
HAL Id: hal-03739208
https://cnrs.hal.science/hal-03739208

Submitted on 27 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Performance Analysis in IoT Platforms
Clovis Anicet Ouedraogo, Samir Medjiah, Christophe Chassot, Khalil Drira,

Jose Aguilar

To cite this version:
Clovis Anicet Ouedraogo, Samir Medjiah, Christophe Chassot, Khalil Drira, Jose Aguilar. Adaptive
Performance Analysis in IoT Platforms. IEEE Transactions on Network and Service Management,
2022, 19 (4), pp.4764 - 4778. �10.1109/TNSM.2022.3193750�. �hal-03739208�

https://cnrs.hal.science/hal-03739208
https://hal.archives-ouvertes.fr


IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, MONTH YEAR 1

Adaptive Performance Analysis in IoT Platforms
Clovis Anicet Ouedraogo , Graduate Student Member, IEEE, Samir Medjiah Member, IEEE,

Christophe Chassot , Khalil Drira , and Jose Aguilar Member, IEEE

Abstract—In this paper, we consider the problem of identifying
multiple bottlenecks (a.k.a bottleneck analysis) in IoT Service
Platforms. For QoS-constrained applications, IoT Platforms have
grown in complexity with non-stationary workloads and inter-
task dependencies created by data flows crossing the platform’s
nodes. These factors create multiple simultaneous “bottlenecks”
(a bottleneck expresses overload in terms of request processing
time on a given node, and contributes to QoS degradation).
Multi-bottlenecks are non-trivial to analyze since they may escape
typical assumptions made in classic performance analysis, such
as analysis based on queuing theory models. Solving this analysis
problem requires real-time collection and analysis of data that
can be massive, and as a result, induce negative impacts on
the performance of the NFV-based IoT Platform (NIP) (e.g.,
use of bandwidth, computing resource, and storage resource).
Therefore, it needs to be adapted to the strict minimum allowing
effective analysis. We build an adaptive performance analysis
method that optimizes bottlenecks’ identification for a moni-
toring overhead budget associated with the different available
metrics. Instead of systematically collecting all the NIP metrics,
the proposed process determines the best subset of metrics to
consider for the efficiency of the performance analysis. The
conducted experiments on a practical use case show that the
proposed method exhibited high performances of the bottleneck
analysis process, in the presence of different bottleneck types and
durations, with very few false positives and false negatives.

Index Terms—Internet of Things (IoT), Machine Learning
(ML), Network Functions Virtualization (NFV), Performance
Bottleneck Analysis, Fault Localization.

ACRONYMS
IoT Internet of Things
MIB Multiple bottlenecks identification
MLC Multi-label Classification
NFV-I Network Functions Virtualization Infrastructure
NFV Network Functions Virtualization
NF Network Functions
NIP NFV-enabled IoT Platform
QoS Quality of Service
SOMS Simple Overhead-sensitive Metrics Selection

I. INTRODUCTION

IOT ecosystem is evolving from dedicated IoT platforms1,
sketched for the requirements of a given IoT application

domain, to integrated shared platforms such as oneM2M [1].
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1An IoT platform, also known as IoT software platform or IoT middleware
implements an IoT architecture providing a variety of services to an IoT
application, such as device connectivity, device management, data transfer,
data management, data analytics, security, and visualization.

These shared platforms simultaneously support multiple appli-
cation domains, such as smart grids, connected vehicles, home
automation, public safety, and e-health. The next generation
of the IoT ecosystem will connect billions of devices with
extreme heterogeneity in terms of resources (e.g., CPU and
RAM) capacities and limitations, and software and hardware
technologies for connectivity, processing, and storage.

Virtualization is a crucial technique for the successful
design and implementation of IoT platforms that handle het-
erogeneity. The virtualization technologies pushed by Cloud
Computing are now reaching the networking domain. The
Network Function Virtualization (NFV) approach [2] has been
introduced to solve the challenges induced by conventional
middlebox technologies, such as massive, costly deployments
and complex management requirements, overloads and fail-
ures, and limited upgradability. The NFV technology tackles
these challenges through the virtualization of Network Func-
tions (NFs) on Cloud-enabled infrastructures [3]. NFV allows
the instantiation, configuration, and duplication of Virtualized
Network Functions (VNFs) in various locations according to
the NIP operator needs, which avoids installing new physical
equipment [4].

In general, meeting the strict QoS requirements of IoT
applications through effective performance diagnosis remains
an inescapable challenge [5]. Indeed, the integration of IoT
Platforms, traditionally vertical to shared horizontal platforms,
gives rise to performance bottlenecks, challenging to detect
and mitigate. A bottleneck is a resource or an application
component that limits the performance of a system [6]. [7]
describes a bottleneck component as a potential root cause of
undesirable performance behavior caused by a limitation (e.g.,
saturation) of some significant system resources associated
with the component. Performance diagnosis is a two-step
process: we first seek to detect QoS violations, and secondly
determine the causes of this violation,i.e., the bottlenecks in
terms of performances (e.g., CPUs saturations) associated with
the resource of the NIP responsible for the assumed violation.
This second step is known as the performance analysis step.
This work focuses on this second step, when a violation has
already been detected using, for instance, methods presented
in [8]–[11]. Solving this analysis problem requires real-time
collection and analysis of data characterizing the NIP’s perfor-
mance. This data collection can be massive, and as a result, can
induce negative impacts on the performance of the NIP (e.g.,
use of bandwidth, computing resource, and storage resource)
and on the reasoning time of the analysis method. Because of
recent advances in the industry and the literature, we can draw
the following conclusions. First, there are over 80 types of met-
rics available to monitor in a NIP deployed on a public cloud
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such as AWS (using EC2 VMs)2. Second, these metrics induce
non-negligible monitoring overhead. The monitoring overhead
is the amount of additional usage of resources by a monitored
execution of a program compared to a regular (unmonitored)
execution of the same program. In this case, resource usage
encompasses the utilization of CPU, memory, I/O, and so on.
Monitoring overhead concerning execution time is the most
commonly used definition of overhead. In an ideal scenario,
the overhead of collecting data increases with a constant
value per access. Following [12], three causes of overhead are
common to most application-level monitoring frameworks (i)
instrumentation of the system under monitoring, (ii) collection
of monitoring data (iii) writing or transferring the collected
data. Finally, these metrics have different impacts on the
efficiency of the analysis of bottlenecks [13]. In this context,
and considering a maximum overhead not to be exceeded (i.e.
budget), we formulated the following research question:

“How to determine the metrics that maximize the
efficiency of NIP performance analysis and lead
to a minimum cost given an allocated monitoring
overhead budget?”

By answering this question, we seek to build an adaptive
method that optimizes the bottlenecks analysis performance
regarding a monitoring overhead budget associated with the
different available metrics.

Contributions. The significant contributions of this paper
are summarized below.

• We model the problem of multiple bottlenecks identi-
fication (MIB) in NIPs as a Multi-Label Classification
(MLC) problem, and we propose a classification of main
categories of bottlenecks in NIPs;

• We propose an Overhead-sensitive Metrics Selection Al-
gorithm to answer the research question. This algorithm
is a heuristic that selects a subset of relevant metrics for
a given monitoring overhead.

• We build a virtualized platform prototype implementing
the experimental testbed to gather a training dataset. We
designed the testbed to provide a training set that is
representative of a real-world situation.

• We develop different supervised Machine-Learning (ML)
algorithms to perform the identification of the bottle-
necks. We numerically evaluate these MIB models, using
the collected data in terms of: subset accuracy, coverage
error, sensitivity, and specificity.

• We implemented the proposed Overhead-sensitive Met-
rics Selection Algorithm (SOMS) to find which metrics
should be considered for the efficiency of the NIP analysis
while optimizing the performance of the MIB model, not
to label it as positive a negative sample and evaluate its
performance. Our numerical results show that 81 metrics
give the maximum precision (84%) of the MIB model.
Up to 83% can be achieved even with a relatively limited
metrics subset of 22 metrics.

The implementations and the experiment dataset are avail-
able at https://github.com/couedrao/APA4NIP.

2https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/metrics-
collected-by-CloudWatch-agent.html

Organization. The remainder of the paper is structured as
follows. Section II discusses the related work. Section III
describes how the proposed approach is implemented in a
real scenario and a motivating use case. Section IV details the
system model. Section V describes the proposed methodology
to tackle the multiple bottlenecks identification problems in
NIPs with an allocated monitoring overhead budget. Section
VI presents the experimental setup. Section VII is devoted to
the evaluation of the proposed approach. Finally, our work
results, their limits, and future work are discussed in the
conclusion section.

II. RELATED WORK

Several fields, such as traditional IP Networks [14], Cloud
Computing [15], and Big Data [16], consider the multiple
bottlenecks identification problems. Moreover, regarding NFV
or (NFV-enabled Platforms), most of the existing works
consider the fault detection problem or the fault recovery
problem in the fault management framework (see [17] for more
detail). Nevertheless, few works deal with the fault localization
problem (i.e. bottlenecks identification problem). In this paper,
since we only aim to contribute to this domain in the IoT
context, we consider the reference contributions made in the
literature. In the following, we present a literature review
analysis on NFV-enabled Platforms, including IoT which is
an essential aspect of the proposed work.

Sauvanaud et al. propose, in [18] and [19], an approach
to detect Service Level Agreements (SLAs) violations and
initial symptoms of SLAs violations. In their approach, authors
consider a fault injection tool to train a supervised learn-
ing algorithm to pinpoint the root anomalous VNF causing
SLA violations. Experiments were performed in a virtual IP
Multimedia Subsystem (Clearwater) testbed. Similarly, Gon-
zalez et al. propose, in [20] an offline machine learning-
based method for the automatic identification of dependencies
between system events, enhanced with summarization, opera-
tions on graphs, and visualization that help network operators
identify the root causes of errors. Cui et al. explain, in [21]
an analytic model based on the Cyclic Temporal Constraint
Network (CTCN), which aims at the fault analysis of cyclic
computer networks using temporal information. The proposed
model relies on a given “predetermined candidate fault causes”
to determine the most likely fault cause(s) with a given
time interval(s) of occurrence(s). Cotroneo et al. describe,
in [22] an approach to detect problems affecting the QoS,
such as overload, component crashes, avalanche restarts, and
physical resource contention in production NFV services. The
method infers the service health status by collecting metrics
from multiple elements in the NFV service chain and by
analyzing their (lack of) correlation over time. Experiments
were performed on an NFV-oriented Interactive Multimedia
System. Cotroneo et al. propose, in [23] a dependability bench-
mark to support NFV providers at making informed decisions
about which virtualization, management, and application-level
solutions can achieve the best dependability. Authors define
the use cases, measures, and faults to be injected. Their
experiments, conducted in an IMS case study, suggest that
the container-based configuration can be less dependable than
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the hypervisor-based one, and point out which faults NFV de-
signers should address to improve dependability. Additionally,
authors describe in [24] potential guidelines for evaluating
the reliability of NFV Infrastructures (NFVIs), intending to
verify whether NFVIs satisfy their reliability and performance
requirements, even in the presence of faults. The described
guidelines are practices to be followed in terms of inputs,
activities, and outputs. These practices are intended to be con-
ducted by NFV designers that want to evaluate the reliability
of their NFVI against quantitative performance, availability,
and fault tolerance objectives, and to get precise feedback on
how to improve its fault tolerance. Zhang et al. explain, in [25]
a deep learning-based fault analysis method to predict a virtual
network’s failure. The proposed deep learning model enables
the earlier failure prediction by using a Long Short-Term
Memory (LSTM) network, which discovers the long-term
features of the network history data. Mariani et al. propose, in
[26] a fault localization approach based on machine learning
and graph theory. In the proposed approach, the machine
learning models are trained with correct executions only and
compensate for the inaccuracy that derives from training with
positive samples, the outcome of machine learning techniques
with graph theory algorithms. Pfitscher et al. propose, in [27]
a model based on queuing networks theory to quantify the
guiltiness of each VNF on degrading the performance of a
network service. A hybrid algorithm based on linear regression
and neural networks is also introduced to adjust the model’s
parameters according to the environment particularities, such
as the type and number of VNFs in the service. Experimen-
tal evaluations confirm the ability of the model to detect
bottlenecks and quantify performance degradations. Tola et
al. describe, in [28] an approach to estimate the end-to-end
NFV-deployed service availability, and present a quantitative
assessment of the network factors that affect the availability
of the service provided by an NFV architecture. The proposed
approach considers a two-level availability model where (i) the
low level considers the network topology structure and NFV
connectivity requirements through the definition of the system
structure function based on minimal-cut sets and (ii) the higher
level examines dynamics and failure modes of network and
NFV elements through stochastic activity networks. Bouattour
et al. propose, in [29] a model to identify the noise source in
a virtualized infrastructure. First, an anomaly detection model
based on unsupervised learning is proposed to identify the
machines that are in an abnormal state in the infrastructure. An
investigation of the cause is later achieved by searching, with a
supervised learning algorithm, how anomalies are propagated
in the system.

In summary, the existing literature lacks attention to NIP
from three perspectives. First, to the best of our knowledge,
no existing work in NFV-enabled Platforms considers taking
into account the fact that multiple bottlenecks may arise among
several resources in these platforms (i.e. the multiple bottle-
necks identification problems). Second, none of the current
studies consider the cost and the differentiated contribution of
the metrics that can be used to operate the analysis. Thirdly, no
approach takes into account the cost of the analysis (which we
discuss here under the term budget). Note that the other works

do not address it because in their considered contexts is not
necessary; However, in our context (i.e. IoT), the limitation
of resources in the node close to objects, this cost cannot be
ignored.

In that direction, our contribution’s main originality consists
of combining several changes in the traditional approach to
handle bottlenecks identification problems. The first change
(Section V-A) consists of considering that multiple bottlenecks
may arise among several resources in NIPs. The second change
(Section V-B) consists of considering adapting the monitored
metric to the strict minimum that allows practical bottlenecks
analysis in NIPs. We use the term “monitoring overhead
budget” and “overhead budget” interchangeably in the latter.

III. PRELIMINARIES

In previous work [30], we proposed to enhance the existing
approaches using and extending the emerging concept of Vir-
tualized Network Functions (VNF), promoting End-to-End IoT
traffic control. From the observation that, within NFV-enabled
IoT Platforms (NIPs), the allocated resources are not fully
used, we promote deploying traffic control network functions
(NFs). Instead of systematically scaling a congested node,
we dynamically deploy, on non-bottleneck nodes, additional
NFs that exploit the available computing resources and apply
a QoS-oriented policy while performing scaling actions on
bottleneck nodes. Concerning the considered multi-constrained
context, we formulate a multi-objective optimization problem
to efficiently plan adequate NFs and scaling actions. The
planner based on a Genetic Algorithm, called QoS4NIP (QoS
for NFV-enabled IoT Platforms), iteratively generates solu-
tions to the identified multi-objective optimization problem.
Information of the nodes, regarding their status in terms of
bottlenecks, were manually provided. In this work, we explore
Machine Learning (ML) algorithms to analyze the bottlenecks
in IoT Platforms.

A. Considered Framework
This paper’s proposed solution interacts with the NIP’s

monitoring system, and the configuration enforcement compo-
nents in a real scenario following the autonomic architecture
model of [31]. As Fig. 1 depicts, the following components
interact with the considered framework. The Monitoring Sys-
tem component [31] collects the details from the managed

<<component>>
Monitoring

system

<<component>>
Con�guration
enforcement

<<component>>
QoS Management Framework for NIPs

<<component>>
Detection

<<component>>
Metrics 

management

<<component>>
Recovery

(QoS4NIP)

<<component>>

Adaptive
Performance

Analysis

Get
System Info

Send Bottlenecks 

Modify
System Info

Get
Monitoring 
Overhead

<<component>>
Knowledge base

Get Data

Modify
Metrics

Update
Con�guration

Update
Metrics Subset

Update
Con�guration

Get Data

Modify
Metrics

Diagnose
QoS Violations

Fig. 1: Considered framework: QoS Management Framework
for NIPs
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NIP via monitoring agents. The details include data such as
topology information, QoS, and performance metrics. The QoS
Management Framework retrieves and stores these collected
data for analyzing purposes. The Configuration enforcement
component [31] provides the mechanism to schedule and
perform the necessary changes to the system. Once the QoS
Management Framework has generated a reconfiguration plan
of the system, the planned and executed actions will lead to
modify the state of one or more NIP nodes. The following
components interact with the QoS Management Framework.
The Knowledge base component stores the data used by
the QoS Management Framework. The knowledge includes
topology information, historical logs, metrics, IoT applications
information, and allocated overhead budget. The Detection
component uses complex models, such as time-series forecast-
ing, to detect the violations on IoT applications’ QoS. The
Detection component is continuously invoked and takes the
monitoring information as inputs. The output of the Detection
component is performance data associated with a violation.
The Adaptive Performance Analysis components analyze the
non-trivial dependency in the provided data to analyze the
bottlenecks causing a detected violation. This component is
invoked by the Detection component when it detects a QoS
violation (see Section V). The Metrics management component
is in charge of increasing (or decreasing) the number of
metrics to be observed in the NIP. This component is invoked
by Adaptive Performance Analysis component every time the
selected metrics subset is updated. The Recovery component
(see [30]) determines the set of candidate actions to recover
from identified bottlenecks. This paper is focused on the
realization of the Adaptive Performance Analysis component.

B. Motivating use case
We present in this Section an adaptive performance analysis

use case to be considered and evaluated. In this use case, we
assume that the NIP service provider wants a flexible trade-
off between the efficiency of the analysis and the monitoring
overhead. Monitoring induces exchanges and processing of ad-
ditional data messages that lead to additional consumption of
resources (CPU, Memory, Bandwidth). These extra resources
have, in fine, to be billed by Cloud/Fog providers. In this paper,
we consider the monitoring overhead as an aggregate of all
these financial costs. In the Cloud-to-Thing continuum [32],
the availability and capacity of resources, namely compute,
storage and connectivity, decrease when moving from Cloud
to Things. Typically, IoT edge gateways, located near IoT

0 5 7 20 23
Hours of the day

0

1000

2000

Ta
xi

 si
gn
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s

Allocated Budget in Scenarios
UnlimitedAustere ModestModest

Fig. 2: Chicago Millennium Park taxi signal counts by hour
of the day for Monday, February 06, 2017.

devices, are small devices with limited processing, storage,
and connectivity capabilities. In this work, we consider that the
monitoring overhead is inversely proportional to the resources
that are available on a given node. The monitoring carried out
on IoT Edge gateways is thus more expensive than that carried
out on nodes in the Cloud. We make the hypothesis that the
monitoring overhead increases by 50% at each “level” of node,
going from the Cloud level to the IoT device level (e.g. level
1: cost = X , level 2: cost = 1.5 ·X , etc., costn = (1.5)n ·X).
Expressing this variation in another way, or giving other
values, would not call into question the approach proposed
in this paper. We consider 3 situations where the allocated
overhead budget fluctuates in time: unlimited budget, modest
budget, and austere budget. To build the needed dataset to
model the machine learning problems, we used a realistic
workload to simulate the usage in the NIP. The taxi trips
dataset provided by the City of Chicago’s open data portal
(https://data.cityofchicago.org) is associated with a variable
traffic load in the NIP. This load changes during the day
because taxi traffic is not the same during a day. As depicted
in Fig. 2, we define the following scenarios based on the “Taxi
signal count” in the Chicago taxi trips dataset. The overhead
budget is unlimited in the first scenario (unlimited overhead
budget between 7h-20h). In the second scenario (a modest
overhead budget between 5h-7h and 20h-23h), the overhead
budget is relatively limited. The overhead budget is severely
limited in the third scenario (austere overhead budget between
0h-5h). Below we describe each scenario.

Unlimited budget scenario. We first investigate the case
where the overhead budget is unlimited. This scenario occurs
during the rush hours in Fig. 2 where the taxi signal number
exceeds a thousand. During this period, we assume that the
NIP service provider wants the efficiency of the analysis at its
highest and does not set a limit to the monitoring overhead.
Consequently, the best metrics subset that maximizes the effi-
ciency of NIP performance analysis will be selected regardless
of the associated overhead. In this scenario, the useless or
irrelevant metrics will still be discarded.

Modest budget scenario. Let ωu be the overhead induced
by the selected metric subset in the previous scenario (Unlim-
ited budget scenario). In a second time, we investigate the case
where the overhead budget is 50% of ωu. This scenario occurs
during the hours where the taxi signal number is between
five hundred and one thousand (see Fig. 2). We assume that
the NIP service provider may tolerate an efficiency smaller
than in the previous scenario during this period. The NIP
service provider’s primary concern is a trade-off between the
efficiency of the analysis and the monitoring overhead. The
result of this scenario is the selection of the best metrics
subset that maximizes the NIP performance efficiency of the
analysis with a minimum cost compatible with the 50% of ωu

monitoring overhead.
Austere budget scenario Pushing further the second sce-

nario, we analyze the trade-off between the efficiency of
analysis and the monitoring overhead in this third scenario.
We assume that the NIP service provider may tolerate even
less efficiency than in the previous scenario. This scenario
occurs during the hours where the taxi signals count is lower
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TABLE I: NOTATIONS

Names Meanings
B the number of possible bottlenecks
Ct an observation cycle
D a multi-bottleneck training set
Fk a Flow k of messages
h the hypothesis to optimize
m the number of samples

Mk a Message on Fk

Nk a set of network functions composing a Pathk
Ok the monitoring overhead of every performance metric

op,n the value of the monitoring overhead associated to the metric
p on nfn

p a performance metrics p
P number of performance metrics
Ψ the optimization criterion
S a set of metrics without a metric θp,n

Θk the decision variable regarding which performance metrics is
actually monitored

θp,n the value of the decision variable associated to the metric p
on nfn

Xk The monitored performance related to Fk during Ct

xp,n the mean value of the time series associated to the metric p
on nfn during a Ct

Y the true Bottlenecks
Ŷ the diagnosed Bottlenecks

fnj the false negative of the j-bottleneck
fpj the false positive of the j-bottleneck
nfn a NF n in Nk

Pathk a Path k
tnj the true negative of the j-bottleneck
tpj the true positive of the j-bottleneck

than five hundred (see Fig. 2). The overhead budget is 25% of
ωu. Consequently, the best metrics subset that maximizes the
efficiency of the NIP performance analysis with a minimum
cost compatible with the 25% of ωu monitoring overhead will
be selected.

When analyzing this use case, the desired efficiency of
analysis is not the same over time. This is why we must adapt
accordingly to the monitoring budget.

IV. SYSTEM MODEL

In this section, we propose a model for the considered
system. For convenience, Table I lists the main notations.

A. NIP Model
In our work, we handle the NIPs that implement the com-

mon reference architectures, such as oneM2M [1]. We consider
that NFV-I in the Cloud/Fog/Edge host Virtualized Network
Functions (VNF), Application Network Function(ANF) [30]
and Physical Network Functions (PNF) offering the NIP
service to the IoT Application and IoT devices.

Fig. 3 depicts the NIP model used in this paper. A set
of Network Functions (NF) make up this platform. In this
ecosystem, the applications send their messages to the nodes
of the platform. Then, the latter route them to other nodes or
the objects containing the requested resources. For instance,
when the IoT Application APP1 sends a message to the NF1
node requesting a resource available on Dev1, the message
will then be routed successively to the NF2, NF3, NF4, NF5,
and NF6. This application-level routing is done according to
the REST architectural style, which most current IoT service
providers implement (ex: AWS IoT Core, Microsoft Azure IoT,

NIP CPU 
Bottleneck ?

NF1 NF2 NF4 NF5 NF6

APP1

APP2

APP3

DEV1

DEV2

Monitoring System

BottlenecksAdaptive Performance Analysis

Data

NIC 
Bottleneck ?

NIP NFV-I

NIP Network

Cloud Fog Edge
 (Dedicated nodes, PC, 

Smartphone)

Cloud

SDNSDN Legacy 
network

Fig. 3: System Model

oneM2M). To facilitate the presentation of the performance
analysis system, we define a NIP to consist of a set of flows
F1, F2, F3, ..FK . A flow Fk is a set of Mk successive mes-
sages Fk = {msg1,msg2, . . . ,msgMk

} exchanged between a
source and a destination nodes. Each flow Fk will be routed
through a predetermined Pathk. Pathk is composed of a set
of Nk network functions; Pathk = {nf1, nf2, . . . , nfNk

}. The
source and the destination of a flow Fk are denoted as FkS

and
FkD

, respectively. Hence, each network function may process
several messages during a single observation cycle of Ct.

B. Performance Monitoring Model
For each NF (nfn) in the NIP, we propose to monitor P

performance metrics (CPU, Disk I/O, etc). The monitored
performance related to a flow Fk is denoted Xk.

Xk =

á nf1 nf2 · · · nfNk

x1,1 x1,2 · · · x1,Nk

x2,1 x2,2 · · · x2,Nk

...
...

. . .
...

xP,1 xP,2 · · · xP,Nk

ë
(1)

where:
xp,n= is the mean value of the time series associated to the
metric p on node n during a cycle Ct. For simplicity, we
consider only the mean value among a wide variety of others
statistics extracted from the time series.

All the performance metrics are not necessarily monitored.
Indeed, let Θk be the decision variable regarding which
performance is monitored.

Θk =

á nf1 nf2 · · · nfNk

θ1,1 θ1,2 · · · θ1,Nk

θ2,1 θ2,2 · · · θ2,Nk

...
...

. . .
...

θP,1 θP,2 · · · θP,Nk

ë
(2)
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where :

θp,n =

®
1 if the performance metric p on nfn is monitored
0 otherwise

(3)
Let Ok be the monitoring overhead of every performance

(considered in the NIP) on each NF nfn for a flow Fk.

Ok =

á nf1 nf2 · · · nfNk

o1,1 o1,2 · · · o1,Nk

o2,1 o2,2 · · · o2,Nk

...
...

. . .
...

oP,1 oP,2 · · · oP,Nk

ë
(4)

where:
op,n is the monitoring overhead of the performance metric p
on nfn.

V. ADAPTIVE PERFORMANCE ANALYSIS

In traditional computer systems (e.g., as modeled by queu-
ing theory), a typical assumption is that their workloads
consist of independent jobs. This assumption, which is valid
for old-style batch-oriented processing and interactive users,
guarantees the appearance of single bottlenecks for an entire
system. Single bottlenecks can be relatively easily identified
since they appear as resources reaching saturation. The “in-
dependent jobs” model does not hold for NIPs that rely on
a different architecture style. Today’s NIPs are pipelines of
processing components, e.g., web servers, application servers,
and database servers, introducing several strong dependencies
among components. These dependencies may lead not only to
one single bottleneck but potentially to multiple bottlenecks
distributed throughout the whole system [7]. Indeed several
works such as [32], [33] have considered the question of how
to analyze multiple bottlenecks in a single run. We propose to
answer this question in this work.

Our proposed method is intended to overcome the limita-
tions described in Section VII. As indicated in the introduction,
this work’s fundamental objective is to determine which met-
rics should be considered for the best efficiency of the NIP
analysis, given a tolerated overhead budget. First, the proposed
method must identify the bottlenecks. This identification’s
output is human readable and is represented by a binary vector
Y to describe the presence or not of bottlenecks in the Flow
Fk. Second, the proposed method identifies the most relevant
metrics to collect in a given scenario (i.e. with a tolerated
overhead budget). To this end, an approach built on supervised
learning is used. Based on an MLC algorithm, a feature se-
lection wrapper algorithm (Simple Overhead-sensitive Metrics
Selection – SOMS) is used to measure the relevance of a given
metric (i.e. its role in determining the bottlenecks).

Some definitions need to be made clear to understand the
proposed approach. Based on [34], we classified metrics into
three disjoint categories: strongly relevant, weakly relevant,
and irrelevant. Let g(·) be the SOMS algorithm learning
hypothesis and let S = Θk−{θp,n} be a set of metrics without
a metric θp,n. These categories of relevance can be formalized
as follows.

Strong relevance: A metric θp,n is strongly relevant iff

g(Θk) > g(S) (5)

Weak relevance: A metric θp,n is weakly relevant iff

g(Θk) = g(S) , and
∃S′ ⊂ S , such that g(Θ′

k) > g(S′)
(6)

Irrelevance: A metric θp,n is irrelevant iff

∀S′ ⊆ S, g(Θ′
k) ≤ g(S′) (7)

The strong relevance indicates that the metric is always nec-
essary for an optimal subset; it cannot be removed without af-
fecting the efficiency of the analysis. Weak relevance suggests

NF0 Metrics
NF1 Metrics

NF2 Metrics
NF3 Metrics

NF0 Metrics
NF1 Metrics

NF2 Metrics
NF3 Metrics

NF0 Metrics
NF1 Metrics

NF2 Metrics
NF3 Metrics

Violation data on Ct

Detection

Online Prediction

MIB

Ŷh(X0
k) = Ŷ 0

Update h(·) after training

SOMS
g(·)

Selected Subset

MIB

Y

h(·)

X∗

Metrics
management

{efficiency, h(·)}Enable only the subset
of selected metrics

Metric
Database

X

Offline Training

⇒

⇒
X∗

All Metrics

Bottlenecks
Database

Fig. 4: Adaptive Performance Analysis Method
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that the metric is not needed but may become necessary for
an optimal subset at certain conditions. Irrelevance indicates
that the metric is not needed at all. An optimal subset should
include all strongly relevant metrics, none of irrelevant metrics,
and maybe a subset of weakly relevant metrics.

As depicted in Fig. 4, the proposed methodology is as
follows.

Off-line Training. In a supervised learning approach, there
is a training step. In this step, the Adaptive Performance Anal-
ysis infers two functions g(·) (SOMS) and h(·) (MIB) from
the training dataset. In the SOMS Algorithm (see Algorithm 1)
each new subset is used to train and test a MIB model. Training
a new model for each subset is computationally intensive, but
provides the best performance [35] and is the only approach
directly applicable to multilabel dataset [36]. After training
SOMS Algorithm, the found optimal subset is sent to the
Metrics management component, and only these metrics will
be active for the online prediction step. The associated h(·) is
also transferred to the online MIB.

Online Prediction. Once the optimal subset is found in
the training step; the predictions are made online. When the
Detection component catches a QoS violation, the correspond-
ing data on the violation is gathered, and the online MIB is
invoked to identify the bottlenecks.

A. Multiple bottlenecks identification (MIB)
Multiple bottlenecks identification (or Fault isolation) in IoT

platforms is challenging because of the interactions between
different network entities (e.g., wireless sensors, gateways) and
protocols. The multiple bottlenecks identification problem can
be viewed as an MLC problem in that we try to categorize
the detected QoS violations into one or several of the existing
bottleneck classes carefully arranged by an expert. In machine
learning, a typical classification problem aims to extract mod-
els from training data with known class labels to predict the
test data categories of which the class labels are unknown.

To formally describe the MLC problem, suppose X =
RP×Nk denotes the (P ×Nk)-dimensional instance space,
and Y = y1, y2, . . . , yB denotes the bottleneck space with
B possible bottlenecks. We define yi as a possible bottleneck
(property of the IoT platform node) that may have caused
the detected QoS violations. Let a multi-bottleneck training
set D = {(Xi

k, Y
i)|1 ≤ i ≤ m} be independently and

randomly drawn according to an unknown probability distribu-
tion P(X,Y ) on X × Y . For each multi-bottleneck example
(Xi

k, Y i), Xi
k ∈ X and Y i ⊆ Y is the set of bottlenecks

associated with Xi
k. The goal in MIB model is therefore to

induce from D a hypothesis h : X → Y that optimizes
a criterion Ψ(Y, Ŷ ) when it provides a vector of relevant
bottlenecks Ŷ = h(X0

k) = (h1(X
0
k), h2(X

0
k), . . . , hB(X

0
k))

for any unseen instance X0
k .

Remark that the criterion Ψ is not necessarily unique.
Indeed several criteria were retained to evaluate the MIB
model (see Section VII-A).

B. Simple Overhead-sensitive Metrics Selection (SOMS)
In this section, to answer which metrics subset should be

considered for the efficiency of the NIP analysis, we present

a Simple Overhead-sensitive Metrics Selection (SOMS). The
proposed SOMS Algorithm selects a subset of relevant metrics
for a given overhead budget. Formally, SOMS solves the
following optimization problem:

optimize g =
1

m

m∑
i=1

Ψ(Y i, h(Xi
k ⊙Θk))

subject to ωadmin ≥ ω

(8)

where:
• ωadmin is the overhead budget tolerated by the NIP ad-

ministrator for a flow Fk.
• ω (see Eq. 9) is the total monitoring overhead for a flow
Fk,

In Eq. 8:

ω =

P∑
p=1

Nk∑
n=1

(Θk ⊙Ok)p,n (9)

The optimization problem described in Equations 8 and 9
stipulate that we want to optimize the objective function g
which represents how bad are the predictions (h(Xi

k ⊙ Θk))
compared to the Y i. While solving g, the overhead budget
tolerated (ωadmin) must remains greater or equal to the total
monitoring overhead (ω).

The Overhead-sensitive Metrics Selection is an optimal sub-
set selection problem (aka best subset selection). In general,
this problem (i.e optimal subset selection) is nonconvex and
is known to be NP-hard [37]. For this problem, we propose
a heuristic based on the Forward Sequential Selection search
strategy [38] that has been proven to constitute an efficient
method to provide suitable near-optimal solutions in a short
amount of time (see Section VI). This strategy follows a
wrapper approach [39]. The general workflow of the SOMS
Algorithm is presented in Algorithm 1.

From lines 1 to 4, Θk is initialize with a P × Nk Zero
matrix, r is initialize with 0, and set of best metric Sb is
set to ∅. Then, until the set of all metrics is reached, the
Algorithm explored different combinations of metrics (Line
5). In line 6, the Algorithm initializes the set of evaluations
of different combinations to ∅. For each possible combination,
from lines 7 to 10, add the p metric on node n, evaluate the
combination. In line 12, find the best combination. From lines
13 to 17, was this combination, the best of its size found so
far? If no, switch to the best one; if yes, take the combination,
store the newly found subset. In line 19, backtrack until better
subsets are found. In line 20, initialize the set of evaluations
of different combinations. From lines 21 to 25, repeat each
possible combination, prune the p metric on node n, evaluate
the combination, and find the best combination. In line 26,
was a better subset of size r − 1 found? If yes, backtrack
and store the newly found subset; if no, stop backtracking. In
line 31, reached the best subset with the maximum monitoring
overhead one can afford (i.e. the overhead budget)? If yes,
return Sb (the set of best metrics found); if no, continue.
The evaluation of the different combinations of metrics is
performed from lines 34 to 39. In line 35 the monitoring
overhead w is Compute from Equation 9 with Θk and Ok.
From lines 36 to 39, can one afford the selected metrics? If
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Algorithm 1: Overhead-sensitive Metrics Selection
// h: MIB model
// X: Metrics
// Y : Bottlenecks
// wuser: Tolerated overhead budget
// Ok: Metrics overhead
// Sb: Optimal subset
Input: X, Y , wuser, Ok

Output: Sb

1 begin
2 Θk ← 0P,Nk

3 k ← 0
4 Sb ← ∅
5 while r < P ×Nk do
6 Sr ← ∅
7 foreach {(p, n) | Θkp,n = 0} do
8 Θ∗

k ← Θk

9 Θ∗
kp,n

← 1

10 Sr(p, n) ← evaluate(X,Y ,Θ∗
k)

11 r ← r + 1
12 (p, n) ← argmaxSr(·)
13 if Sr(p, n) ≥ evaluate(X,Y ,Sb(r)) then
14 Θk ← Sb(r)
15 else
16 Θkp,n ← 1
17 Sb(r) ← Θk

18 backtracking ← True
19 while r > 2 and backtracking=True do
20 Sr ← ∅
21 foreach {(p, n) | Θkp,n = 1} do
22 Θ∗

k← Θk

23 Θ∗
kp,n

← 0

24 Sr(p, n) ← evaluate(X,Y ,Θ∗
k)

25 (p, n) ← argmaxSr(·)
26 if Sr(p, n) < evaluate(X,Y ,Sb(r − 1)) then
27 r ← r − 1
28 Θkp,n ← 0
29 Sb(r) ← Θk

30 else backtracking ← False

31 if Sb(r) = penalty then break

32 return Sb

33
34 function evaluate(X,Y ,Θk)
35 Compute ω from Equation 9 with Θk and Ok.
36 if ωadmin ≥ ω then
37 s ← crossValidate(h,X[:, vec(Θk)],Y )
38 else s ← penalty
39 return s

yes, cross-validate the MIB model h(·) (see Section V-A) with
the combination of metrics and return the score; if no, return
a penalty score.

VI. EXPERIMENTAL SETUP

To solve the formulated problem in a supervised learning
fashion, we build a testbed to collect a training dataset.
The testbed was designed to provide a training set that is
representative of the real-world situation. In this Section, we
offer a detailed description of the experimental testbed and the
bottleneck injection campaign. We also perform an analysis of
the collected multilabel dataset.

A. Testbed
We deployed on a virtualized platform a prototype imple-

menting the experimental testbed (see Fig. 5) consists of nine

        Control LAN

                                     Monitoring

DevsApps NF1
(SRV)

NF2
(GW1)

NF4
(GW111)

NF3
(GW11)

Dataset

N
IP

Bottleneck
Injector

Data LAN (IoT Traffic)

Test Automation

Fig. 5: Experimental Setup.

host machines: Applications (Apps) host, Devices (Devs) host,
NF1 (SRV) host, NF2 (GW1) host, NF3 (GW11) host and
NF4 (GW111) host. The Applications (Apps) host machine
is equipped with 1 CPU, 0.5 GB RAM, 10 GB Disk space
(corresponding to an AWS “T2.micro” server). The Devices
(Devs) host machine is equipped with 1 CPU, 0.5 GB RAM,
8 GB Disk space (corresponding to a Raspberry Pi 1 Model
B computer). The NF1 (SRV) host machine is equipped with
2 CPU, 2 GB RAM, 15 GB Disk space (corresponding to an
AWS “T2.medium” server). The NF2 (GW1) host machine
is equipped with 1 CPU, 1 GB RAM, 10 GB Disk space
(corresponding to an AWS “T2.micro” server). The NF3
(GW11) host machine is equipped with 1 CPU, 1 GB RAM, 10
GB Disk space (corresponding to an AWS “T2.micro” server).
The NF4 (GW111) host machine is equipped with 1 CPU, 0.5
GB, 8 GB Disk space RAM (corresponding to a Raspberry
Pi 1 Model B computer). In order to build our testebed, the
following software tools were used :

• Apache JMeter : an Apache project that can be used as
a load testing tool for analyzing and measuring various
services’ performance, with a focus on web applications
(https://jmeter.apache.org).

• Eclipse OM2M : an open-source implementation
of oneM2M and SmartM2M standard for IoT
services platforms initiated by LAAS-CNRS
(https://www.eclipse.org/om2m).

• Zabbix : an open-source monitoring software tool
for diverse IT components, including networks,
servers, virtual machines (VMs), and cloud services
(https://www.zabbix.com).

• VMware Mangle : a tool that enables running chaos
engineering experiments seamlessly against applications
and infrastructure components to assess resiliency and
fault tolerance (https://vmware.github.io/mangle).

The testbed is composed of virtual machines (VMs) running
on Ubuntu server 16.04. A JMeter Server is running in the
Devices (Devs) host and produces the IoT workload with a
request arrival rate of 20 requests per second. The considered
NIP is the Eclipse open-source OM2M. The NIP nodes
communicate through the Data LAN. The monitoring data
are collected by the Zabbix open-source monitoring software.
The bottlenecks injection and remediation are performed by
VMware Mangle. The experiments are performed by an au-
tomation script (Test Automation). The Test Automation script
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gathers and stores in the Dataset the monitoring data (from
Zabbix) and the injected bottlenecks (from VMware Mangle).
The commands and the monitoring data are sent through the
Control LAN.

B. Bottlenecks Injection Campaign

Eight bottleneck types are considered and distinguished
according to the NF resource they impact. They are referred
to as CPU, Memory, Disk I/O, Disk space, Packet delay,
Packet corruption, Packet duplicate, and Packet loss. The NFs
selection probabilities follow a uniform distribution (i.e. each
NF has the same probability of being selected). The injection
campaign corresponds to the execution of an algorithm 2
that periodically performs bottleneck injections in NFs. An
injection is defined by the targeted NF, its bottleneck type,
intensity level, and duration. During a campaign, two con-
secutive injections are separated by µ (mean time between
bottlenecks). A campaign consists of injecting all combina-
tions of injections. An injection campaign parameters are as
follows: target NFs listed in Nk, bottleneck types listed in Bt

and their occurrence frequency listed in Bp, intensity levels
listed in Bi, duration values listed in Dv and their selection
probabilities listed in Dp. To perform the multiple bottlenecks
injection, we use the following algorithm. Algorithm 2 is

Algorithm 2: Multiple Bottlenecks Injection
// Nk: Set of Network Functions
// Bt: Bottleneck Types
// Bp: Occurrence frequency of Bottlenecks
// Bi: Bottleneck intensities
// Dv: Duration values
// Dp: Probabilities of Duration
// µ: Mean time between bottlenecks
// Bids: Injected bottlenecks IDs
Input: Nk, Bt, Bp, Bv , Dv , Dp, µ
Output: Bids

1 begin
2 while injection do
3 bt ← Choose a value in Bt following the distribution Bp

4 t ← Choose a value in Dv following the distribution Dp

5 n ← Choose a value in Nk following a uniform distribution
6 bi ← Bi(bt)
7 id ← CallMangleAPI(n,bt,t,bi)
8 Bids ← Append(id)
9 Wait(µ)

10 return Bids

executed by the Test Automation script. From lines 3 to
6, the targeted NF, its bottleneck type, its intensity level,
and its duration are selected according to their associated
probabilities. In line 7, the VMware Mangle component is
invoked to perform the injection. In line 8, the injection
information is collected and stored in the dataset. In line 9,
the Algorithm waits µ time before another injection begins.
Remark that the injection duration should be long enough
to collect sufficient observations while short enough for the
injection duration to be realistic.

Table II describes the injected bottlenecks during the cam-
paign. The bottlenecks duration values are {60, 90, 120}. The
probabilities Dp associated to the duration are {0.5, 0.3, 0.2}.
The last campaign parameter µ is set to 30 seconds.

TABLE II: INJECTED BOTTLENECKS DURING THE CAMPAIGN

Name Bp Bi Description
CPU 20 90% High CPU utilization
Memory 15 90% High Memory utilization
Disk I/O 12 5MB High disk I/O utilization
Disk space 12 90% High disk space utilization
Packet delay 11 200ms High NIC usage creating additional delay
Packet duplicate 10 10% High NIC usage creating packet duplication
Packet corrupt 10 10% High NIC usage creating packet corruption
Packet loss 10 10% High NIC usage creating packet loss

C. Overview of Multilabel Dataset
As presented in Fig. 6, multiple bottlenecks were injected

in the considered testbed. The campaign lasts for 24h. With
an observation cycle Ct set to 10 seconds, we gathered 8640
training samples. The number of collected metrics per NF
P = 26. Over the whole testbed P × Nk = 104 metrics
were collected. For a complete list of the monitored metrics,
see Appendix A. The number of bottlenecks is 8 per NF for a
total of B = 32. The bottlenecks cardinality (i.e. the average
number of bottlenecks per example in the dataset)is 1.960,
and the bottlenecks density (the number of bottlenecks per
example divided by the total number of bottlenecks, averaged
over the samples) is 0.061. The bottlenecks frequency in the
dataset per by NF is presented in Fig. 7.

VII. EVALUATION

A. Efficiency Criteria
Although the analysis result has multiple outcomes that

can be classified into positive or negative. Such a grouping
enables one to represent the comparison between a test and
its reference in one 2× 2 table, as depicted in Table III.

TABLE III: CONFUSION MATRIX

True Bottlenecks

Diagnosed Bottlenecks True Positive (tp) False Positive (fp)
False Negative (fn) True Negative (tn)

In Table III the abbreviations tp, fp, fn, and tn denote the
number of respectively, true positives, false positives, false
negatives, and true negatives. The term “True Positive” refers
to the number of the samples correctly labeled as bottlenecks
samples.“True Negative” refers to the number of the samples
correctly rejected as non-bottlenecks samples.“False Positive”
refer to the number of the samples wrongly labeled as bottle-
necks samples. Finally, “False Negative” refers to the number
of the samples wrongly rejected as non-bottlenecks samples.
The same definitions are used throughout the paper. For each
j-bottleneck the tpj , fpj , fnj , and tnj are defined as follows.

tpj =

m∑
i=1

1(Ŷ i
j = 1 and Y i

j = 1) (10)

fpj =

m∑
i=1

1(Ŷ i
j = 1 and Y i

j = 0) (11)

fnj =

m∑
i=1

1(Ŷ i
j = 0 and Y i

j = 1) (12)

tnj =

m∑
i=1

1(Ŷ i
j = 0 and Y i

j = 0) (13)
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Fig. 6: Thirty-minute sample of injected bottlenecks per NF (NF1, NF2, NF3, NF4).

0 5 10 15 20 25

Percentage (%)

NF4

NF3

NF2

NF1 CPU
Memory
Disk space
Disk I/O
Packet delay
Packet duplicate
Packet loss
Packet corrupt

Fig. 7: Bottlenecks frequency in the dataset per by NF.

As stated in the motivation section, in this work we are
interested in a MIB model that avoids false positive bottleneck.
The Subset accuracy is not the most important criteria to con-
sider for the proposed method efficiency. We use the positive
predictive value (a.k.a precision) to indicate the probability
that in the case of a positive test, that the NIP has the identified
bottleneck. The ideal value of the Precision, with a perfect test,
is 1, and the worst possible value would be 0. The average
precision (ΨPrecision) is therefore defined as follows.

ΨPrecision =
1

B

B∑
j=1

tpj
tpj + fpj

(14)

Nevertheless, the Subset accuracy, and Coverage Error, are
reported and discussed. The Subset accuracy measures the set
of bottlenecks predicted for a sample that exactly matches
the corresponding set of bottlenecks in Y . Coverage Error
measures the average number of bottlenecks that have to be
included in the final prediction such as all true bottlenecks
are predicted. The Coverage Error is useful if one wants to
know how many top-scored-bottlenecks the MIB model has to
predict on average without missing any true one.

ΨSubset accuracy =
1

m

m∑
i=1

1(Ŷ i = Y i) (15)

For a given prediction Ŷ i the estimated rank of the label
j is denoted by ri(j). The most relevant label takes the top
rank (1), and the last one only gets the lowest rank (B).

ΨCoverage Error =
1

m

m∑
i=1

max
j∈Yi

ri(j) (16)

Additionally, the Sensitivity, and Specificity, are reported
to illustrate the performance of the classification models.
Sensitivity measures the proportion of true positives that are

correctly identified. Specificity measures the proportion of
true negatives. Both ratios are independent of the bottleneck
distribution in the dataset.

ΨSpecificity =
1

B

B∑
j=1

tnj

tnj + fpj
(17)

ΨSensitivity =
1

B

B∑
j=1

tpj
tpj + fnj

(18)

The Area Under the receiver operating characteristic Curve,
or AUC (ΨAUC), is used in the literature to compare the
performance of classifiers. The AUC has a crucial statistical
property: the AUC of a classifier is equivalent to the probability
that the classifier will rank a randomly chosen positive instance
higher than a randomly chosen negative example. It is used
for three specific purposes: determine the cutoff value with the
highest Sensitivity and Specificity, evaluate the discriminating
capacity of an analysis model, and compare the discriminative
ability of different analysis models. The AUC is desirable
for the following two reasons: AUC is scale-invariant (i.e. It
measures how well predictions are ranked, rather than their
absolute values; AUC is classification-threshold-invariant (i.e.
It measures the quality of the model’s predictions irrespective
of the chosen classification threshold). In this way, the ΨAUC
values are useful in our context to select the classification
model to analyze the bottleneck. The best value of ΨAUC is 1,
and the worst value is 0.

ΨAUC =

∫ 1

x=0

ΨSpecificity((1−ΨSensitivity)
−1(x)) dx (19)

Below, we present the MIB and the SOMS evaluations.

B. Multiple bottlenecks identification (MIB)
There are two main approaches [40] to accomplish an

MLC: problem transformation and algorithm adaptation. The
former aims to produce a problem that can be processed with
traditional classifiers (e.i, Single or Multiclass Classification).
Conversely, the objective of the latter is to adapt existing
classification algorithms to work with the MLC problem.
Among the transformation methods, the most popular are
those based on the MLC problem’s binarization (i.e. Binary
Relevance, Classifier Chain, and the Label Powerset). These
transformation methods produce a multiclass problem from
an MLC problem considering each label set as a class. In
the algorithm adaptation approach, there are proposals of
algorithms based on nearest neighbors, such as ML-kNN.
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Fig. 8: MLC Receiver operating characteristic and AUC
(ΨAUC). (a) ML-kNN ; (b) Binary Relevance; (c) Classifier
Chain; (d) Label Powerset.

Selecting the right MLC algorithm is the next step to solve
the considered problem.

We consider the ML-kNN, the Binary Relevance, the Clas-
sifier Chain, and the Label Powerset. We adopted the MLC
Algorithm for the MIB model based on the ΨAUC. As in the
literature, we use 75% of the collected data for training the
different MIB models and 25% for the evaluations. In problem
transformation algorithms (Classifier Chain, Binary Relevance,
Label Powerset) a Multi-layer Perceptron is used as a base
classifier.

The models were trained with scikit-multilearn [41]. In Fig.
8 (a) - (d) four curves are shown. The diagonal line (Random
Classifier), shows the performance of a random guess. An
intuitive example of random guessing is a decision by flipping
coins. Points above the Random Classifier line represent good
classification results (better than random); points below the
line represent bad results (worse than random). The second
curve (Minimum area) corresponds to the ROC of the smallest
AUC. The third curve (Average area) corresponds to the aver-
age of ROC of all the bottlenecks The fourth curve (Bottleneck
curve) presents each ROC of the bottlenecks. The best ΨAUC
(average value = 0.987 and minimum value = 0.964) was
obtained by Label Powerset, as shown in Fig. 8 (d). Label
Powerset is a problem transformation approach that transforms
a multilabel problem into a multi-class problem with one
multi-class classifier trained on all unique label combinations
found in the training data.
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Fig. 9: Label Powerset Model Precision (ΨPrecision). (a) Bot-
tlenecks identification precision grouped by NF; (b) NF iden-
tification precision grouped by Bottlenecks.

TABLE IV: MULTI-LABEL CLASSIFIERS PERFORMANCE COM-
PARISON (WITH HYPER-PARAMETER OPTIMIZATION)

ML-kNN Binary
Relevance

Classifier
Chain

Label
Powerset

Precison 0.8388 0.8753 0.8671 0.8253
Subset accuracy 0.5278 0.5366 0.5454 0.6611
Coverage Error 13.3852 12.5731 12.4852 9.5255
Specificity 0.9906 0.9921 0.9918 0.9891
Sensitivity 0.6791 0.7036 0.7048 0.7357

Additionally, as presented in table IV, the Label Pow-
erset Algorithm performs better in ΨSubset accuracy (0.6611),
ΨCoverage Error (9.5255) and ΨSensitivity (0.7357) than ML-kNN,
Binary Relevance and Classifier Chain. However Binary Rel-
evance has the higher score in ΨSpecificity (0.9921) and in
ΨPrecision (0.8769). Label Powerset Algorithm will be used
for validation purposes in the rest of this paper. The reader
may see in [36] for further details about the Label Powerset
algorithm.

In Fig. 9 we present a deeper look into the Label Powerset
Algorithm performance. Fig. 9 (a) shows the bottlenecks
identification Precision grouped by NF and Fig. 9 (b) shows
the NF identification Precision grouped by bottlenecks type.
In Fig. 9 (a), the Algorithm can identify with a minimun
Precision > 0.81 the Memory bottleneck (average is 0.89
and median is 0.89), Disk space bottleneck (average is 0.86
and median is 0.86), Disk I/O bottleneck (average is 0.83 and
median is 0.82), CPU bottleneck (average is 0.82 and median
is 0.81). It can also identify with a minimun Precision > 0.72
Packet duplicate bottleneck (average is 0.79 and median is
0.77), Packet delay bottleneck (average is 0.77 and median is
0.77), Packet corrupt bottleneck (average is 0.77 and median
is 0.77), Packet loss bottleneck (average is 0.75 and median is
0.74). From a NF perspective (see Fig. 9 (b)), the Algorithm
can identify all the bottlenecks on the NF4 with an average
Precision of 0.82 (minimun is 0.75 and median is 0.81), on
NF2 with an average Precision of 0.81 (minimun is 0.72 and
median is 0.81), on NF1 with an average Precision of 0.81
(minimun is 0.72 and median is 0.79), on NF3 with an average
Precision of 0.81 (minimun is 0.75 and median is 0.80). The
average Precision for the all bottleneck is 0.82.

In the Section below, we evaluate the Simple Overhead-
sensitive Metrics Selection Algorithm in the Adaptive Perfor-
mance Analysis use case described in Section III-B.
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Fig. 10: SOMS Algorithm Precision.

C. Simple Overhead-sensitive Metrics Selection

In this section, we evaluate how the SOMS Algorithm
finds which metrics should be considered for the efficiency
of the NIP analysis while optimizing the MIB model’s ability
to minimize the false positive (i.e. the Precision). As stated
in Section III-B, in three scenarios, the overhead budget
changed in time: Unlimited overhead budget, Modest overhead
budget, and Austere overhead budget. The SOMS Algorithm
is implemented in Python 3, and we use 75% of the collected
data for Algorithm training and 25% for the evaluation.

In Fig. 10, SOMS Algorithm removes or adds metrics at
the time based on the MIB performance, until it reached
all the metrics. The line (Best metric Selection) presents the
progression of the Precision (ΨPrecision) during the SOMS
Algorithm execution. The numbers of selected metrics and the
monitoring overhead are respectively shown on the first x-axis
and the second x-axis. When all the metrics are selected, the
Precision of the MIB model is 0.83. In an Unlimited Budget
scenario, the maximum Precision is reached at 81 metrics
with a monitoring overhead of ωu = 100.5. The remaining
23 metrics are irrelevant and do not increase Precision. The
Modest Budget scenario’s monitoring overhead ωadmin is set to
50.25, and the best subset metric compatible with this budget
contains 38 metrics for a monitoring overhead of ω = 44.
The Austere Budget scenario’s monitoring overhead ωadmin is
set to 25.125, and the best subset metric compatible with this
budget is composed of 22 metrics for a monitoring overhead of
ω = 24.5. The maximum precisions in the different scenarios
are 0.84, 0.83, and 0.83 respectively, for the Unlimited Budget
scenario, the Modest Budget scenario, and the Austere Budget
scenario. Note that the Precision of the Unlimited Budget
scenario is greater than the initial Precision (where all metrics
are selected) of the MIB model.

We present an in-depth look at the performance associated
with different scenarios. As Fig. 11 shows, in addition to the
MIB model Precision, other criteria are considered: Subset
accuracy, Coverage error, Sensitivity, and Specificity. The first
criterion considered is the Subset accuracy (ΨSubset accuracy).
In Fig. 11 (a) When all the metrics are selected the Subset
accuracy is 0.65. When the best metric subset is selected in
the Unlimited Budget scenario, the Subset accuracy is 0.66.
Remark that by carefully selecting the reverent metrics, the
SOMS Algorithm increases the MIB model Subset accuracy.
In the Modest Budget and the Austere Budget scenarios, the
Subset accuracy is 0.64. The All Metrics scenario does better

than the Modest Budget scenario and Austere Budget scenario.
However, with only 38 and 22 metrics respectively for the
Modest Budget scenario and the Austere Budget scenario, the
MIB model only loses 0.007 points of Subset accuracy for
the Modest Budget scenario and 0.012 points for the Austere
Budget scenario. In Fig. 11 (b) the different Coverage Error
are displayed. With all the metrics, the Coverage Error is
9.85, while in the Unlimited Budget scenario, the Coverage
Error is lower (9.38). In the Modest Budget scenario, the
Coverage Error is 9.57. In the Austere Budget scenario, the
Coverage Error is 9.65. Fig. 11 (c) the different Sensitivity are
displayed. The Sensitivity when all the metrics are considered
is 0.81, while when carefully selecting the reverent metrics (in
the Unlimited Budget scenario), the Sensitivity is 0.83. In the
Modest Budget and Austere Budget scenarios, the Sensitivity
is 0.84. Fig. 11 (d) the different Specificity are displayed. The
Specificity when all the metrics are considered is 0.98, while
when carefully selecting the reverent metrics (in the Unlimited
Budget scenario), the Specificity is 0.99. In the Modest Budget
and Austere Budget scenarios, the Specificity is 0.98. We also
observe here that the All Metrics scenario does better than
the Modest Budget scenario and Austere Budget scenario.
However, with only 38 metrics for the Modest Budget scenario
and 22 metrics for the Modest Budget scenario the MIB model
only loses less than 0.001 points of Specificity about the All
Metrics scenario with 104 metrics. Concerning the trade-off
found, these 3 scenarios can be relevant at certain times of the
day (especially when the NIP does not have a very important
workload).

D. Discussion
As earlier stated, our goal in this paper is to build an

Adaptive Performance Analysis method that optimizes the
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Fig. 11: Performance in different scenarios. (a) Subset accu-
racy; (b) Coverage error; (c) Sensitivity; (d) Specificity.
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bottlenecks analysis performance regarding a monitoring over-
head budget associated with the different available metrics.
The proposed method relies mainly on two machine learning
models: the MIB and the SOMS. The MIB model is used
for the multiple bottlenecks analysis and the SOMS model is
used for the metric selection optimization. Regarding the MIB
model selection, we benchmark five multilabel algorithms. The
results show that the compared algorithms demonstrate good
performance. However, the Label Powerset, outperformed in
Coverage Error, showing that on average, we need to go
down to the 9th bottlenecks (ranked) to cover all the relevant
bottlenecks of the sample. Hence the Subset Accuracy and
the Sensitivity results justify using Label Powerset as a base
algorithm for the MIB model.

To achieve the metric selection regarding a monitoring
overhead budget, we have proposed SOMS (a feature selection
heuristic). SOMS optimizes the MIB model Precision. By
analyzing the results, we observe that the Precision criterion is
not sufficient to decide on the choice of metrics in the different
scenarios. Indeed, other criteria such as the Subset accuracy,
the Coverage error, the Sensitivity, and the Specificity are
important to take into account to choose adaptively (in time)
the best subset of metrics (see Fig. 11). The proposed method
exhibited high performances for the considered use case in the
presence of different bottleneck types. The SOMS algorithm
determines the metrics that maximize the efficiency of the
analysis and have a minimum overhead compatible with an
allocated overhead budget. In the classic scheme (i.e. “All
metrics”) which consists in recovering all the monitoring met-
rics (without seeking to minimize the monitoring overhead),
we observe underperformance on all the considered criteria
(Subset accuracy, the Coverage error, the Sensitivity, and
the Specificity). This underperformance is explained by the
presence of metrics that act by their lack of correlation with the
bottlenecks as noise on the performance of the classification
model (MIB). In NIPs where the scarcity of resources is
exacerbated at the edge of the network, the main drawback
of this approach is that it is not adapted. To remedy this
drawback, a second scheme (dynamically implemented with
the SOMS algorithm) is to do it with a variable budget over
time, which takes into account variations in the use of the NIP
resources from one moment to another. This scheme is broken
down into 3 scenarios. The first scenario (”Unlimited Budget”)
studied in this paper is to minimize the cost of monitoring
overhead, without taking into account the notion of budget.
In this scenario, we try to maximize the efficiency of the
diagnosis, while ruling out irrelevant metrics, as defined in
Section V of the paper. We then observe the best results on
the Subset accuracy, the Coverage error, and the Specificity).
By extending and continuing this scenario in scenarios two and
three, respectively ”Modest Budget” and ”Austere Budget” we
seek to determine if it is possible to maximize the performance
of the MIB under a fixed monitoring budget. We observe in the
modest budget scenario and the austere budget scenario that
a trade-off can be found between the budget that we set for
the monitoring and the performance of the MIB. Compared to
the classic scheme, the advantage of SOMS is that it allows
adaptive monitoring to be carried out (spread over a day)

according to the resources of the NIP, here expressed in terms
of monitoring budget.

Nevertheless, our general approach shares all supervised
learning algorithms’ intrinsic limitations regarding the need
to have a representative and complete training dataset to make
a useful analysis. Accordingly, the method is likely to be less
efficient if an unknown bottleneck occurs during operation.
This problem can be mitigated by frequently re-training the
models (MIB and SOMS) with the data collected continuously
from the NIP.

The computational complexity of Label Powerset is upper
bounded by O(min(m, 2B)), but is usually much smaller in
practice [42]. The SOMS Algorithm computational complexity
is upper bounded by O(2P×Nk ) [43].

According to the previous experimental results, it is possible
to conclude that our approach gives useful information, to
make decisions about the NIP bottlenecks, to improve the QoS.

VIII. CONCLUSIONS

We have proposed in this paper a new overhead-sensitive
approach for multiple bottleneck identification in NIPs. This
approach combines a multilabel classification algorithm (Label
Powerset) and a metrics selection algorithm called SOMS
(Simple Overhead-sensitive Metrics Selection). We considered
the specific and challenging case of the NFV-enabled IoT
Platforms (NIPs), where de facto heterogeneity is stressed by
the emerging context of the recent networking technologies
for routing and connectivity, the computation infrastructure
for processing and storage, and the varying constraints of
data producers and consumers’ devices. We considered the
case of the horizontal NIPs that increase the heterogeneity by
addressing the cross-domain interoperability. We implemented
our approach on top of OM2M, the reference implementa-
tion of the international standard oneM2M [1]. We showed
by emulating different scenarios where the overhead budget
varies. Using all the platform metrics may increase the model’s
generalization error by keeping irrelevant features or noise.

We hope this study provides useful insights into how one
can adaptively analyze performance bottlenecks in NIPs (i.e
determine the right metric subset to collect) while efficiently
controlling the induced monitoring overhead. The first line of
future research is to investigate this approach in other contexts
such as Blockchain-based IoT platforms (e.g. [44]), where the
constraints are not related directly to resource scarcity but
to resource consumption. The second line of future research
would be to formulate a multi-objective problem to take into
account multiple criteria in the SOMS algorithm. It would
also be interesting to extend this method to consider a hybrid
approach combining supervised and unsupervised learning
algorithms (e.g., based on the clustering of observations like
in our previous work in [45]), and take advantage of the
benefits of each of these distinct algorithms while mitigating
their weaknesses to identify known bottleneck as well as an
unknown bottleneck. Finally, considering the injected bottle-
neck types investigated in our experiments, it is assumed that
they are representative of the manifestation of a large set of
bottlenecks located in the NFs. We still need to assess the
representativeness of such bottleneck types.
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APPENDIX

List of the 26 monitored metrics per NF (From the official
OS Linux Template of Zabbix).

/: Free inodes in % /: Space utilization
/: Used space /boot: Free inodes in %
/boot: Space utilization /boot: Used space
Available memory Available memory in %
CPU idle time CPU iowait time
CPU softirq time CPU system time
CPU user time CPU utilization
Context switches per second Free swap space
Free swap space in % Interface enp0s8: Bits received
Interface enp0s8: Bits sent Interrupts per second
Load average (15m avg) Load average (1m avg)
Load average (5m avg) Memory utilization
Number of processes Number of running processes
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