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Abstract 
We analysed DNA methylation data from 30 datasets comprising 3,474 individuals, 19 tissues and 8 

ethnicities at CpGs covered by the Illumina450K array.  We identified 4,143 hypervariable CpGs (“hvCpGs”) 

with methylation in the top 5% most variable sites across multiple tissues and ethnicities. hvCpG methylation 

was influenced but not determined by genetic variation, and was not linked to probe reliability, epigenetic 

drift, age, sex or cell heterogeneity effects.  hvCpG methylation tended to covary across tissues derived from 

different germ-layers and hvCpGs were enriched for proximity to ERV1 and ERVK retrovirus elements. hvCpGs 

were also enriched for loci previously associated with periconceptional environment, parent-of-origin-

specific methylation, and distinctive methylation signatures in monozygotic twins. Together, these properties 

position hvCpGs as strong candidates for studying how stochastic and/or environmentally influenced DNA 

methylation states which are established in the early embryo and maintained stably thereafter can influence 

life-long health and disease.  
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Introduction

DNA methylation (DNAm) plays a critical role in mammalian development, underpinning X-chromosome 

inactivation, genomic imprinting, silencing of repetitive regions and cell differentiation(1). DNAm states that 

vary between individuals have been a focus of Epigenome-Wide Association Studies (EWAS) due to their 

potential to drive phenotypic variation(2, 3). Factors influencing interindividual methylation differences 

include genetic variation(4, 5), cell heterogeneity effects(6, 7), sex(8, 9), age(10, 11), and pre- and post- natal 

environment(12–14). Growing evidence from studies investigating DNAm patterns in multiple tissues 

suggests that these factors can have both shared and tissue-specific influences on DNAm variation (12, 15–

18).   

In this study, we identified and characterised hypervariable CpGs (‘hvCpGs’) covered on the widely used 

Illumina HumanMethylation450K (hereafter ‘Illumina450K’) array(19) that showed high interindividual 

variation in multiple datasets covering 19 different tissue/cell types and 8 ethnicities spanning a wide range 

of ages. We reasoned that identified loci would be robust to both tissue-specific drivers of methylation 

variability such as those mentioned above and dataset-specific technical artefacts(20–23), thereby revealing 

insights into biological mechanisms influencing methylation variation across system-wide tissues. 

Tissue-independent methylation variation has been previously observed at a class of loci at which 

methylation not only varies between individuals but is also correlated across tissues derived from different 

germ layers within a given individual. Also described as ‘systemic inter-individual variation’ or SIV, this 

property is attributed to stochastic methylation establishment in the pre-gastrulation embryo(24–29). 

Accordingly, SIV CpGs overlap loci showing ‘epigenetic supersimilarity’ (ESS) indicating establishment before 

cleavage in monozygotic (MZ) twins(27) and show sensitivity to the periconceptional environment(24, 25, 

27, 28, 30). Several SIV loci have been associated with phenotypic traits and disease, including obesity(31), 

cancer(25, 27), rheumatoid arthritis(32), autism(33), Alzheimer’s disease(34), Parkinson’s disease(35) and 

thyroid volume and function related differences in body fat and bone mineral density (36). SIV loci are 

therefore promising candidates for exploring the developmental origins of disease, with the additional 

advantage that easily accessible tissues can be used as proxies for pathologically relevant but inaccessible 

tissues(37). 

We investigated whether hvCpGs showed evidence of establishment in the early embryo and sensitivity to 

the periconceptional environment. We also examined the genomic context of hvCpGs by exploring their 

association with multi-tissue histone marks, transposable elements and regions of parent-of-origin specific 

methylation. Finally, we probed putative functional roles of hvCpGs by interrogating EWAS trait associations 

and by performing gene ontology enrichment analysis. 
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 Our curated set of hvCpGs show methylation variation that is not explained by probe reliability, age, sex, cell 

heterogeneity, or genetic effects. Instead, hvCpGs show evidence of establishment in the early embryo and 

correlation across tissues. They therefore serve as a useful resource for studying the influence of early 

environmental and/or stochastic effects on DNAm in diverse tissues and ethnicities, and for studying the 

impact of DNAm differences on life-long health and disease.
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Materials and Methods

Methylation data used for identifying hvCpGs 

Publicly available methylation Beta matrices were downloaded from The Cancer Genome Atlas (TCGA) 

(https://www.cancer.gov/tcga) and the Gene Expression Omnibus (GEO)(38)  (Supplementary Tables 1 and 

2). Methylation Beta matrices were analysed instead of .idat files because Beta matrices are readily available 

in public databases, and because analysis of multiple datasets with different processing pipelines should 

strengthen the robustness of our findings of shared high methylation variance across datasets. The TCGA 

database was used a resource for downloading methylation data from a large number of tissues. TCGA 

methylation data were downloaded using the TCGAbiolinks (v2.18.0) R package(39–41), selecting only 

samples annotated as ‘Solid Tissue Normal’. Of the 33 TCGA datasets, 10 were selected for our study as these 

had methylation data in at least 20 samples. GEO methylation Beta matrices were downloaded using the 

GEOquery (v2.58.0) R package(42)  from 11 unique accessions that were selected to expand both the number 

of tissues and ethnicities used in our study. Where available, detection p-values (measuring signal intensity), 

and metadata on age, sex, and disease status were also downloaded. We split GEO beta matrices into 

separate groups based on ethnicity and tissue/cell type and refer to the resulting 17 separated groups as 

‘datasets’. Non-public datasets internal to this study include IlluminaEPIC(43)  array data from whole blood 

samples from Gambian 8-9-year olds (ISRCTN14266771(44)) and Illumina450K data from Bornean and 

Kenyan saliva samples (45) (Supplementary Table 3). These datasets were chosen to expand the number of 

ethnicities considered in this study. For IlluminaEPIC datasets we selected probes covered on the 

Illumina450K array. In total, we analysed 30 datasets (3 internal, 10 TCGA and 17 GEO) that covered 8 

ethnicities and 19 different tissue/cell types (Supplementary Table 4).

Methylation data processing

For each methylation dataset used in our main analysis, we used the ChAMP (v2.20.1) R package(46) to 

remove: i) probes with a detection p-value > 0.01 in > 5% samples (where detection p-values were available), 

ii) probes mapping to multiple genomic positions(47), iii) probes mapping to the X and Y chromosomes, and 

iv) single nucleotide polymorphism (SNP)-related probes identified by Zhou et al. (48) that contain SNPs (MAF 

> 1%) that are within 5 bp of the CpG interrogation site and/or SNPs effecting probe hybridisation. Where 

ethnicity information was available, we removed probes with population-specific SNPs identified by Zhou et 

al. using 1000 Genomes populations (MAF > 1%), otherwise we removed the General Recommended Probes 

Probes (48). Probes that had a missing value in any of the samples in a specific dataset were removed from 

that dataset. To reduce technical biases introduced by differing type I and type II probe designs on the 

Illumina450K and IlluminaEPIC arrays, we applied Beta Mixture Quantile normalisation (BMIQ)(49) to all 

datasets using the champ.norm() function from the ChAMP R package. All datasets were adjusted for the first 

10 principal components (PCs) of variation to account for methylation variability driven by known and/or 
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unknown technical artefacts (such as plate and array position) and cell heterogeneity. Methylation values 

were adjusted for these 10 PCs, age (where available) and sex by taking the residuals from a single linear 

regression model on methylation M values, where M is defined as log2(beta/1-beta) (see Supplementary 

Tables 1-3  for details of the linear model applied to each dataset). Adjusted M values were transformed back 

into Beta values by applying the transformation exp(adjusted_M)/(1+exp(adjusted_M)). Finally, for each 

probe, we removed outlier methylation values, defined according to Tukey’s outer fences (Q1 – 3*IQR and 

Q3 + 3*IQR). The hg19 reference genome was used throughout all relevant analyses as the Illumina450K 

array metadata manifest uses this version.

Identification of hvCpGs

We defined an hvCpG in the following way: 

(1) in  65% of datasets in which the CpG is covered (following quality control), it has methylation variance ≥

in the top 5% of all (non-removed) CpGs. 

(2) is covered in at least 15 of the 30 datasets. 

While the (5%, 65%) threshold in (1) is arbitrary, we note that ~80% of the resulting set of hvCpGs were also 

captured when using a different (20%, 90%) threshold, indicating that these hvCpGs are in the top 20% of 

variable CpGs in  90 % of datasets they are covered in (Supplementary Fig. 1). ≥

Probe reliability

Technically unreliable probes were identified by examining intra-class correlation coefficients (ICCs) from two 

studies. The first study compared methylation consistency between the Illumina450K and IlluminaEPIC 

platforms using 365 blood DNA samples, defining poor quality probes as those with ICC  0.4(23). The ≤
second study examined methylation reliability between technical replicates from 265 African American 

peripheral blood leukocyte samples on the Illumina450K platform, defining poor quality probes as those with 

ICC  0.37(50). We defined technically unreliable probes as those reported as being poor quality in at least ≤
one of these two studies. 

Methylation quantitative trait locus (mQTL) analysis

mQTL summary statistics from the Genetics of DNA Methylation Consortium (GoDMC), a meta-GWAS of 36 

European blood cohorts (N = 27,750) generated using imputed genotype data (~10 million SNPs) and 

~420,000 CpGs (51)  were used for this analysis. Significance thresholds of p < 1x10-8 and p < 1x 10-14 were 

applied for cis and trans mQTLs respectively(51), giving 271,724 significant SNP-CpG associations comprising 

190,102 CpGs and 224,648 SNPs. The variance in DNA methylation explained by a given mQTL was estimated 

as  * MAF(1-MAF), where  is the effect size and MAF is the minor allele frequency(52).  To investigate 2 ∗ 𝛽 𝛽
mQTL effects acting at a given CpG, we first calculated the % variance explained by each associated mQTL 

before calculating the mean % variance explained across all mQTLs associated with the CpG. 
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Monozygotic twin discordance 

We analysed CpGs identified as being ‘equivalently variable’ between MZ co-twins and between unrelated 

individuals (‘evCpGs (blood)’) by Planterose Jiménez et al.(53) using Illumina450K data in whole blood. 154 

of these evCpGs replicated in adipose tissue from 97 MZ twin pairs (‘evCpGs (blood & adipose)’). evCpGs are 

candidates for methylation states that are established stochastically after MZ twin splitting and are used in 

our study to indicate CpGs at which genetic effects do not play a large role in methylation variation. 

Control CpG sets 

Distribution-matched controls 

To ensure that several of our analyses are not biased by distributional properties of hvCpGs such as 

their high variability and enrichment for intermediate methylation states (Supplementary Fig. 2), we 

constructed a set of CpGs with similar distribution of methylation Beta values to hvCpGs in the 

Caucasian blood dataset (‘Blood_Cauc’, Supplementary Table 1). This dataset was chosen as it has 

the highest number of post-natal samples and because several downstream analyses leverage 

published studies that used blood methylation data. For each of the 4,108 hvCpGs covered in the 

‘Blood_Cauc’ dataset, a two-sided Kolmogorov-Smirnov (KS) test (ks.test() in R) was used to test for 

the divergence in methylation Beta distributions between the hvCpG and each technically reliable 

(see ‘Probe reliability’, Methods) background CpG, selecting the background CpG with the greatest 

p-value  (requiring a p-value > 0.1). In total, 3,566 hvCpGs were each matched to a control CpG 

(‘distribution-matched controls’, Table 1, Supplementary Fig. 3).    

mQTL-matched controls 

To determine the degree to which hypervariability at hvCpGs is explained by mQTL effects, each 

hvCpG was matched to a CpG amongst those reported in the GoDMC meta-analysis(51). Controls 

were selected to have i) the same number of mQTL associations, ii) a similar mean % variance 

explained by mQTL (across all significant mQTL) and iii) presence in at least as many datasets as the 

hvCpG (Table 1, Supplementary Fig. 4).

Identification of hvCpG clusters 

hvCpG clusters were identified by considering the decay of methylation correlation with distance at hvCpGs. 

To do this, we calculated the average pairwise Spearman correlation ( ) across hvCpG pairs with inter-CpG 𝜌
distance falling within 100 bp bins, for datasets with at least 100 samples (Supplementary Fig. 5A).  The 

distance threshold for defining hvCpG clusters was chosen to be 4,000 bp as this is approximately the point 

at which pairwise correlations levelled out (Supplementary Fig. 5A). In total, 2,219 (54%) hvCpGs fell into 716 

clusters comprising at least 2 CpGs, with the remaining 1,924 (46%) hvCpGs falling outside of these clusters 
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(Supplementary Fig. 5B). In 563 (79%) of these clusters, the average Spearman correlation ( ) across hvCpG 𝜌
pairs was > 0.5 (Supplementary Fig. 5C).

‘De-clustering’ of hvCpGs 

To account for the possibility that our analyses may be biased by the non-random distribution and inter-

dependence of hvCpGs in CpG clusters, we generated a de-clustered set of hvCpGs in which no CpG was 

within 4 kb of another CpG. 2,640 de-clustered hvCpGs were generated by randomly selecting one CpG from 

each of the clusters and then including all ‘singleton’ CpGs falling outside of clusters. 

Age stability 

To examine temporal stability of hvCpGs we used published intra-class correlation coefficients (ICCs) for 

probes on the Illumina450K array determined using white blood cell samples taken ~6 years apart(54). The 

ICC scores compare within-sample variability (across the two time-points) to between-sample variability, 

with ICC  0.5 defined as temporally stable by Flanagan et al. (54). To account for the possibility that high ≥
ICC scores might be driven by the high variability of hvCpGs, we compared ICC scores at hvCpGs to those at 

CpGs with similar methylation Beta distributions to hvCpGs at the first time point (Supplementary Fig. 6A). 

These CpGs were matched to each hvCpG using the same Kolmogorov-Smirnov method detailed in 

‘Distribution-matched controls’ but using publicly available Flanagan et al. methylation data (GSE61151) 

instead the ‘Blood_Cauc’ dataset (54).  

While we regressed out the effect of age in those datasets where this covariate was available, we checked 

for potential residual age effects on both methylation mean and variance (‘epigenetic drift’) by a) performing 

sub-analyses of infant and cord blood datasets (Supplementary Table 10); and b) determining the proportion 

of hvCpGs that overlap a published set of 6,108 CpGs identified using whole blood Illumina450K data from 

3,295 individuals aged 18 to 88 years that show an increased methylation variability with age of more than 

5% every 10 years (11) (Supplementary Fig. 6B). 

Sex effects 

We regressed out the effect of sex in those datasets where this was available. However, since sex is an 

important potential driver of inter-individual methylation differences, we further examined the potential for 

hvCpG methylation to be driven by sex-specific effects in 8 datasets that had an approximately equal number 

of male and female samples and a sample size > 80 (Blood_Japan, Blood_Mexican, Blood_Gamb, 

CD4+_Estonian, CD8+_Estonian, Saliva_Cauc, Buccals_Sing_9mo, Buccals_Cauc). We split each dataset by sex 

to generate 8 ‘male-only’ and ‘female-only’ sub-datasets. We then calculated the proportion of hvCpGs that 

had methylation variance in the top 5% in each of these sub-datasets. 
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Published CpG sets used to investigate early embryo establishment

We used the following publicly available data to examine evidence that methylation states at hvCpGs are 

established in the early embryo. See Table 2 for a summary of these datasets. We note that not all hvCpGs 

may have been covered in the array background of all of these studies. 

Systemic Interindividual Variation (‘SIV’) CpGs

SIV-CpGs were collated from four published datasets that used either whole genome bisulfite 

sequencing (WGBS) or Illumina450K data from multiple tissues derived from different germ layers to 

identify CpGs displaying high interindividual variation and low intra-individual (cross-tissue) variation. 

These properties are suggestive of variable methylation establishment before germ layer 

differentiation(26–29).  Further details on the four SIV screens used in this study are given in 

Supplementary Table 6.   

Epigenetic Supersimilarity (‘ESS’) CpGs

Epigenetic supersimilarity (ESS) loci were identified by van Baak et al. (27) using Illumina450K data from 

adipose tissue from 97 MZ and 162 dizygotic (DZ) twin pairs (55). In that study, 1,580 ESS sites were 

identified within the top decile of methylation variance, with an interindividual methylation range > 0.4 

and greater-than-expected concordance in MZ twins vs DZ twins. This supersimilarity amongst MZ twins 

is attributed to methylation establishment before MZ twin splitting. 

MZ twinning CpGs

Van Dongen et al. (56) performed an epigenome-wide association analysis on each of 6 cohorts with 

methylation data from both MZ and DZ twins (5 blood and 1 buccal) to identify probes differentially 

methylated between MZ twins and DZ (dizygotic) twins. A meta-analysis was then performed using the 

blood datasets to identify 834 Bonferroni-significant differentially methylated CpGs, which we refer to 

as ‘MZ twinning CpGs’. 

Season of conception (‘SoC’) CpGs 

Silver et al. (57) used Illumina450K data to identify 259 CpGs associated with season-of-conception 

(‘SoC’) in Gambian 2-year olds, each of which showed a minimum methylation difference of 4% between 

individuals conceived in the peaks of the Gambian rainy and dry seasons.  

Transposable elements and telomeres

Locations of ERV1 and ERVK transposable elements determined by RepeatMasker were downloaded 

from the UCSC annotations repository as previously described(28). Telomere coordinates were 

downloaded from the UCSC hg19 annotations repository (http://genome.ucsc.edu). 

Imprinted genes, parent-of-origin-specific methylation (PofOm)
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Imprinted genes classified as ‘predicted’ or ‘known’ were downloaded from 

https://www.geneimprint.com.  Parent-of-origin-specific CpGs were identified by Zink et al. (58) using 

WGBS data from peripheral blood from Icelandic individuals.  

SIV power calculation

To assess power to detect SIV in previous screens with small numbers of samples, we analysed the 4-

individual multi-tissue dataset used by van Baak et al. (27, 59). We downloaded this dataset from GEO 

(GSE50192), selecting the same tissues (gall bladder, abdominal aorta sciatic nerve) used by van Baak et 

al.(27).  For each of the 1,042 SIV-CpGs reported by van Baak et al., we generated methylation values for 

three tissues for each simulated individual by randomly sampling from a 3-dimensional multivariate normal 

distribution, with mean equal to the mean of each tissue’s sampled methylation values at the CpG, and 

standard deviation specified by a 3x3 cross-tissue co-variance matrix of the sampled methylation values at 

the CpG. For each SIV-CpG, we sampled four simulated individuals and determined if this random sample 

met the SIV definition specified by van Baak et al.(27), repeating this process 1000 times to give a power 

estimate (Supplementary Fig. 7).

Processing and analysis of fetal multi-tissue dataset 

The unpublished fetal multi-tissue dataset comprised 60 samples, corresponding to 30 individuals that each 

have methylation data from two tissues derived from different germ layers (ectoderm: brain, spinal cord, 

skin; mesoderm: kidney, rib, heart, tongue; endoderm: intestine, gut, lung, liver). These fetal tissues were 

obtained from the ‘Moore Fetal Cohort’ from the termination of pregnancies at Queen Charlotte’s and 

Chelsea Hospital (London, UK). Ethical approval for obtaining fetal tissues was granted by the Research Ethics 

Committee of the Hammersmith, Queen Charlotte’s and Chelsea and Acton Hospitals (2001/6028). DNA was 

extracted from fetal tissues using the AllPrep DNA/RNA/Protein Mini Kit (Qiagen) and bisulfite conversion 

was carried out using EZ DNA Methylation Kits (Zymo Research). Samples were then processed using the 

Illumina InfiniumEPIC array. Derived methylation data were imported as .idat files into R and analysed using 

the meffil R package (v 1.1.2)(60) with default parameters. Briefly, methylation predicted sex was used to 

remove 2 sex outliers (samples with methylation > 5 SDs from mean). Next, 1 sample was removed for which 

the predicted median methylation signal was more than 3 SDs from the expected signal, leaving 57 samples.  

515 probes with detection-p-value value > 0.1 and 307 probes with bead number < 3 in more than 20% of 

samples respectively were removed. Array data were then corrected for dye-bias and background effects and 

functional normalisation was applied, specifying the number of PCs to be 7 (the PC at which the variance 

explained at control probes levelled out). Next, the ChAMP (v2.20.1) R package(46) was used to remove cross-

hybridising and multi-mapping probes, probes on XY chromosomes, and SNP-related probes, leaving 746,492 

CpGs. We selected the 452,016 probes that overlapped the Illumina450K array and the 27 individuals for 

which both tissue samples passed quality control. This included 9 individuals with methylation data from 

endoderm and mesoderm, 10 individuals with methylation data from endoderm and ectoderm and 8 
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individuals with methylation data from mesoderm and ectoderm (see Supplementary Table 7). Methylation 

was then adjusted for predicted sex and batch using a linear model. The mean gestational age of these 

individuals was 12.5 weeks. 

For the 9 individuals with available endoderm-mesoderm samples, we calculated the Pearson r between 

germ layer methylation values for each hvCpG and repeated this for individuals with endoderm-ectoderm 

and mesoderm-ectoderm samples. The inter-germ layer correlation was then defined as the average Pearson 

r across these three comparisons. We calculated interindividual variation using the same metric as van Baak 

et al.(27): for each CpG, we took the mean methylation value across the two germ-layer derived tissues for 

every individual (giving 27 values for each CpG) and defined interindividual variation of the CpG as the range 

of these means.   

Chromatin states at hvCpGs 

Chromatin states were predicted by a ChromHMM 15-state model(61) using Chromatin Immunoprecipitation 

Sequencing (ChIP-Seq) data generated by the Roadmap Epigenomics Consortium (62). These data were 

downloaded for H1 ESCs (E003), fetal brain (E071), fetal muscle (E090), fetal small intestine (E085), foreskin 

fibroblasts (E055), adipose (E063) and primary mononuclear cells (E062) from the Washington University 

Roadmap repository. Chromatin states were collapsed into 8 states for clarity (Supplementary Table 8). 

EWAS trait associations at hvCpGs 

hvCpG trait associations were determined using the EWAS catalogue (http://ewascatalog.org/), which details 

significant results (p-value < 1 x 10-4) from published EWAS studies.  Considering only those traits for which 

at least 1% of hvCpGs overlapped associated CpGs (highlighted in green in Supplementary Table 9), we first 

extracted the array background CpGs overlapping the ‘Blood_Cauc’ dataset that were associated with each 

trait. We then calculated enrichment odds ratios of hvCpGs relative to blood distribution-matched controls 

(Table 1) and determined the significance of the enrichment using Fisher’s Exact Tests. 

GTEx transcription levels 

The median gene transcription levels for 54 tissues were downloaded from the GTEx portal 

(https://gtexportal.org/home/datasets). Transcription levels were examined at 416 out of the 425 genes that 

were annotated to an hvCpG cluster in the Illumina450K manifest. 

Gene ontology term enrichment analysis 

Gene Ontology (GO) term enrichment analysis was performed using the missMethyl R package (v1.24.0)(63) 

using the gometh() function, setting arguments sig.cpg = hvCpGs, all.cpg = array.background, sig.genes = T, 

collection = “GO”, array.type = “450K” and prior.prob = T to adjust for variation in the number of 450K probes 

mapping to each gene.  

Page 14 of 54

For Peer Review

Nucleic Acids Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://ewascatalog.org/


11

Bootstrapped confidence intervals 

All bootstrapped 95% confidence intervals were calculated over 1,000 bootstrap samples.
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Results

Identification of hypervariable CpGs 

We analysed methylation data from 3,474 individuals across 30 datasets (28 Illumina450K and 2 EPIC array) 

comprising 19 unique tissue/cell types and 8 ethnicities covering a range of ages (Supplementary Tables 1-

4). We focussed on CpGs covered by the Illumina450K array and began by excluding probes with poor 

detection p-values, cross-hybridising probes, probes on the X and Y chromosomes and probes associated 

with known SNPs (see Methods for details). 

We aimed to identify CpGs with consistently high interindividual variation in methylation across diverse 

datasets, so minimising the effects of dataset-specific drivers of variability including those related to different 

normalisation methods and processing pipelines. Reasoning that removal of unmeasured technical, batch 

and cell heterogeneity effects would maximise power to detect true variable methylation states, we adjusted 

all methylation values for the first ten principal components (PCs) of methylation variation, and additionally 

adjusted for sex (in datasets with both sexes) and age (where available). 

Our strategy for identifying tissue- and ethnicity- independent hypervariable CpGs (‘hvCpGs’) is summarised 

in Fig. 1 and detailed in ‘Methods’. We defined hvCpGs as CpGs with methylation Beta variance in the top 5% 

of all CpGs in at least 65% of datasets in which the CpG was covered (Table 1), yielding 4,330 hvCpGs. Note 

that no CpGs are expected to meet these criteria if the top 5% most variable CpGs in each dataset are entirely 

independent of those in the others. These thresholds are arbitrary but were chosen in order to select CpGs 

that met our required criteria of being highly variable in a large number of tissues (median = 13, IQR = [10,15]) 

and ethnicities (median = 7, IQR = [[6,7]) (Fig 1B).  Further, we note that ~80% of identified hvCpGs were 

within the top 20% of variable CpGs in at least 90% of datasets (Supplementary Fig. 1), meaning that the 

majority of hvCpGs are within the top 20% of variable loci in almost all covered datasets. 

We next compared the set of 4,330 hvCpGs with an alternative set obtained using the same method but 

without prior adjustment of each dataset for the first ten PCs. This alternative set contained only 1,302 CpGs, 

which confirmed our intuition that PC adjustment maximises power to identify true dataset-independent 

hypervariability by removing unwanted technical variation (Supplementary Fig. 8). Finally, we used reported 

measures of methylation variability among technical replicates (23, 50) to remove 187 technically unreliable 

probes (see Methods), leaving a final set of 4,143 hvCpGs (Table 1; Supplementary Table 5). 

hvCpGs are enriched for intermediate methylation values in all datasets compared to the array background 

(Supplementary Fig. 2; see Table 1 for definition of array background) and are distributed throughout the 

genome (Supplementary Fig. 9A-B), with 2,219 (54%) falling within 716 ‘clusters’ containing two or more 

hvCpGs separated by < 4 kb (Supplementary Fig. 5B). To account for the possibility that our downstream 
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13

analyses may be biased by these distributional properties, we generated a set of controls that were 

distribution-matched in a whole blood dataset (Supplementary Fig. 3) and a set of ‘de-clustered hvCpGs’ 

(Table 1, ‘Methods’).  

hvCpG variability is not driven by age, sex, or cell heterogeneity

Evidence from multiple studies suggests that methylation variability can increase with age (termed epigenetic 

drift)(11, 64), raising the possibility that cross-dataset hypervariability of hvCpGs is driven in part by a large 

proportion of adult/elderly samples. However, 3,815 (92%) out of 4,122 hvCpGs with methylation measured 

in cord blood and/or buccal samples from infants showed methylation variance within the top 5% of CpGs in 

those datasets (Supplementary Table 10), suggesting that high variability at hvCpGs arises in early life.  We 

further probed age stability of hvCpGs by leveraging two studies of age effects in blood. The first study 

reported methylation consistency in individuals sampled at two time points six years apart using intraclass 

correlation coefficients (ICCs)(54). Because ICCs increase with CpG variability, we compared temporal 

stability of hvCpGs to controls with similar methylation Beta distributions selected at the first time point 

(‘Methods’).  The temporal stability of hvCpGs was significantly greater than that of controls (Wilcox paired 

signed-rank test p-value < 5.7 x10-81), with 95% of hvCpGs considered temporally stable versus 89% of 

controls (Supplementary Fig. 6A). The second measured epigenetic drift in a cross-sectional study of 3,295 

whole blood samples from individuals aged 18 to 88(11). Only 7% of hvCpGs overlapped CpGs that show 

increased methylation variability with age, compared to 16.5% of blood distribution-matched controls 

(Supplementary Fig. 6B). This suggests that that the majority of hvCpGs are stable over a broad time period 

in whole blood and further supports the notion that hypervariability of hvCpGs in multiple datasets is not an 

artefact of epigenetic drift effects.

Methylation values were pre-adjusted for the first ten PCs and for sex in all datasets where sex was available 

as a covariate (24 out of 30 datasets). We investigated the potential for unaccounted-for sex effects to drive 

methylation variance at hvCpGs by constructing male-only and female-only datasets (‘Methods’). 100% of 

hvCpGs were in the top 5% of CpGs by methylation variance in at least one of the ‘male-only’ and ‘female-

only’ datasets analysed. Similarly, 3,548 (96%) of the 3,678 hvCpGs covered in purified CD4+ and CD8+ 

datasets had methylation variance among the top 5% in at least one dataset (Supplementary Table 10), 

suggesting that methylation variation at hvCpGs was not driven by unaccounted-for cell heterogeneity effects 

amongst the heterogeneous tissue types studied. 

Together, these data strongly suggest that variability at hvCpGs is not driven by sex, age, or cell heterogeneity 

effects.  
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Hypervariability is not driven by genetic variants

Genetic variation is an important driver of interindividual methylation differences (4, 5). There is evidence 

that mQTLs can be shared across different tissues(15, 16, 65, 66) and ethnic groups (5), raising the possibility 

that ‘universal’ (multi-tissue and multi-ethnic) mQTLs might drive cross-dataset variability at hvCpGs. We 

therefore investigated the potential influence of methylation quantitative trait loci (mQTL) on methylation 

variability at hvCpGs by leveraging a recently published large meta-GWAS (36 cohorts, n = 27,750 individuals) 

that identified common genetic variants associated with methylation in blood from Europeans(51), reasoning 

that by definition ‘universal’ mQTLs would be included in this meta-analysis. 

We considered multiple methylation variance thresholds (5%, 10% and 20%) and observed a positive 

relationship between hypervariability and both the probability of a significant mQTL association and the 

mean mQTL effect size (Fig. 2A).  Amongst the set of 4,143 hvCpGs, there were 6,985 cis mQTL (covering 

3,635 hvCpGs and 6,417 SNPs) and 971 trans mQTL (covering 713 hvCpGs and 753 SNPs). Overall, 3,722 (90%) 

hvCpGs were reported to be associated with at least one (cis or trans) mQTL. The median of the mean % 

variance explained by mQTLs was 4% (Fig. 2B), suggesting that additive genetic effects explain a small to 

moderate proportion of methylation variability at the majority of these hypervariable loci in blood. Noting 

that the statistical power to detect mQTL associations will be greater at loci that are inherently variable, we 

matched hvCpGs to CpGs with the same number of mQTL associations and similar mean % variance explained 

by mQTL (‘mQTL-matched controls’, Table 1, Supplementary Fig. 4). hvCpGs showed an average 5-fold 

increase in methylation variance compared to mQTL-matched controls across datasets (Fig. 2C), further 

supporting the notion that methylation variation at hvCpGs is not principally driven by universal genetic 

effects. 

To further probe the influence of genetic effects on hvCpG methylation we examined the overlap between 

hvCpGs and a published set of CpGs that show DNAm variation between monozygotic (MZ) co-twins that is 

equivalently variable (ev) to that between unrelated individuals, suggestive of genetically independent 

variable methylation establishment after MZ twin splitting(53). In total, hvCpGs comprise 122 (42%) of the 

317 evCpGs identified in blood (1.9-fold enrichment relative to distribution-matched controls) and 62% of 

those that were replicated as evCpGs in adipose tissue (2.8-fold enrichment relative to controls) 

(Supplementary Table 11), supporting the notion that hvCpGs are likely influenced but not determined by 

genetic variation in multiple tissues. 

Page 18 of 54

For Peer Review

Nucleic Acids Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



15

hvCpGs show covariation across tissues derived from different germ layers 

DNAm states that are variable in different tissues and that are influenced but not determined by genotype 

may have been established before germ layer separation in early embryonic development and may therefore 

covary across tissues derived from different germ layers (28). None of the 30 datasets used to identify hvCpGs 

had multi-tissue data from the same individuals. We therefore examined the overlap between hvCpGs and 

3,089 CpGs that show systemic (cross-tissue) interindividual variation (SIV), collated from four published 

sources(26–29) (Supplementary Table 6). Because both SIV-CpGs and hvCpGs are enriched for intermediate 

methylation states (28), we used the set of blood distribution-matched controls (Table 1) as a comparator to 

ensure that our analysis was not biased by this shared property. 24% of hvCpGs overlap a known SIV-CpG, 

showing a ~5-fold enrichment for SIV-CpGs relative to blood distribution-matched controls (Fig. 3A, 

Supplementary Table 12, Supplementary Fig. 10A). We note that a further 540 (13%) hvCpGs are within 1 kb 

of a SIV-CpG, ~5-fold greater than array background CpGs. This suggests that many hvCpGs directly overlap 

or co-localise with a known SIV-CpG. 

The set of all hvCpGs comprises 32.1% of the 3,089 CpGs reported as SIV in any of the four independent 

studies analysed despite comprising <1% of the 450K array. When considering ‘high-confidence’ SIV-CpGs 

reported in at least two or three of the four screens, the proportion identified rises to 76.5% and 95.1% 

respectively (Fig. 3B). This suggests that our approach of identifying hypervariable loci across multiple 

datasets may be a more powerful method for identifying putative SIV loci, compared to existing SIV screens 

that necessarily rely on rare datasets with multi-tissue, multi-germ layer methylation data from small 

numbers of individuals. To confirm this, we estimated the power to detect SIV using the multi-tissue data 

from four individuals analysed by van Baak et al. (27). Using a permutation framework (‘Methods’), we 

estimated the mean power to detect SIV as 56% (median [IQR] = 0.58 [0.44, 0.72]; Supplementary Fig. 7). As 

expected, given the small sample size of this multi-tissue dataset, a large proportion of hvCpGs (75%) did not 

meet the minimum interindividual variation threshold of 0.2 used by van Baak et al. to define SIV. On the 

assumption that hvCpGs are highly enriched for true SIV, this could explain why hvCpGs constitute 61.7% of 

the van Baak et al.  SIV-CpGs, while just 13.5% of hvCpGs are identified as SIV-CpGs in the van Baak et al. 

analysis.  

To directly test our hypothesis that hvCpGs comprise previously unidentified SIV loci, we analysed a dataset 

of fetal tissues from 27 individuals, each with methylation data from two tissues derived from different germ 

layers (see Supplementary Table 7). Inter-germ layer correlations at hvCpGs had a median average Pearson r 

of 0.42, compared to array background CpGs which had a median average Pearson r of 0.05 (Fig. 3C left). Of 

the 3,878 hvCpGs covered in this fetal multi-tissue dataset, 1,653 (42%) had an average inter-germ layer 

Pearson r 0.5. Of these, 58% did not overlap previously identified SIV loci, suggesting that hvCpGs ≥
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comprise novel SIV loci.  A comparison of the average inter-germ layer correlation at hvCpGs and at previously 

identified SIV-CpGs showed that hvCpGs and SIV-CpGs had similar inter-germ layer correlations (Fig. 3C right).

hvCpGs are enriched for loci with distinctive methylation patterns in MZ twins 

We further investigated evidence for establishment of hvCpG methylation states in the early embryo by 

testing the overlap between hvCpGs and a published set of 1,217 “epigenetic supersimilarity” (ESS) CpGs 

overlapping array background. ESS CpGs show high interindividual variation with greater-than-expected 

methylation concordance between monozygotic co-twins in adipose tissue, suggestive of methylation 

establishment in the early zygote before MZ cleavage (27). 13% of hvCpGs overlap an ESS CpG, showing a 

~9.5-fold enrichment for ESS CpGs relative to distribution-matched controls (Fig. 3A, Supplementary Table 

12, Supplementary Fig. 10B).  

We next examined the overlap between hvCpGs and a published set of CpGs showing a unique methylation 

signature in adult tissues from MZ vs DZ twins (‘MZ twinning CpGs’, Table 2), linked to MZ twin splitting 

events in early development(56). 7% of hvCpGs overlap an MZ twinning CpG, showing a 3.7-fold enrichment 

for MZ twinning CpGs compared to distribution-matched controls (Fig. 3A, Supplementary Table 12).  

Notably, 54% of ESS and 37% of MZ twinning CpGs overlapping array background are hvCpGs (Fig. 3B).

Reconciling the timing of variable methylation establishment at hvCpGs 

The enrichments that we observe for SIV, ESS, evCpGs and MZ twinning CpGs offer a potential insight into 

the timing of methylation establishment at hvCpGs. In total, 38% of hvCpGs overlap at least one of these CpG 

sets (Supplementary Fig. 11A) and enrichment is stronger amongst CpGs that show at least two of these 

properties (Supplementary Fig. 11B). In particular, hvCpGs comprise 78% of SIV-ESS loci and 65% of SIV-MZ 

twinning loci, suggesting that SIV loci with evidence of establishment in the pre-gastrulation embryo are 

enriched for hvCpGs.

Variable methylation states identified at evCpGs are thought to originate in embryonic development and/or 

early post-natal life(53). We note that 41 out of 317 evCpGs overlap SIV and/or MZ twinning CpGs, suggesting 

that at least a subset may be established in the pre-gastrulation embryo.  hvCpGs comprise 67% of evCpGs 

that overlap SIV-CpGs, and 76% of that overlap MZ twinning CpGs (Supplementary Fig. 11B).
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hvCpGs are enriched for parent-of-origin methylation and proximal TEs 

In mice, variable methylation states have been associated with the Intracisternal A Particle (IAP) class of 

endogenous retrovirus(67, 68), with growing evidence that methylation variability may in part be driven by 

incomplete silencing of IAPs in early development(69, 70). In humans, SIV-CpGs are enriched for proximal 

endogenous retrovirus elements (ERVs), including the subclasses ERV1 and ERVK(28). This is also the case 

with hvCpGs: 45% and 7% of hvCpGs are located within 10 kb of an ERV1 and ERVK element respectively, 

representing a ~1.3-fold and ~1.7-fold enrichment relative to both array background and blood distribution-

matched controls (Fig. 3D, Supplementary Fig. 10 C, Supplementary Table 12). Approximately 4.7% of hvCpGs 

are also located within 1Mb of telomeric regions, showing a 1.8-fold enrichment relative to distribution-

matched controls and array background CpGs (Supplementary Table 12). 

Maintenance of parent of origin-specific methylation (PofOm) in the pre-implantation embryo is critical for 

genomic imprinting (71), and several previously identified SIV loci have been found to be associated with 

imprinted genes and/or PofOm (25, 27, 57). 58 hvCpGs (1.4%) were annotated to 32 imprinted genes 

(Supplementary Table 13), no more than expected by chance since 1.9% of array background CpGs are 

annotated to imprinted genes. 10 hvCpGs were annotated to the polymorphically imprinted non-coding RNA 

VTRNA2-1, a well-established SIV locus that is associated with periconceptional environmental exposures(25, 

27, 30, 72, 73).   Although only a small proportion (2.2 %) of hvCpGs overlap regions of PofOm identified in 

peripheral blood(58), this overlap represents a 3.5-fold and 11-fold enrichment relative to distribution-

matched controls and array background respectively that is maintained after de-clustering (Fig. 3A, 

Supplementary Fig. 10D, Supplementary Table 12). This overlap constitutes 13% of all PofOm CpGs 

overlapping array background (Fig. 3B).  

hvCpGs show sensitivity to pre-natal environment 

Variable methylation states established in early development that are sensitive to environmental 

perturbation are promising candidates for exploring the developmental origins of health and disease (74–

76). We explored whether hvCpGs show sensitivity to pre-natal environment by examining their overlap with 

loci associated with season of conception (‘SoC’) in a rural Gambian population exposed to seasonal 

fluctuations in diet and other factors (77–79). hvCpGs comprise 70 (29%) out of 242 previously identified 

SoC-CpGs (57) overlapping array background, an approximately 3-fold enrichment relative to distribution-

matched controls (Supplementary Table 11).

We next leveraged a recent meta-analysis of 2,365 cord blood samples that modelled genetic (G), genetic by 

environment (GxE) and additive genetic and environment (G+E) effects at variably methylated probes, where 
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E represents a range of prenatal exposures including pre-pregnancy BMI, maternal smoking, gestational age, 

hypertension, anxiety and depression(14). Of the 703 hvCpGs overlapping the neonatal blood variably 

methylated regions explored in that study, G, GxE, and G+E effects were the ‘winning’ models for 30%, 30% 

and 40% of probes respectively, representing an increase in G+E effects compared to array background 

(Supplementary Fig. 12). This analysis supports our intuition that hvCpGs are influenced but not determined 

by genetic variation, with pre-natal environment as an additional influencing factor.

Chromatin states at hvCpGs 

Compared to array background, hvCpGs are enriched within intergenic regions and CpG island ‘shores’ but 

are depleted within gene bodies and regions directly upstream of transcription start sties (Supplementary 

Fig. 9C). We predicted chromatin states at hvCpGs by examining the overlaps of hvCpGs with histone 

modifications using the chromHMM 15-state model (61) for seven tissues including embryonic stem cells (H1 

ESCs), and fetal and adult tissues(62). Although many hvCpGs were associated with regulatory elements in 

all tissues, hvCpGs were generally depleted in these regions compared to array background, except within 

predicted enhancers in H1 ESCs (Supplementary Fig. 13).

Gene expression and ontology analysis 

409 hvCpG clusters (corresponding to 1,282 CpGs) are annotated to 425 genes in the Illumina450k manifest. 

Analysis of GTEx expression data reveals that these are expressed in a diverse range of tissues. 

(Supplementary Fig, 14).  Gene ontology enrichment analysis revealed that hvCpGs were significantly 

enriched for terms associated with cell-cell adhesion (Fig. 4A), which is largely driven by the colocalization of 

3.3% of hvCpGs to clustered protocadherin (cPCDH) genes on chromosome 5. This region comprises three 

clusters of protocadherin genes (cPCDH , cPCDH , cPCDH ), each containing many variable exons whose 𝛼 𝛽 𝛾
promoter choice is determined stochastically via differential methylation by DNA-methyltransferase 3 beta 

(DNMT3B) in early embryonic development(80, 81), resulting in the expression of distinct cPCDH isoforms of 

cell-surface proteins that are critical for establishing neuronal circuits(82). The cPCDH gene locus has also 

been found to be influenced by age(11, 83–85). Accordingly, although a minority (5%) of hvCpGs showed 

evidence of epigenetic drift in blood(11), these are enriched within the cPCDH locus relative to those that did 

not show evidence of epigenetic drift (Fisher’s Exact Test (FET) p-value = 9.4 x 10-9, OR = 4.02). Hypervariable 

methylation states at the cPCDH gene locus may therefore be driven by early developmental and/or aging 

effects. Noting that evCpGs and MZ twinning CpGs (Table 2) have also been reported to colocalise with this 

locus(53, 86), hvCpGs annotated to cPCDH genes were ~8.5-fold enriched for MZ twinning CpGs (FET p-value 

= 1.04 x 10-22) and ~3-fold enriched for evCpGs (FET p-value = 1.6 x 10-3) relative to hvCpGs that were not. 
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Association of hvCpGs with reported EWAS trait associations 

To probe the potential functional role of hvCpGs, we analysed their overlap with traits reported in the 

epigenome-wide association studies (EWAS) catalogue (http://ewascatalog.org/). 86% of hvCpGs show 

significant associations (reported p-value < 1 x 10-4) with one or more of 231 unique traits covered in the 

catalogue (Supplementary Table 9). However, compared to blood distribution-matched controls, a suitable 

comparator given that the majority of EWAS have been carried out in blood, we found that hvCpGs were 

enriched amongst CpGs associated with sex, Alzheimer’s disease and inflammatory bowel disease only (Fig. 

4B). 

Noting that all sex-associated hvCpGs have top 5% methylation Beta variance in at least one of our 8 

generated female-only and male-only datasets respectively (‘Methods’), and that a similar proportion of SIV-

CpGs are also associated with sex (23% of hvCpGs and 20% of the 3,089 SIV-CpGs considered in our study), 

we speculate that the association with sex may be a feature of variable methylation states established in 

early development. Amongst the 64 hvCpGs associated with Alzheimer’s disease, 25 overlap previously 

identified SIV and/or ESS loci, 9 of which annotated to CYP2E1, a gene that has also been associated with 

Parkinson’s disease and rheumatoid arthritis(32, 87). Amongst the 200 hvCpGs associated with inflammatory 

bowel disease, 87 overlap a SIV/ESS locus, 9 of which are annotated to C21orf56, a gene at which offspring 

methylation has been associated with maternal folate levels in pregnancy (88).  

hvCpGs were notably depleted amongst age-related traits relative to distribution-matched controls (Fig. 4B), 

in agreement with our earlier findings that hvCpGs are largely stable with age (Supplementary Fig. 6). hvCpGs 

are also depleted amongst CpGs that are differentially methylated between buccal cells and peripheral blood 

mononucleocytes (‘Tissue’ in Fig. 4B), supporting the notion that hvCpGs may be established before cell 

differentiation and that the method used to identify the hvCpGs is robust to tissue-specific methylation 

variation. 
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Discussion
We have identified and characterised tissue- and ethnicity- independent hypervariable methylation states at 

CpGs covered by the 450k array.  Our methodological approach was designed to be robust to dataset-specific 

drivers of methylation variability, including sex, age, cell type heterogeneity and technical artefacts. We 

identified 4,143 hvCpGs and found strong evidence that methylation states at many hvCpGs are likely to be 

established in the early embryo and are stable postnatally. Our analysis positions hvCpGs as tissue- and 

ethnicity- independent age-stable biomarkers of early stochastic and/or environmental effects on DNA 

methylation. 

hvCpGs cover ~1% of the 450K array and were in the top 5% variable methylation states in an average of 13 

distinct tissues and 7 ethnicities. Our study is not the first to investigate DNAm patterns in multiple tissues.  

Previous studies have identified CpGs that are differentially methylated between tissues (89–91); determined 

the extent to which variable methylation states in accessible tissues (such as blood) reflect those in 

inaccessible tissues such as brain (65, 90–93); compared methylation patterns between peripheral tissues 

(66, 94, 95); directly identified SIV loci using tissues derived from different germ layers (24–26, 28, 29); 

functionally characterised tissue-specific variably methylated regions(96); and examined the extent to which 

common drivers of methylation variation, such as genetics, age, sex and environment, are tissue-specific (8, 

12, 15–18, 97, 98).  The majority of these studies used a comparatively small number of tissues or cell-types, 

and few have used multi-tissue datasets from different ethnicities (15).  To our knowledge, ours is the first 

study to explore the extent to which variably methylated CpGs are shared across diverse tissues and 

ethnicities in the human genome.  

The majority of hvCpGs were associated with at least one mQTL suggesting that genetic effects influence 

methylation at these loci. Although data on the total proportion of methylation variance explained by all 

mQTLs associated with each hvCpG were not available, our comparison with mQTL-matched controls 

together with evidence of enrichment for sensitivity to periconceptional environment suggests that 

stochastic and/or environmental effects have a relatively large influence on methylation variability at 

hvCpGs.  This is supported by evidence of methylation discordance between MZ twins, although we note that 

MZ discordance can be driven by de novo genetic mutations after MZ twinning events (99).  A large 

proportion of hvCpGs show evidence of systemic interindividual variation (SIV), that is, intra-individual 

correlation in methylation across tissues derived from different germ layers. Whilst loci that covary across 

different tissue types are enriched for mQTL effects (16, 65, 66, 94), it has been suggested that SIV loci are 

putative human metastable epialleles with variable methylation states established before gastrulation that 

are influenced but not determined by genetic variation(28). 
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Our fetal multi-tissue analysis supports the notion that SIV at hvCpGs arises during early development and is 

likely not, for example, driven by post-natal environmental influences that act across many tissues. hvCpGs 

were also highly enriched for epigenetic supersimilarity loci and MZ twinning-associated CpGs, both of which 

have been linked to establishment of methylation in the cleavage stage pre-implantation embryo (27, 56). 

The degree of overlap between variably methylated regions in different cell types has also been linked to 

their common developmental origin(96). If this pattern holds true, it follows that stochastic and/or 

environmentally influenced variably methylated loci that are shared across a large number of diverse tissues 

are likely to have originated before germ-layer differentiation. Definitive proof of this would require an 

analysis of methylation variation at multiple stages in a sufficient number of pre-gastrulation embryos. 

Although examination of EWAS trait associations revealed no evidence that hvCpGs are enriched for post-

natal environmental effects, it is possible that cross-tissue and cross-ethnicity variable methylation states at 

some hvCpGs are influenced by later gestational or post-natal environmental effects. Such effects may act in 

addition to or independently of early environmental effects across multiple tissues, as has been suggested at 

the VTRNA2-1 locus in the context of folate supplementation in pregnancy(100), maternal age at delivery(73), 

and smoking(101) . 

An interesting feature of hvCpGs is their enrichment for intermediate methylation values relative to the array 

background. A previous read-level analysis of SIV loci from human embryos using reduced representation 

bisulphite sequencing data indicated that intermediate methylation states at SIV loci are driven by stochastic, 

cell variegation effects rather than allele-specific methylation (28), and this may also be the case for hvCpGs.

The association of hvCpGs with parent-of-origin-specific methylation and proximal ERV1 and ERVK elements 

is notable because these features have been linked to SIV-CpGs (28). This suggests that genomic regions 

targeted by epigenetic silencing or maintenance mechanisms during early embryonic reprogramming may 

be enriched for stochastic and/or environmentally influenced methylation variation. For example, it has been 

suggested that regions of PofOm may be vulnerable to stochastic or environmentally-sensitive loss of 

methylation on the usually-methylated allele or gain of methylation on the usually-unmethylated allele at a 

later time-point, leading to interindividual methylation variation (57, 71, 102).  Similarly, certain IAP elements 

(a class of ERVK LTR retrotransposon) show methylation variation between isogenic mice (67, 68) that in 

several cases can be influenced by pre-natal environment (103–105). Whilst transposable elements are 

usually silenced to prevent insertion events from damaging the genome, recent evidence suggests that 

methylation variability at IAP elements is partly driven by low-affinity binding of trans-acting Krüppel-

associated box (KRAB)-containing zinc finger proteins (KZFPs) (69) and by sequence variation in KZFP-binding 

sites(69, 106). Whilst KZFPs are known to target TEs in humans (107, 108), the extent of their role in driving 

methylation variation is an ongoing area of research. 
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The large overlap between hvCpGs and ‘high confidence’ SIV-CpGs identified in at least two independent 

screens suggests that the identification of hvCpGs might constitute a high-powered method for detecting 

novel SIV loci. Supporting this, the largest SIV screen to date with 10 individuals was reported to be 

underpowered to detect the well-established SIV locus at the non-coding RNA gene VTRNA2-1 (29) 

(represented by 10 hvCpGs), and we found that a 4-individual multi-tissue dataset analysed by van Baak et 

al.(27) had limited power to detect SIV loci. Another consideration is that SIV screens to date have used 

different sets of tissues. Since loci that covary between one pair of tissues do not necessarily covary between 

another pair (65), the enrichment for high confidence SIV loci (i.e. those reported in multiple independent 

SIV screens) might reflect the fact that methylation states at hvCpGs covary across a large number of tissues. 

Importantly, our analysis of a fetal multi-tissue dataset offers a strong validation of previously unreported 

SIV at hvCpGs.  

Our analysis of EWAS trait associations revealed a moderate enrichment for hvCpGs amongst CpGs 

associated with Alzheimer’s disease and inflammatory bowel disease. SIV loci have been linked to this and 

other disease outcomes including autism, cancer and obesity (27, 31, 109).  For example, 10 hvCpGs overlap 

the PAX8 gene which is a known SIV locus. PAX8 methylation measured in peripheral blood of Gambian 2-

year olds was recently shown to be correlated with thyroid volume and hormone levels in the same children 

in mid-childhood, and the latter was associated with changes in body fat and bone mineral density(110).  This 

suggests that hvCpGs are interesting candidates for exploring how stochastic and/or environmentally 

influenced DNAm states established in early development might influence life-long health.  

We identified hvCpGs that are variable in diverse ethnicities, raising the possibility that regions of 

hypervariable methylation may be a conserved feature in the human genome.  It is also possible that there 

are ethnicity-specific regions of hypervariable methylation that would not have been captured in our analysis. 

Conserved variable methylation patterns established in the early embryo that are sensitive to early 

environment and that are able to influence gene expression might mediate a predictive-adaptive-response 

mechanism that senses the pre-natal environment in order to prime the developing embryo to its post-natal 

environment (75, 76). One hypothesis suggests that stochastic methylation states that are genetically 

hardwired into the human genome could provide a means of rapid adaptation to changing local 

environments on a scale much faster than is attainable through Darwinian evolution (112). Alternatively, 

stochastic methylation arising in early development independently of environmental factors may increase 

population fitness by expanding the range of phenotypes in a given generation (111) . Associations between 

genotype and methylation variance have been previously reported, for example at the putative metastable 

epiallele PAX8(36) at the master regulator of genomic imprinting ZFP57 (27) and at several probes in the 

major histocompatibility complex (MHC) region associated with rheumatoid arthritis (113). Interestingly, 4% 

of hvCpGs are located within the MHC, representing an enrichment relative to the array background (FET p-

value = 2.7 x 10-10, OR = 1.7). Further analysis of genotype-methylation variance effects is required to 
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determine if this region, which contains a large amount of sequence variation and is implicated in many 

immune-mediated diseases (114), or others contain additional examples of genetically-driven phenotypic 

plasticity that is mediated by DNA methylation. 

By selecting CpGs within the top 5% of methylation variance in at least 65% of datasets we were able to 

identify CpGs that were highly variable across multiple tissues and ethnicities. A comparison of CpGs 

identified using slightly different thresholds suggested that the set of hvCpGs is relatively insensitive to these 

parameters, but we note that the final set of hvCpGs is nevertheless dependent on the choice of thresholds.

Our method of adjusting for the first 10 PCs of variation increased power to detect consistent variable 

methylation states across datasets by reducing technical artefacts in each dataset, although some true 

biological variation may have been removed by doing so. It remains the case that we may not have controlled 

for all non-biological sources of variation within each dataset. As such, any remaining inter dataset 

differences due to unaccounted for technical variation and/or different pre-processing and normalisation 

steps already applied to public methylation data would result in a loss of power to detect hvCpGs. Conversely, 

if technical/normalisation issues were to cause a CpG to be in the top 5% of variance in one dataset, this CpG 

would be unlikely to be in the top 5% of variance across a majority of datasets. Inherent control of false 

positives arising from residual technical differences between datasets is therefore a strength of our approach.

We analysed methylation data covering 19 different tissues and 8 ethnicities. While these data were 

sufficiently powerful to identify several thousand hvCpGs, future analyses are likely to identify additional loci 

through the inclusion of larger datasets from diverse tissues and ethnicities as they become available. 

Furthermore, the vast majority of publicly available methylation datasets use the Illumina 450K array. 

Therefore, a major limitation of this study is that we were only able to analyse the small proportion of the 

methylome covered by this array, which has been found to miss a disproportionate amount of variable CpGs 

(29). However, we note that our method for identifying hypervariable CpGs can easily be applied to whole 

methylome sequencing data which is becoming increasingly available. 

Through the joint analysis of methylation data from multiple tissues, we have identified a large set of 

hypervariable loci on the 450K array that are present across multiple tissues and ethnicities. Comparisons 

with a diverse range of data sources reveal that stochastic and/or environmentally responsive methylation 

states at these loci are likely to have been established in the early embryo and appear to be stable with age, 

making them interesting candidates for studying the developmental origins of life-long health and disease.
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Figure legends 

Figure 1. Identification of tissue- and ethnicity- independent hypervariable CpGs (‘hvCpGs’). A) CpGs with 
methylation Beta variance within the top 20%, 19%, 18%... 1% of variable CpGs were first extracted from 
each of the 30 methylation datasets used in this study. The intersection of these CpGs was then taken over 
an increasing proportion of datasets, requiring each CpG to be present in a minimum of 15 of the datasets 
analysed. The heatmap shows the number of CpGs within the top i % of variable sites by methylation Beta 
variance (‘variance threshold’) overlapping at least j % of datasets. To identify hypervariable CpGs (‘hvCpGs’), 
we set a threshold at i,j = [5,65], marked by the orange box. B) Bar charts showing the proportion of the set 
of 4,330 hvCpGs identified using i,j = [5,65] that have top 5% methylation Beta variance in ≥ n ethnicities 
(left) and tissues (right). See Supplementary Table 4 for groupings of datasets by tissue type and ethnicity. 

Figure 2. Genetic effects at hvCpGs using mQTL data from a large meta GWAS in blood (Min et al. 2021). A) 
The relationship between hypervariability and the proportion of CpGs with at least one mQTL association 
(top) and the mean mQTL effect size (bottom). Coloured curves represent CpGs with top 5% (orange), 10% 
(red) and 20% (blue) methylation Beta variance in at least x% of datasets. B) mQTL effects at hvCpGs. Left: 
the proportion of hvCpGs that are associated with n mQTLs. Right: the distribution of the mean % variance 
explained by mQTLs at 3,722 hvCpGs that are associated with at least one mQTL. C) Median methylation Beta 
variance at 3,722 hvCpGs overlapping the ‘Blood_Cauc’ dataset (orange) and corresponding controls 
matched on number of mQTL associations and mean % explained by mQTL (‘mQTL-matched controls’, 
Table1; Supplementary Fig. 4), in each dataset. See Supplementary Tables 1-3 for further details on tissues 
and ethnicities. Error bars in A and C are bootstrapped 95% confidence intervals. Note, error bars in C are 
very small. 

Figure 3. hvCpGs are enriched for loci and genomic features linked to variable methylation establishment 
in early development. A) The proportion of 3,566 hvCpGs (y-axis) vs corresponding distribution-matched 
controls (x-axis) covered in the ‘Blood_Cauc’ dataset that overlap 3,089 SIV-CpGs, 1,217 ESS CpGs identified 
by van Baak et al. (2018), 728 ‘MZ twinning’ CpGs identified by van Dongen et al. (2021) and 732 PofOm CpGs 
identified by Zink et al. (2018). B) The proportion of SIV-CpGs, ESS CpGs, MZ twinning CpGs and PofOm CpGs 
that are hvCpGs. SIV-CpGs identified in at least two or three independent screens were also included in this 
plot. C) Inter-germ layer correlations at hvCpGs using a fetal multi-tissue dataset that comprises methylation 
data from 10 individuals with endoderm- and ectoderm- derived tissues, 9 individuals with endoderm- and 
mesoderm- derived tissues and 8 individuals with mesoderm- and ectoderm- derived tissues (see 
Supplementary Table 7). Left: The distribution of average inter-germ layer correlations at 3,878 hvCpGs 
(orange) and 372,571 array background CpGs (excluding previously identified SIV CpGs and hvCpGs) (dark 
grey) covered in the fetal multi-tissue dataset. Top Right: Interindividual variation at 3,878 hvCpGs (orange), 
4,076 previously identified SIV loci (blue) covered in the fetal multi-tissue dataset, and 372,571 array 
background CpGs (see ‘Methods’ for definition of interindividual variation). Bottom Right: Comparison of 
average inter-germ layer correlations at hvCpGs, SIV- CpGs and array background CpGs, stratified by 
interindividual variation. Each point indicates the median average inter-germ layer correlation for those CpGs 
with interindividual variation falling within each bound specified on the x-axis. D) The proportion of 3,566 
hvCpGs, distribution-matched controls and array background CpGs that are ≤ x bp from the nearest ERV1 and 
ERVK transposable elements determined by RepeatMasker. Error bars in all panels are bootstrapped 95% 
confidence intervals. SIV = systemic interindividual variation, ESS = epigenetic supersimilarity, PofOm = 
parent-of-origin-specific methylation. 

Figure 4. Functional annotation of hvCpGs. A) Gene ontology term enrichment analysis at hvCpGs. Vertical 
line indicates a significance threshold of FDR < 0.05. B) EWAS trait enrichment of hvCpGs relative to blood-
distribution controls (Table 1) for traits overlapping at least 1% of hvCpGs (see ‘Methods’ and Supplementary 
Table 9 for further details). X-axis gives enrichment odds ratios and bar colour gives Fisher’s Exact Test (FET) 
significance p-values.  Shown are the 10 traits with FET p-value  0.01. ≤
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Tables -remember to change numbers 

Table 1. Main CpG sets used in this study. 

Table 2. Published CpG sets used in this study

SIV = systemic interindividual variation, ESS = epigenetic supersimilarity, evCpGs = equivalently variable CpGs, SoC = 
season-of-conception, PofOm = parent-of-origin-specific methylation.

CpG set Description n. CpGs 
overlapping 
array 
background 

Reference

SIV Interindividual methylation variation with concordant 
methylation across tissues derived from different germ 
layers within a given individual. See Supplementary Table 
8. 

3089 Harris et al., van 
Baak et al., Kessler 
et al., Gunasekara 
et al. (26-29) 

ESS Greater-than-expected methylation similarity between 
MZ co-twins

1217 van Baak et al. (27)

MZ twinning 
CpGs

Probes differentially methylated between MZ and DZ 
twins. 

728 van Dongen et al. 
(56)

evCpGs MZ co-twin methylation discordance that is equivalent to 
methylation discordance between unrelated individuals 
in whole blood. A subset of these replicated in adipose 
tissue.

317 (blood)

145 (blood & 
adipose)

Planterose Jimé
nez et al. (53)

SoC CpGs at which methylation is associated with season of 
conception in Gambian children.

242 Silver et al. (57)

PofOm  Regions of parent-of-origin-specific methylation 
identified in peripheral blood from Icelandic individuals. 

732 CpGs in 116 
PofOm regions

Zink et al. (58)

CpG set n Notes

hvCpGs 4143 CpGs within top 5% methylation Beta variance in at least 65% datasets in 
which the CpG is covered, requiring the hvCpG to be covered in at least 
15 datasets and to be reported as technically reliable.  

array background 406306 CpGs covered in at least 15 of the 30 datasets used in this study. 

distribution-matched 
controls 

3566 Array background CpGs with similar methylation Beta distributions to 
hvCpGs in the ‘Blood_Cauc’ dataset, requiring each control CpG to be 
technically reliable. 

de-clustered hvCpGs 2640 A set of hvCpGs in which no CpGs is within 4kb of another CpG.

mQTL-matched controls 3722 CpGs reported by the GoDMC meta-GWAS (51) with the same number of 
mQTL associations and similar mean % variance explained by an mQTL, 
requiring each control CpG to be present in at least as many datasets as 
the hvCpG. 
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Figure S1. A large proportion of hvCpGs identified using i,j = [5,65] overlap an alternative set obtained using 
i,j = [20,90].   A) Heatmap showing the number of CpGs identified at i,j = [5,65] (orange) and i,j =[20,90] (purple). 
B) Venn diagram showing the overlap between these two CpG sets. 

 

Figure S2. hvCpGs are enriched for intermediate methylation values. The distribution of mean methylation 
Beta values at hvCpGs (orange) and array background CpGs (grey). 
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Figure S3. Matching each hvCpG to a control with a similar distribution of methylation Beta values in 
Caucasian blood. A) The distribution of methylation Beta values at 3,566 hvCpGs and their corresponding 
distribution-matched controls selected from the ‘Blood_Cauc’ dataset (Supplementary Table 1).  B)  Examples 
of the similar distribution of methylation Beta values at hvCpGs (orange) and their corresponding controls (grey). 
The median Kolmogorov-Smirnov p-value over all 3,566 hvCpG-control pairs was 0.91 (IQR = [0.63, 0.98]). See 
‘Methods’ for further details.  
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Figure S4. Matching each hvCpG to a CpG with similar mQTL effects using the GoDMC mQTL analysis. Each of 
the 3,722 hvCpGs reported in the GoDMC mQTL analysis (Min et al. 2021), was matched to a control CpG with 
A) the same number of mQTL associations, and B) similar mean % variance explained by mQTL, requiring each 
control CpG to be present in at least as many datasets as the hvCpG.  
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Figure S5. Genomic locations of hvCpGs. A) The positions of hvCpGs across autosomal hg19 chromosomes. B) 
The number of hvCpGs (orange) located on each chromosome. C). Genomic locations of hvCpGs (orange) and 
array background (grey) in relation to gene bodies (left) and CpG islands (right). UTR = untranslated region, IGR 
= intergenic region, TSS = transcription start site. Error bars are bootstrapped 95% confidence intervals. 
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Figure S6. Clustering of hvCpGs.  A) The decay of methylation correlation with distance at hvCpGs. Each point 
indicates the average pairwise Spearman rho across hvCpG pairs with inter-CpG distance falling within each 100 
bp bin.  Curves are loess lines of best fit for each dataset. Dashed vertical line at 4000 bp is the threshold we 
used for defining hvCpG clusters.  B) The proportion of hvCpGs that fall into clusters comprising n CpGs, using 
an inter-CpG distance of 4000 bp to define clusters. C) The average Spearman rho across the 716 hvCpG clusters 
that comprise at least 2 CpGs. For each cluster, we calculated the average pairwise Spearman rho across hvCpG 
pairs for every dataset in which all CpGs in the cluster were covered, before taking the mean across these 
datasets. Note, in A and C we only considered datasets with N ≥ 100.  
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Figure S7.  Methylation at hvCpGs is stable with age and is not influenced by sex. A) The distribution of 
temporal ICC scores at 3,564 hvCpGs and CpGs with similar distribution of methylation Beta values at the first 
time-point (t0) covered in the Flanagan et al. (2015) dataset (see Methods). The horizontal line at ICC = 0.5 
indicates the threshold specified by Flanagan et al. (2015) above which probes are considered to be temporally 
stable. *** indicates Wilcoxon paired signed-rank test p-value < 0.001. B) The proportion of 3,566 hvCpGs and 
corresponding ‘distribution-matched controls’ (Table 1) covered in the ‘Blood_Cauc’ dataset that overlap probes 
showing increased variability with age in whole blood in a study of 18-to-88-year olds by Slieker et al. (2016). C) 
Comparison of the distribution of mean methylation Beta values between male (blue) and female (green) 
samples at all hvCpGs (top panel) and at 941 hvCpGs associated with sex in the EWAS catalog (bottom panel) for 
datasets with N ≥ 50.   Wilcox Rank Sum p-values are given above each pair of violin plots.  
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Figure S8.  Estimating the power to detect SIV-CpGs reported by van Baak et al. (2018) using a 4-individual 
multi-tissue dataset (GSE50192).  A) Replication of the screen by van Baak et al., in which 1,042 SIV-CpGs (green 
points) were identified, using the same methylation data from abdominal aorta, gall bladder and ischiatic nerve 
in 4 individuals. Orange points are hvCpGs. B) Estimating the power to detect each of the 1,042 SIV-CpGs 
reported by van Baak et al. (2018). See Methods for further details. Left: distribution of power estimates for 
each SIV-CpG across 1000 permutations. Right:  confirmation that estimated power to detect SIV is correlated 
with interindividual variation.  
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Figure S9. Adjustment for the first 10 PCs of methylation variation in each dataset increases the number of 
hvCpGs. A) For each dataset, we extracted the top 5% of CpGs by methylation Beta variance before and after 
adjusting methylation for the first 10 PCs. We then determined the proportionate overlap between PC-adjusted 
and PC-unadjusted variable CpGs. As expected, PC-adjustment influences the most variable CpGs within each 
dataset. B) The overlap between the set of 4,330 hvCpGs identified using PC-adjusted datasets (orange) and a 
set of 1,302 hvCpGs identified using unadjusted datasets (green). PC-adjusted: 𝑙𝑚(𝑚𝑒𝑡ℎ ~ 10 𝑃𝐶𝑠 + 𝑎𝑔𝑒 +
𝑠𝑒𝑥), unadjusted: 𝑙𝑚(𝑚𝑒𝑡ℎ ~ 𝑎𝑔𝑒 + 𝑠𝑒𝑥). 
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Figure S10. The association between hvCpGs and features suggestive of methylation establishment in the 
early embryo is maintained when using a de-clustered set of hvCpGs. The proportion of 2,178 de-clustered 
hvCpGs (in which no CpG is within 4 kb from another) and corresponding distribution-matched controls covered 
in the ‘Blood_Cauc’ dataset that A) overlap SIV-CpGs (4.8-fold enrichment relative to controls), B) overlap ESS- 
CpGs (8.5-fold enrichment), C) are located ≤ x bp from nearest ERV1 and ERVK transposable elements, and D) 
overlap regions of parent-of-origin specific methylation (PofOm) identified by Zink et al. (2018) (2.7-fold 
enrichment). See Supplementary Table 12 for further details.  
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Figure S11. hvCpGs comprise a large proportion of loci that have been previously found to show more than 
one feature linked to variable methylation establishment in the early embryo. A) Heatmap showing the 
overlap of 1,574 (38%) hvCpGs with SIV, ESS, MZ-twinning CpGs and evCpGs. B) The proportion of previously 
identified CpGs showing one feature (left) or two features (right) linked to the early embryo that comprise 
hvCpGs. Number of CpGs overlapping the array background is given above each bar, requiring a minimum of 15 
CpGs. Error bars are bootstrapped confidence intervals. SIV = systemic interindividual variation, ESS = epigenetic 
supersimilarity, evCpGs = equivalently variable CpGs.  
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Figure S12. Methylation variability of hvCpGs in whole blood is best explained by G+E effects estimated by 
Czamara et al. (2019).  The proportion of 747 hvCpGs and 3,644 array background CpGs covered by the variably 
methylated probes (VMPs) reported by Czamara et al. that are best explained by G, G + E and G x E effects. Error 
bars are bootstrapped 95% confidence intervals.  
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Figure S13. Functional annotation of hvCpGs using the ChromHMM model.  The ChromHMM 15-state model 
using data from H1-hESC, foetal muscle, foetal brain, foetal small intestine, fibroblasts, adipose and primary 
mononucleocytes from the Roadmap Epigenomics Consortium. 15-states have been collapsed to 8 states for 
clarity (Supplementary Table 13).  TSS = transcription start site. ZNF = zinc finger gene. Error bars indicate 
bootstrapped 95% confidence intervals.   
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Figure S14. GTEx RNA expression of hvCpG-associated genes. Shown are the 416 genes that are annotated to 
hvCpG clusters (2 or more hvCpGs no more than 4kb apart).  TPM = transcripts per million.  
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