Skip to Main content Skip to Navigation
Journal articles

Field Site-Specific Effects of an Azospirillum Seed Inoculant on Key Microbial Functional Groups in the Rhizosphere

Abstract : The beneficial effects of plant growth–promoting Rhizobacteria (PGPR) entail several interaction mechanisms with the plant or with other root-associated microorganisms. These microbial functions are carried out by multiple taxa within functional groups and contribute to rhizosphere functioning. It is likely that the inoculation of additional PGPR cells will modify the ecology of these functional groups. We also hypothesized that the inoculation effects on functional groups are site specific, similarly as the PGPR phytostimulation effects themselves. To test this, we assessed in the rhizosphere of field-grown maize the effect of seed inoculation with the phytostimulatory PGPR Azospirillum lipoferum CRT1 on the size and/or diversity of selected microbial functional groups important for plant growth, using quantitative polymerase chain reaction and/or Illumina MiSeq metabarcoding. The functional groups included bacteria able to fix nitrogen (a key nutrient for plant growth), producers of 1-aminocyclopropane-1-carboxylate (ACC) deaminase (which modulate ethylene metabolism in plant and stimulate root growth), and producers of 2,4-diacetylphloroglucinol (an auxinic signal enhancing root branching). To test the hypothesis that such ecological effects were site-specific, the functional groups were monitored at three different field sites, with four sampling times over two consecutive years. Despite poor inoculant survival, inoculation enhanced maize growth. It also increased the size of functional groups in the three field sites, at the maize six-leaf and flowering stages for diazotrophs and only at flowering stage for ACC deaminase and 2,4-diacetylphloroglucinol producers. Sequencing done in the second year revealed that inoculation modified the composition of diazotrophs (and of the total bacterial community) and to a lesser extent of ACC deaminase producers. This study revealed an ecological impact that was field specific (even though a few taxa were impacted in all fields) and of unexpected magnitude with the phytostimulatory Azospirillum inoculant, when considering microbial functional groups. Further methodological developments are needed to monitor additional functional groups important for soil functioning and plant growth under optimal or stress conditions.
Complete list of metadata
Contributor : Claire Prigent-Combaret Connect in order to contact the contributor
Submitted on : Thursday, September 1, 2022 - 2:35:37 PM
Last modification on : Saturday, September 24, 2022 - 3:22:06 PM


Publication funded by an institution




Sébastien Renoud, Jordan Vacheron, Danis Abrouk, Claire Prigent Combaret, Laurent Legendre, et al.. Field Site-Specific Effects of an Azospirillum Seed Inoculant on Key Microbial Functional Groups in the Rhizosphere. Frontiers in Microbiology, Frontiers Media, 2022, 12, pp.760512. ⟨10.3389/fmicb.2021.760512⟩. ⟨hal-03763575⟩



Record views


Files downloads