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ON POISSON TRANSFORMS FOR DIFFERENTIAL FORMS ON

REAL HYPERBOLIC SPACES

SALEM BENSAÏD, ABDELHAMID BOUSSEJRA, AND KHALID KOUFANY

Abstract. We study the Poisson transform for differential forms on the real
hyperbolic space Hn. For 1 < r < ∞, we prove that the Poisson transform
is a topological isomorphism from the space of Lr differential q-forms on the
boundary ∂Hn onto a Hardy-type subspace of p-eigenforms of the Hodge-de
Rham Laplacian on Hn, for 0 ≤ p < n−1

2
and q ∈ {p− 1, p}.
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1. Introduction

Let G/K be a Riemannian symmetric space of non-compact type. For each
parabolic subgroup P of G there exists a natural Poisson transform from the
space of C∞-functions on G/P to space of analytic functions on G/K.

When the parabolic P is minimal, one of the main problem stated by Helgason
[12] claims that all eigenfunctions of G-invariant differential operators on G/K are
obtained as Poisson transforms of hyperfunctions on the Furstenberg boundary
G/P . This conjecture was proved by Helgason when G/K is of rank one, and in
full generality by Kashiwara et al. [16]. Since then, this problem has received a lot
of attention by many people in different settings (see, e.g., [2–6,14,18,19,23,26]).

A natural extension of this problem is to investigate the analogous of Helgason’s
claim for Poisson transforms for homogeneous vector bundles over G/K (see,
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2 SALEM BENSAÏD, ABDELHAMID BOUSSEJRA, AND KHALID KOUFANY

e.g., [8, 9, 11, 15, 20–22, 25, 28, 32]). One of the most interesting vector bundles is
the bundle of differential forms on G/K. In this paper we consider the vector
bundle of differential forms on the real hyperbolic space.

Let Hn = G/K be the real hyperbolic space realized as the open unit ball in
Rn, where G = SOo(n, 1) and K ' SO(n). Its boundary ∂Hn is the unit sphere
Sn−1. As a homogeneous space, we have ∂Hn = G/P , where P = MAN . Here
M ' SO(n− 1), A ' R and N ' Rn−1.

For 0 ≤ p ≤ n, let τp be the p-th exterior power of the coadjoint representation
of K on Vτp = ΛpCn. Then the space C∞(ΛpHn) of smooth p-forms on Hn can be
identified with the space C∞(G/K; τp) of Vτp-valued smooth functions on G that
are right covariant of type τp.

Throughout this paper we will assume that 0 ≤ p < n−1
2 (for this choice of p

see Section 2). Then the decomposition of τp restricted to M is τp|M = σp−1⊕σp,
where σq is q-th exterior power of the coadjoint representation of M on Vσq =

ΛqCn−1, with q ∈ {p− 1, p}.
Let a be the Lie algebra of A, and identify its complexified dual a∗C with C.

For λ ∈ C, we consider the irreducible representation σq,λ of P = MAN given

by σq,λ(matn) = σq(m)e(ρ−iλ)t, where ρ = n−1
2 . Let Eq,λ be the corresponding

homogeneous vector bundle over ∂Hn. We identify its space of hyperfunction
sections with the space C−ω(G/P ;σq,λ) of all Vσq -valued hyperfunctions f on G
such that

f(gmatn) = e(iλ−ρ)tσq(m
−1)f(g) ∀g ∈ G, ∀m ∈M, ∀n ∈ N, ∀at ∈ A.

For q ∈ {p− 1, p}, let ιpq be the natural embedding of Vσq into Vτp . Notice that
ιpq ∈ HomM (Vσq , Vτp). Then we can define a Poisson transform

Ppq,λ : C−ω(G/P ;σq,λ)→ C∞(ΛpHn)

by

Ppq,λf(g) =

√
dim τp
dimσq

∫
K
τp(k)ιpq(f(gk))dk, g ∈ G.

We mention that Ep,λ can be seen as the vector bundle G×P Vσp⊗E [ρ−iλ], where
σp is extended to a representation of P , and E [ρ−iλ] is the density line bundle over

the character matn 7→ e(ρ−iλ)t of P . Sections of the above bundle are q-hyperforms

with value in E [ρ− iλ]. In view of this observation, Ppp,λ =
√

dim τp
dimσp

Φρ−iλ
p , where

Φρ−iλ
p is the Poisson transform considered in [8].
Let ∆ = d d∗ + d∗ d be the Hodge-de Rham Laplacian, where d : C∞(ΛpHn)→

C∞(Λp+1Hn) is the differential and d∗ is the codifferential (the adjoint of d which
is defined by the hyperbolic metric).

For λ ∈ C, denote by C∞q,λ(ΛpHn) the space of all ω ∈ C∞(ΛpHn) which are
closed if q = p − 1 and co-closed if q = p, with the additional condition ∆ω =
(λ2 + (ρ − q)2)ω. It was proved in [9], that for 0 ≤ p < (n − 1)/2 , the Poisson
transforms Ppq,λ, q = p− 1, p provide the following isomorphisms:

(i) Ppp,λ : C−ω(G/P ;σp,λ)→ C∞p,λ(ΛpHn) iff iλ /∈ {−ρ+ p} ∪ (Z≤0 − ρ),

and
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(ii) Ppp−1,λ : C−ω(G/P ;σp−1,λ)→ C∞p−1,λ(ΛpHn) iff iλ /∈ {ρ−p+1}∪(Z≤0−ρ).

Now, let C−ω(K/M ;σq) be the space of Vσq -valued hyperfunctions f on K

satisfying f(km) = σq(m
−1)f(k), for all k ∈ K,m ∈ M . By the Iwasawa decom-

position, the restriction map f 7→ f|K gives an isomorphism from C−ω(G/P ;σq,λ)

onto C−ω(K/M ;σq). Via this isomorphism we can define the Poisson transform
from C−ω(K/M ;σq) into C∞q,λ(ΛpHn). To state our main result, let us introduce
further notation.

For 1 < r < ∞, let Lr(K/M ;σq) be the space of Vσq -valued functions f on K
which are covariant of type σq, and such that

‖f‖Lr(K/M ;σq) =

(∫
K
‖ f(k) ‖rΛqCn−1 dk

) 1
r

<∞.

The space Lr(K/M ;σq) is identified with the space of Lr differential q-forms on
the boundary ∂Hn = K/M . From above, it follows that the Poisson transform
Ppq,λ maps Lr(K/M ;σq) into the space C∞q,λ(ΛpHn).

The goal of this paper is to characterize those eigenforms in C∞q,λ(ΛpHn) which

are Poisson transforms of elements in Lr(K/M ;σq), for 1 < r < ∞. To this end
we introduce the Hardy type space Erq,λ(G/K; τp) of all F in C∞q,λ(ΛpHn) such that

‖ F ‖Erq,λ := sup
t>0

e(ρ−<(iλ))t

(∫
K
‖ F (kat) ‖rΛpCn dk

) 1
r

<∞,

where we have identified C∞(ΛpHn) with C∞(G/K; τp).
We pin down that throughout the paper we will often view p-forms in C∞(ΛpHn)

as functions in C∞(G/K; τp) and vice-versa.
Our main result is the following:

Theorem A (see Theorem 6.1). Let 0 ≤ p < (n − 1)/2 be an integer and q ∈
{p− 1, p}. Assume λ ∈ C such that{

<(iλ) > 0 if q = p,

<(iλ) > 0 and iλ 6= ρ− p+ 1 if q = p− 1.

The Poisson transform Ppq,λ is a topological isomorphism of the space Lr(K/M ;σq)

onto the space Erq,λ(G/K; τp). Moreover, there exists a positive constant γλ such
that

|cq(λ, p)| ‖f‖Lr(K/M ;σq) ≤

√
dimσq
dim τp

‖Ppq,λf‖Erq,λ ≤ γλ‖f‖Lr(K/M ;σq),

for every f ∈ Lr(K/M ;σq).

Above, cq(λ, p) (q = p−1, p) denote the scalar components of the vector-valued
Harish-Chandra c-function c(λ, p). We refer the reader to (4.2) for the integral
representation of c(λ, p). The explicit expressions of cq(λ, p) will be given in
Proposition 4.6.

As an immediate consequence of Theorem A we obtain when q = p and iλ =
ρ − p (the harmonic case) a characterization of co-closed harmonic p-forms, see
Corollary 6.2. Furthermore, if in addition p = 0, we recover the classical fact
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that the Poisson transform is an isometric isomorphism from Lr(∂Hn) onto the
Hardy-harmonic space on Hn (see [27]).

Our strategy in proving Theorem A is to begin with the case r = 2. The most
difficult part is to prove the sufficiency condition. Let us give a short outline of
its proof. Let F ∈ E2

q,λ(G/K; τp), then we show the existence of a functional T

on C∞(G/P ;σq,λ) such that F = P̃pq,λ(T ) 1 (Proposition 5.1). To prove that T is

indeed in L2 we need to establish the asymptotic behavior of certain Eisenstein
type integrals (see (5.8), (5.9)). To this end we prove a Fatou-type theorem
(Theorem 4.3),

lim
t→∞

e(ρ−iλ)tPpq,λf(kat) =

√
dim τp
dimσq

c(λ, p)ιpq(f(k)),

in Lr(K,ΛpCn), for every f ∈ Lr(K/M ;σq).
Let us mention that instead of Proposition 5.1 we might use the result of

Gaillard, stated in Proposition 3.2 below, to ensure the existence of a hyperform
f ∈ C−ω(G/P ;σq,λ) such that F = Ppq,λf . We would prefer to keep our argument

because it is potentially useful in studying Poisson transform on vector bundles
over symmetric spaces of non-compact type.

To establish Theorem A for every 1 < r < ∞, we prove that any F ∈
Erq,λ(G/K; τp) can be approximated by a sequence (Fm)m in E2

q,λ(G/K; τp). Us-
ing the first part of our result which corresponds to r = 2, we can deduce that
there exists fm ∈ L2(K/M ;σq) such that Fm = Ppq,λ(fm). By an L2-inversion

formula of the Poisson transform (Theorem 5.5) we conclude that fm is indeed in
Lr(K/M ;σq). Henceforth the linear form

Tm(ϕ) =

∫
K
〈fm(k), ϕ(k)〉ΛqCn−1dk,

is uniformly bounded on Ls(K/M ;σq), with 1
r + 1

s = 1. Thanks to Banach-
Alaouglu-Bourbaki theorem, there exists a subsequence of bounded operators
(Tmj )j which converges to a bounded operator T under the weak-? topology. Thus
by Riesz representation theorem, we conclude that there exists f ∈ Lr(K/M ;σq)
such that F = Ppq,λf .

The paper is organized as follows. Section 2 contains notations and background
material for later use. In particular we recall some materials on differential forms
on Hn and ∂Hn = Sn−1 as sections of specific vector bundles. Section 3 is devoted
to the definition of the Poisson transform Ppq,λ on the space of differential forms

on Sn−1. In Section 4 we prove a Fatou type theorem for Ppq,λ, which will be

of particular use to find the explicit expression of the Harish-Chandra c-function
appearing in Theorem A. The Fatou type theorem will essentially play a crucial
role in Section 5 where we prove Theorem A for the case r = 2. Section 5 contains
also an L2-inversion formula for the Poisson transform. These results will allow
us in Section 6 to prove Theorem A for every 1 < r <∞.

1The parameter λ in Yang [32] corresponds in our notation to iλ.
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2. Background

2.1. The real hyperbolic space. Let Hn = Hn(R) be the real hyperbolic space
of dimension n ≥ 2 realized as the open unit ball Bn in Rn. Let G = SOo(n, 1)
be the connected component of the identity of the group of all linear transforms
of Rn+1 with determinant 1 keeping invariant the Lorentzian quadratic form

[x,x] = x2
1 + · · ·+ x2

n − x2
n+1, x = (x1, · · · , xn, xn+1).

Then the group G acts transitively on Bn by fractional transformations and as a
homogeneous space we have the identification Hn = G/K, where K = SO(n), the
isotropy subgroup of 0 ∈ Bn, is a maximal compact subgroup of G.

Let g = so(n, 1) and k = so(n) be the Lie algebras of G and K, respectively. Let
as usual g = k⊕ p be the Cartan decomposition of g. The subspace p is identified
with the tangent space To(G/K) ' Rn of G/K = Hn at the origin o = eK.

Put

H0 =

0 0 1
0 0n−1 0
1 0 0

 ∈ p,

then a = RH0 is a maximal abelian subspace of p, and the corresponding analytic
Lie subgroup A of G is parametrized by

at = exp(tH0) =

cosh t 0 sinh t
0 In−1 0

sinh t 0 cosh t

 , t ∈ R.

Let

n =


 0 y 0
−yT 0n−1 yT

0 y 0

 , y ∈ Rn−1

 ' Rn−1,

so that g = k ⊕ a ⊕ n is the Iwasawa decomposition of g. Here yT stands for the
transpose of a vector y ∈ Rn−1.

Let N = exp(n) be the connected Lie subgroup of G having n as Lie algebra.
According to the Iwasawa decomposition G = KAN , every element g ∈ G can be
uniquely written as

g = κ(g)eH(g)n,

where κ(g) ∈ K, H(g) ∈ a and n ∈ N .
Let ρ be the half sum of positive roots of (g, a). Then ρ(H0) = n−1

2 and we will
write ρ = ρ(H0).

Let P = MAN be the standard minimal parabolic subgroup of G, where M is
the centralizer of A in K given by

1 0 0
0 m 0
0 0 1

 : m ∈ SO(n− 1)

 ' SO(n− 1).

Then G/P = K/M may be identified with the unit sphere Sn−1 in Rn.
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2.2. Differential forms on Hn and Sn−1. Let 〈·, ·〉 be the standard Euclidean
scalar product in Rn. Let (e1, e2, . . . , en) be the standard orthonormal basis of Rn
and denote (e∗1, e

∗
2, . . . , e

∗
n) its dual basis.

For an integer p with 0 ≤ p ≤ n, let Λp(Cn)∗ = Λp(Rn)∗ ⊗ C be the space of
complex-valued alternating multilinear p-forms on Rn. A basis of Λp(Cn)∗ is given
by set of

e∗I := e∗i1 ∧ · · · ∧ e
∗
ip where

{
I = {i1, · · · , ip},
1 ≤ i1 < · · · < ip ≤ n.

The interior product ιvω of a p-form ω with a vector v ∈ Rn is the (p − 1)-form
defined on the given basis by

ιej (e
∗
i1 ∧ · · · ∧ e

∗
ip) =

{
0 if j 6= any ir

(−1)r−1e∗i1 ∧ · · · ∧ ê
∗
ir
∧ · · · ∧ e∗ip if j = ir

where ̂ over e∗ir means that it is deleted from the exterior product.
For a given v ∈ Rn, the exterior product εvω of a p-form ω with the linear form

v∗ is the (p+ 1)-form defined by

εvω = v∗ ∧ ω.

For the reader’s convenience and to keep the notations simple, we will identify
(Cn)∗ with Cn and Λp(Cn)∗ with ΛpCn.

We define an inner product 〈·, ·〉ΛpCn on ΛpCn as an extension of the one on Cn
by setting

〈v1 ∧ · · · vp, w1 ∧ · · ·wp〉ΛpCn = det(〈vi, wj〉)i,j . (2.1)

It is easy to show that the basis of ΛpCn consisting of the p-vectors eI := ei1 ∧
· · · ∧ eip (where I = {i1, · · · , ip}, with 1 ≤ i1 < · · · < ip ≤ n) is an orthonormal
basis of ΛpCn with respect to (2.1). We have further the useful identity

〈ιvω, ξ〉Λp−1Cn = 〈ω, εvξ〉ΛpCn , v ∈ Rn, ω ∈ ΛpCn, ξ ∈ Λp−1Cn. (2.2)

For 0 ≤ p ≤ n, we let τp to be the p-exterior product ΛpAd∗ of the coad-
joint representation of K = SO(n) on p∗C. Its representation space being Vτp :=
Λp(gC/kC)∗ ' ΛpCn. Notice that τp is unitary with respect to the inner product
(2.1), and is equivalent to the standard representation of K on ΛpCn. By [7]
or [13], the representation τp is irreducible for p 6= n

2 (n even), while τn
2

=

τ+
n
2
⊕ τ−n

2
. The two factors τ±n

2
being irreducible, inequivalent and act on the

following eigenspaces of the Hodge star operator ?,

Λ±n
2
Cn = {w ∈ Λ

n
2Cn : ?w = µ±w},

where µ± = ±1 if n
2 is even and µ± = ±i if n

2 is odd. Since the Hodge operator
? induces the equivalence τp ' τn−p, we will restrict our attention to the case
0 ≤ p < n

2 , without loss of generality.
For 0 ≤ q ≤ n − 1, let σq be the standard representation of M ' SO(n − 1)

on Vσq = ΛqCn−1. It is an irreducible representation for q 6= n−1
2 , and as before

σn−1
2

= σ+
n−1
2

⊕ σ−n−1
2

.
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Lemma 2.1 (See, e.g. [1,13]). Let τp|M be the restriction of τp to M ' SO(n−1).

Then τp|M decomposes into inequivalent factors as follow :

1) For p = 0, τp|M = σp.

2) For 0 < p < n−1
2 ,

τp|M = σp−1 ⊕ σp with

ΛpCn = e1 ∧ Λp−1Cn−1 ⊕ ΛpCn−1 ' Λp−1Cn−1 ⊕ ΛpCn−1. (2.3)

3) For p = n−1
2 , τp|M = σp−1 ⊕ σ+

p ⊕ σ−p .

4) For p = n
2 , τp|M = 2σp−1 ∼ 2σp.

Henceforth, we will assume along this paper that 0 ≤ p < n−1
2 (we say p

generic).

Remark 2.2. (1) In the decomposition (2.3) we have identified Cn−1 with span{e2, · · · , en}.
The isomorphism (2.3) follows from the SO(n− 1)-equivariance of the decompo-
sition

ω = e1 ∧ ω′ + ω′′ with ω′ ∈ Λp−1Cn−1 and ω′′ ∈ ΛpCn−1

for any ω ∈ ΛpCn.
(2) The scalar products on ΛqCn−1, q ∈ {p − 1, p}, are induced from the one

on ΛpCn defined in (2.1).
(3) For q ∈ {p−1, p}, we will consider the following natural isometric embedding

ιpq : Vσq = ΛqCn−1 → Vτp = ΛpCn. (2.4)

Notice that ιpq ∈ HomM (Vσq , Vτp) and it is given by

ιpp−1 : Λp−1Cn−1 → e1 ∧ Λp−1Cn−1 ⊕ ΛpCn−1

ξ 7→ e1 ∧ ξ + 0

and
ιpp : ΛpCn−1 → e1 ∧ Λp−1Cn−1 ⊕ ΛpCn−1

ξ 7→ 0 + ξ

In particular, for any ω, ω′ ∈ Λp−1Cn−1,

〈ω, ω′〉Λp−1Cn−1 = 〈e1 ∧ ω, e1 ∧ ω′〉ΛpCn

(4) For q ∈ {p− 1, p}, let πqp denotes the natural projection

πqp : Vτp → Vσq .

Then one can see from (2.2) that (πqp)∗ = ιpq .

3. Poisson transform on differential forms

In this section we shall define the Poisson transform for differential forms on
∂Hn. We will follow the definition of Okamoto [21], see also Minemura [20],
Yang [32], Juhl [15], Van der ven [28], Olbrich [22] and Pedon [24, 25]. There is
also another approach to define the differential forms-valued Poisson transforms
initiated by Gaillard [8] and generalized by Harrach [11].
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Let G×K Vτp be the homogeneous vector bundle over G/K associated with τp.
The space of its smooth sections is identified with

C∞(G/K; τp) =
{
f : G→ Vτpsmooth | f(gk) = τp(k

−1)f(g) ∀g ∈ G, ∀k ∈ K
}
.

As a homogeneous vector bundle, we have ΛpHn := Λp T ∗CHn = G ×K Vτp and
therfore we identify the space C∞(ΛpHn) of its smooth sections (i.e., smooth
differential p-forms on Hn) with the space C∞(G/K; τp).

Consider the exterior differentiation operator d : C∞(ΛpHn) → C∞(Λp+1Hn)

and the co-differentiation d∗ = (−1)n(p+1)+1 ? d ? : C∞(ΛpHn) → C∞(Λp−1Hn).
Let ∆ = dd∗+ d∗d be the Hodge-de Rham Laplacian on C∞(ΛHn). Let D(ΛpHn)
be the algebra of G-invariant differential operators acting on C∞(ΛpHn). Its
known by [10] that for generic p, D(ΛpHn) is a commutative algebra generated
by dd∗ and d∗d.

Next, we shall describe the eigenforms for differential operators in D(ΛpHn) by
means of Poisson transforms.

For q ∈ {p−1, p} and λ ∈ C, we consider the following irreducible representation
of P = MAN,

σq,λ : matn 7→ σq(m)e(ρ−iλ)t

Let Eq,λ be the homogeneous vector bundle over ∂Hn corresponding to σq,λ. We
denote by C−ω(∂Hn;Eq,λ) the space of its hyperfunction sections and we identify
it with the space C−ω(G/P ;σq,λ) of Vq-valued hyperfunctions φ on G such that

f(gmatn) = e(iλ−ρ)tσq(m
−1)f(g)

for all g ∈ G,m ∈M,n ∈ N, at ∈ A. Then, define the Poisson transform

Ppq,λ : C−ω(G/P ;σq,λ)→ C∞(ΛpHn)

by

Ppq,λf(g) = cp,q

∫
K
τp(k)ιpq(f(gk))dk, g ∈ G,

where ιpq is the embedding given by (2.4), dk denotes the normalized Haar measure
on K, and where the constant factor cp,q is given by

cp,q =

√
dim τp
dimσq

=


√

n
n−p if q = p,√
n
p if q = p− 1.

(3.1)

Let us mention that for q = p, Ep,λ can be seen as the vector bundle G ×P
Vσp ⊗ E [ρ − iλ], where σp is extended to a representation of P and E [ρ − iλ] is

the density line bundle associated to the character matn 7→ e(ρ−iλ)t of P. Then
C−ω(∂Hn;Ep,λ) can be viewed as the space of p-hyperforms on ∂Hn with value in

E [ρ−iλ]. In view of this observation, Ppp,λ = cp,pΦ
ρ−iλ
p , where Φρ−iλ

p is the Poisson

transform considered in [8]. When iλ = ρ−p (which corresponds to the harmonic
case, see below) the space C−ω(∂Hn;Ep,−i(ρ−p)) consists of p-hyeprforms with
value in E [p].

By the Iwasawa decomposition, the restriction map of f 7→ f|K gives an iso-

morphism from C−ω(G/P ;σq,λ) onto the space C−ω(K/M ;σq) of Vq-valued hy-
perfunctions f on K satisfying f(km) = σq(m

−1)f(k), for all k ∈ K,m ∈M .
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In this compact model, the Poisson transform

Ppq,λ : C−ω(K/M ;σq)→ C∞(ΛpHn)

takes the form

Ppq,λf(g) = cp,q

∫
K

e−(iλ+ρ)H(g−1k)τp(κ(g−1k))ιpq(f(gk))dk, g ∈ G.

Below, we shall give the explicit action of the algebra D(ΛpHn) on the Poisson
transform of elements in C−ω(K/M ;σq). The following result is due to Gaillard
[8, 9], see also Pedon [25].

Proposition 3.1. For f ∈ C−ω(K/M ;σq) with q ∈ {p− 1, p}, we have

d∗Ppp,λ(f) = 0, dPpp−1,λ(f) = 0,

d∗dPpp,λ(f) = (λ2 + (ρ− p)2)Ppp,λ(f), dd∗Ppp−1,λ(f) = (λ2 + (ρ− p+ 1)2)Ppp−1,λ(f).

For a character χ : D(ΛpHn)→ C, let Eχ(ΛpHn) be the corresponding eigenspace,

Eχ(ΛpHn) := {f ∈ C∞(ΛpHn) | Df = χ(D)f, ∀D ∈ D(ΛpHn)}.

Put χ(∆) = γ and suppose γ 6= 0. Similarly, denote χ(dd∗) = γ1 and χ(d∗d) = γ2.
Consider the eigenspace

Eγ(ΛpHn) := {f ∈ C∞(ΛpHn) | ∆f = γf}.

Since (d∗d)(dd∗) = 0, we have γ1γ2 = 0. As γ 6= 0 and γ = γ1 + γ2, therefore, we
have either (γ1 = 0 and γ2 = γ) or (γ2 = 0 and γ1 = γ). We denote χ by χ1 in
the first case and by χ2 the second case. Thus,

Eγ(ΛpHn) = Eχ1(ΛpHn)⊕ Eχ2(ΛpHn).

In view of Proposition 3.1, we deduce that γ1 = λ2 +(ρ−p+1)2, γ2 = λ2 +(ρ−p)2

and

Eχ1(ΛpHn) =

{
f ∈ C∞(ΛpHn) |

{
∆f = (λ2 + (ρ− p)2)f

d∗f = 0

}
,

Eχ2(ΛpHn) =

{
f ∈ C∞(ΛpHn) |

{
∆f = (λ2 + (ρ− p+ 1)2)f

df = 0

}
.

Under the identification C∞(ΛpHn) ' C∞(G/K; τp), we let D, D∗ and −C to be
the counterpart of d, d∗ and ∆ acting on C∞(G/K; τp), given by

D =
∑
j

XjεXj , D∗ = −
∑
j

XjιXj , C =
∑
j

X2
j −

∑
j

Y 2
j , (3.2)

where (Xi) and (Yi) are orthonormal 2 bases of p and k respectively. Thus, the
spaces Eχ1(ΛpHn) and Eχ2(ΛpHn) are identified respectively with

2with respect to the normalized Killing form 1
2(n−1)

B
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Ep,λ(G/K; τp) =

{
f ∈ C∞(G/K; τp) |

{
Cf = −(λ2 + (ρ− p)2)f

D∗f = 0

}
, (3.3)

Ep−1,λ(G/K; τp) =

{
f ∈ C∞(G/K; τp) |

{
Cf = −(λ2 + (ρ− p+ 1)2)f

Df = 0

}
.(3.4)

Notice that C is the Casimir operator of g acting on C∞(G/K; τp).

Proposition 3.2 (see [9]). Let 0 ≤ p < (n − 1)/2, q ∈ {p − 1, p} and let λ ∈ C
such that {

iλ /∈ {−ρ+ p} ∪ (Z≤0 − ρ) if q = p,

iλ /∈ {ρ− p+ 1} ∪ (Z≤0 − ρ) if q = p− 1.

The Poisson transform Ppq,λ is a topological isomorphism from the space C−ω(K/M ;σq)

onto the space Eq,λ(G/K; τp).

We point out that the above statement was stated in [15] for q = p and n even.
For 1 < r < ∞, we denote by Lr(K/M ;σq) the space of ΛqCn−1-valued func-

tions on K which are covariant of type σq, i.e.,

f(km) = σq(m
−1)f(k), ∀k ∈ K, ∀m ∈M,

and such that

‖f‖Lr(K/M ;σq) :=

(∫
K
‖ f(k) ‖rΛqCn−1 dk

) 1
r

<∞.

Note that, for any F : K → ΛκCN we have∥∥∥∥∫
K
F (k)dk

∥∥∥∥
ΛκCN

≤
∫
K
‖F (k)‖ΛκCNdk. (3.5)

From above, it follows that the Poisson transform Ppq,λ maps Lr(K/M ;σq)

into Eq,λ(G/K; τp). Our aim is to characterize the exact image of the space
Lr(K/M ;σq) by the Poisson transform Ppq,λ for generic p and q ∈ {p− 1, p}.

4. Fatou-type theorem and the Harish-Chandra c-function

For λ ∈ C, generic p, and q ∈ {p − 1, p}, we define for 1 < r < ∞, the space
Erq,λ(G/K; τp) to be the subspace of all F in Eq,λ(G/K; τp) for which

‖ F ‖Erq,λ := sup
t>0

e(ρ−<(iλ))t

(∫
K
‖ F (kat) ‖rΛpCn dk

) 1
r

is finite.

Proposition 4.1. For every λ ∈ C with <(iλ) > 0, there exists a positive constant
γλ such that, for any f ∈ Lr(K/M ;σq) we have(∫

K
‖Ppq,λf(kat)‖rΛpCndk

)1/r

≤ γλcp,q e(<(iλ)−ρ)t‖f‖Lr(K/M ;σq). (4.1)
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Proof. By (3.5) we have

‖ Ppq,λf(kat) ‖ΛpCn

≤ cp,q
∫
K

e−(<(iλ)+ρ)H(a−1
t k−1h) ‖ τp(κ(a−1

t k−1h)ιpq(f(h)) ‖ΛpCn dh

≤ cp,q
∫
K

e−(<(iλ)+ρ)H(a−1
t k−1h) ‖ ιpq(f(h)) ‖ΛpCn dh,

where the last inequality follows from the unitarity of τp. Since ιpq is an isometric
embedding, we can deduce that

‖ Ppq,λf(kat) ‖ΛpCn ≤ cp,q

∫
K

e−(<(iλ)+ρ)H(a−1
t k−1h) ‖ f(h) ‖ΛqCn−1 dh

= cp,q eλ,t(·) ∗ ‖ f(·) ‖ΛqCn−1 (k),

where eλ,t(k) = e−(<(iλ)+ρ)H(a−1
t k−1), and ∗ is the convolution over K. Therefore,

by Young’s inequality, we obtain(∫
K
‖ Ppq,λf(kat) ‖rΛpCn dk

)1/r

≤ cp,q ‖ eλ,t ‖L1(K/M ;σq)‖ f ‖Lr(K/M ;σq) .

Further,

‖ eλ,t ‖L1(K/M ;σq)=

∫
K

e−(<(iλ)+ρ)H(a−1
t k−1)dk = φ

(ρ− 1
2
,− 1

2
)

−i<(iλ) (t),

where φ
(α,β)
ν is the Jacobi function, see (4.7). Since <(iλ) > 0, by (4.8) we have

φ
(ρ− 1

2
,− 1

2
)

−i<(iλ) (t) = e(<(iλ)−ρ)t
(
cρ− 1

2
,− 1

2
(−i<(iλ)) + o(1)

)
as t→∞,

where cρ− 1
2
,− 1

2
(−i<(iλ)) is given by (4.9). This proves the estimate (4.1) and

consequently that the Poisson transform is continuous from Lr(K/M ;σq) into
Erq,λ(G/K; τp).

�

Let N̄ = θ(N), where θ is the Cartan involution of G. For λ ∈ C and 0 ≤ p <
n−1

2 , define the generalized Harish-Chandra c-function by

c(λ, p) =

∫
N̄

e−(iλ+ρ)H(n)τp(κ(n))dn ∈ End(ΛpCn). (4.2)

Here dn̄ is the Haar measure on N̄ with the normalization∫
N̄

e−2ρ(H(n̄))dn̄ = 1.

The integral (4.2) converges for λ such that <(iλ) > 0 and has a meromor-
phic continuation to C (see, e.g. [31]). Since the restriction c(λ, p)|Vσq commutes

with σq, then by Schur’s lemma, there exists a complex scalar cq(λ, p) such that
c(λ, p)|Vσq = cq(λ, p)IdΛqCn−1 . Therefore,

c(λ, p) = cp−1(λ, p)IdΛp−1Cn−1 + cp(λ, p)IdΛpCn−1 . (4.3)
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In [29], an explicit expression of cp−1(λ, p) and cp(λ, p) are given by a direct
computation of the integral (4.2). However, below in Proposition 4.6, we will
recover their expressions by using a different approach.

The following lemma is needed for later use.

Lemma 4.2. (1) For every v ∈ Vσq ,
‖c(λ, p)ιpq(v)‖ΛpCn = |cq(λ, p)|‖v‖ΛqCn−1 . (4.4)

(2) For every linear operator L form a vector space V to Vσq ,

‖c(λ, p)ιpqL‖HS = |cq(λ, p)|‖L‖HS, (4.5)

Proof. Using Remark 2.2, the first statement follows directly from

c(λ, p)ιpq(v) =

{
cp−1(λ, p)e1 ∧ v, q = p− 1

cp(λ, p)v, q = p.

On the other hand,

‖c(λ, p)ιpqL‖2HS = tr
(
(c(λ, p)ιpqL)∗(c(λ, p)ιpqL)

)
= tr

(
L∗(πqpc(λ, p)∗c(λ, p)ιpq)L

)
.

Notice that πqpc(λ, p)∗c(λ, p)ιpq ∈ EndM(Vσq), (hence is scalar). By (4.3), we
deduce that

c(λ, p)∗c(λ, p) =

(
|cp−1(λ, p)|2IdΛp−1Cn−1 0

0 |cp(λ, p)|2IdΛpCn−1

)
.

Thus πqpc(λ, p)∗c(λ, p)ιpq = |cq(λ, p)|2IdΛqCn−1 , and this proves the second state-
ment. �

Theorem 4.3. Let λ ∈ C such that <(iλ) > 0. Then

lim
t→∞

e(ρ−iλ)tPpq,λf(kat) = cp,qc(λ, p)ιpq(f(k)),

(i) uniformly for f ∈ C∞(K/M ;σq),
(ii) in the Lr(K; ΛpCn)-sens, for every f ∈ Lr(K/M ;σq).

Proof. The statement (i) has been proved earlier, see for instance [28] and [32].
(ii) Let f ∈ Lr(K/M ;σq) and ε > 0. By density argument, there exists a K-

finite vector ϕ in C∞(K/M ;σq) such that ‖f−ϕ‖Lr(K/M ;σq) < ε. Put ptλ(f)(k) =

Ppq,λf(kat), then

‖e−(iλ−ρ)tptλ(f)(k)− cp,qc(λ, p)ιpqf(k)‖rΛpCn ≤ ‖e−(iλ−ρ)tptλ(f − ϕ)(k)‖rΛpCn
+‖e−(iλ−ρ)tptλ(ϕ)(k)− cp,qc(λ, p)ιpqϕ(k)‖rΛpCn
+crpq‖c(λ, p)ιpqϕ(k)− c(λ, p)ιpqf(k)‖rΛpCn .

From Proposition 4.1 we obtain∫
K
‖e−(iλ−ρ)tptλ(f − ϕ)(k)‖rΛpCndk ≤ γrλcrp,q‖f − ϕ‖rLr(K/M ;σq)

,

and form part (i) above it follows that

lim
t→∞

∫
K
‖e−(iλ−ρ)tptλ(ϕ)(k)− cp,qc(λ, p)ιpqϕ(k)‖ΛpCndk = 0.
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Further, according to (4.4) we obtain∫
K
‖c(λ, p)ιpqϕ(k)− c(λ, p)ιpqf(k)‖rΛpCndk ≤ |cq(λ, p)|r‖f − ϕ‖rLr(K/M ;σq)

.

In conclusion we have

lim
t→∞

∫
K
‖e−(iλ−ρ)tptλ(f)(k)− cp,qc(λ, p)ιpqf(k)‖rΛpCndk ≤ εrcrp,q(γrλ + |cq(λ, p)|r),

and this proves the desired statement. �

The following inequalities are crucial.

Proposition 4.4. For every λ ∈ C such that <(iλ) > 0, there exists a positive
constant γλ such that for all f ∈ Lr(K/M ;σq), 1 < r <∞, we have

cp,q|cq(λ, p)|‖f‖Lr(K/M ;σq) ≤ ‖P
p
q,λf‖Erq,λ ≤ cp,q γλ‖f‖Lr(K/M ;σq). (4.6)

Proof. The right-hand side inequality is noting but the estimate (4.1). For the
left-hand side inequality, by Theorem 4.3[(ii)], there exists a sequence (tj)j with
tj →∞ such that

lim
j→∞

‖e(ρ−iλ)tjPpq,λf(katj )‖ΛpCn = ‖cp,q c(λ, p)ιpq(f(k))‖ΛpCn

almost every where in K. Consequently, by the classical Fatou theorem and (4.4)
we get

crp,q|cq(λ, p)|r
∫
K
‖f(k)‖rΛqCn−1dk ≤ sup

j
er<(ρ−iλ)tj

∫
K
‖ptjλ (f)(k)‖rΛpCndk,

which implies

cp,q|cq(λ, p)| ‖f‖Lr(K/M ;σq) ≤ ‖P
p
q,λf‖Erq,λ .

�

In the rest of this section we will see how the asymptotic behavior formula given
in Theorem 4.3 will allows us to give explicitly the Harish-Chandra c-function

c(λ, p) =

∫
N

e−(iλ+ρ)H(n)τp(κ(n))dn.

To this aim, recall the Jacobi functions, see, e.g. [17],

φ
(α,β)
λ (t) = 2F1

(
iλ+ α+ β + 1

2
,
−iλ+ α+ β + 1

2
;α+ 1;− sinh2 t

)
, (4.7)

with <(α+1) > 0 and 2F1 is the classical hypergeometric function. We shall need
the following asymptotic behavior of Jacobi functions,

φ
(α,β)
λ (t) = e(iλ−α−β−1)t(cα,β(λ) + o(1)) as t→∞ (4.8)

for <(iλ) > 0, where

cα,β(λ) =
2α+β+1−iλΓ(α+ 1)Γ(iλ)

Γ
(
iλ+α+β+1

2

)
Γ
(
iλ+α−β+1

2

) . (4.9)
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A continuous function F : G→ End(Vτp) is called elementary τp-spherical if F
satisfies

(i) (τp-radial function) F (k1gk2) = τp(k2)−1F (g)τp(k
−1
1 ), ∀g ∈ G, ∀k1, k2 ∈

K,
(ii) F is a joint-eigenfunction of all D ∈ D(G/K; τp) with F (e) = Id.

A τp-radial function F : G→ End(Vτp) (i.e. satisfying (i)) is determined by its
restriction F|A to the subgroup A of G. Since A and M commute, F|A becomes
an M -morphism of Vτp = ΛpCn. Now, in the generic case, τp|M is multiplicity

free, therefore by Schur’s lemma, F|A is scalar on each M -irreducible component

Vσp = ΛpCn−1 and Vσp−1 = Λp−1Cn−1. Thus

F|A(at) = fp−1(t)IdΛp−1Cn−1 + fp(t)IdΛpCn−1 ,

the coefficients fp−1 and fp are called the scalar components of F .
For λ ∈ C, we define the Eisenstein integral Φp

q(λ, g) ∈ End(Vτp) by

Φp
q(λ, g) = c2

p,q

∫
K

e−(iλ+ρ)H(g−1k)τp(κ(g−1k))ιpq(π
q
p(τp(k)−1))dk. (4.10)

Proposition 4.5 (see [25, Theorem 5.4]). Assume that 0 ≤ p < n−1
2 .

(1) The set {Φp
q(λ, ·), q = p − 1, p;λ ∈ C \ {±1}} exhausts the class of τp-

elementary spherical functions.
(2) The scalar components ϕq,p−1(λ, t), ϕq,p(λ, t) of Φp

q(λ, at) are given by

Φp
p(λ, at) :

ϕp,p−1(λ, t) = φ
(n
2
,− 1

2
)

λ (t),

ϕp,p(λ, t) = n
n−pφ

(n
2
−1,− 1

2
)

λ (t)− p
n−p(cosh t)φ

(n
2
,− 1

2
)

λ (t),
(4.11)

and

Φp
p−1(λ, at) :

ϕp−1,p−1(λ, t) = n
pφ

(n
2
−1,− 1

2
)

λ (t)− n−p
p (cosh t)φ

(n
2
,− 1

2
)

λ (t),

ϕp−1,p(λ, t) = φ
(n
2
,− 1

2
)

λ (t).
(4.12)

For q ∈ {p− 1, p}, let us introduce the notation ρq = ρ− q = n−1
2 − q.

Proposition 4.6. Let λ ∈ C such that <(iλ) > 0. The generalized Harish-
Chandra c-function is given by

c(λ, p) = cp−1(λ, p)IdΛp−1Cn−1 + cp(λ, p)IdΛpCn−1 ,

where the scalar coefficients are explicitly given by

cp−1(λ, p) =
iλ− ρp−1

iλ+ ρ
c(λ),

and

cp(λ, p) =
iλ+ ρp
iλ+ ρ

c(λ),

with

c(λ) = 2ρ−iλ
Γ(iλ)Γ

(
ρ+ 1

2

)
Γ
(
iλ+ρ

2

)
Γ
(
iλ+ρ+1

2

) .
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Proof. Let λ ∈ C such that <(iλ) > 0. Since

Φp
q(λ, kat) = Ppq,λ

(
cp,qπ

q
p(τ(k−1))

)
(at),

Theorem 4.3 implies

Φp
q(λ, at) = c2

p,qc(λ, p)e(iλ−ρ)t
(
πqp + o(1)

)
as t→∞, (4.13)

with

c2
p,q =

{
n
n−p if q = p,
n
p if q = p− 1.

Let us first consider the case q = p. Using the asymptotic behavior of Jacobi
functions (4.8) together with the relation

cn
2
,− 1

2
(λ) =

2n

iλ+ ρ
cn

2
−1,− 1

2
(λ),

we obtain

ϕp,p(λ, t) =
t→∞

1

n− p
e(iλ−ρ)t

(
ncn

2
−1,− 1

2
(λ)− p

2
cn

2
,− 1

2
(λ) + o(1)

)
,

=
t→∞

e(iλ−ρ)t n

n− p
cn

2
−1,− 1

2
(λ)

(
iλ+ ρ− p
iλ+ ρ

+ o(1)

)
.

Similarly, we get

ϕp,p−1(λ, t) =
t→∞

e(iλ−ρ−1)t
(
cn

2
,− 1

2
(λ) + o(1)

)
.

Thus

Φp
p(λ, at) = e(iλ−ρ−1)t

(
cn

2
,− 1

2
(λ) + o(1)

)
IdΛp−1Cn−1

+ e(iλ−ρ)t n

n− p
cn

2
−1,− 1

2
(λ)

(
iλ+ ρ− p
iλ+ ρ

+ o(1)

)
IdΛpCn−1 ,

from which we deduce that

lim
t→∞

e(ρ−iλ)tΦp
p(λ, at) =

n

n− p

(
iλ+ ρ− p
iλ+ ρ

)
cn

2
−1,− 1

2
(λ)IdΛpCn−1 . (4.14)

Finally, by identification of (4.13) and (4.14) it follows that

cp(λ, p) =
iλ+ ρ− p
iλ+ ρ

cn
2
−1,− 1

2
(λ) =

iλ+ ρ− p
iλ+ ρ

c(λ).

Similarly, for q = p− 1 we can prove that

lim
t→∞

e(iλ−ρ)tΦp
p−1(λ, at) =

n

p

(
iλ− ρ+ p− 1

iλ+ ρ

)
cn

2
−1,− 1

2
(λ)IdΛp−1Cn−1 ,

from which we deduce that

cp−1(λ, p) =
iλ− ρ+ p− 1

iλ+ ρ
cn

2
−1,− 1

2
(λ) =

iλ− ρ+ p− 1

iλ+ ρ
c(λ).

�
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5. The L2-range of the Poisson transform

Recall that our main goal is to characterize the image of the space Lr(K/M ;σq)
under the Poisson transform Ppq,λ, for 1 < r < ∞. To do so, we will start with

the case r = 2.
Fix σq ∈ M̂ acting on the space Vσq = ΛqCn−1 of dimension dσq . To simplify
notations, we will write sometimes (σ, Vσ) instead of (σq, Vσq).

Let (δ, Vδ) be an element in K̂(σ), where K̂(σ) ⊂ K̂ denotes the subset of those
classes containing σ upon restriction to K. It follows from Frobenius reciprocity
theorem together with [13] that σ occurs in δ|M with multiplicity one and therefore
dim HomM (Vδ, Vσ) = 1. We choose the orthogonal projection Pδ : Vδ → Vσ as a
generator of HomM (Vδ, Vσ).

let (vj)
dδ
j=1 be an orthonormal basis for Vδ, where dδ = dimVδ. Then the

functions

k 7→ φδj(k) = Pδ(δ(k
−1)vj), 1 ≤ j ≤ dδ, δ ∈ K̂(σ)

define an orthogonal basis of the space L2(K/M ;σq), see, e.g. [30]. Thus, the
Fourier expansion of every f ∈ L2(K/M ;σq) is given by

f(k) =
∑

δ∈K̂(σ)

dδ∑
j=1

aδjφ
δ
j(k),

with

‖ f ‖2L2(K/M ;σ)=
∑

δ∈K̂(σ)

dδ
dσ

dδ∑
j=1

| aδj |2 . (5.1)

Next, we will prove a general result giving the Poisson integral representation
of a joint eigensections of the algebra D(G/K; τp) of G-invariant differential op-
erators acting on C∞(G/K; τp).

By a functional on Eq,λ = G×PVσq we shall mean a linear form T on C∞(G/P ;σq,λ).

For a such functional T , we define P̃pq,λ(T ) by

〈v, P̃pq,λT (g)〉ΛpCn = cp,q(T, π
q
pLgΦλv), ∀v ∈ ΛpCn (5.2)

where Lg is the left regular action, and Φλ : G→ End(Vτp) is given by

Φλ(g) = e(iλ−ρ)H(g)τ−1
p (κ(g)). (5.3)

Notice that Φλ(g−1k)∗ = P pq,λ(g, k), where P pq,λ : G×K → End(Vτp) is the Poisson

kernel given by

P pq,λ(g, k) = e−(iλ+ρ)H(g−1k)τp(κ(g−1k)). (5.4)

If T = Tf is a functional given by f ∈ C∞(G/P ;σq,λ), then

P̃pq,λ(Tf ) = Ppq,λ(f). (5.5)
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Indeed,

〈v, P̃pq,λTf (g)〉ΛpCn = cp,q(T, π
q
pLgΦλv),

= cp,q

∫
K
〈f(k), πqpLgΦλ(k)v〉ΛqCn−1dk,

= cp,q

∫
K
〈f(k), πqpΦλ(g−1k)v〉ΛqCn−1dk,

= cp,q

∫
K
〈Φ∗λ(g−1k)ιpqf(k), v〉ΛpCndk,

= cp,q

∫
K
〈P pq,λ(g, k)ιpqf(k), v〉ΛpCndk,

= 〈v,Ppq,λf(g)〉ΛpCn .

Proposition 5.1. For every eigensection F of D(G/K; τp), there exists a func-

tional T on C∞(G/P ;σq,λ) such that F = P̃pq,λT .

Proof. Let F be an arbitrary joint eigensection of all D ∈ D(G/K; τp). Then F
has an expansion

F (g) =
∑

δ∈K̂(σ)

Fδ(g)

in C∞(G/K; τp). Since Fδ is K-finite of type δ, then, by [32, Corollary 10.8], there
exists a K-finite vector fδ in C∞(G/P ;σq,λ) such that Fδ = Ppq,λfδ. We have

fδ(k) =

dδ∑
j=1

aδjPδ(δ(k
−1)vj).

Define a functional T by

(T, ϕ) =
∑

δ∈K̂(σ)

dδ∑
j=1

aδj

∫
K
〈ϕ(k), Pδ(δ(k

−1)vj)〉ΛqCn−1 dk, (5.6)
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for all ϕ ∈ C∞(G/P ;σq,λ) for which the above sum converges. Choose ϕ in (5.6)

to be ϕ : k 7→ cp,qπ
q
p(Φλ(g−1k)w) with w ∈ Vτp , then we get

(T, ϕ) = cp,q
∑

δ∈K̂(σ)

dδ∑
j=1

aδj

∫
K

〈
πqpΦλ(g−1k)w,Pδ(δ(k

−1)vj)
〉

ΛqCn−1 dk,

= cp,q
∑
δ

∑
j

aδj

∫
K

〈
w,Φλ(g−1k)∗(πqp)

∗Pδ(δ(k
−1)vj)

〉
ΛpCn dk,

= cp,q
∑
δ

∑
j

aδj

∫
K

〈
w, e−(iλ+ρ)H(g−1k)τp(κ(g−1k))ιpqPδ(δ(k

−1)vj)
〉

ΛpCn
dk,

=
〈
w,
∑
δ

cp,q

∫
K

e−(iλ+ρ)H(g−1k)τp(κ(g−1k))ιpq
∑
j

aδjPδ(δ(k
−1)vj) dk

〉
ΛpCn ,

=
〈
w,

∑
δ∈K̂(σ)

Pqλ,pfδ(g)
〉

ΛpCn ,

=
〈
w,F (g)

〉
ΛpCn .

On the other hand, by the definition (5.2) of the Poisson transform on functionals,
we have

(T, cp,qπ
q
p(LgΦλw)) = 〈w, P̃pq,λT (g)〉ΛpCn ,

from which we deduce that F (g) = P̃pq,λT (g), since the vector w is arbitrary. �

Theorem 5.2. Assume that λ ∈ C such that{
<(iλ) > 0 if q = p,

<(iλ) > 0 and iλ 6= ρ− p+ 1 if q = p− 1.
(5.7)

The Poisson transform Ppq,λ is a topological isomorphism from the space L2(K/M ;σq)

onto the space E2
q,λ(G/K; τp). Moreover, there exists a positive constant γλ such

that

cp,q|cq(λ, p)|‖f‖L2(K/M ;σq) ≤ ‖P
p
q,λf‖E2q,λ ≤ cp,q γλ‖f‖L2(K/M ;σq),

for every f ∈ L2(K/M ;σq).

Proof. On one hand, by Proposition 3.2 and Proposition 4.4 it follows that Ppq,λ
is a continuous map from L2(K/M ;σq) into E2

q,λ(G/K; τp).

On the other hand, for F ∈ E2
q,λ(G/K; τp), by Proposition 5.1, there exists a

functional T on C∞(G/P ;σq,λ) defined by (5.6) such that F = P̃pq,λT . From the

proof of Proposition 5.1, it follows that

F (g) = cp,q
∑

δ∈K̂(σ)

dδ∑
j=1

aδj

∫
K

e−(iλ+ρ)H(g−1k)τp(κ(g−1k))ιpqPδ(δ(k
−1)vj)dk.

Define Φλ,δ by

Φλ,δ(g)(v) = cp,q

∫
K

e−(iλ+ρ)H(g−1k)τp(κ(g−1k))ιpqPδ(δ(k
−1)v)dk, (5.8)
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for g ∈ G and v ∈ Vδ. Clearly Φλ,δ(k1gk2) = τp(k
−1
2 )Φλ,δ(g)δ(k−1

1 ) for every g ∈ G
and k1, k2 ∈ K. Further∫
K
〈F (kat), F (kat)〉ΛpCndk =

∑
δ,δ′

∑
j,`

aδj a
δ′
`

∫
K
〈Φλ,δ(kat)vj ,Φλ,δ′(kat)v`〉ΛpCn dk.

By the covariance property and Schur’s lemma, we obtain∫
k
〈Φλ,δ(kat)vj ,Φλ,δ′(ka)v`〉ΛpCn dk =

∫
K
〈Φλ,δ′(at)

∗Φλ,δ(at)δ(k
−1)vj , δ

′(k−1)v`〉Vδ dk

=

{
0 if δ′ � δ
1
dδ

tr (Φλ,δ(at)
∗Φλ,δ(at)) 〈vj , v`〉Vδ otherwise

Thus ∫
K
‖ F (kat) ‖2ΛpCn dk =

∑
δ∈K̂(σ)

1

dδ

dδ∑
j=1

|aδj |2tr (Φλ,δ(at)
∗Φλ,δ(at)) ,

=
∑
δ

1

dδ
‖Φλ,δ(at)‖2HS

∑
j

|aδj |2,

where ‖ · ‖HS is the Hilbert-Schmidt norm. Hence, for a finite subset Λ ⊂ K̂(σ)
we get∑

δ∈Λ

1

dδ

∑
j

‖aδje(ρ−iλ)tΦλ,δ(at)‖2HS ≤ sup
t>0

e2(ρ−<(iλ))t

∫
K
‖ F (kat) ‖2ΛpCn dk,

= ‖F‖2E22,λ .

Under the assumption (5.7) we may use Theorem 4.3, i.e.,

lim
t→∞

e(ρ−iλ)tΦλ,δ(at) = cp,qc(λ, p)ιpqPδ, (5.9)

and (4.5) to obtain

c2
p,q|cq(λ, p)|2

∑
δ∈Λ

1

dδ

∑
j

‖aδjPδ‖2HS ≤ ‖F‖2E22,λ .

That is

c2
p,q|cq(λ, p)|2

∑
δ∈Λ

1

dδ

∑
j

dσ|aδj |2 ≤ ‖F‖2E22,λ .

Since the subset Λ ⊂ K̂(σ) is arbitrary, it follows that

c2
p,q|cq(λ, p)|2

∑
δ∈K̂(σ)

dσ
dδ

∑
j

| aδj |2≤‖ F ‖2E22,λ<∞.

This shows that the functional T (k) ∼
∑

δ∈K̂(σ)

∑dδ
j=1 a

δ
jPδδ(k

−1)vj defines a func-

tion f ∈ L2(K/M ;σ) and by (5.5), we deduce that F = Ppq,λf with

cp,q|cq(λ, p)| ‖ f ‖L2(K/M ;σ)≤‖ P
p
q,λf ‖E22,λ .

�
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Lemma 5.3. We have

sup
t>0

e(ρ−<(iλ))t‖Φλ,δ(at)‖HS ≤ γλcp,q‖Pδ‖HS = γλcp,q
√
dσ.

Proof. By Proposition 4.1 we have

sup
t>0

e(ρ−<(iλ))t

(∫
K
‖Ppq,λ(Pδ(δ

−1(·)v))(kat)‖2ΛpCndk

)1/2

≤ γλcp,q‖Pδ(δ−1(·)v)‖L2(K/M ;σq).

Since Ppq,λ(Pδ(δ
−1(·)v))(kat) = Φλ,δ(kat)(v), we get∫

K
‖Ppq,λ(Pδ(δ

−1(·)v)(kat))‖2ΛpCndk =

∫
K
〈Φλ,δ(at)δ(k

−1)v,Φλ,δ(at)δ(k
−1)v〉ΛpCn dk,

=
1

dδ
tr (Φλ,δ(at)

∗Φλ,δ(at)) ‖v‖2Vδ ,

=
1

dδ
‖Φλ,δ(at)‖2HS‖v‖2Vδ .

Now the desired inequality follows from

‖Pδ(δ−1(·)v)‖2L2(K/M ;σq)
=
dσ
dδ
‖v‖2Vδ .

�

Lemma 5.4. We have

lim
t→∞

e2(ρ−<(iλ))t‖Φλ,δ(at)‖2HS = c2
p,q|cq(λ, p)|2dσq ,

where cq(λ, p) is the scalar component of c(λ, p) on Vσq = ΛqCn−1.

Proof. Recall that Φλ,δ(at) = Ppq,λ(Pδ(δ
−1(·)))(at). Then

e2(ρ−<(iλ))t‖Φλ,δ(at)‖2HS =

dδ∑
j=1

‖e(ρ−<(iλ))tΦλ,δ(at)vj‖2ΛpCn ,

=

dδ∑
j=1

‖e(ρ−<(iλ))tPpq,λ(Pδ(δ
−1(·)vj))(at)‖2ΛpCn .

Using Theorem 4.3 and (4.5), we obtain

lim
t→∞

e2(ρ−<(iλ))t‖Φλ,δ(at)‖2HS = c2
p,q

dδ∑
j=1

〈c(λ, p)ipqPδvj , c(λ, p)ιpqPδvj〉ΛpCn .

= c2
p,q‖c(λ, p)ιpqPδ‖HS

= c2
p,q|cq(λ, p)|2dσq .

�

Theorem 5.5 (Inversion formula). Assume λ ∈ C such that{
<(iλ) > 0 if q = p,

<(iλ) > 0 and iλ 6= ρ− p+ 1 if q = p− 1.
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Let F ∈ E2
q,λ(G/K; τp) and let f ∈ L2(K/M ;σq) be its boundary value. Then the

following inversion formula holds in L2(K/M ;σq)

f(k) = c−1
p,q |cq(λ, p)|−2 lim

t→∞
e2(ρ−<(iλ))tπqp

(∫
K
P pq,λ(hat, k)∗F (hat) dh

)
,

where P pq,λ(·, ·) is the Poisson kernel given in (5.4).

Proof. Let F ∈ E2
q,λ(G/K; τp). By Theorem 5.2, there exists a unique f ∈

L2(K/M ;σq) such that F = Ppq,λf . Write

f(k) =
∑

δ∈K̂(σq)

dδ∑
j=1

aδjPδ(δ(k
−1))vj .

Then

F (kat) =
∑
δ

∑
j

aδjΦλ,δ(at)δ(k
−1)vj ,

and therefore ∫
K
‖F (kat)‖2ΛpCn dk =

∑
δ

∑
j

|aδj |2

dδ
‖Φλ,δ(at)‖2HS.

From Lemma 5.4 we deduce

lim
t→∞

e2(ρ−R(iλ))t

∫
K
‖Ppq,λf(kat)‖2ΛpCn dk = c2

p,q|cq(λ, p)|2‖f‖2L2(K/M ;σq)
,

which implies

lim
t→∞

(gt, ϕ)L2(K/M ;σq) = (f, ϕ)L2(K/M ;σq), ∀ϕ ∈ L2(K/M ;σq),

where gt is the Vσq -valued function defined by

gt(k) = c−1
p,q |cq(λ, p)|−2e2(ρ−<(iλ))tπqp

∫
K
P pq,λ(hat, k)∗F (hat) dh.

To obtain the inversion formula, it is only required to show that

lim
t→∞
‖gt‖L2(K/M ;σq) = ‖f‖L2(K/M ;σq).

To do so, let us first compute the Fourier coefficients cδj(gt) of gt:

cδj(gt) =
dδ
dσ

∫
K
〈gt(k), Pδδ(k

−1)vj〉ΛqCn−1 dk

= c−1
p,q |cq(λ, p)|−2e2(ρ−<(iλ))t

× dδ
dσ

∑
δ′,`

aδ
′
`

∫
K

〈
πqp

∫
K
P pq,λ(hat, k)∗Φλ,δ′(at)δ

′(h−1)v`dh, Pδδ(k
−1)vj

〉
ΛqCn−1 dk.
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Since (πqp)∗ = ιpq , we get

cδj(gt) = c−1
p,q |cq(λ, p)|−2e2(ρ−<(iλ))t

× dδ
dσ

∑
δ′,`

aδ
′
`

∫
K

∫
K

〈
Φλ,δ′(at)δ

′(h−1)v`, P
p
q,λ(hat, k)ιpqPδδ(k

−1)vj
〉

ΛpCn dhdk,

As

∫
K
P pq,λ(hat, k)ιpqPδδ(k

−1)dk = c−1
p,qΦλ,δ(hat), we obtain

cδj(gt) = c−2
p,q |cq(λ, p)|−2e2(ρ−<(iλ))t

× dδ
dσ

∑
δ′,`

aδ
′
`

∫
K
〈Φλ,δ′(at)δ

′(h−1)v`,Φλ,δ(at)δ(h
−1)vj〉ΛpCn dh,

= c−2
p,q |cq(λ, p)|−2e2(ρ−<(iλ))t

× dδ
dσ

∑
δ′,`

aδ
′
`

∫
K
〈δ(h)Φλ,δ(at)

∗Φλ,δ′(at)δ
′(h−1)v`, vj〉ΛpCn dh.

By the Schur lemma, we get

cδj(gt) = c−2
p,q |cq(λ, p)|−2e2(ρ−<(iλ))t

× dδ
dσ

∑
`

aδ`

∫
K

1

dδ
tr (Φλ,δ(at)

∗Φλ,δ(at)) 〈v`, vj〉Vδ dh,

= c−2
p,q |cq(λ, p)|−2e2(ρ−<(iλ))t 1

dσ
aδ
j
‖Φλ,δ(at)‖2HS.

From all the above computations, we conclude that,

‖gt‖2L2(K/M,σ) =
(

e2(ρ−<(iλ))t|cp,qcq(λ, p)|−2
)2∑

δ

dσ
dδ

∑
j

1

d2
σ

|aδj |2‖Φλ,δ(at)‖4HS,

and by Lemma 5.4 we get

lim
t→∞
‖gt‖2L2(K/M ;σ) =

∑
δ

dσ
dδ

∑
j

|aδj |2 = ‖f‖2L2(K/M ;σ).

To finish the proof, we have to justify that we can reverse limt→∞ and
∑

δ by
proving that the serie ∑

δ∈K̂(σ)

1

dδ

dδ∑
j=1

|aδj |2‖Φλ,δ(at)‖4HS,

is uniformly convergent. This follows easily from Lemma 5.3. �

6. The Lr-range of the Poisson transform

In this section we shall generalize Theorem 5.2 to Lr(K/M ;σq) with 1 < r <∞.

Theorem 6.1. Let 0 ≤ p < (n− 1)/2, and λ ∈ C such that{
<(iλ) > 0 if q = p,

<(iλ) > 0 and iλ 6= ρ− p+ 1 if q = p− 1.
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For 1 < r <∞, the Poisson transform Ppq,λ is a topological isomorphism from the

space Lr(K/M ;σq) onto the space Erq,λ(G/K; τp). Moreover, there exists a positive
constant γλ such that

cp,q|cq(λ, p)|‖f‖Lr(K/M ;σq) ≤ ‖P
p
q,λf‖Erq,λ ≤ cp,q γλ‖f‖Lr(K/M ;σq),

for every f ∈ Lr(K/M ;σq).

Proof. The necessary condition follows from Proposition 3.2 and Proposition 4.4.
For the sufficiency condition, let F ∈ Erq,λ(G/K; τp) and write F (g) =

∑
i Fi(g)ui

where (ui)i is an orthonormal basis of ΛpCn. Fix (χm)m to be an approximation
of the identity in C∞(K) and let Fi,m(g) =

∫
K χm(k)Fi(k

−1g)dk. Then (Fi,m)m
converges point-wise to Fi. Define Fm : G → ΛpCn by Fm(g) =

∑
i Fi,m(g)ui.

Then

Fm(g) =
∑
i

(∫
K
χm(k)Fi(k

−1g)dk

)
ui,

=

∫
K
χm(k)

∑
i

Fi(k
−1g)uidk,

=

∫
K
χm(k)F (k−1g)dk.

We have ‖Fm(g)− F (g)‖2ΛpCn → 0
m→∞

and since the operators C, D and D∗ in (3.2)

are K-invariant, then Fm ∈ Eq,λ(G/K; τp) for every m. Further,

Fm(kat) =

∫
K
χm(h)F (h−1kat)dh,

=
(
χm ∗ F t

)
(k),

where F t : K → ΛpCn is defined for any t > 0 by F t(k) = F (kat) for every F .
By (3.5) we have

‖(χm ∗ F t)(k)‖ΛpCn ≤
∫
K
|χm(h)|‖F t(h−1k)‖ΛpCndh,

that is

‖F tm(k)‖ΛpCn ≤
(
|χm(·)| ∗ ‖F t(·)‖ΛpCn

)
(k).

Therefore

‖F tm‖Lr(K;ΛpCn) ≤
∥∥|χm(·)| ∗ ‖F t(·)‖ΛpCn

∥∥
Lr(K)

.

By Young’s inequalities we obtain

‖F tm‖Lr(K;ΛpCn) ≤ ‖χm‖L1(K)

∥∥‖F t(·)‖ΛpCn∥∥Lr(K)
,

= ‖F t‖Lr(K;ΛpCn), (6.1)

and

‖F tm‖L2(K;ΛpCn) ≤ ‖χm‖L2(K)

∥∥‖F t(·)‖ΛpCn∥∥L1(K)
,

= ‖χm‖L2(K) ‖F t‖Lr(K;ΛpCn). (6.2)
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The inequality (6.2) implies

sup
t>0

e(ρ−<(iλ))t

(∫
K
‖Fm(kat)‖2ΛpCn

)1/2

≤ ‖χm‖L2(K)‖F‖Erq,λ <∞.

Hence, for each m, Fm ∈ E2
q,λ(G/K; τp) and from Theorem 5.2 it follows that

there exists fm ∈ L2(K/M ;σq) such that Fm = Ppq,λfm. To prove that fm ∈
Lr(K/M ;σq) we will follow the same method as in [5]. According to Theorem 5.5
we have, for any ϕ ∈ C∞(K/M ;σq),∫

K
〈fm(k), ϕ(k)〉ΛqCn−1dk = lim

t→∞

∫
K
〈gtm(k), ϕ(k)〉ΛqCn−1dk,

where

gtm(k) := c−2
p,q |cq(λ, p)|−2e2(ρ−<(iλ))tπqp

∫
K
Pλ(hat, k)∗Fm(hat)dh.

Further,∫
K
〈gtm(k), ϕ(k)〉ΛqCn−1dk

= c−2
p,q |cq(λ, p)|−2e2(ρ−<(iλ))t

∫
K
〈πqp
∫
K
Pλ(hat, k)∗Fm(hat)dh, ϕ(k)〉ΛqCn−1dk,

= c−2
p,q |cq(λ, p)|−2e2(ρ−<(iλ))t

∫
K

∫
K
〈Fm(hat), Pλ(hat, k)ipqϕ(k)dk〉ΛpCndh,

= c−3
p,q |cq(λ, p)|−2e2(ρ−<(iλ))t

∫
K
〈Fm(hat), (Ppq,λϕ)(hat)〉ΛpCndh.

It follows that∣∣∣∣∫
K
〈gtm(k), ϕ(k)〉ΛqCn−1dk

∣∣∣∣
≤ c−3

p,q |cq(λ, p)|−2e2(ρ−<(iλ))t

∫
K
‖Fm(hat)‖ΛpCn‖Ppq,λϕ(hat)‖ΛpCndh.

By Hölder’s inequality (with 1
r + 1

s = 1), we deduce∣∣∣∣∫
K
〈gtm(k), ϕ(k)〉ΛqCn−1dk

∣∣∣∣
≤ c−3

p,q |cq(λ, p)|−2e2(ρ−<(iλ))t‖F tm‖Lr(K;ΛpCn)‖(P
p
q,λϕ)t‖Ls(K;ΛpCn),

where (Ppq,λϕ)t(k) = (Ppq,λϕ)(kat). Using (6.1) and Proposition 4.1 we get∣∣∣∣∫
K
〈fm(k), ϕ(k)〉ΛqCn−1dk

∣∣∣∣ ≤ γλc
−2
p,q |cq(λ, p)|−2‖Fm‖Erq,λ‖ϕ‖Ls(K/M ;σq),

≤ γλc
−2
p,q |cq(λ, p)|−2‖F‖Erq,λ‖ϕ‖Ls(K/M ;σq).

By taking the supremum over all ϕ ∈ C∞(K/M ;σq) with ‖ϕ‖Ls(K/M ;σq) = 1 we
obtain

‖fm‖Lr(K/M ;σq) ≤ γλc
−2
p,q |cq(λ, p)|−2‖F‖Erq,λ ,

which implies fm, initially belongs to L2(K/M ;σq), is in fact in Lr(K/M ;σq).
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For every m, define the linear form Tm on Ls(K/M ;σq) by

Tm(ϕ) =

∫
K
〈fm(k), ϕ(k)〉ΛqCn−1dk.

Clearly, Tm is continuous and

|Tm(ϕ)| ≤ γλc
−2
p,q |cq(λ, p)|−2‖F‖Erq,λ‖ϕ‖Ls(K/M ;σq).

This shows that (Tm)m is uniformly bounded in Ls(K/M ;σq), with

sup
m
‖Tm‖op ≤ γλc−2

p,q |cq(λ, p)|−2‖F‖Erq,λ .

The Banach-Alaouglu-Bourbaki theorem will then ensures the existence of a sub-
sequence of bounded operators (Tmj ) which converges to a bounded operator T
under the weak-∗ topology, with

‖T‖op ≤ γλc−2
p,q |cq(λ, p)|−2‖F‖Erq,λ .

Thus, Riesz’s representation theorem guarantees the existence of a unique f ∈
Lr(K/M ;σq) such that

T (ϕ) =

∫
K
〈ϕ(k), f(k)〉ΛqCn−1dk.

By means of the Poisson kernel (5.4), we consider the test function ϕg(k) =
P pq,λ(g, k)v with v ∈ ΛpCn, then

T (ϕg) = 〈v,Ppq,λf(g)〉ΛpCn .

On the other hand

Tmj (ϕg) = 〈v,Ppq,λfmj (g)〉ΛpCn = 〈v, Fmj (g)〉ΛpCn .

Taking the limit of the above identity when j → ∞ we conclude that F (g) =
Ppq,λf(g) for every g ∈ G. �

As an immediate consequence of Theorem 6.1 we obtain the following charac-
terization of co-closed harmonic p-forms on Hn:

Corollary 6.2. Let p be an integer with 0 ≤ p < (n − 1)/2. For 1 < r <
∞, the Poisson transform Ppp,i(p−ρ) is a topological isomorphism from the space

Lr(K/M ;σp) onto the space Erp,i(p−ρ)(G/K; τp). Moreover, for every f ∈ Lr(K/M ; σp)

the following estimates hold,

2(ρ− p)
2ρ− p

cp(ρ)‖f‖Lr(K/M ;σp) ≤ ‖P
p
p,i(p−ρ)f‖Erp,i(p−ρ) ≤ cp(ρ)‖f‖Lr(K/M ;σp),

where

cp(ρ) = cp,p
2pΓ(ρ+ 1

2)Γ(ρ− p)
Γ(ρ− p

2)Γ(ρ− p
2 + 1

2)
.

In the case where p = 0, we recover the classical fact that the Poisson transform
is an isometric isomorphism from Lr(∂Hn) onto the Hardy-harmonic space on Hn
(see [27]).
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functions of invariant differential operators on a symmetric space. Ann. of Math. (2) 107
(1978), no. 1, 1–39. 1

[17] Koornwinder, Tom H., Jacobi functions and analysis on non-compact semisimple Lie groups.
Special functions: group theoretical aspects and applications, 1–85, Math. Appl., Reidel,
Dordrecht, 1984. 13

[18] Lewis, J.B., Eigenfunctions on symmetric spaces with distribution-valued boundary forms,
J. Funct. Anal. 29 (1978) 287–307. 1
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