

∂2uy

∂y∂z
+

∂2uz

∂z2

)

+ µ

(

∂2uz

∂x2
+

∂2uz

∂y2
+

∂2uz

∂z2

)

+
k(T1 − T2)

H
= 0 . (18)

To get an analytical solution, we consider as a first approach, a solution which satisfies

the boundary conditions and depends only on z. Based on these assumptions, the solution

of the Navier equations leads to the following expression of the displacement:

u =
χ

2
z(1 − z

H
)ez , (19)

where,

χ = k∆T/(λ+ 2µ) (20)

accounts for the uniaxial deformation due to thermal stresses. The strain-tensor is then

given by

ǫ = χ

(

1

2
− z

H

)

ez ⊗ ez . (21)

It is worthy to note that ǫzz is positive for 0 < z < H/2 and negative for H/2 < z < H , as

it is illustrated in figure 1. The gel undergoes an expansion near the heated wall, between

0 and H/2 and a compression near the cooled wall, between H/2 and H . The gel layer is

therefore subjected to thermal stresses. They are determined by substituting (21) into the

constitutive equation (4). We obtain:
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PSfrag replaements

O Ox
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H H

−ℓ/2 ℓ/2

T1

T2

H/2

−

+

σxx

σzz

σzz

ǫzz

uz(z)

FIG. 1. Illustration of the strain ǫzz, stress σ and displacement uz induced by a temperature

gradient.

σxx = σyy =
k∆T

λ+ 2µ

(

2µ
z

H
− λ+ 4µ

2

)

, (22)

σzz = −1

2
k∆T , (23)

σij = 0 if i 6= j . (24)

Given the well known relationships between the Lamé parameters , Youg’s modulus E and

Poisson’s ratio ν,

λ =
Eν

(1− 2ν) (1 + ν)
and µ =

E

2 (1 + ν)
, (25)

it can be shown straightforwardly that for an incompressible elastic material, where ν = 1/2,

one recovers the state of hydrostatic pressure

σxx = σyy = σzz = −k

2
∆T. (26)

IV. STRAIN AND STRESS FIELDS INDUCED BY GRAVITY COMBINED WITH

A TEMPERATURE GRADIENT

As indicated previouly, for small deformations, the mass conservation equation reduces

to

ρ(z) = ρ0 (1− ǫzz) ≈ ρ0

(

1− ∂uz

∂z

)

(27)
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Substituting expression (27) into equation (7), we obtain for the z-component of Navier

equations

(λ+ 2µ)
∂2uz

∂z2
+

k∆T

H
− ρ0 g

(

1− ∂uz

∂z

)

= 0 , (28)

with the boundary conditions

uz = 0 at z = 0, H . (29)

The solution uz is then given by

uz(z) = (1− κ)

(

z

H
− 1− exp

(

− 1

Λ

z

H

)

1− exp
(

− 1

Λ

)

)

H , (30)

and the only non-zero component of the deformation tensor is

ǫzz(z) = (1− κ)

(

1− 1

Λ

exp
(

− z

ΛH

)

1− exp
(

− 1

Λ

)

)

. (31)

The dimensionless parameter κ defined by

κ =
k∆T

ρ0gH
(32)

(33)

is the ratio of thermal stresses to gravitational stresses, and

1

Λ
=

ρ0gH

λ+ 2µ
(34)

(35)

represents the uniaxial deformation due to gravitational stresses.

The components of the stress tensor are obtained by using the linear thermoelastic consiti-

tutive equation:

σxx(z) = (1− κ)

[

3Ψ− Λ

2

(

1− 1

Λ

exp
(

− z

ΛH

)

1− exp
(

− 1

Λ

)

)

− κ

1− κ

(

1− z

H

)

]

ρ0gH , (36)

σyy(z) = σxx(z) , (37)

σzz(z) = (1− κ)

[

Λ

(

1− 1

Λ

exp
(

− z

ΛH

)

1− exp
(

− 1

Λ

)

)

− κ

1− κ

(

1− z

H

)

]

ρ0gH (38)

where

Ψ =
3λ+ 2µ

3ρ0gH
(39)
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FIG. 2. (a) Illustration of the strain ǫzz induced by the gravity combined with a temper-

ature gradient for different values of κ, Λ and Ψ: (1) (κ,Λ,Ψ) = (0.0204, 1.092, 0.849), (2)

(0.0340, 1.652, 1.416), (3) (0.102, 4.477, 4.247), (4) (0.204, 8.723, 8.495). (b) The strain ǫzz induced

only by a temperature gradient. (1) χ = 0.0187, (2) χ = 0.0206, (3) χ = 0.0228 and (4) χ = 0.0234.

The hydrostatic pressure p = (1/3)Tr(ǫ) is then

p = (1− κ)

[

Ψ

(

1− 1

Λ

exp
(

− z

ΛH

)

1− exp
(

− 1

Λ

)

)

− κ

1− κ

(

1− z

H

)

]

ρ0gH (40)

The dimensionless parameter 1/Ψ accounts for the volume variation induced by gravita-

tional stresses. In figure 2(a), we have represented the deformation ǫzz as a function of the

dimensionless vertical position z/H for different values of κ, Λ and Ψ. Two situations are

considered (a) ǫzz induced by the gravity combined with a temperature gradient and (b) ǫzz

induced only by a temperature gradient. The κ and Λ values have been determined by con-

sidering a gel layer with the following properties: H = 0.02m, ρ = 103 kg/m3, E = 100Pa,

α = 2 × 10−4 K−1 and ν = 0.4, 0.44, 0.48 and 0.49. The temperature difference has been

fixed to ∆T = 40◦C. It is worthy to note: (i) the gravity effect is much more significant than

that induced by the temperature gradient; (ii) these two effects act in opposite ways. Hence,

in the lower part of the gel layer, the gravity induces a compression while the temperature

gradient induces an expansion and vice-versa in the upper part; (iii) with increasing Λ and

Ψ, the strain ǫzz decreases. The resulting stress field in the gel layer is illustrated through

11



0 0.5 1
-0.6

-0.4

-0.2

0

0.2

0.4

(1)

(4)

0 0.5 1

-0.5

0

0.5

(4)

(1)

(a) (b)

FIG. 3. Illustration of stresses σzz and σxx induced by gravity combined with a temperature

gradient. (1) (κ,Λ,Ψ) = (0.020, 1.092, 0.8495), (2) (0.034, 1.652, 1.4158), (3) (0.102, 4.477, 4.247),

(4) (0.204, 8.723, 8.494).

the components σzz and σxx represented as a function of z/H in figure 3. One notes that

σzz and σxx are of the same order.

V. ONSET OF PLASTIC DEFORMATION: MAIN YIELD CRITERIA

A number of yield criteria have been developed in the literature to determine the limit

of elasticity and the onset of plastic deformation. In this section, three criteria of yielding:

namely, the criteria of Tresca, von Mises and Drucker-Prager will be considered.

A. Tresca criterion

From the Mohr’s circle, it can be shown straightforwardly that the maximum of shear-

stress τmax at any point in the gel layer is given by:

τmax =
|σxx − σzz|

2
= µ |ǫzz| . (41)

In dimensionless form, we have

τmax/ρ0gH =
3

4
|Λ−Ψ| |1− κ|

∣

∣

∣

∣

∣

1− 1

Λ

exp
(

− z
ΛH

)

1− exp
(

− 1

Λ

)

∣

∣

∣

∣

∣

. (42)
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According to Tresca criterion, the onset of plastic yielding is defined by the condition:

τmax = τy , (43)

where τy is the shear yield stress. The variation of τmax/ρ0gH as a function of the dimension-

less vertical position z/H is depicted in figure 4(a) for different values of the dimensionless

parameters κ, Λ and Ψ. Curves (1), (2) and (3) with the associated dimensionless parameters

have been obtained for three values of the Poisson’s ratio ν = 0.4, 0.44 and 0.48 respectively

and by setting E = 100Pa, H = 0.02m, ρ0 = 103 kg/m3, ∆T = 40◦C, α = 2 × 10−4K−1.

The maximum shear-stress decreases with increasing Λ and Ψ, that can be obtained for

instance by increasing the Poisson’s ratio. The figure 4(a) shows that the yielding in the gel

layer starts when the yield shear stress τy is smaller than τmax(z = 0). In figure 4(b), the

thermal effects are cancelled by setting ∆T = 0. Comparatively to figure 4(a), the curves

(1), (2) and (3) are slightly modified. Actually, τmax/ρ0gH decreases slightly in presence of

thermal effects. Indeed, for the rheological parameters considered here, thermal effects are

much weaker than gravitational effects and act in opposite way on strain and stress fields in

the gel layer. In other words, if for ∆T = 0, τmax < τy then the gel layer will remain in the

elastic domain when the temperature difference between the top and bottom walls increases

in a reasonable range.

The application of Tresca criterion to experiments of Kebiche et al. [13] is shown in

figure 5(a). The experimental parameters are H = 0.02m, ρ = 103 kg/m3, µ = 10Pa, α =

2 × 10−4 K−1 and τy = 1Pa. The onset of convection has been observed at ∆T ≈ 8 ◦C.

As the Poisson’s ratio is not given, we have fixed two values ν = 0.4 and 0.48. This leads

to two triplets (κ,Λ,Ψ): (1.14 × 10−3, 0.306, 0.238) curve 1 and (6.03 × 10−3, 1.325, 1.257)

curve 2. Again, the low values of κ indicate that the thermal effects are negligible. Indeed,

curves 1 and 2 are almost unchanged if one sets ∆T = 0. The figure clearly shows that at

the beginning of the experiment, i.e. at ∆T = 0, in a large part of the Carbopol gel layer,

τmax/ρ0gH > τy/ρ0gH , i.e. the material has already crossed the threshold of plasticity.

In the experiments of Darbouli et al. [12], where H = 0.02m, τy = 0.1Pa, µ = 3.25Pa, α =

7.4×10−5 K−1, the whole gel layer is already yielded at ∆T = 0. Indeed, the limit τy/ρ0gH =

5.09× 10−4 almost coincides with the abscissa axis.
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FIG. 4. Variation of τmax/ρ0gH as a function of z/H for different triplets (κ, Λ, Ψ). (a) (1):

(0.0204, 1.092, 0.849), (2) (0.034, 1.652, 1.416), (3): (0.102, 4.477, 4.247) (b) Same parameters Λ

and Ψ with κ = 0.
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FIG. 5. Variation of τmax/ρ0gH as a function of z/H. (a) Experiments of Kebiche et al. [13] where

τ̃y = τy/ρ0gH = 5.09× 10−3: (1) κ = 1.14× 10−3, Λ = 0.306, Ψ = 0.238, (2) κ = 6.03× 10−3, Λ =

1.325, Ψ = 1.257. (b) Experiments of Darbouli et al. [12]: (1) κ = 8.58 × 10−4, Λ = 9.94 ×

10−2, Ψ = 7.73× 10−2, (2) κ = 4.53× 10−3, Λ = 0.431, Ψ = 0.409. The dashed line corresponding

to τy/ρ0gH = 5.09 × 10−4 coincides almost with the x-axis.
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B. von Mises Yield criterion

The von Mises yield criterion suggests that the yielding of materials begins when the

second deviatoric stress invariant J2 reaches a critical value. This condition is represented

by the equation

√

3J2 = σy , (44)

where σy is a tensile yield strength of the material. At the onset of yielding, the magnitude

of shear yield stress in pure shear is
√
3 times lower than the tensile yield stress. The von

Mises criterion can be viewed as a particular case of the Drucker-Prager Drucker criterion.

The analysis of these criteria is done in the following section.

C. Drucker-Prager yield criterion

The Drucker-Prager yield criterion is a modification of the von Mises criterion, whereby

the hydrostatic pressure-dependent first invariant I1 is introduced. It can be expressed as

√

3J2 + A|I1| = σy , (45)

where I1 is the first invariant of Cauchy stress tensor and A a material parameter. The

following expressions are obtained for
√
3J2 and I1:

√

3J2 = |σxx − σzz| =
3

2

∣

∣

∣

∣

∣

(Λ−Ψ) (1− κ)

(

1− 1

Λ

exp
(

− z
HΛ

)

1− exp− 1

Λ

)
∣

∣

∣

∣

∣

ρ0gH, (46)

I1 =
1

3
Tr(σ) = Ψ (1− κ)

(

1− 1

Λ

exp
(

− z
HΛ

)

1− exp− 1

Λ

)

ρ0gH − κ
(

1− z

H

)

ρ0gH (47)

In figure 6(a) we have represented the values of the couple
(√

3J2/ρ0gH, |I1|/ρ0gH
)

, at

different vertical positions z/H and for different values of the dimensionless parameters κ,

Λ and Ψ. We have used the same values of the dimensionless parameters κ, Λ and Ψ as in

figure 4(a). The curves have a U shape. The lowest value of |σzz − σxx| is reached at the

central part of the gel layer. The Drucker-Prager yield criterion is represented by setting

σy = 10
√
3Pa and two values of A: 0.05 and 0.2. The von Mises yield criterion corresponds

to A = 0. Below the lines representing the yield criterion, the material behaves as an elastic

solid. Above, the material enters the plastic domain. Depending on the experimental condi-

tions, the gel in the central area may be in the elastic domain whereas outside it has already
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FIG. 6. Values of the couple
(√

3J2/ρ0gH, |I1|/ρ0gH
)

at different vertical positions and for

different triplets (κ, Λ, Ψ). (a) (1): (0.0204, 1.092, 0.849), (2): (0.034, 1.652, 1.416), (3):

(0.102, 4.477, 4.247). (b) Same parameters Λ and Ψ as in (a) with κ = 0. (4): (dashed line)

Drucker-Prager criterion for A = 0.05, (5): (dashed line) Drucker-Prager criterion for A = 0.2. The

horizontal dashed line (A = 0) is the von Mises yield criterion with σy = 10
√
3.

entered the plastic domain. By increasing Λ, i.e. the elastic effects, we increase the central

zone where the material remains elastic. By increasing the influence of the hydrostatic pres-

sure in the yield criterion, i.e. by increasing A, the onset of yielding in precipitated.

In figure 6(b), the thermal effects are cancelled by setting κ = 0, the extent of the elastic

or the plastic zone is not significantly modified comparatively to figure 6(a). The numerical

results show a very slight increase of the elastic zone. In addition, the two branches of the

U shape have merged.

The application of Drucker-Prager criterion to experiments of Kebiche et al. [13] and Dar-

bouli et al. [12] is illustrated in Figures 7(a) and 7(b). In both cases, the thermal effects are

very small compared to the gravity effects. By setting ∆T = 0, the curves are almost not

modified. It can be noted in figure 7(b), that almost all the gel layer has entered the plastic

domain by the gravity effects only.
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FIG. 7. Variation of
√
3J2/ρ0gH as a function of |I1|/ρ0gH. (a) Experiments of Kebiche et al.

[13]: (1) κ = 1.14 × 10−3, Λ = 0.306, Ψ = 0.238, (2) κ = 6.03 × 10−3, Λ = 1.325, Ψ = 1.257,

σy/ρ0gH = 8.83 10−3. (dashed line) is Drucker-Prager criterion for A = 0.1. (b) Experiments of

Darbouli et al. [12]: (1) κ = 8.58×10−4, Λ = 9.94×10−2, Ψ = 7.73×10−2, (2) κ = 4.53×10−3, Λ =

0.431, Ψ = 0.409, σy/ρ0gH = 8.83 10−4.

VI. CONCLUSION

Using the linear theory of thermo-elasticity we have derived an analytical solution for

stresses and strains generated in a layer of a viscoplastic fluid confined in a parallelepiped

box. The analysis shows that the problem is governed by three dimensionless groups denoted

κ,Λ and Ψ, where κ is the ratio between thermal and gravitational stresses and 1/Λ and

1/Ψ account for uniaxial deformation and volume variation respectively due to graviational

stresses. An analytical solution is derived. It is shown that the gravity and the thermal

gradient have antagonistic effects. Indeed, the gravity generates a compression at the lower

part of the gel layer, whereas a thermal gradient (the layer is heated from the bottom)

generates an expansion in the lower part of the gel layer. However, within the range of rhe-

ological and geometrical parameters considered and for a reasonable temperature difference,

the thermal effects are much weaker than the gravitational effects. The onset of yielding is

then investigated using the classical yield criteria (Tresca, von Mises and Drucker-Prager).
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It is shown that in experiments of Kebiche et al. [13] a large part of the gel layer is yielded,

whereas in Darbouli et al. [12] almost all the gel layer is yielded. In these experiments,

κ = 0(10−3), i.e. the thermal stresses are 103 weaker than the gravitational ones.

When the stresses state enters the plastic regime due to an increase in thermomechanical

stresses (imposed by the temperature gradient and the gravitation), plastic flow occurs

with a specific distribution of displacements, strains and stresses. In our future work, we

intend to analyze this step, close to the onset of yielding and the beginning of the plastic

flow process. A simple model would be considered assuming that the thermoelastoplastic

behavior of the medium is independent of the strain rate.
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Nomenclature

Cv specific at constant volume J.kg−1.K−1

Dt thermal diffusivity m2.s−1

E Young’s modulus Pa

g acceleration of gravity m.s−2

H thickness of the viscoplastic fluid layer m

I1 first invariant of the Cauchy stress tensor Pa

J2 second invariant of the deviatoric stress tensor Pa2

K thermal conductivity W.m−1.K−1

T temperature K

∆T temperature difference between top and bottom walls K

u displacement vector m

z vertical coordinate m

Greek symbols

α volume expansion coefficient K−1

ǫ strain tensor

η dynamic viscosity kg.m−1.s−1

λ first Lamé’s parameter Pa

µ second Lamé’s parameter Pa

ν Poisson’s ratio

ρ fluid density kg.m−3

ρ0 referential fluid density kg.m−3

τmax maximum of shear-stress Pa

σ Cauchy stress tensor Pa

τy yield stress Pa
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