$\widehat{\mathcal{D}}^{(0)}_{\mathfrak{X}, k, \mathbb{Q}}$-modules holonomes sur une courbe - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year :

$\widehat{\mathcal{D}}^{(0)}_{\mathfrak{X}, k, \mathbb{Q}}$-modules holonomes sur une courbe



We consider the sheaf of differential operators $\widehat{\mathcal{D}}^{(0)}_{\mathfrak{X}, k, \mathbb{Q}}$ with a congruence level $k \in \mathbb{N}$, where $\mathfrak{X}$ is a formal smooth quasi-compact scheme over a complete discrete valuation ring $V$ of mixed characteristic $(0, p)$. We define a category of holonomic $\widehat{\mathcal{D}}^{(0)}_{\mathfrak{X}, k, \mathbb{Q}}$-modules using characteristic varieties in the cotangent space $T^*X$ with $X$ the special fiber of $\mathfrak{X}$. In 1995, Laurent Garnier proves in its article [2] that any holonomic $\widehat{\mathcal{D}}^{(0)}_{\mathfrak{X}, 0, \mathbb{Q}}$-module has finite lenght when $\mathfrak{X}$ is a curve. We adapt this result for $\widehat{\mathcal{D}}^{(0)}_{\mathfrak{X}, k, \mathbb{Q}}$-modules. We assume that $\mathfrak{X}$ has dimension one and we prove that holonomic $\widehat{\mathcal{D}}^{(0)}_{\mathfrak{X}, k, \mathbb{Q}}$-modules are exactly the finite length coherent $\widehat{\mathcal{D}}^{(0)}_{\mathfrak{X}, k, \mathbb{Q}}$-modules.
Fichier principal
Vignette du fichier
modules holonomes sur une courbe.pdf (485.36 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03760719 , version 1 (26-08-2022)



Raoul Hallopeau. $\widehat{\mathcal{D}}^{(0)}_{\mathfrak{X}, k, \mathbb{Q}}$-modules holonomes sur une courbe. 2022. ⟨hal-03760719⟩
32 View
4 Download



Gmail Facebook Twitter LinkedIn More