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Abstract

Stem cells (SCs) in vertebrates typically reside in “stem cell niches” (SCNs), morphologically restricted tissue
microenvironments that are important for SC survival and proliferation. SCNs are broadly defined by properties
including physical location, but in contrast to vertebrates and other “model” organisms, aquatic invertebrate SCs do
not have clearly documented niche outlines or properties. Life strategies such as regeneration or asexual
reproduction may have conditioned the niche architectural variability in aquatic or marine animal groups. By both
establishing the invertebrates SCNs as independent types, yet allowing inclusiveness among them, the comparative
analysis will allow the future functional characterization of SCNs.

Keywords: Adult stem cell (ASCs), Germline stem cells (GSCs), Stem cell niche (SCN), Marine/aquatic organisms,
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The stem cell niche
Stem cells (SCs) are cells that are able to differentiate
into various cell types and are essential for development
and homeostasis of multicellular organisms [1–6]. SCs
are commonly classified into embryonic and adult SCs
(ASCs, also called somatic SCs): both types have the cap-
acity for self-renewal and the ability to differentiate into
a series of progenitor cells, though differ in other attri-
butes [7]. In short, embryonic stem cells can be readily
grown in culture and exhibit unique properties, includ-
ing spontaneous differentiation into three germ layers
in vitro or teratoma formation in vivo. In contrast, adult
stem cells are rare, undifferentiated cells present in
many adult tissues. Their primary role is to maintain

and repair the tissue in which they reside. The ability of
adult stem cells to differentiate is limited.
Tissue-specific SCs in adults reside within compart-

ments called SC niches (SCNs), specific microenviron-
ments that surround SCs and have important regulatory
functions in SC survival and proliferation [8]. The con-
cept of the SCN has progressively evolved from its in-
ception [9] and is now broadly characterized by specific
morphological properties.
Schofield in 1978 [9] first introduced the idea of the

SCN in the context of mammalian hematopoietic line-
ages as a physical location (a microenvironment) where
ASCs reside, receive stimuli, and have their specific fates
determined. The concept was soon extended to other
tissues and SC types, and eventually, this understanding
evolved to a consensus that considers niches as “agents
of feedback control” [10]. Other views describe niches as
providing “nutritive” (viability-sustaining) functions to
tissues [11, 12] or as being involved in the “coordination
among tissue compartments” [13, 14]. While multiple
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subtypes of SCNs may exist (e.g., simple niches, complex
niches, storage niches), SCNs are commonly typified by
adhesive interactions, cell cycle modifications, and inter-
cellular signals that collectively control ASC statuses
[15]. Our current knowledge gap on the cellular, mo-
lecular, and system levels in most animal groups has
prompted researchers to assume niche-associated prop-
erties based solely on circumstantial evidence (i.e., phys-
ical location: [16–18]).
The molecular nature of crosstalk within niches (the

complex interactions controlled by extracellular cues
from the physical niche and by the intrinsic genetic
landscapes of SCs [19]) has been characterized in very
few contexts, which will be described below.
Marine and aquatic invertebrates offer new opportun-

ities to analyze the structure and function of stem cells,
this is due to their specific life strategies, that in many of
them include extensive regeneration of body parts or
asexual reproduction. Dealing with those processes rely
on the fast and widespread mobilization of stem cells.
While some of these stem cells have been characterized,
a great degree of ambiguity exists in the knowledge of
most aquatic invertebrate ASC systems studied to date
(Porifera, Annelida, Tunicata, Echinodermata, Cnidaria,
etc.), and in many extant research models, the nature
and potential of ASCs remain putative and poorly
understood (e.g., [5, 20–25]). These putative ASCs are
generally characterized by the property of proliferation
and/or by the expression of one or more alleged “stem-
ness” markers—for example, PIWI [26–28] (for a critical
assessment, see also [16, 29]), PL-10 [30], Vasa [31, 32],
and Nanos [33]. While these markers are believed to be
associated with germ line development, it has been
shown that they are also used in somatic stem cell main-
tenance [30, 32, 34, 35]. In fact, Alié and collaborators
[16] have discussed the role of the “germ line”-specific
genes in the more general control of stemness states.
Our main aim in the following sections is to revisit the

many definitions that the term SCN has assumed in
studies of aquatic invertebrate animals (e.g., sponges, the
cnidarian Hydra, urochordates, and flatworms (Platyhel-
minthes) or acoelomorphs). We further focus on the re-
lationships between these definitions and the more
rigorously established definition in some of the so-called
classical “model” organisms (vertebrates and the ecdy-
sozoans D. melanogaster and C. elegans). Ultimately, the
results of this review enable us to articulate an elabo-
rated “adult stem cell niche” paradigm through the lens
of non-model aquatic invertebrates.

Stem cell niches in vertebrates and ecdysozoan
invertebrates
Most of our current knowledge on stem cell systems and
their regulatory microenvironments is derived from a

few well-studied animal systems (vertebrates and the
ecdysozoans D. melanogaster and C. elegans). These are
considered “classical” model systems, with well-
developed technologies for gene activity manipulation
(briefly described below). For practical and historical
reasons, the model systems have been traditionally ter-
restrial animals [36], and it is for this particular (biased)
reason that we start our description of what is known on
niches by analyzing these terrestrial models. They should
serve us as guides to understand the niches as are being
described in aquatic or marine animal systems. For bet-
ter understanding of the variability of stem cells that are
regulated by niches across different metazoan taxa, we
refer to Rinkevich and collaborators [5].

The bone marrow hematopoietic stem cell niche
Human hematopoiesis is a biological process that pro-
duces ca. 200 billion red cells and 10 billion white cells
per day per human body. In all mammals, the
hematopoiesis of all blood cell lineages is sustained by a
rare population of self-renewing hematopoietic stem
cells (HSCs). To generate the broad repertoire of white-
cell lineages, these HSCs produce an array of oligopotent
progenitors, which proliferate and differentiate during
static hematopoiesis into mature cells, in a relatively
constant manner. Following stress events, such as tissue
damage, HSCs commence extensive proliferation and
differentiation processes to generate the cells necessary
for repair, compensate for blood cell loss, and contain
any threat posed by pathogens. These response pro-
grams are customarily transient, and within a short time,
HSCs return to a quiescent state [37]. HSCs arise during
embryonic development and initiate hematopoiesis in
specific fetal niches before relocating postnatally to the
bone marrow (BM [38];) (Fig. 1A). Several approaches
have been used to further characterize the molecular
regulators of HSCs (e.g., ex vivo screening for factors
supporting HSC maintenance), and the identification of
these factors has made it feasible to classify specific cell
types involved in the various activities carried out within
the niches. In addition to local involvement of different
cell types and their mutual interactions, chemical factors
that originate at sites distant from HSC niches and the
extracellular matrix may participate in modulating HSC
and/or niche functions (i.e., [42–44]).
The HSC niche has emerged as one of the best-

characterized mammalian SC niches but it may present
just a single niche epitome, out of possible three major
prototypes (see section “ASCs and their niche: modes of
organization” for an in-depth discussion).

Germ stem cell niches
A notable type of SCN supports germ cells during the
lifespan of multicellular animals. Germline SCNs are
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indispensable for the generation of mature gametes in
most sexually reproducing organisms. These germ stem
cells and the environments in which they reside have
been extensively studied in two model ecdysozoans: the
insect Drosophila melanogaster and the nematode Cae-
norhabditis. elegans. While the focus of this Review is on
adult SCNs, results of studies in these ecdysozoans have
provided the basic tenets for the molecular and cellular
components of SCNs, some of which are presented
below. Other well-described germ cell niches (e.g., the
mammalians: [45, 46]) are not discussed here.

Drosophila melanogaster (Fig. 1B)
Prime examples of well-described SCNs outside verte-
brates are the Drosophila germline SC (GSC) niches.
The first germ SCNs identified in Drosophila, anatomic-
ally and functionally, were the ovarian niches [47, 48],
located throughout pupal and adult life at the tip of each
Drosophila ovariole (the ovary consists of approximately
16 ovarioles; each with its chain of developing eggs). The
Drosophila ovary contains two stem cell types: germinal
stem cells (GSCs) and follicular stem cells (FSCs). GSCs
are located in the germarium, a structure present at the

anterior tip of the ovarioles, and are embedded in groups
of somatic cells that function as niche cells for the GSCs
and FSCs. This morphologically simple ovarian niche
consists of three cooperating somatic cell types: terminal
filament cells (TFs), cap cells (CpCs), and escort cells
(ECs, or inner germarium sheath cells; Fig. 1B). Two to
three GSCs are directly associated with CpCs. GSC divi-
sions within the niche are usually asymmetric as only
one of the daughter cells remains in the niche while the
other differentiates into a cytoblast. FSCs are located
more posteriorly in the germarium. They are closely as-
sociated with a type of EC (posterior ECs, or PECs) and
are the source of both ECs and all somatic cells located
posteriorly to the FSCs, including the follicle cells sur-
rounding germline cysts [49]. In the GSC niche, key reg-
ulators are the molecules Dpp, abd, Hedgehog, and
components of the extracellular matrix [49–51].
The male SCN morphologically resembles the archi-

tecture of the ovary, as stromal cells at the distal tip of
the testes maintain intimate contact with the GSCs. The
advent of single-cell sequencing technologies has re-
cently allowed the generation of comprehensive cell at-
lases of both Drosophila ovaries [52–54] and testes [55].

Fig. 1 Schematic illustrations for some of the best-characterized stem cell niches. A Human hematopoietic SCN: This is one of the best-
characterized niches, with the hematopoietic stem cells (HSCs) receiving systemic and local signals. The niche is perivascular, created partly by
mesenchymal stromal cells and endothelial cells and often but not always located near trabecular bones (diagram based on [39]). B Drosophila
melanogaster gonadal niche (based on [40]): A germarium with mature oocytes in the proximal region and cap cells in the distant region. The
latter cells comprise the major component of the niche and maintain permanent contact with developing germinal cells (here, oocytes, though
the sperm cells reside in a similarly constructed niche). C Caenorhabditis elegans gonadal niche: The germinal line differentiates in a distal-to-
proximal direction, with the DTCs (distal tip cells) as key components of the niche (based on [41]). D Hydra I-cell site location (diagram based on
[20]): here a stem cell (I-cell) resides within the epidermal epithelium. Both stem cells and their precursors are maintained via a collection of
signals and interactions with the ECM. Precursors not only attach to the ECM but exhibit the capacity to penetrate it and thereby move into the
endodermal epithelium. More details on each niche type are provided in the text
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These analyses include extensive transcriptional profiles
of all major cell types present in the gonads, including
the germline stem cells and their surrounding niche
cells. The contributions of these studies are beyond the
scope of this review.

Caenorhabditis elegans (Fig. 1C)
GSCs are the only bona fide SCs in the nematode [56,
57]. Laser ablation experiments on cells in the C. elegans
gonads [58] were the first to suggest that extrinsic cues
may play a role in controlling different lineage decisions.
These experiments were also the first to determine inter-
actions between neighboring cells (the “niche”), estab-
lishing germline specification. In this hermaphrodite
worm, the SCs reside in the blind-ended tubes of the go-
nads, and in GSC niches, each tube sustains a single
mesenchymal niche cell called the distal tip cell (DTC
[58]; Fig. 1C). The DTC (Fig. 1C) provides an elaborate
“plexus” of cellular processes that enwraps approxi-
mately 10 GSCs, increasing intimate contact between
the SCs and the niche cells. The DTCs are essential for
the maintenance of GSC stemness and “allow” the main-
tenance of hundreds of dividing cells within a so-called
“mitotic and proliferation regions.” DTC regulates the
balance of self-renewal and early differentiation within
the “mitotic region” [59]. The major component of this
molecular circuitry is the GLP-1/Notch signaling path-
way, a broadly conserved pathway within the Metazoa
[60, 61] that also regulates niche–SC interactions in
mammals (e.g., in the nervous system, muscle, intestine,
skin, and hematopoietic system) (e.g., [62, 63]). This
architecture of the C. elegans GSC niche, with GSCs at
one end and progressively differentiating cells nearer the
open end, appears similar to the GSC niches in the Dros-
ophila male and female GSC niches. The uncovering of
cell protrusions mediating the communication within
the stem cell niche adds to the structural similarities be-
tween C. elegans and Drosophila gonadal niches [64, 65];
similar structures were recorded in the gonads of a milk-
weed bug [66]. As in Drosophila, new technologies that
allow the construction of expression maps with single-
cell resolution (e.g., transcriptome profiling [67] or RNA
tomography [68]) have been extremely useful in dissect-
ing the multiple components that regulate the cellular
interactions within the GSC niche.

A unified view for SCN (Fig. 2)
The research conducted on the “model” organisms
above offers a general conceptual view of the unified
structure and properties associated with SCNs (Fig. 2).
Four classes of physiological properties are associated
with all niche functionalities: structural support, trophic
support, topographical information, and physiological
cues [19, 69, 71]. In brief, we have learned from the so-

called “model systems” that the stem cell niche refers to
a group of cells in a special tissue location devoted to
the maintenance of stem cells. The niche’s overall struc-
ture is variable, and different cell types plus molecular
regulators can provide the niche environment [19]. The
formation and activity of niches (at discrete developmen-
tal times) are carefully regulated to ensure appropriate
stem cell function. Because stem cells can function ei-
ther homeostatically (continuously replacing short-lived
mature cells that are lost because of normal cell turn-
over) or facultatively (replacing differentiated cells only
in response to injury or disease), stem cell niches must
be dynamic enough to provide proper developmental
and physiological cues to regulate stem cell behavior.
This role implies the regular mobilization of stem cell
activity in response to environmental (physiological)
conditions [69]. The niches provide structural and func-
tional cues that are both biochemical and biophysical,
and the SCs integrate this complex array of signals with
intrinsic regulatory networks to meet physiological de-
mands. These SCs are supported by, or incorporated
into, the niche walls formed by the neighboring cells;
hence, SC functions rely on geometric cues that orches-
trate several niche-associated mechanochemical and
paracrine-autocrine signals, which they can direct to ac-
quire appropriate fates. Subtle shape cues can also play a
significant role in promoting differentiation [71]. It

Fig. 2 Unified current view for the structure and properties of the
niche in model organisms. This illustration presents the most
significant basic structures assumed to define a stem cell niche, as
derived from studies of vertebrates’ hematopoietic systems (and of
other SCNs in various organs) and the germ cell niches of the non-
ecdysozoan model invertebrates Drosophila melanogaster and
Caenorhabditis elegans. At the top, we list the four physiological
properties associated with niche functionality (derived from [69]).
The different cellular, signaling, and matrix components affiliated
with SCN activities are further depicted (based on [70]). Variations in
the presence of the different components occur in different animal
systems (and may also be explained by a current lack of knowledge)
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becomes clear then that, in this context, the niche itself,
situated in specifically designated sites [19, 69], assumes
a distinct and well-defined morphological structure that
is composed of four cellular components (SCs, progeni-
tors, differentiated cells, and nerve fibers) as well as the
ECM and the signaling molecules that are governed by
the four classes of physiological properties. The coherent
integration of all components (Fig. 2) is critical for the
proper functionality of the SCN. The above consider-
ations guide us in our exploration of SCNs, which, while
focusing on marine/aquatic animal systems, considers a
wider taxonomic range.

Stem cell niches in aquatic and marine
invertebrate systems
Although the majority of known species are terrestrial,
all higher animal taxa originated in aquatic (marine and
freshwater) environments, and most of the extant animal
phyletic diversity is still found there [72–74]. In recent
decades, several studies have suggested the existence of
SCNs in a handful of aquatic invertebrate systems [18,
24, 75–79]. In contrast to the vertebrate and mostly
ecdysozoan invertebrate models, however, data support-
ing these proposed SCNs are fragmented and sometimes
elusive. While the following examples of ASC niches in
marine invertebrates underscore the paucity of these
data, they also uncover some novel evidence supporting
the role and possibly the overall conservation of general
architectures within different clades. Needless to say,
overall conservation does not prevent niches from show-
ing variability.

Cnidarians: Hydra and Hydractinia
Among cnidarians (sea anemones, corals, and jellyfish),
the hydrozoans Hydra [80] and Hydractinia (a colonial
hydrozoan [81]) are the best-studied research models for
ASC biology (Fig. 1D), and a Hydra SCN has previously
been proposed [20, 77]. Investigation of ASCs and SCNs
in anthozoan cnidarians (sea anemones, corals) are only
in their infancy [82, 83]. Hydra and Hydractinia ASCs
consist of three distinct ASC lineages. Two ASC line-
ages, epidermal and gastrodermal epithelial stem cells,
are epitheliomuscular cells that construct and maintain
the simple two-layered (epidermal and gastrodermal)
body of the polyps. The third multipotent interstitial
ASC lineage (the interstitial cells, or I-cells) produces a
variety of differentiated cell types, including somatic
neurons, nematocytes (stinging cells), and gland cells as
well as the gametes [84, 85]. In Hydra, these three SC
lineages contribute to a highly dynamic state of perman-
ent tissue replacement via self-renewal and differenti-
ation, which is the basis for the polyps’ extreme
longevity and capacity for continuous budding and re-
generation. Transdifferentiation of a cell from one

lineage to another (commonly recorded in jellyfish [86])
does not occur in Hydra. However, interstitial SCs can
generate new epithelial cells following allogeneic colony
fusions in Hydractinia, suggesting that they harbor an
even larger degree of potency compared to those in
Hydra [87, 88].
Hydrozoan I-cells reside in compartmental caverns be-

tween epithelial cells, located in Hydra within the epi-
dermal layer and throughout the entire gastric region of
the polyp [89, 90] (Fig. 1D). By directing the mainten-
ance of the multipotent I-cell state and the commitment
to become a precursor cell, these compartments were
presumed to carry the functions of a complex SCN en-
tity [77]. However, the mechanisms (molecular players),
including short- and long-range signaling factors acting
in the SCN have not been elucidated. Light and electron
microscopy studies have revealed that I-cells are in in-
timate contact with the surrounding ectodermal epithe-
lial cells over almost their entire membrane surface,
while no unambiguous proof has been offered for direct
contact with the mesoglea, the polyp’s ECM (Fig. 1D
[20, 91];). The proteins involved in direct epithelial–
interstitial cell membrane interactions are unknown, but
Hydra classic cadherin is a strong candidate due to its
expression in the epidermal epithelium and in the I-cells
(B. Hobmayer, unpublished). In addition, the transcrip-
tion factors Myc, FoxO, and PIWI proteins are engaged
in I-cell maintenance, and Notch signaling seems to pro-
mote differentiation of nematocyte precursor cells [27,
92–94]. A search for specific multipotency and mainten-
ance factors in the putative I-cells pool using in-depth
single-cell transcriptome sequencing has identified only
a single gene, hy-icell 1, whose corresponding protein se-
quence does not show similarity to any known protein
family, and yet its precise function is unclear [95]. How-
ever, a core set of I-cells marker genes could not be
identified, and the study concluded that I-cells may pri-
marily be defined by the absence of differentiation gene
modules [95]. The commitment of I-cells toward differ-
entiation into nerve or gland cells of the endodermal
layer prompts the resulting precursors to establish con-
tact with the mesoglea (Fig. 1D), to migrate through this
milieu by as yet unknown mechanisms, and to enter cav-
erns in the inner epithelium where they finally undergo
terminal differentiation. Hydra I-cells are more station-
ary, but they nevertheless possess the capacity to migrate
to “empty” caverns when confronted with an ectoderm
devoid of I-cells [92], and they adapt their ability for
self-renewal in response to changes in I-cell and nerve
cell densities. These results imply a significant role for
long-range signaling input in the activities of the niche
[96]. As in many bilaterians, Wnt/β-Catenin signaling
likely serves as an important cue in Hydra and Hydracti-
nia [97, 98]. Originating from the polyp’s major
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signaling center in the head, this pathway functions as
an upstream regulator of Myc activity enhances I-cell
maintenance and affects the probabilities of nematocyte
and nerve cell differentiation [99–101]. Holstein and
David in 1990 [102] also showed that precursor cells
from the foot-peduncle region of a Hydra that are com-
mitted for neuronal differentiation, can be forced to revert
and become interstitial stem cells again, suggesting a ra-
ther direct impact of global patterning signals on intersti-
tial stem cell potency. Further, interstitial stem cell
localization (central body column), nerve cell differenti-
ation (head and foot areas), and nematocyte differentiation
(central body column), all follow axial positional values
[100] rather than SCN properties. Taken together, the
above definition of the niche—with distinct physical com-
ponents and chemical interactions—implies its involve-
ment in the decision-making process of interstitial SCs.
The epidermal and gastrodermal epithelial ASCs in

Hydra pose a further challenge to SCN forbearance in cni-
darians as no experimental evidence depicts the existence
of distinct subpopulations with different levels of stemness
[77, 91, 103]. These ASCs concurrently satisfy the criteria
for an SC and act as differentiated cells; thus, stem cells,
differentiated cells, and putative niche cells are no longer
distinct from one another. Under these conditions, it is
difficult to imagine a physically and chemically specific
niche at the level of a single epithelial cell. Attempting to
address this dilemma, Bosch and colleagues [77] specu-
lated that the entire epithelium behaves as a single global
epithelial SCN due to the ability of all cells to maintain
proliferation and differentiation states.
While cnidarian model polyps such as Hydra and

Hydractinia are powerful models for understanding ani-
mal regeneration, some scyphozoan (jellyfish) species
(which lack I-cells) are interesting reference cases for the
study of adult body’s regeneration [104]. Similarly to the
Scyphozoa, anthozoans (e.g., sea anemones, corals) also
lack hold I-cells, and while some studies (i.e., [105]) have
recognized aggregates of stem cell-like structures in fast
growing tissue layers, neither a putative stem cell type
has been described morphologically nor an SCN like
structure was documented [106].
The recent development of techniques to manipulate

gene expression in hydrozoans [107–109] suggest the pos-
sibility of analyzing the molecular regulators of many pro-
cesses in which stem cells and their niches are involved.
By dissecting the different molecular players and their
physical locations, we should gain insights on how the
SCN functions, enriching our understanding of the config-
uration and variability of niches across the Cnidaria.

Platyhelminthes and Acoelomorpha
Several species of Platyhelminthes and Acoelomorpha
(acoel flatworms) exhibit extensive regenerative capacities,

up to whole-body regeneration [110–114]. This capacity
requires a group of ASCs called neoblasts [115–117] that
are located within the parenchymal tissue of many free-
living (e.g., [111, 118]) and parasitic flatworms [119]. In
well-studied species, such as Schmidtea mediterranea, the
neoblasts constitute up to one-third of the animal’s cells
[120] and are known to be the only proliferating cells in
the adult body. Regeneration properties have been thor-
oughly examined in a few species: the Platyhelminthes S.
mediterranea [111, 121], Dugesia japonica [122], the tape-
worm Hymenolepis diminuta [114], and the acoels Isodia-
metra pulchra [26] and Hofstenia miamia [123, 124].
Early experiments demonstrated that all new somatic cells
emerging during tissue maintenance, as well as during re-
generation, originated from neoblasts [111, 125]. Upon
transplantation into irradiated animals, neoblasts (even a
single neoblast in Platyhelminthes) were shown to be able
to replenish all tissues in S. mediterranea [111], an experi-
ment not done yet in acoels. In both clades, neoblasts are
characterized by their low cytoplasm-to-nucleus ratio; fur-
thermore, their body location and gene expression pat-
terns are remarkably similar in these two phylogenetically
distant clades [124]. The observation that even a single
cNeoblast (clonogenic neoblast) in lethally irradiated pla-
narians is enough for complete body regeneration, sug-
gests that the environment that supports neoblast
proliferation and specification (niche?) is spread over large
areas of the animal’s body [126]. In this study of Wagner
and collaborators injections of single cNeoblasts were
done into the post pharyngeal parenchyma, a relatively
broad area, in conjunction with other gene knockdown
experiments (see below), all suggesting that the “niche”
occupies most of the animal body.
For decades, scholars have recognized neoblasts as a

mixed population of cells with different potencies, and
in 2011, Wagner and collaborators [126] first demon-
strated the existence of a subpopulation of neoblasts in
S. mediterranea, called clonogenic neoblasts (cNeo-
blasts), that are genuinely pluripotent. Yet, the distribu-
tion of the cNeoblasts within the animal’s body remains
to be elucidated, as well as the mechanisms regulating
cNeoblasts pluripotency, even though the expression of
conserved genes regulating pluripotency have been iden-
tified [127–129]. Initially identified as smedwi-1-positive
cells, the cNeoblast were detected on a body-wide distri-
bution [126]. Studies further revealed that cNeoblasts
can be molecularly characterized as expressing the cell
surface protein tetraspanin-1+ (TSPAN-1+). Singly trans-
planted TSPAN-1+ cells rescued lethally irradiated pla-
narians at a much higher frequency than was previously
reported [130]. Neoblasts may also switch their specifi-
cation state and generate a cohort of daughter cells with
different fates [131], explaining the rapid regeneration of
planarians (however, these authors show here that
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tetraspanin-1 is not exclusive to the putative planarian
cNeoblasts). Attempts at culturing neoblasts in vitro
have been developed over the years culminating in some
recent promising methodologies (Lei et al., 2019; Biorxiv,
preprint). A series of papers have suggested the role of
extrinsic factors in the control of neoblast specification,
such as the roles of intestinal cells and the homeobox-
containing gene nkx-2.2 in regulating neoblasts’ prolifer-
ation [132], the roles of ECM surrounding the gut [133],
regulation of gap junctions [134], and the roles of some
neural neuropeptides [135]. The proximity of the neo-
blast populations to the gut [130] may endorse the opin-
ion for the intestine as the best candidate tissue that
provides niche signals in planarians. In fact, the injection
of new altered cells (manipulated egfr-1/ngr-1 cells) to
the gut branches leads to a decrease in the proliferation
of neoblasts; irrespective of the location of the gut
branches [136]. Further, the presence of progenitors of
some cell types (such as eyes) in large (yet not all) body
areas [137] suggests inherent variability in the global cell
niche distributions. In acoels, the neoblast system has
been less explored. While in these organisms, neoblasts
likewise replenish tissues after irradiation, studies have
yet to prove the existence of cNeoblasts [26, 138]. Acoel
neoblasts can generate a mixture of mature cell types
[138], but whether these lineages are derived from
lineage-restricted SCs and their progenitors or a pool of
pluripotent SCs remains to be determined. Single-cell
transcriptomics data have led to the recognition of spe-
cific signatures for neoblast and neoblast-like cells [139],
pointing to the possibility that neoblast differentiation
trajectories could be deciphered.
Despite advances in our understanding of Platyhelmin-

thes and acoelomorph SCs and regeneration, very little
is understood about specific SCNs or signals from differ-
entiated tissues that might impact neoblast stemness
and fate [112, 140]. Neoblasts are embedded in the cen-
tral parenchyma of the animal with no known structural
boundary (like a niche) to secure them from other cells
[141]. This has led, on the one hand, to the suggestion
that the entire animal can be regarded not as an individ-
ual but as an assemblage of globally regulated ASCs, in
what can be equated to a single whole-body SCN [142,
143] and, on the other hand, to proposals to designate
compartments within the parenchyma as SCNs [78].
The fact that planarians are able to regulate homeostasis
at the organism level [144] seems to favor the presence
of widely distributed control mechanisms. The different
lines of evidence mentioned in this section suggest the
involvement of specific cell types, signaling factors, and
the ECM in configurating the planarian niche. However,
as these are still indirect pieces of information, a com-
prehensive and detailed description of niches in the
Platyhelminthes—and certainly in the Acoelomorpha—

remains to be elucidated. Specific data on the regulatory
mechanisms that control the proliferation/differentiation
of single cNeoblasts would be particularly enlightening
[75]. Flatworms also possess niches around the germ-
line—this is out of scope for the current review but see
[145, 146] for more information. A final point here is
that planarians have no sequestered germ line so the
niche components might be shared with the rest of the
body.

Tunicates
The potential existence of SCNs in invertebrate deutero-
stomes has been investigated in only a few tunicate spe-
cies, primarily in the colonial ascidian Botryllus schlosseri.
In addition to sexual reproduction, B. schlosseri propa-
gates asexually, forming colonies of genetically identical
modules, or zooids, that are connected via a ramified
blood system [147, 148]. While the cellular origin of bud-
ding processes remains to be elucidated, the presence of
putative ASCs in this process has been proposed [22]. In
vivo cell labeling, cell engraftment, and time-lapse imaging
have identified two sites of putative ephemeral SCNs in B.
schlosseri zooids that are replaced weekly. The first are the
anterior ventral regions of the subendostylar sinuses,
which have been suggested to harbor and export putative
somatic SCs, while the second are the cell islands located
in the ventral body wall, along the endostyle, which have
been suggested to harbor putative GSCs [24, 25, 32, 149].
The endostyle area (the long glandular groove in the ven-
tral side of the zooid’s branchial sac) in tunicates is con-
sidered the invertebrate chordate homolog of the
vertebrate thyroid gland [150]. Yet it was found that the
zooid and bud endostyles express β-catenin, PIWI, Oct4,
among others, suggesting also a role as a SCN for bud de-
velopment [24, 25, 151], where it was suggested that ASCs
compete for locations within developing SCNs [152].
Moreover, the endostyle putative niche is considered com-
parable to the hematopoietic niche [149], as it shares with
the human hematopoietic bone marrow the expression of
more than 300 genes and harbors cell populations ex-
pressing genes characterizing vertebrate hematopoietic
stem cells. For the presumed germ line niches, Rosner and
collaborators [34] have described a novel network of sev-
eral transient sites that preserve primordial germ cell
(PGC) homeostasis, potentially protecting these cells from
the weekly senescence processes occurring in botryllid as-
cidians and thus enabling the survival of the PGCs
throughout the organism’s life.
Colonial ascidians belonging to the genus Botrylloides

are known for their whole-body regeneration (WBR)
phenomenon, in which the entire colony regenerates
from only a small portion of the vasculature [153–155].
Recently, Kassmer and collaborators [154] identified a
population of bloodborne candidate SCs responsible for
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WBR in the species Botryllus schlosseri. These integrin-
alpha-6-positive (Ia6+) cells, which constantly divide in
healthy colonies, also express genes associated with plur-
ipotency. During WBR, Ia6+ cells reside in receptacles
of the left vasculature, and the beginning of the regen-
erative process seems to be regulated by Notch and Wnt
signals. Additional studies in Botrylloides regeneration
niches are needed to further understand the relationship
between the vasculature pouches and the behavior of
Ia6+ candidate SCs.
In Ciona intestinalis, a model solitary ascidian, the am-

putation of the oral siphon triggers the proliferation and
migration of cells from nearby regions (short-distance
regeneration) and more distant regions of the branchial
sac (long-distance regeneration). Short-distance regener-
ation does not seem to require cell proliferation; rather,
it relies on small aggregates of stem/progenitor cells that
are already present in the siphonal area [156, 157]. In
contrast, long-distance regeneration requires the activity
of stem/progenitor cells that originate in regions of the
pharynx known as lymph nodes or “ASC niches” [158].
These putative SCNs are located in the enmeshed trans-
verse vessels within the branchial sac. Progenitor migrat-
ing cells that express PIWI are believed not only to have
roles in homeostasis but also to contribute to wound
healing and the regeneration of the oral siphon tissues
and the central nervous system [157, 158]. Recently, the
presence of proliferating putative ASCs expressing PIWI
and high activity of aldehyde dehydrogenase have been
reported in the intestinal submucosa of Styela plicata
(another solitary species), which suggests the existence
of a potential niche [159].
While all of the studies detailed in this section have

identified specific regions of the body where putative as-
cidians SCs are maintained and activated during regen-
eration, budding, and homeostasis, almost nothing is
known about the cytoarchitecture of these presumptive
SCNs, the nature of the signaling pathways within the
putative resident SCs, or even the existence of the regu-
latory signals.

Do stem cell niches exist among other marine
invertebrates?
In the aquatic invertebrates discussed in the previous
sections, the term “stem cell niche” has often been
employed loosely without the supporting evidence that
should accompany a properly described niche. This
shortcoming is further highlighted in cases where much
less is known regarding SC biology and SC residence. In
the Demospongiae, one main lineage of sponges (Porifera),
decision making of the ASCs, such as the amoeboid
archaeocytes migrating within the mesohyl, is not associ-
ated with any known particular microenvironment [21,
160]. However, in the symplasmic Hexactinellida lineage,

archaeocytes are frequently attached to one another and
to the trabecular syncytium by plugged junctions, forming
clusters or congeries [161]. Because archaeocytes in con-
geries (clusters, as in Ijima, 1901 [162]) present a high
number of mitotic figures, Singla and Mackie (1983) have
suggested that each congery may present a mitotic pro-
geny [163]. Nevertheless, any similarity of these structures
to the niche concept remains, at present, too preliminary.
Another ASC lineage in sponges are the choanocytes, the
progenitors of both somatic cells and gametes and the
most actively proliferating cell type in these animals [164].
Choanocytes are specialized epithelial cells, responsible
for the movement of water inside the sponge’s aquiferous
system and for the capture of food particles. Choanocytes
are organized into choanocyte chambers, or tubes in as-
conoid sponges [165]. Individual choanocytes can leave
the choanocyte chamber and transdifferentiate into germ
or somatic cells. In the case of spermatogenesis, the entire
choanocyte chamber is isolated and completely trans-
formed into spermatic cysts [166] but without any support
from a SCN.
In corals (Cnidaria), where ASCs are not defined (I-

cells do not exist in the Anthozoa), Raz-Bahat and col-
laborators [106] identified disorganized aggregations of
cells with distinct nuclei (putative SCs) in rapidly devel-
oping areas, but no morphological distinction for puta-
tive SCN has been offered. In the sea anemone
Nematostella vectensis, two potential ASC populations
have been identified; one fast-cycling population
enriched in the body-wall epithelia and a slow-cycling
population that is enriched within the mesenteries [167].
While additional work is required to confirm the po-
tency of these ASC as well as their molecular signatures,
the presence/characteristics of one or several SCNs in
anthozoans has to be investigated. Other cases are the
ctenophore Pleurobrachia pileus [16] and the annelid
Capitella teleta [18], where the term “niche” has been
applied to the anatomical areas where the putative SCs
reside (in the tentacle bulbs and coelomic cavity of the
5th segment, respectively). However, no evidence sug-
gests that these are totipotent or multipotent SCs; ra-
ther, in some cases, the identified SCs are committed
progenitors dedicated to specific lineages (e.g., in Capi-
tella, the germline). Moreover, when tentacle bulbs of
the ctenophore Mnemiopsis leidyi were eliminated, null
impacts in regeneration capacities were revealed [168].
In all of the latter cases, the still circumstantial evidence
suggest that scientists should be more careful using of
the term “niche” to that place where a stem-like cell is
located.
At this stage and following the generalized view for

the structure and properties of SCN gathered through
the studies in model organisms, we propose a compre-
hensive set of essential parameters associated (or
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required in) with the SCN: (a) the clear identification of
residing stem cells, (b) a detailed map of the cellular
components and the ECM, (c) evidence of molecular
crosstalk between stem cells and surrounding environ-
mental components, and (d) functional assays (depletion
or transplantation). Without a comprehensive assess-
ment of these properties, any proposed SCN should re-
main a speculative “entity” in whatever biological system
it is studied.

ASCs and their niche: modes of organization
The comparative analyses of SCNs summarized above
and in the existing literature suggest the presence of
three types of SCN states among metazoan animals, cat-
egorized as states A, B, and C (see Fig. 3). While we as-
sume that these categories distinctively represent
specific properties (Table 1), this does not imply that all
niches have to be shoehorned into these three states. In
fact, the conundrum of niche architectures is, as we sug-
gest, shaped by natural selection forces that amalgamate
niche architectures and constructions into a few general
archetypes, all situated on a continuum of structural/
functional properties, from loose cells, with each carry-
ing its own niche belongings, to the most complex and
structurally defined alcoves (Table 1; Fig. 3). Yet, each
one of the suggested SCN states represents the construc-
tion of a distinct level of biological organization and all
SCN states embrace, under a single conceptual SCN no-
tion, an evolutionary highly evolved assembly.
The A (no obvious niche) architecture applies to ani-

mals that do not possess structured niches. Such animals
carry either highly plastic ASC repertoires, i.e., ASCs ap-
pear when needed (e.g., the mesenchymal archaeocytes
of some poriferans), or with each SC creating their own
intimate unstructured environment, in lieu of a shaped
niche. The latter, although not applicable for healthy/
homeostatic tissue of vertebrates, is speculated to be the
case for various allogeneic cancers—naturally occurring
transmissible, super-parasitic cell lines that form in vivo
chimeras [169]—such as the canine transmissible ven-
ereal tumor, the Tasmanian devil facial tumor disease,
the clam leukemia [170], and for the cancer SCs that
form specialized permissive microenvironments along
the tumorigenic cascade [171–176]. These allogeneic
tumor cells and cancer SCs are maintained and perform
their biological functions within the context of environ-
mental niches (sensu Di Santo, 2008 [177]), or by colon-
izing ‘new anatomical niches’ (sensu Ayala-Díaz and
collaborators in 2017 [178]), altogether creating another
form of A SCN state.
Among aquatic invertebrates, the best-known case of

SCs residing within A-type niche states is the multifunc-
tional mesenchymal archaeocytes of the Demospongiae,
which are not limited, in terms of functionality or fate,

by their microenvironment, though they may be regu-
lated by an autocrine system. Yet, there is no conclusive
evidence that archaeocytes associate with any type of
niche, morphologically or molecularly, taking also their
high mobility and the observation that they do not form
cell aggregates. Okamoto and collaborators [173] devel-
oped this latter proposition by stating that “archaeocytes
might be able to stay in an undifferentiated state by
using autocrine signals. Only when the inductive signals
over a threshold level are received would archaeocytes
become committed archaeocytes”. The fact that some
sponges can regenerate their entire body from dissociated
and reaggregated cells also suggests the lack of a micro-
environment providing signals or structural elements. In
fact, the initial stages of regeneration (perimorphs) are
characterized by the extensive transdifferentiation and
reorganization of cell types [179–181], suggesting that
morphogenetic processes are most likely guided via local
cell-to-cell interactions without the need for a spatially
structured “niche domain.” Also, the migratory nature of
archaeocytes seems incompatible with the need for local-
ized signaling areas. The B state architecture applies to an-
imals that exhibit distinctive groups of ASCs distributed
across their body, even though they are not distributed
evenly everywhere in the animal nor exhibit regionalized
gene expression (e.g., Forsthoefel et al. 2020). These sta-
tuses echo in a larger scale the statuses within “classical”
SCNs (e.g., [182, 183]). Animals harboring B niche states
either contain a whole organ-tissue SCN, like suggested in
Hydra [77], or the whole animal acts as niche, i.e., the case
of Platyhelminthes [142, 143]; yet, understanding the na-
ture of the niche in planarians is still a work in progress. B
states may also be inferred in the sponge choanocytes, as
the choanoderm epithelium in the aquiferous systems of
different sponge groups is the microenvironment support-
ing choanocyte proliferation and differentiation [184, 185],
resembling the Hydra status. Thus, different classes of a
phylum (e.g., Porifera) may present state A, B, or both A
and B SCN states within their body. It should also be
noted that recent research on cell atlases from various in-
vertebrate taxa, including the demosponge Spongilla
lacustris [186], Hydra [95], the hermatypic coral Stylo-
phora pistillata [187], the planarian Schmidtea mediterra-
nea [188], and the trematode Schistosoma mansoni [189],
while revealing broad and detailed lists of cell types within
each studied invertebrate species, did not elucidate any
cell type that was suggested nor assigned to a stem cell
niche, further supporting the notion for the absence of
“classical” stem cell niches in states A and B, in organisms
that differ in several key characters (Table 2).
The third class of a niche state (state C) is present in

those animals that possess spatially confined (and
interaction-rich) ASC niches, primarily mammals and
insects [190–192] and possibly in transient putative
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SCNs of some tunicate species [24]. In those cases,
spatially confined ASCs and transient SCNs niches, their
composition, relative distribution of cells, and the extra-
cellular matrix are fundamental to ensure both the
maintenance of the stem cell stage and the regulation of
their differentiation (in time and response to specific
needs). Some clear examples have been described in tis-
sues such as the gut, epithelium, or neural, where spe-
cific pools of tissue-restricted stem cells supply cells for
renewal or homeostasis (for details, e.g., [4]). Here, the
cells in the SCNs interact with the ASCs through local
and systemic regulators (e.g., hormones), which intro-
duce an additional level of complexity. Regulation of
stem cells (somatic or germinal) by hormones has been

reported in few marine/aquatic invertebrates, notably
the annelid Platynereis dumerilii [193, 194]. These three
types of SCN states are most likely linked to the different
nature of the stem cells in each animal group. Processes
such as regeneration or sexual reproduction have a clear
impact on the way that stem cells and their microenviron-
ments are constructed and regulated. The increasing com-
plexity of niches (from states A to C) may reflect different
levels of constraints or greater lineage flexibility in the
ASCs supported by these microenvironments.
The three different niche states (Fig. 3) have been

assigned based on the current literature, further expand-
ing the SCN concept for different contexts and animals,
including the model organisms. The C state, presents as

Fig. 3 A conceptual ideograph representing the three distinct architectures for the stem cell niche notion in metazoans. A, B, and C refer to
three structurally defined states assigned to describe the progressively complex architecture of niches and their cognate locations in an animal’s
body. State A represents statuses with no connatural niche, where individual cells bear stem cell properties in their own existence, and cell fates
are regulated through interactions with abutting cells. A cellular example that fills this criterion is: CTVT = canine transmissible venereal tumor.
State B extends conceptual niches to the level of the whole tissue or the whole animal, which, by abductive reasoning, provide the appropriate
habitat and foundation for the numerous SCs that reside and proliferate within a permanently existing niche holograph. The State C prototype
epitomizes the well-structured and enduring model SCNs (typical of vertebrates) along with cases of ephemeral SCNs. Transitory niches = niches
that are functional for a short period of time (about 1 or 2 weeks in botryllid ascidians), prior to ASCs departing the SCN—in concert with SCN
degradation—and moving through vasculature to newly developed SCNs. Note that although sponges are presented here within the state A
category, different clades bear state A and B architectures
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a well-structured SCN (e.g., [56, 195, 196]), is the perfect
domicile for tightly regulated stemness statuses where
stem cells may home and undergo education processes,
such as the education of stromal cells by infiltrating
tumor cells, an important step in metastatic
colonization, as preventing de novo niche formation rep-
resents a strategy in treating of metastatic disease [197].
Moreover, SCNs state C target scenarios where ASCs
are rare and, in these cases, ASCs are tightly regulated
via direct cell-cell interactions (and highly conserved cell
adhesion receptors [198];) and via the molecular signals
emitting from the niche [199]. Typical examples are the
vertebrates’ tissue-specific SCNs, where a very tight and
spatially localized control mechanisms prevent other
ASC and their progenitors to participate (e.g., [200]).
The colonial ascidian transient niche depicts a special
case where the whole soma is regularly replaced on a
weekly basis [79, 148], necessitating the continuous

recurring of SCNs. State B SCNs embody statuses where
ASC numbers go beyond a capacity threshold to create
distinct SCNs and regulation of stemness statuses is sys-
tematically orchestrated (at the tissue level such in
Hydra (e.g., [77, 89])) or the whole animal level, such as
in flatworms (e.g., [116, 201]). Both B and A SCN states
confine cases associated with high regeneration power
(up to whole-body regeneration; e.g., [80, 124, 155,
202]), with the capacity of bodily fission and where the
germ line is not sequestered (no need for specific som-
atic or germ niche sites). The state A SCNs (part of the
sponge ASCs and the allogeneic tumor cells) further ex-
emplify stemness statuses where each one of the ASCs
sustains its own self-regulation network.
As specified, the three SCN stages, while distinctively

presenting various architectures and properties (Table 1,
Fig. 3), may reveal only a portion of the SCN repertoire
existing among taxa (not yet evaluated), or even within

Table 1 Traits and properties assigned to the three distinct niche states

Property/trait A B C

Structural support No, ASCs are niche-like independent
entities

No, whole tissue/organism
consideration

Yes, spatially confined

Maintenance and
regulation of ASCs

At the level of each specific ASC Loosely- on the whole
organ/tissue/organism level

Tight

Cell-cell interactions Stochastic, local interactions Stochastic- on the whole
organ/tissue/organism level

ASCs interact with specific niche
cells (adhesive interactions)

Cell- environment interactions Indistinguishable between somatic
cells and ASCs

Stochastic- on the whole
organ/tissue/organism level

ASCs interact with specific cues
from the environment

Physiological cues Indistinguishable between somatic
cells and ASCs

Stochastic- on the whole
organ/tissue/organism level

Yes

Trophic support No Unknown Yes

topographical features No No Yes

Niche functionality No No Yes

ASC fates Independent to any specific
microenvironment

Independent to any specific
microenvironment

Linked with their homing niche

ASCs- cell cycle modifications Stochastic Stochastic Specified to niches

Regulation At the ASC level At the entire organism/tissue levels At the niche level

Peak potency of ASCs Totipotency and pluripotency Totipotency and pluripotency Multipotency (few cases of
pluripotency)

Table 2 Key characteristics distinguishing A and B SCN states

Character State A State B

Stemness Pluripotent at most Totipotent (developing the soma/germ cell lineages).

Regulation At the SC level At the entire organism/whole tissue levels

Niche architecture No. niche. Each ASC may sustain its own
private self-regulation intimate environment

The entire organism/whole tissue constructions

Level of molecular pursuit Self-regulating (cancer cells, archaeocytes,
choanocytes)

Systemic

Motility of cells Highly motile Restricted motility

Distribution Random (archaeocytes, cancer cells) More ordered in the animal milieu (sponge choanocytes,
pinacocytes, I-cells in Hydra, neoblasts in flatworms)
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the same animal, altogether suggesting evolutionary
highly evolved SCN assemblies. Even the model organ-
isms present SCN prototypes that differ, within the same
organism, from the well-studied SCN type A, Ecdy-
sozoan midgut ASCs as the mammalians muscle satellite
cells, brain stem cells, liver stem cells, and mesenchymal
stem cells do not follow the SCN type A paradigm of
the bone marrow and ecydsozoan germ SCNs (e.g., [69,
203, 204]). In the same way, archaeocytes in Demospon-
giae [173] fall within the ASC state A domain, and cho-
anocytes in the Hexactinellida [165] would be included
within the B ASC state.

Future perspectives
Here we review SCNs through the lens of “model verte-
brates” and ecdysozoan “model invertebrates” together
with non-model marine/aquatic invertebrates. From its
inception, the term “SC niche” [9] has highlighted this
“entity” as an extremely confined environmental (ana-
tomical) site that supports the maintenance and eventual
differentiation of SCs. This conception, which was based
on hematopoietic system studies, was further supported
by results obtained from SCNs in other organs and vari-
ous model organisms, all of which appeared, at onset, to
be surprisingly simple in structure [15]. With time, the
“niche” concept has evolved to include the cellular com-
ponents of the microenvironment surrounding stem
cells and the molecular and hormonal signals emanating
from various cells that interact with and regulate the
stem cells.
To better understand the components involved in the

normal physiology of niches, it becomes necessary to
widen our knowledge of where and how SCs reside and
interact with their microenvironment. Such an approach
would imply sampling of additional, as yet unstudied
taxa, from which SCNs will have to be described. The
literature on SCNs in additional aquatic and marine or-
ganisms that has been accumulated over the last years
help illuminate modes of SCN types, structures, and or-
ganizations that differ from those revealed from the
established “model” systems. Based on the SCN descrip-
tions provided in this manuscript, it is evident that our
current understanding of the structure and function of
SCNs across the animal kingdom is still very fragmen-
tary, with open questions regarding niche architectures
that may result from our limitations in experimental ap-
proaches (such as identifying the stem cells) and the lim-
ited numbers of taxa studied. Following the proposed
conceptual notion that SCNs are shaped by natural se-
lection forces that amalgamate niche architectures and
constructions along a continuum of structural/functional
properties, we envision three scientific approaches to
study the structural/functional properties presented by
various SCNs:

1- The architecture/state of the niche. The spatial
relationships of cells, tissues, and ECM components
around harboring stem cells in a specific niche need
to be mapped in detail. Certainly not all
components (or cells) in the neighborhood would
be active components of the niche, though we should
define what are the 3D disposition of those (when
existing) before elucidating how they are interacting
with the stem cells. A putative avenue that some of
us are using is to perform 3D reconstruction using
(automated) serial TEM methods in stem cell
homing areas ([205]; Martinez, unpublished). The
procedures allow cellular (and subcellular)
resolutions and detailed mapping of cells and cell
interactions within the “putative” niche.

2- The molecular components of the niche. The
classical methodologies employed for uncovering
molecular players within SCNs include mutagenesis,
immunochemical, and in situ hybridization. Yet,
culturing of stem cells outside the organism
provides a new avenue for testing candidate genes
and gene products, whether using targeted
candidates, generalized molecular screens of single-
cell transcriptomes. Nowadays, the major stumbling
block is the lack of cell cultures and cell lines from
either marine/aquatic invertebrate species [206],
and in particular, the lack of any stem cell culture.
While promising recent avenues, like the primary
cultures of planarian neoblasts (Lei et al, 2019,
Biorxiv; preprint), are encouraging, it should be
noted that in vitro approaches are incapable in
recapitulating the temporal and spatial niche sig-
naling. In vertebrate models, this obstacle is be-
ing addressed by the use of new cell culture
methodologies that employ microfabrication, with
microfluidics and photolithography as major de-
velopments. The encapsulation of stem cells in
miniaturized structures allows the configuration
of high-throughput analyses of stem cell niche
candidates, like regulatory factors (reviewed in
[207, 208]), and the opportunity to engineer and
control individual niche components, further
multiplexing by hybrid devices that simultan-
eously provide macroscopic and microscopic con-
trol over the niche and the stem cells fate.

A related approach relies on employing 3D culture
systems (collectively called spheroids), which better mir-
ror in vivo situations. Spheroids further allow an im-
proved characterization of factors crucially acting at
microenvironment levels, the roles of culture composi-
tions and conditions in the maintenance of stem cell
populations, thus allowing the follow-up of gene expres-
sion in different areas of the spheroid (e.g., [209]).
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3- Expression profiling with spatial resolution. The
combination of single-cell transcriptomics and the
fine-resolution mapping of gene profiles (or clus-
ters) in different cell types within a tissue (termed
Spatial Transcriptomics) allows an unprecedented
analysis of spatial domains of expression of many
genes. Of particular relevance is the use of spatial
transcriptomics in fetal tissues, where stem cells
and their neighbors are recognized by specific gene
expression profiles [210]. An alternative to spatial
transcriptomics is the use of partially dissociated
cells, followed by multiplet sequencing (CIM-
seq), a method that allows to identify expression
profiles with single-cell resolution after computa-
tional deconvolution of profiles associated to
these groups of cells. This approach has success-
fully identified the molecular landscape of stem
neighboring cells [211].

The above technologies, mostly employed in mam-
malian studies, can be added to the methodological
tool-box for elucidating the architectural disposition
and gene regulation, in space and time, of ASCs in
aquatic/marine invertebrates. Yet, any particular study
should also consider the variable morphological struc-
tures, as well as the different life strategies repre-
sented by the wide range of marine invertebrates, that
may further bear conceptual and methodological limi-
tations for clarifying the full account of SCN types.
The literature already attests (e.g., [5]) that SCNs are
configured differently in many invertebrate taxa and
are dramatically unalike to the vertebrates. In many
aquatic and marine environments, animals commonly
utilize ASCs as “regenerative building blocks” for cop-
ing with hostile environments or for a wide range of
asexual reproduction strategies, integrating the com-
monly available ASCs as participants in addition to
the long-established homeostasis functions. This most
probably contributed to the less constrained and
structurally defined SCNs in so many marine/aquatic
invertebrates.
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