HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Journal articles

Physiological synaptic activity and recognition memory require astroglial glutamine

Abstract : Abstract Presynaptic glutamate replenishment is fundamental to brain function. In high activity regimes, such as epileptic episodes, this process is thought to rely on the glutamate-glutamine cycle between neurons and astrocytes. However the presence of an astroglial glutamine supply, as well as its functional relevance in vivo in the healthy brain remain controversial, partly due to a lack of tools that can directly examine glutamine transfer. Here, we generated a fluorescent probe that tracks glutamine in live cells, which provides direct visual evidence of an activity-dependent glutamine supply from astroglial networks to presynaptic structures under physiological conditions. This mobilization is mediated by connexin43, an astroglial protein with both gap-junction and hemichannel functions, and is essential for synaptic transmission and object recognition memory. Our findings uncover an indispensable recruitment of astroglial glutamine in physiological synaptic activity and memory via an unconventional pathway, thus providing an astrocyte basis for cognitive processes.
Complete list of metadata

https://hal-cnrs.archives-ouvertes.fr/hal-03625240
Contributor : Alain Perignon Connect in order to contact the contributor
Submitted on : Wednesday, March 30, 2022 - 5:19:42 PM
Last modification on : Thursday, April 14, 2022 - 3:15:00 AM

Links full text

Identifiers

Citation

Giselle Cheung, Danijela Bataveljic, Josien Visser, Naresh Kumar, Julien Moulard, et al.. Physiological synaptic activity and recognition memory require astroglial glutamine. Nature Communications, Nature Publishing Group, 2022, 13 (1), pp.753. ⟨10.1038/s41467-022-28331-7⟩. ⟨hal-03625240⟩

Share

Metrics

Record views

18