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Abstract 7 

Recent progress in the field of enzyme-powered micro/nanoswimmers is summarized and 8 

discussed, covering different theoretical and mechanistic aspects, as well as potential 9 

applications. This is motivated by the increasing number of reports focusing on the design 10 

of biocompatible systems, able to move in complex environments and their potential use for 11 

biomedical applications. Motion is achieved by enzymatic reactions, enabling bubble-12 

propulsion and self-diffusiophoretic or self-electrophoretic displacement. Single- and 13 

multiple-enzyme-powered micro/nanoswimmers are presented as interesting and original 14 

systems for cargo delivery, the detection of various analytes and the biodegradation of 15 

complex organic molecules. 16 
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1. Introduction 18 

Smart biological systems in living organisms can transform chemical energy into 19 

mechanical action, and hence carry out precise tasks in confined spaces [1,2]. Inspired by 20 

such natural motors, artificial biomimetic systems that can transform different types of 21 

energy into mechanical motion, have been developed. These so-called 22 

micro/nanoswimmers have gained considerable attention due to their numerous potential 23 

applications, e.g., for sensing, cargo delivery, and environmental remediation. However, 24 

these artificial devices often suffer from the toxicity of their components (e.g. Al, Ga, Cu) 25 

or the employed fuels (e.g. acidic or alkaline solutions, H2O2), thus partially preventing 26 
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their use for biomedical applications, such as biorecognition, biosensing, imaging and 27 

nano-surgery. In order to circumvent these limitations, more recent studies suggested 28 

miniaturized engines based on enzymatic catalysts, providing unique characteristics such as 29 

biocompatibility of the swimmers and fuels, as well as adaptability to different 30 

environments. Such self-propelled enzymatic micro/nanoswimmers, powered by different 31 

enzymes, have been proposed for exciting potential applications e.g. active targeted drug 32 

delivery [3] or blood-brain barrier crossing [4], which might be important for transporting 33 

pharmaceutical compounds toward localized areas inside organs. The rational design of 34 

these swimmers, incorporating various enzymes, is a critical factor concerning their 35 

performance, in particular the efficiency of their motion in complex environments. Hence, 36 

swimmers with different shapes (spherical or tubular) and sizes (from 200 nm to 5 mm), 37 

decorated with single or multiple enzymes, have been developed [5•]. Among the different 38 

enzymes used to power motion of micro- and nano swimmers, two different enzymatic 39 

processes are mostly used. The first category is based on redox reactions like it is the case 40 

for glucose oxidase, catalase, bilirubin oxidase or peroxidase, whereas a second category 41 

employs hydrolysis reactions e.g. urease and lipase (Table 1). The present review aims to 42 

discuss the recent advances concerning the mechanisms of propulsion and the potential 43 

applications of single- and multiple-enzyme powered micro/nanoswimmers. In addition, 44 

this report especially focuses on devices where motion is achieved by enzymatic process 45 

based on redox reactions or fully triggered by electrochemical processes. 46 

Table 1. Representative enzymatic reactions used for the propulsion of micro and nanoswimmers. 47 

Enzymatic processes using redox reactions 

Enzyme Reaction 

Glucose oxidase (GOx) -D-Glucose               D-glucono-1,5-lactone 

Catalase               
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Bilirubin oxidase (BOD) ½                

Peroxidase                  

Enzymatic processes using hydrolysis reactions 

Urease                        

Lipase triglyceride       glycerol  fatty acids 

 48 

2. Single-enzyme-powered micro/nanoswimmers 49 

In the majority of the literature examples, the motion of single-enzyme-powered swimmers 50 

is achieved via bubble-propulsion or self-diffusiophoretic mechanisms. Self-propulsion 51 

allows decreasing mass transport limitations and enabling selective directional motion 52 

towards specific locations. These swimmers are mostly built by immobilizing various 53 

enzymes, such as urease [3,6-8], acetylcholinesterase, glucose oxidase, aldolase [9], 54 

catalase [10-12], and lipase [13,14] on a large variety of miniaturized objects with different 55 

architectures, by covalent binding, encapsulation, adsorption or drop-casting. For example, 56 

Schmidt, et al. designed hybrid Ti/Au-catalase micro-tubes, where motion is based on the 57 

enzymatic decomposition of H2O2 into water and oxygen (Figure 1a) [15•]. These devices 58 

move faster, and with higher efficiency at low H2O2 concentrations compared to those 59 

comprising a Pt catalyst. Recently, pH-responsive biocatalytic microswimmers were 60 

designed by assembling catalase and succinylated β-lactoglobulin in a zeolitic imidazolate 61 

framework-L (ZIF-L) (Figure 1b) [16•]. Motion control is achieved due to the pH-induced 62 

reversible gelation process of β-lactoglobulin. At neutral pH, β-lactoglobulin is permeable, 63 

enabling H2O2 to reach the enzymatic sites, causing motion due to a bubble propulsion 64 

mechanism. However, at slightly acidic pH, gelation occurs, blocking the access of fuel and 65 

stopping the motion. A similar principle was used to produce submarine-like 66 

microswimmers that use buoyancy forces to control vertical motion. In this case poly-(2-67 
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diisopropylamino)-ethyl methacrylate (PDPA) and catalase were incorporated into the ZIF-68 

L structure [17]. At neutral pH, the oxygen generated by the enzymatic reaction binds to the 69 

hydrophobic PDPA, leading to an ascending motion. In contrast, at slightly acidic pH, 70 

PDPA becomes hydrophilic, causing the release of oxygen, and consequently a sinking of 71 

the device. In a recent work, protein micro-tubes, functionalized with urease, exhibit self-72 

propulsion in the presence of urea, due to a concentration gradient established by the 73 

enzymatic reaction in the inner part of the tube [18] Motion of dissymmetric magnetic 74 

microparticles, asymmetrically modified with multilayers of biotinylated urease, has also 75 

been reported [19]. Most importantly, these devices move at physiological urea 76 

concentrations (10 mM) and in liquids with viscosities four times higher than the viscosity 77 

of water, which is important for future in vivo applications. Ma et al. synthesized hollow 78 

mesoporous SiO2 microspheres functionalized with urease at the sphere surface [20]. The 79 

resulting propulsion is due to the intrinsic asymmetry of the SiO2 spheres, generating ionic 80 

self-diffusiophoresis caused by the enzymatic decomposition of urea. An interesting 81 

alternative is the design of systems that can be triggered by different stimuli, thus 82 

facilitating motion in complex fluids. For example, lipase-modified dendritic 83 

silica/carbon/Pt dissymmetric nanoparticles can move either via self-diffusiophoresis or 84 

bubble propulsion, as well as self-thermophoresis (Figure 1c) [21]. In these devices, the Pt 85 

nanoparticles catalyze the disproportionation reaction of H2O2, the asymmetric 86 

photothermal effect of the carbon part causes a thermal gradient when irradiated with near-87 

infrared light, and lipase, loaded in the pores of the dendritic structure, decomposes a 88 

triglyceride, causing concentration gradients. Finally, Arnaboldi et al. developed hybrid 89 

bioelectrochemical swimmers, for which motion is achieved when coupling the 90 

spontaneous reduction of oxygen by bilirubin oxidase (BOD) with the enantioselective 91 
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oxidation of 3,4-dihydroxyphenylalanine (L- or D-DOPA) by inherently chiral oligomers 92 

((R)- or (S)-2,2′-bis[2-(5,2′-bithienyl)]-3,3′-bithianaphthene (oligo-BT2T4)) (Figure 1d) 93 

[22••]. Both, BOD and the enantiopure oligomers are immobilized on opposite extremities 94 

of a freestanding miniaturized polypyrrole film, thus allowing electron transfer between the 95 

cathodic and anodic sites. This electron transfer across the microswimmer is accompanied 96 

by a proton flux, resulting in self-electrophoretic propulsion. 97 

 98 

Figure 1. Schematic illustrations of different single-enzyme-powered 99 

micro/nanoswimmers. a) Open view of a hybrid biocatalytic micro-tube (left), and surface 100 

modification of the inner Au layer allowing the enzymatic decomposition of H2O2. Adapted 101 

from reference [15•]. b) Structure and propulsion mechanism of a biocatalytic 102 

microswimmer with pH-responsive on/off motion. Adapted from reference [16•]. c) Motion 103 

of a lipase-modified dendritic silica/carbon/Pt nanoparticles Janus-type swimmer, based on 104 

self-diffusiophoresis. Adapted from reference [21] d) Design of a hybrid 105 
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bioelectrochemical swimmer in an upside-down configuration at the air/water interface 106 

together with a representation of the mechanism of selective motion induced by proton flux. 107 

Adapted from reference [22••]. 108 

3. Multiple-enzyme-powered micro/nanoswimmers 109 

Multiple-enzyme-powered micro/nanoswimmers have been introduced (i) to achieve higher 110 

velocities via combining multiple propulsion mechanisms; (ii) to avoid toxic fuels, 111 

particularly H2O2; (iii) to facilitate the adaption to different environments; and (iv) to 112 

generate more functionalities. Hence, swimmers modified with different enzymes, 113 

promoting enzymatic domino reactions have been developed. [23•-28]. From a more 114 

historical point of view, Mano et al. decorated a carbon fiber with GOx/redox polymer I 115 

(RPI) as a glucose oxidizing microanode at one extremity, and BOD/RPII as an O2 116 

reducing microcathode at the other end (Figure 2a). In the presence of glucose, the electron 117 

flow Glucose → GOx → RPI → fiber → RPII → BOD → O2 is accompanied by an ion 118 

flow along the carbon fiber, resulting in its propulsion at the water/oxygen interface [29••]. 119 

Feringa, et al. designed swimmers based on multi-wall carbon nanotubes (MWCNTs), 120 

decorated with GOx and catalase to transform glucose into H2O2 and then to water and 121 

oxygen, respectively. Such domino reactions avoid the addition of H2O2 and hence lower 122 

the biotoxicity [30]. Following a similar elegant principle, Wilson et al. proposed bowl-123 

shaped polymeric systems with a narrow opening containing GOx and catalase enzymes 124 

(Figure 2b) [31•]. These systems not only prevent the hydrolysis of the protected enzymes, 125 

but also allows generating motion of the biocompatible swimmers in the presence of 126 

physiological amounts of glucose (Figures 2b-c) [32]. In another example, Ma et al. 127 

assembled a core-shell nanoswimmer utilizing metal-organic frameworks to promote 128 
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photodynamic therapy (PDT) and starvation therapy (ST) (Figure 2d). In the involved 129 

domino reaction, GOx initially catalyzes the decomposition of intracellular glucose to 130 

promote cell starvation and H2O2 generation, whereas catalase decomposes the generated 131 

H2O2, thus triggering motion and oxygen production, which promotes PDT [33]. An analog 132 

en y atic syste   as e pl yed by  t dler et al., based on Janus microswimmers 133 

decorated by enzymes only on one hemisphere (Figure 2e). The diffusion of these 134 

biocompatible swimmers is enhanced in the presence of glucose [34]. In a more recent 135 

study, He et al. elaborated a nanoswimmer powered by GOx and catalase, trapped in a 136 

carbonaceous nanoflask (CNF), moving in a glucose solution via a domino reaction 137 

mechanism[35], similar to previous studies (Figure 2f)[30-34]. In this work, it was 138 

demonstrated that changes in surface wettability (hydrophobicity or hydrophilicity) of the 139 

nanoswimmer can dictate the direction of motion [35]. In another study, a dissymmetric 140 

microparticle was proposed where one side included two enzymes, GOx and trypsin, which 141 

were working as independent engines using different fuels, namely glucose and 142 

bis(benzyloxycarbonyl-L-arginine amide) (Figure 2g). Both enzymes contribute to the 143 

enhanced diffusion of swimmers using biocompatible fuels [36]. Finally, Van Hest et al. 144 

reported swimmers with a shape similar to the one of Figure 2b, containing multiple 145 

enzymes, promoting several feedforward loops using various substrates to produce kinetic 146 

energy as the output of the enzymatic network (Figure 2h) [37••]. 147 
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 148 

Figure 2. Schematic illustrations of dual/multiple-enzyme-powered micro/nanoswimmers. 149 

a) The structure and propulsion of a carbon fiber decorated with GOx and BOD. Adapted 150 
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from reference [29••]. b) Biodegradable polymeric nanoswimmer encapsulating GOx and 151 

catalase. Adapted from reference [32]. c) Dual-enzyme (GOx-catalase) loaded 152 

supramolecular bowl-shaped nanoswimmer. Adapted from reference [31•]. d) Core-shell 153 

enzymatic nanoswimmer for synergetic photodynamic (PDT) and starvation therapy (ST). 154 

Adapted from reference [33]. e) Janus microswimmer with one hemisphere decorated with 155 

GOx and catalase. Adapted from reference [34]. f) Nanoswimmer powered by GOx and 156 

catalase trapped in a carbonaceous nanoflask (CNF). Adapted from reference [35]. g) Janus 157 

microswimmer decorated with GOx-Pt and trypsin. Adapted from reference [36]. h) 158 

Nanoswimmer containing four enzymatic cycles to convert glucose and 159 

phosphoenolpyruvate (PEP) into mechanical energy for the propulsion of the nanoparticle. 160 

Adapted from reference [37••]. 161 

4. Applications  162 

Enzyme-powered micro/nanoswimmers have gained considerable attention in sensing, 163 

cargo delivery [38], and bioremediation [39•]. The enzymatic degradation of azo-dye 164 

pollutants by using laccase-based poly-(3,4-ethylenedioxythiophene)-polypyrrole/Pt 165 

(PEDOT-PPy-COOH/Pt) tubular microswimmers has been reported [40•]. In this case, 166 

disproportionation of H2O2 on Pt, present in the inner part of the tubes, is used to produce 167 

motion, whereas, laccase is immobilized at the outer part of the swimmer in order to 168 

catalyze the oxidation of the azo-dye compounds. An interesting alternative is a design of 169 

“2 in 1” syste s,  here the en y atic reacti n enables the propulsion mechanism and 170 

catalyzes the decomposition of organic pollutants. For example, lipase-modified 171 

mesoporous silica nanoparticles present random-walk in triglyceride/PBS solutions [41]. 172 

As motion is triggered by the catalytic decomposition of triglycerides, causing a 173 
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concentration gradient, these devices can act as active cleaners of fully and partially soluble 174 

oils. In a recent study, PEDOT-Au/peroxidase microswimmers were used as dynamic 175 

catalytic systems for the removal of phenolic compounds, such as phenol, bisphenol A, 176 

guaiacol, pyrogallol and catechol [39•]. In these devices the immobilized peroxidase not 177 

only catalyzes the decomposition of H2O2 to form oxygen (bubble propulsion), but also 178 

degrades the phenolic compounds (Figure 3a). Different urease-powered pH-responsive 179 

swimmers have been designed for the delivery of chemotherapeutic agents and bioimaging 180 

probes [3,42,43]. Drug-loaded catalase-powered nanoswimmers have been used for local 181 

drug delivery against inflammations [44]. These devices present positive chemotaxis 182 

towards H2O2 concentration gradients, produced by phorbol ester-stimulated macrophages. 183 

Recently, catalase-powered Au-mesoporous silica nanoparticles, functionalized with 184 

disulfide-linked oligo-(ethylene glycol) chains, acting as Janus gatekeepers have been 185 

reported [45]. These devices exhibit motion via the catalytic decomposition of H2O2 and 186 

deliver their cargo upon recognition of a reducing agent (glutathione). Finally, enzyme-187 

powered swimmers, equipped with different transducers for pH, DNA, and biomarkers, 188 

have been used for sensing [46-48]. An interesting alternative is to take advantage of the 189 

on-off mode of light emission in the presence of a fluorescent molecule. For example, 190 

catalase-powered dissymmetric rods, functionalized with tetraphenylethene (TPE) 191 

derivatives and fluorescein isothiocyanate (FITC) as fluorophores, exhibit self-propulsion 192 

due to the enzymatic decomposition of H2O2, and fluorescence changes from blue to green 193 

after the capture of tumor cells [49]. Another approach is the use of the changes in the 194 

swimming behavior, i.e. trajectory or speed, to detect species of interest. For example, 195 

PEDOT/Au-catalase micro-tubes exhibit biocatalytic inhibition of the enzyme in the 196 

presence of chemical stress (e.g., heavy metals, pesticides and herbicides), which results in 197 
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a decrease of bubble production, directly detectable via their swimming behavior (Figure 198 

3b) [50•]. Recently, the directional control of self-electrophoretic BOD/Ppy/oligo-BT2T4 199 

swimmers has been demonstrated [22••]. Enantioselective clockwise or anti-clockwise 200 

motion is caused in this case by a site-specific proton flux associated with the oxidation of 201 

an enantiomer present in the solution (Figure 3c). In addition, the curvature of the track can 202 

be used for the direct visualization of the degree of enantiomeric excess in the solution. 203 

 204 

Figure 3. a) Scheme  f a “2 in 1” per xide-driven micromotor for bioremediation of 205 

phenolic pollutants. The active inner part of the swimmer catalyzes hydrogen peroxide 206 
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decomposition (propulsion) and the degradation of phenolic compounds by the 207 

immobilized peroxidase Adapted from reference [39•]. b) Normalized speed as a function 208 

of time for a PEDOT/Au-catalase micro-tube in the presence  f: 100 μM Hg (black square), 209 

0.6  M Cu (purple stars), 25 μM s diu  a ide (red circle), 625  M a in tria  le (blue 210 

triangle), and a control experiment without the toxins (green diamond). Inset: time-lapse 211 

i ages  f the  icr s i  er rec rded after 0 and 4  in s i  ing in a 100 μM Hg 212 

s luti n.  cale bar, 6.0 μm. Adapted from reference [50•]. c) Macroscopic enantiospecific 213 

motion of hybrid bioelectrochemical swimmers at the air/water interface of a solution 214 

containing 5 mM of D-DOPA (left) and 5 mM of L-DOPA (right). Adapted from reference 215 

[22••]. 216 

5. Conclusions and perspectives 217 

In this review, we have examined recent work in the field of enzyme-driven 218 

micro/nanoswimmers based on different propulsion mechanisms. In the case of single-219 

enzyme-powered swimmers, the enzymatic reaction triggers either the asymmetric release 220 

of bubbles or the self-generation of chemical or electric gradients, causing the propulsion of 221 

the devices. In contrast to this, in multiple-enzyme swimmers, a cascade of enzymatic 222 

reactions can generate motion based on bubble propulsion or self-electrophoresis. In 223 

addition, different applications of these devices are presented, where the enzymatic reaction 224 

is used either for the degradation of organic molecules or as analytical tools. These devices 225 

allow biomimetic self-propulsion, associated with improved biocompatibility, and efficient 226 

energy conversion. Their size and controlled trajectories might enable their use in different 227 

organs and cells. Nevertheless, there are still many issues to address, e.g. the toxicity of 228 

some fuels, the easy and direct visualization, the efficient biodegradability and the limited 229 
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life-time of the devices (recyclability). However, different approaches have been proposed 230 

to solve these problems, like modifying the shape, increasing the catalytic performance of 231 

the enzymes or using cascade reactions, and employing materials able to be digested 232 

completely by enzymes (e.g., proteases) or in biological media. Finally, the enzyme-based 233 

nanoswimmers, in particular those using redox reactions, have shown promises for 234 

biomedical applications. However, in order to develop drug delivery systems for “real 235 

  rld” in vivo applications, tiny robotic systems inspired by biological reactions in which 236 

robots and fuels are entirely biocompatible are mandatory and deserve additional research 237 

efforts. Furthermore, many other features of the robots, most importantly stability, 238 

biocompatibility, selectivity, directionality and the velocity in different biological 239 

environments need to be significantly improved prior to their commercialization. 240 
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