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Abstract
Kannisto (2001) has shown that as the frequency distribution of ages at death has shifted to the
right, the age distribution of deaths above the modal age has become more compressed. In order to
further investigate this old-age mortality compression, we adopt the simple logistic model with
two parameters, which is known to fit data on old-age mortality well (Thatcher 1999). Based on
the model, we show that three key measures of old-age mortality (the modal age of adult deaths,
the life expectancy at the modal age, and the standard deviation of ages at death above the mode)
can be estimated fairly accurately from death rates at only two suitably chosen high ages (70 and
90 in this study). The distribution of deaths above the modal age becomes compressed when the
logits of death rates fall more at the lower age than at the higher age. Our analysis of mortality
time series in six countries, using the logistic model, endorsed Kannisto’s conclusion. Some
possible reasons for the compression are discussed.

1. Background
The substantial decline of overall mortality since the nineteenth century made it possible for
a larger proportion of people to survive to old ages, thereby concentrating deaths into a
relatively narrow range of old age. This has made the survival curve (the life-table l(x)
function) more rectangular and the age distribution of deaths (the life-table d(x) function)
more compressed (Comfort 1956; Fries 1980; Wilmoth and Horiuchi 1999).

The considerable decline of death rates in childhood and young adult ages during the first
half of the twentieth century was the major driving force of the mortality compression.
Then, significant declines in old-age mortality started in economically developed countries
during the second half of the twentieth century (Kannisto et al. 1984). In this period, the
compression of the overall death distribution was slow, and even almost stagnant in some
populations (Wilmoth and Horiuchi 1999; Yashin et al. 2001). Thus, changes in the
distribution of adult deaths during the last few decades is shown to be approximated well by
models in which the distribution is assumed to shift to the right without changing its shape
(Bongaarts 2005; Canudas-Romo 2010, forthcoming).

However, in the context of the longevity extension, it has become increasingly important to
distinguish old-age mortality compression from overall mortality compression, and to
analyze changes in the shape of age distribution of deaths at very old ages separately from
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changes in the age distribution of deaths over the entire lifespan (or over a broad range of
adult ages). Based on the model of death distribution by Lexis (1878), Kannisto (2000,
2001) focused on the modal age of adult deaths as an important central tendency measure of
longevity, and examined the dispersion of deaths above the mode. He presented extensive
evidence to show that the distribution of deaths at old ages was not simply sliding to the
right. Instead, the right hand downward slope was being flattened vertically, so that the
distribution became more compressed, as if (in his words) it was meeting an invisible wall.
He contended that the ascending trajectory of mortality at high ages formed such a barrier
but only in a relative sense, offering increasing resistance to further progress without setting
any definite limit to it.

Kannisto’s method of analysing this old-age mortality compression was to calculate the
modal age of adult deaths M, the expectation of life at the mode, denoted by e(M), and the
standard deviation (root mean square) of those individual life deviations from M for those
who live up to age M or longer. This upward standard deviation is denoted as SD(M+). A
formal definition is given in the next section. He found that in cases where M had risen,
there had generally been a fall in both e(M) and SD(M+). Since these are measures of
dispersion, their fall showed that the distribution of ages at death above the mode had
become more compressed. Kannisto’s approach with focus on M has been elaborated further
in recent studies by Cheung and her collaborators (Cheung et al. 2005, 2008, 2009; Cheung
and Robine 2007; Robine et al. 2006) and Canudas-Romo (2010, forthcoming).

The mortality compression can be analyzed with respect to the age pattern of mortality (life-
table m(x) or q(x) function) as well, because the q(x), d(x), and l(x) functions uniquely
determine each other. In general, a faster mortality reduction at younger ages leads to a
steeper age-associated increase in mortality, thereby concentrating deaths in older ages.
Previous research on age patterns of adult mortality by Strehler and Mildvan (1960) and
Gavrilov and Gavrilova (1991) are closely related to mortality compression. Using the
international data, Strehler and Mildvan have shown that two parameters of the Gompertz
model are negatively correlated, indicating the following tendency: as the level of adult
mortality declines, the mortality curve rises more steeply upward. Gavrilov and Gavrilova
use the Makeham model to show that the Strehler-Mildvan correlation is largely due to the
substantial reduction of background mortality (premature mortality unrelated to senescence).
However, even after the effect of background mortality has been removed, the two
parameters of the Gompertz term of the Makeham model remain negatively associated,
suggesting that the reduction of senescence-related mortality may produce some
compression in the senescent death distribution.

The study by Strehler and Mildvan and that by Gavrilov and Gavrilova are based on the
Gompertz model and Makeham model, respectively, and the data analyzed in those studies
are mainly for periods before the onset of considerable decline in old-age mortality.
However, an extensive analysis of old-age mortality data (Kannisto-Thatcher database) has
revealed that the age-related mortality increase tends to slow down at very old ages, which
cannot be captured by the Gompertz or Makeham model, and age patterns of old-age
mortality are well represented by logistic models (Thatcher 1999; Thatcher et al. 1998).

In this paper, we will investigate the compression of old-age mortality by combining a
simple version of logistic model with Kannisto’s analytical tools. In what follows, we
present our methodology, show results of its application to time series of official life tables
for England and Wales and life tables for six selected countries in the Human Mortality
Database, compare our approach and results with those based on the shifting mortality
model, and discuss possible reasons for the old-age mortality compression.

Page 2



2. Methodology
2.1 Definition and estimation of e(M) and SD(M+)

e(M) is defined as the expectation of life of those who have just reached the modal age of
adult deaths. The upward standard deviation from the mode, SD(M+), is the root-mean-
square of the lengths of life lived beyond the modal age. Note that e(M) can be considered a
dispersion measure, because it is the upward mean deviation from the mode. If the age at
death in the life table is considered a continuous random variable, then the mode M is the
age with the highest density of adult deaths, while e(M) and SD(M+) are given by integrals
of deviation and squared deviation, respectively, from the mode as shown in the Appendix,
section 1.

Alternatively, if we are working from a complete life table which shows the number of
persons out of 100,000 who die at age x, then there are various ways to estimate the mode M
of a continuous age distribution. By shifting the origin to the mode, e(M) and SD(M+) can
then be calculated from first principles by the method of moments. However, there are also
short cuts, described in the Appendix, section 2.

2.2 Choice of model
With only one exception (males in England and Wales for 1900–04), all the modes in the
data analyzed in this paper are above the age of 70. These modal ages are therefore
determined by the distribution of the relative frequencies of deaths at each age over 70.
Death rates below age 70 will determine the numbers of survivors who reach age 70, but
they will not affect the relative frequencies for the ages at death above age 70. At least in a
standard life table, these relative frequencies above age 70 are determined solely by the
death rates at ages 70 and over. From the life table entries we can estimate not only M but
also e(M) and SD(M+), so all three are determined by the death rates at ages 70 and over. In
these circumstances, what are the conditions in which compression will occur?

In order to study this question, we need a model which will fit the data at high ages
reasonably well and which will be simple enough to provide the answer to our question.
Kannisto’s approach to old-age mortality compression is based on the model originally
proposed by Lexis, under which adult deaths are regarded as either “normal” (reflecting the
“natural lifetime”) or premature. The normal deaths, which may be interpreted as
senescence-related deaths, are presumed to produce the upper half of a normal distribution
of the ages of death above the mode. Despite having only two parameters, this normal-
distribution model fits the data on deaths above the mode very well, except perhaps at
extreme ages in some populations (Cheung and Robine 2007).

In this paper, we combine Kannisto’s approach, which is based on the Lexis model, with the
logistic model, which is known to fit empirical age patterns of old-age mortality well. We
adopt a special case of the logistic model of mortality, which also has a long history and
literature (see Thatcher 1999). This special case has only two parameters as does the Lexis
model, and it is usually written in the form

(1)

Here μx is the force of mortality at age x, while a and b are parameters which are constant in
any given period (or in any cohort, if the model is applied to cohort mortality data).

Theoretical derivations of the logistic model are given in the Appendix, section 3. The
simple logistic model has only two parameters, whereas the general logistic model has four.
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One of these four (Makeham’s constant) becomes significant at some stage below age 70,
while another allows for alternative limits of mortality at extremely high ages, such as
supercentenarians. For the present paper, however, we are not concerned with ages below 70
or with the most extreme high ages. Within the range to which we shall confine ourselves,
the simple 2-parameter version seems to be adequate.

The model (1) can be written in a simplified form, if we make use of the mathematical
function known as the logit function, which is only the difference between two logarithms.
The logit function is defined by

(2)

With this notation it is easily seen that (1) can be written as

(3)

where a* = ln a. If we calculate y = logit (μx) then the points (x, y) will lie on a straight line
represented by equation (3). We shall call this the “logit line”.

The fact that this very special case of the logistic model holds, approximately, at least for
modern data at high ages, was first noted by Kannisto (1992), and shown with a large set of
international data by Thatcher et al. (1998). The model (1) has a very important property,
crucial to the study of compression. Although the death rates at individual ages depend on
both of the parameters a and b, the compression (as measured by the decrease in e(M) or
SD(M+)) depends only on the single parameter b. It is shown in the Appendix, section 4,
that if μx follows (1) then the modal age of death will occur at the age M which satisfies

(4)

which is equivalent to equation (20) in Robine et al. (2006) and equation (11) in Canudas-
Romo (2008). It then follows that (1) can be written as

(5)

The significance of this is that if we measure ages from the mode, then the whole shape of
the distribution of both death rates and of ages at death depends only on the single parameter
b, which summarises the age distribution of deaths above the modal age.

When b is known, equation (5) makes it possible to construct a theoretical life table with its
origin at the mode. This life table will give the death rate at age y=x−M for y≥0, and this
death rate will depend only on b and y. Thus the death rate at age y above the mode can be
calculated without actually knowing the value of the mode. Since e(M) and SD(M+) can be
calculated from the death rates above the mode, they too can be calculated from b, without
knowing the mode. This is shown in a more formal manner in section 5 of the Appendix.

The numerical relationship is shown in Table 1. As expected, higher b values are associated
with smaller e(M) and SD(M+) values, i.e., greater extents of compression.

If we know b, then we can simply read off the values of e(M) and SD(M+). Since 1900, with
only one exception, all the estimated value of parameter b has been between 0.09 and 0.15,
and the ratio of SD(M+) to e(M) has fallen in a very narrow band, between 1.231 and 1.235.
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(This parallels a fixed ratio of 1.253 in the Lexis model). In view of this proportionality,
results for e(M) will always imply results for SD(M+), and vice versa.

A further important feature of the model is that while b determines the compression, as
measured by e(M) and SD(M+), the two values a and b in conjunction enable us to calculate
the mode M. From equation (4) it follows that

(6)

Thus the compression is determined by the change in the slope of the line (3), while the
location of the mode depends on the level as well as the slope.

Our plan to combine Kannisto’s tools based on the Lexis model with the logistic model
seems reasonable, because the two models produce almost the same distribution of d(x) in a
wide range of ages above the mode (Robine et al. 2006). This is despite the fact that the
usual explanations of these two models are so different. As described in the Appendix,
section 7, the logistic equation of mortality can be derived from at least two sets of
completely different assumptions: the frailty model of selective survival and the Le Bras
model of stochastic ageing processes (Le Bras 1976). The Lexis model uses the normal
distribution, which is approximated by the sum of a large number of independent and
identically distributed random variables. The fact that these totally different assumptions
produce almost the same results over a wide range of ages above the mode is therefore
surprising, but also reassuring.

2.3 Estimating b and predicting M, e(M), and SD(M+)
In order to apply the simple logistic model, we need to be able to estimate the parameter b.
Since b is the slope of the straight line (3), it is sufficient to know the value of μx at any two
ages, say x1 and x2, where x2 > x1. The slope of the line between these ages is then given by

(7)

However, since the central death rate m(x) at age x satisfies the approximation

(8)

we can use

(9)

to calculate b readily from life tables.

There is a wide choice for the ages x1 and x2. In theory, in a range where the data fit the
simple logistic model precisely, we could choose any pair of ages whatever and they would
all produce exactly the same value for b. However, x1 and x2 need to be chosen with
consideration for several opposing criteria. First, x1 should be high enough for the two-
parameter logistic model to fit data well, because premature mortality (often modeled as the
Makeham parameter) may have notable effects on the age pattern of mortality at younger
old ages. Secondly, it is desirable for x1 to be under or around the modal age of adult deaths,
as the focus of our study is on mortality above the mode. Thirdly, it is desirable for x1 and
x2 to be widely separated, because a wider difference will make the standard error of b
(estimated by equation 9) smaller. Lastly, however, the difference should not be so wide as
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to make x2 an extremely old age, at which the small number of deaths may notably increase
the standard error of logit m(x2), and in turn, that of b.

In consideration of these issues, we chose age 70 and age 90 for x1 and x2, respectively. Age
70 seems appropriate because in the 80 life tables from the Human Mortality Database that
we analyzed, the estimated M was above age 70 in all cases except males in England and
Wales, 1900–1904, for which M was 69.85. As described later, we compared our results
among three sets, ages 70–90, 70–80, and 80–90, and found parameter trends were less
erratic for ages 70–90 than for ages 70–80 and 80–90.

By comparing the estimates of b at two different dates, we can see whether b is increasing,
and hence whether compression is occurring. The situation is illustrated in the schematic
diagram (Figure 1), in which the vertical axis is taken as logit m(x). It can be seen that if
logit m(x) falls faster at age 70 than at age 90, then the slope b will increase and
compression will occur.

Of course, in the simple logistic model it is not possible for the death rates at ages 70 and 90
to change in isolation. Death rates at all the other ages have to change as well, if the model is
to be maintained. It would be more accurate to say that compression will occur if the death
rates at ages 70 and over follow the simple logistic model, and change in such a way that
logit m(x) falls faster at age 70 than at age 90.

Once the value of b has been obtained by applying equation (9) to death rates at ages 70 and
90, the modal age of adult deaths M can be predicted by

(10)

where x1=70 in this study. Equation (10) is an approximated version of equation (6), as
shown in section 6 of the Appendix. e(M) and SD(M+) can be obtained by numerical
integration based on equations (A.13) and (A.14) in section 5 of the Appendix, or simply by
interpolation of values in Table 1.

3. Illustrations for England and Wales
The illustrations which follow use data for England and Wales, obtained from the English
Life Tables and Interim Life Tables.

Figures 2 and 3 show logit m(x) for males and females in England and Wales for 1906, 1971
and 2004. It can readily be seen that the observed points look fairly straight. These are the
logit m(x) curves. It must be remembered that we are not formally fitting straight lines. We
are only seeking confirmation that the observed points of logit m(x) are close enough to
straight lines to justify the choice of the logistic equation as a simple working model. As can
be seen at a glance, the lines do not all have quite the same slopes. The model therefore
indicates that there were changes over time in the parameter b and hence in e(M) and SD(M
+).

Figures 4 and 5 show how the modal ages of death have varied, using both observed values
(full lines) and the predicted modes given by the simple logistic model (dashed lines). All
the data which are plotted in these figures are given in Table 2, which also shows, for
interest, the values for e(M) and SD(M+) predicted by the model. There are footnotes giving
the sources and methods.
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The predictions in Figures 4 and 5 were all made independently of each other, using only the
observed death rates (and hence their logits) at ages 70 and 90. The predictions are
reasonably close to the observed values.

For males there was little change between 1841 and 1906, but the mode then started to rise,
rather falteringly. A strong rise did not start until 1971, but then it was faster than the rise for
females, and has continued at a rapid pace for thirty years. The picture for females in Figure
5 is notably different. Again there was little change between 1841 and 1906, but the mode
then started to rise and has risen ever since.

The data are given in Table 2, which gives a conspectus of the changes in England and
Wales over the whole period from 1841 to 2004, as derived from the national life tables. The
mode M rose for both males and females. For males, e(M) and SD(M+) both rose and fell.
For females, we see only falls and this is the progression observed by Kannisto (2001). The
changes were not monotonic.

4. Results for six countries
4.1 Trends in the parameter b

A further study on age patterns of mortality at high ages has been conducted using
international mortality data in the HMD (Human Mortality Database 2007), not only for
England and Wales but also for France, Japan, Italy, Sweden and Switzerland. Curves of
logit m(x) between ages 70 and 90 have been drawn for each of these countries for every
single year for which data are given in the HMD (Figures of these many lines are available
on line at www.demographic-research.org/Volumes/Vol22/17/default.htm).

Visual inspection of those curves suggested that patterns and trends for those 12 (six
countries times two sexes) sets of HMD life tables were similar to those in Figures 2 and 3
for English life tables: the curves were nearly or fairly straight (with some exceptions in
early years and war/epidemic periods) but their slope appears to be increasingly steeper over
decades.

We then examined this visual impression by estimating the parameter b from the slope of the
logit line between ages 70 and 90. These ages were chosen with one below the mode and
one above it, and with a span of 20 years in order to make the standard errors of the estimate
of b small. If the data on deaths followed the simple logistic model exactly, any pair of ages
in the range 70 and over would give the same estimate of b, but it is natural to wonder
whether this holds in practice.

Accordingly, the slopes of the 80 logit lines described above were found from the pairs of
ages 70–80, 80–90 and 70–90. Comparison showed that the differences among those slopes
were mostly negligible. Any larger differences could only be due to the occasional
“wobbles” in the logit lines. It was noticeable, however, that trends of the estimates based on
70–80 and 80–90 were more erratic, suggesting that they have more “noise” than the
estimates based on 70–90.

In all cases, the b at the latest date was higher than the b at the earliest date, so the predicted
standard deviation SD(M+) was lower at the later date. Thus over the period as a whole
there had been compression above the mode in all six countries, for both males and females.

This work used b as calculated by equation (9), using the pair of ages 70 and 90. This choice
worked well for the present paper. However, the distribution of ages at death continues to
shift to the right, and the logistic pattern of mortality may be shifting with it. For any future
work, it might be advisable to look at the slope based on ages 80–100 as well, at least in
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cases when the number of deaths at age 100 is accurate and large enough to make the death
rate reliable.

4.2 Mode and SD(M+)
Time series giving the data for the six countries are assembled in Table 3. This shows for
each country the observed value of the mode M, the observed value of the standard
deviation above the mode SD(M+), the value of the parameter b found from the logit
functions of the death rates at ages 70 and 90, and the prediction of SD(M+) given by b.
Trends in the observed and predicted SD(M+) are also displayed in Figure 6. The table and
figure enable us to see the differences between countries and to examine whether rises in the
mode have always been accompanied by falls in the standard deviation. Comparisons
between the observed and predicted values of SD(M+) also show whether the data support
the theoretical deduction from the simple logistic model, that the standard deviation is
related to the death rates at the high ages such as 70 and 90, so that it is the factors which
affect these death rates differently which may be regarded as the ultimate causes of
compression or decompression.

Table 3 gives the series for 5-year periods from 1900–1904 to 2000–2004 for Sweden,
Switzerland, Italy, England and Wales and France, and from 1950–1954 to 2000–2004 for
Japan. The methods by which the table was constructed are given in the Appendix, section
3.

The average changes can be summarised briefly as follows: for males in the five countries
excluding Japan, the observed mode rose from 72.9 to 77.2 in the first fifty years, and from
77.2 to 83.5 in the second fifty years. The observed standard deviation SD(M+) fell from 8.7
to 7.7 in the first fifty years, and from 7.7 to 7.3 in the second. Thus, the rise in the mode
sped up, but the fall in the standard deviation slowed down.

For females in these same countries, the average mode rose from 75.5 to 80.1 in the first 50
years, and from 80.1 to 88.5 in the second. The observed standard deviation fell from 7.9 to
7.3 in the first fifty years, and from 7.3 to 6.1 in the second. Again, the rise in the mode sped
up, but for females the fall in the observed standard deviation accelerated.

The changes for individual countries were not always so steady. For example, for males in
Italy between 1950–54 and 2000–04 the mode rose but the standard deviation rose too. A
rise in the mode is not necessarily accompanied by a fall in SD(M+). In another case, the
observed SD(M+) fell, then levelled off and stayed virtually steady for 30 years, then rose to
a higher level for 25 years and finally fell again (males in England and Wales). In Japan,
observed and predicted SD(M+) decreased only slightly or even increased between 1990–94
and 2000–04, which is consistent of the finding of Cheung and Robine (2007) using a
different method that SD(M+) had levelled off in Japan in the 1990s Thus, overall, SD(M+)
tend to decrease over time and negatively associated with M, but the trend is not highly
consistent and the association is not very strong.

4.3 Accuracy of the predictions of SD(M+)
Predictions of SD(M+) from m(70) and m(90) are subject to errors because mortality
between 70 and 90 may not exactly follow the simple logistic model, but so are the observed
values, because the mode of age at death as a continuous variable has to be estimated based
on some assumption. There can also be errors in the data due to the use of provisional
figures, or errors in the stated ages at death. When a prediction is different from the
observed value, the fault does not always lie in the prediction.
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The series for the observed and predicted values of SD(M+) are illustrated in Figure 6.
Considering that these two series are derived so differently, and that all the points are
independent, the agreement between the two series is very close.

Figure 6 clearly supports the basic conclusion that the prediction method works well enough
to confirm the theoretical deduction from the model: that e(M) and SD(M+) can be predicted
from the death rates at just two high ages, such as 70 and 90. In order fully to understand the
changes in e(M) and SD(M+), we need to understand the factors which affect the death rates
at these ages.

The highest values of the difference (Observed minus Predicted) for individual countries,
regardless of sign, were 1.1 in the 50 years before 1950–1954 and 0.8 in the 50 years from
1950–1954 onwards. However, these were extreme values in six countries over a century. In
80 per cent of all the cases the difference was less than 0.6, both before and after 1950 and
for both males and females. To put this in perspective, a difference of 0.6 year in a standard
deviation SD(M+) implies a difference of 6 months in the expectation of life at the mode
(see Table 1). Thus one might say that e(M) predicted from the death rates at just the two
ages 70 and 90 had an 80 per cent chance of being within six months of the observed e(M).
For females since 1950, the agreement was much closer, with a 98 per cent chance of being
within six months.

5. Discussion
The previous section concluded that in the six countries studied, there had been mortality
compression above the mode in the period from 1950–1954 to 2000–2004. The fall in the
observed SD(M+) for females was an average of 1.3 years, but 1.8 in Sweden and 1.6 in
Japan. This differs from one of the conclusions found by Bongaarts (2005). He used the 3-
parameter logistic model, which includes Makeham’s constant taken as a measure of
“background mortality”. When this model was fitted to ages 25–109, he found that in many
countries the parameter b had remained almost constant from 1950 to 2000. He therefore
decided that it was reasonable to assume that in future the parameter b would remain
constant over time for any given country. This means that the frequency distribution of ages
at death will shift to the right without any change of shape or compression above the mode.
This is the shifting logistic model.

A key reason for the difference between these two conclusions is the fact that Bongaarts
fitted his model to the very wide range of ages from 25 to 109, whereas we only used data at
ages 70 and over. Bongaarts (2008) has since found that if his model is fitted over shorter
age ranges, the estimates of the slope b are not all the same. In particular, if the model is
fitted to ages 30–109 then b appears almost constant over time, whereas if the same model is
fitted to ages 70–90 and 70–109 there is a marked increase in b over time. This is fully
consistent with Kannisto’s finding, and ours, about the mortality compression above the
mode. A further factor may be that the slope b which fits the ages below 70 has not
remained the same as the slope which fits ages 70 and over. In this paper, we have confined
ourselves to ages 70 and over.

Kannisto (2001) has shown that that SD(M+) fell for some female populations in recent
decades. In order to study this mortality compression further, we combined Kannisto’s
measures with the simple two-parameter logistic model. Our results support Kannisto’s
extended to cover males as well as females and also the most recent periods.

Kannisto contended that the compression he observed was due to the resistance caused by
the ascending trajectory of mortality. In our analysis, the resistance is reflected in the fact
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that the death rates at very high ages did not fall fast enough to prevent compression. This is
a distinction without much of a difference.

The long-term average tendency for the logit function of the death rates to fall more at
younger old ages may perhaps reflect age-related changes in society, such as arrangements
for the care of the very old, which vary from country to country and may change over time.
Also, it is presumably possible that some medical advances and lifesaving technologies may
be more effective at lower old ages than at higher old ages, when there is less resilience. In
order to account for a tendency towards compression it does not seem necessary to invoke
any fundamental biological changes in the ageing process itself.

The compression above the mode, however, has been fairly slow, and it is an open question
how far SD(M+) may continue to fall. Nevertheless, if medical advances do not have quite
the same effect around age 90 as around age 70, the compression may continue to hold for
some time yet. For the future, there is also the uncertainty that there may not be enough
caregivers to look after the expected enormous numbers of old people. This may eventually
affect the mortality rates of the very old.
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Appendix
Note: In this Appendix the symbols typed as μx and μ(x) are interchangeable, and similarly
for other suffixes.

A1. M, e(M), and SD(M+) for a continuous distribution
Consider the case in which the ages at death have a continuous frequency distribution, with
a density function d(x) which is estimated from data or which has been assumed to follow a
mathematical equation that has been fitted to data by some suitable method. The adult modal
age of death M is the age at which d(x) has its maximum in the age range defined as “adult
age” (e.g., 15 and over). The remaining expectation of life for those who have just reached
the mode is
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(A.1)

The standard deviation SD(M+) of the ages at death above the mode, measured from the
mode, is

(A.2)

A2. Approximations when the distribution is discrete
Alternatively, we may be working with an observed frequency distribution of the ages at
death which are discrete. For example, in a standard complete life table there is a column
d(x) which shows the number (out of 100,000) of individuals who die between exact age x
and x+1, where x is a non-negative integer. The mode M can be estimated either by an
approximate formula, or more elaborately by fitting a short segment of a smooth curve to a
few of the observed frequencies at the tip of the distribution.

In order to use the approximate formula, we must find in the life table the age X which has
the highest number of deaths. We then extract the values of d(X), d(X−1) and d(X+1) as
given in the life table. The approximate value of the mode is then given by

(A.3)

This is the formula used by Kannisto (2001). It can be derived by the method of differences
(see Yule and Kendall, 1950, page 582). It has also been derived from first principles by
Canudas-Romo (2008). The tip of the continuous curve is approximated in the range (X−1,
X+1) by the parabola which has the right areas below it to produce the observed values d(X
−1), d(X) and d(X+1). The resulting estimate M always lies between X and X+1.

Having found an estimate of M, either by using (A.3) or in some other way, the expectation
of life at the mode can be found by interpolating between the life table values e(X) and e(X
+1). This gives

(A.4)

We now use the fact that the ratio of SD(M+) to e(M) is practically constant. In a Lexis
model the ratio is always exactly 1.253. In the simple logistic model it is very slightly less,
but in a very narrow band. Table 1 shows that the ratio lies between 1.231 and 1.235 when
the parameter b lies anywhere from 0.09 to 0.15. For practical purposes we estimate SD(M
+) by
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(A.5)

A3. Different versions and derivations of the logistic model
The logistic model of mortality has been published in several different forms and notations,
but all can be converted to the expression

(A.6)

This has four parameters: a, b, c and k. If it was not for the denominator (1+z), we should
recognise b from Gompertz’s law and c as the constant in Makeham’s law, sometimes
described as background mortality, a simple way of representing deaths at adult ages from
causes which are not related to age. However, the presence of the denominator bends the
curve downwards at high ages.

A very common explanation of this downward bend is that it can be caused by heterogeneity
(selective survival). Because less healthy individuals are more likely to die at younger ages,
survivors to older ages tend to have favourable health endowments and/or healthy life styles.
This selection process could slow down the age-related mortality increase at the population
level.

Specific assumptions about the nature of heterogeneity which lead to the expression (A.6)
were first proposed by Beard (1971) and later discovered independently by Vaupel et al.
(1979). Individual differences are assumed to remain essentially unchanged throughout their
lifetimes, so the models are called the “fixed frailty” models, and the individual differences
are assumed to follow the gamma distribution. However, it was also shown by Le Bras
(1976) that the same expression (A.6) can be produced in a completely differently way, in
which ageing is modelled as a stochastic process. Individuals progress by jumps at random
times through a succession of steadily deteriorating states of health. Even a cohort which
starts as homogeneous will become increasingly heterogeneous. Thus, completely different
underlying mechanisms could produce the logistic pattern of mortality (Yashin et al. 1994).

The model (A.6) was among those fitted by Thatcher et al. (1998), though in a different
notation, to all officially published data on deaths at ages 80 and over for males and females
in 13 countries with reliable data for the ten-year periods from 1960–1990 and also for some
cohorts in those countries. They found that at these ages c was negligible, of the order of
0.00001. This was surprising, as one would expect background mortality to extend to all
ages. Presumably at ages 80 and over risks of death from most causes, even accidents, may
be correlated with age. The parameters which they fitted showed that k was close to unity.
This would also have been surprising, except for the fact that the combination c=0 and k=1
leads immediately to the logit relationship (3), which was already known to fit the data at
high ages.

However, Thatcher (1999) realised that it was not possible to fit the two-parameter version
of (A.6), with c=0 and k=1, to data extending down to age 30. He therefore tried the three-
parameter version, taking k=1 but with no constraint on c. For the data from age 30 upwards
the fitted value of c was of the order of 0.01, which is far from negligible as a component of
an age-specific death rate. This shows that the 2-parameter model breaks down at some
stage below age 80, when c ceases to be negligible. Moreover, Bongaarts (2008) has found
that the slope b which fits the ages below 70 has not remained the same as the slope which
fits ages 70 and over.
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In the present paper we have steered clear of these problems by using only data for ages 70
and over. At these ages the 2-parameter version with c = 0 and k = 1 fits well. The fact that
this very simple model fits the data at these ages is accepted as a fact of observation, which
fortunately enables us to make the predictions of M and SD(M+) which are the subject of
the paper.

A4. Proof of equation (4)
The force of mortality is defined as

(A.7)

where l(x) is the life table survival function at age x.

The density of deaths at age x is given by

(A.8)

The mode of the distribution of deaths is therefore found by differentiating (A.8) and
equating to zero. Substituting from (A.7) then produces

(A.9)

This is a standard result which applies to all continuous laws of mortality. Note that the left
hand side of the above equation is the life table aging rate (LAR). Thus, at the modal age,
the force of mortality is equal to the LAR. This important fact was previously shown by
Pollard (1991) for the Gompertz model and by Robine et al. (2006) in a general form.

The simple logistic model is defined by equation (1) in the text. Differentiating μx with
respect to x gives (dμx/dx) as a function of a and b. On substituting (A.9) the equation
simplifies to produce

(A.10)

which proves equation (4).

A5. Proof that in the simple logistic model, e(M) and SD(M+) are determined
solely by b, independently of M

In the simple logistic model, mortality above M is given by

Substituting aebM = b from (A.10) into the above, we get
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(A.11)

Thus,

(A.12)

Therefore, the expectation of life at M, which is also the upward mean deviation of age at
death from M, is given by

(A.13)

by integration by parts. This clearly indicates that e(M) is solely determined by b, regardless
of a and M.

Similarly,

(A.14)

which indicates that SD(M+) is also solely determined by b, independently of a and M.

A6. Proof of equation (10)
From equation (4) we have

and hence, as in equation (6),

(A.15)

In the simple logistic model, if μ(x1) is the force of mortality at any given age x1, then by
equation (3) we have

(A.16)

Thus from (A.15)

(A.17)
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Since m(x)’s, but not μ(x)’s, are given in empirical life tables, we can make use of the fact
that m(x) is approximately equal to μ(x + ½). Hence, using equation (3), we find

(A.18)

Substituting (A.18) into (A.17) gives

(A.19)

which is equation (10).

A7. Construction of Table 3
Table 3 was constructed from the life tables for the six countries in the Human Mortality
Database from 1900 to 2004. The observed values of M were found by using equation (A.3),
taking X from the life tables. This formula worked satisfactorily in all except seven special
cases where there were double modes or adjacent modes, which needed special treatment.
The observed values of e(M) and hence SD(M+) were then estimated from equations (A.4)
and (A.5), taking e(X) and e(X+1) from the life tables. The parameter b was estimated from
equation (9). The predicted value of SD(M+) was then found by interpolation on values
listed in a more detailed version of Table 1.

Page 16



Figure 1.
Schematic diagram for the compression of mortality in the simple logistic model
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Figure 2.
Logit m(x) for males in England and Wales: 1906, 1971 and 2004
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Figure 3.
Logit m(x) for females in England and Wales: 1906, 1971 and 2004

Page 19



Figure 4.
Modal age of death for males in England and Wales, 1841–2004
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Figure 5.
Modal age of death for females in England and Wales, 1841–2004
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Figure 6.
Observed and predicted standard deviations above the mode
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Table 1

Value of b, e(M), SD(M+), and ratio SD(M+)/e(M) derived from the two-parameter logistic model

b e(M) SD(M+) Ratio SD(M+)/e(M)

0.090 7.34 9.04 1.2307

0.092 7.20 8.86 1.2309

0.094 7.06 8.69 1.2310

0.096 6.93 8.53 1.2312

0.098 6.80 8.38 1.2314

0.100 6.68 8.23 1.2315

0.102 6.57 8.09 1.2317

0.104 6.45 7.95 1.2318

0.106 6.35 7.82 1.2320

0.108 6.24 7.69 1.2322

0.110 6.14 7.57 1.2323

0.112 6.05 7.45 1.2325

0.114 5.95 7.34 1.2326

0.116 5.86 7.23 1.2328

0.118 5.78 7.12 1.2330

0.120 5.69 7.02 1.2331

0.122 5.61 6.92 1.2333

0.124 5.53 6.82 1.2334

0.126 5.46 6.73 1.2336

0.128 5.38 6.64 1.2338

0.130 5.31 6.55 1.2339

0.132 5.24 6.47 1.2341

0.134 5.18 6.39 1.2342

0.136 5.11 6.31 1.2344

0.138 5.05 6.23 1.2345

0.140 4.99 6.16 1.2347

0.142 4.93 6.08 1.2349

0.144 4.87 6.01 1.2350

0.146 4.81 5.94 1.2352

0.148 4.76 5.88 1.2353

0.150 4.70 5.81 1.2355
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Table 2

Modal age at death, b and predicted e(M) and SD(M+) for England and Wales by sex

ENGLAND AND WALES

MALES

Year

MODAL AGE OF DEATH

b Predicted e(M) Predicted SD(M+)Predicted Observed

1841 73.00 72.00 0.094307 7.04 8.68

1906 73.35 72.79 0.098928 6.75 8.32

1921 74.43 74.46 0.096267 6.91 8.52

1931 74.70 74.93 0.101799 6.58 8.11

1951 75.65 75.70 0.107409 6.27 7.73

1961 75.30 75.36 0.096639 6.89 8.50

1971 75.05 74.54 0.091890 7.21 8.89

1981 77.18 77.23 0.096200 6.92 8.53

1991 79.34 79.22 0.099906 6.89 8.50

2001 82.39 84.38 0.109159 6.18 7.62

2004 83.40 83.07 0.113777 5.96 7.35

FEMALES

Year

MODAL AGE OF DEATH

b Predicted e(M) Predicted SD(M+)Predicted Observed

1841 74.31 73.67 0.095701 6.95 8.57

1906 75.14 74.00 0.096494 6.90 8.51

1921 77.46 77.15 0.100735 6.64 8.19

1931 78.05 77.86 0.107003 6.29 7.76

1951 80.28 80.25 0.116308 5.85 7.21

1961 81.45 81.42 0.116333 5.85 7.21

1971 82.50 82.42 0.113851 5.96 7.35

1981 83.62 84.33 0.115700 5.88 7.25

1991 84.75 86.17 0.112585 6.02 7.42

2001 86.36 86.30 0.120560 5.67 6.99

2004 86.93 87.76 0.124741 5.50 6.78

Sources: English Life Tables no 1, 1841; no 7, 1901–10; no 9, 1920–22; no 10, 1930–32; no 11, 1950–52; no 12, 1960–62; no 13, 1970–72; no 14,
1980–82; no 15, 1990–92. Interim Life Tables for England and Wales 2000–2002; 2003–5. These life tables were prepared successively by the
Registrar General, the Government Actuary and now the Office for National Statistics.

Methods: The parameter b was estimated from (9), taking the x’s as 70 and 90. The predicted mode was then given by (10). The observed mode
was estimated by (A.3) in the Appendix. The predicted values of e(M) and SD(M+) were found from b by interpolation in Table 1.
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