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Abstract

Standard economic models view risk taking and time discounting as two independent dimen-
sions of decision making. However, mounting experimental evidence demonstrates striking
parallels in patterns of risk taking and time discounting behavior and systematic interaction
effects, which suggests that there may be common underlying forces driving these interac-
tions. Here we show that the inherent uncertainty associated with future prospects together
with individuals’ proneness to probability weighting generates a unifying framework for ex-
plaining a large number of puzzling behavioral regularities: delay-dependent risk tolerance,
aversion to sequential resolution of uncertainty, preferences for the timing of the resolution of
uncertainty, the differential discounting of risky and certain outcomes, hyperbolic discount-
ing, subadditive discounting, and the order dependence of prospect valuation. Furthermore,
all these phenomena can be predicted simultaneously with the same set of preference param-
eters.
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1 Introduction

Whatever the nature of our decisions, hardly ever can we be sure about their outcomes. In
particular, the consequences of the most important decisions in our lives, such as what line of
business to enter or whom to get married to, do not materialize immediately but usually take
time to unfold. In other words, these important decisions involve both risk and delay. Driven
by the evidence challenging expected utility theory and discounted utility theory, the past half
century has seen a surge of new models of decision making for the domains of risk taking and
time discounting (Starmer, 2000; Frederick, Loewenstein, and O’Donoghue, 2002; Wakker, 2010;
Ericson and Laibson, 2019). A considerable body of experimental evidence suggests, however,
that risk taking and time discounting are linked and interact with each other in important ways
summarized in Table 1 below.

First, risk aversion has been shown to be lower for risks materializing in the more remote
future than for risks materializing in the more imminent future (e.g. Shelley (1994)).1 Lower
risk aversion for remote risks may be one reason why the mobilization of public support for
policies combating global warming is so difficult. Thus, economic models of climate policy may
benefit from recognizing that risk aversion decreases with time delay. Asset markets constitute
another area where delay-dependent risk aversion may play an important role in understanding
the downward sloping structure of risk premia, i.e. the fact that risk premia decline with maturity
(van Binsbergen, Brandt, and Koijen, 2012).

A second fact is based on a considerable body of evidence that impatience tends to decrease
when outcomes are shifted into the more remote future - a finding on which the large literature
on hyperbolic discounting is based (Loewenstein and Thaler, 1989; Laibson, 1997).

Third, the evidence indicates that many people seem to have a preference with respect to
the way uncertainty resolves, i.e. sequentially or in one shot. Often, sequential evaluation of
prospects renders decision makers less risk tolerant (Abdellaoui, Klibanoff, and Placido, 2015).
In the domain of financial decisions, this phenomenon may underlie the large equity premia
observed around the globe.

Fourth, regarding time discounting, a similar phenomenon has been observed: discount rates
compounded over subperiods tend to be higher than the discount rate applied to the total period.
This incidence of process dependence, labeled subadditive discounting, has been put forward as
an alternative explanation to hyperbolic discounting to account for the observed patterns in
discounting behavior (Read, 2001; Dohmen, Falk, Huffman, and Sunde, 2017).

Fifth, many people also exhibit a preference regarding the timing of the resolution of un-
certainty. Usually, there is a substantial share of participants who favor delayed resolution of
uncertainty in situations when money is at stake even though it should be beneficial to know the
outcome of one’s financial decisions as early as possible. This finding triggered a large theoretical
literature following the seminal work of Kreps and Porteus (1978).

1In Section 5 we provide a detailed list of references regarding the empirical evidence and a discussion of extant
theories that address various subsets of these facts.
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A sixth regularity indicates that the presence of risk influences time discounting in an unex-
pected way: Sure outcomes appear to be discounted more heavily than uncertain ones, discussed
in the literature under the heading diminishing immediacy (Keren and Roelofsma, 1995; Weber and
Chapman, 2005).

Finally, people’s evaluations of future risky payoffs depend on the order by which they are
devalued for risk and for delay, which should not make any difference according to the standard
view (Öncüler and Onay, 2009). These regularities suggest that theories that are restricted to ei-
ther domain cannot easily account for the intertwined nature of risk taking and time discounting.

Table 1: Seven Stylized Facts on Risk Taking and Time Discounting

Dimension Fact Observed risk tolerance Fact Observed patience
Delay dependence #1 increases with delay #2 increases with delay

Process dependence #3 higher for one-shot than #4 higher for one-shot than
for sequential valuation for sequential valuation

Timing dependence #5 intrinsic preference for −
timing of uncertainty reso-
lution

Risk dependence − #6 higher for risky payoffs
than for certain ones

Order dependence #7 depends on order of −
delay and risk discounting

The table describes seven regularities in experimental findings on risk taking and time discounting behavior
with respect to delay, process, timing, risk, and order effects.

The main purpose of our paper is to provide a unifying account of all these phenomena
by integrating risk taking and time discounting into one theoretical approach. Thus, our goal
is to develop a formal model that is capable of explaining all the regularities on the basis of
a parsimonious set of assumptions. Our approach rests on two key assumptions: First, there
is risk attached to any future prospect because only immediate consequences can be totally
certain. We believe that this is a plausible assumption because it is impossible to foresee all
future contingencies. Accordingly, Prelec and Loewenstein (1991) claim that “anything that is
delayed is almost by definition uncertain” (page 784). In particular, it is always possible that an
event may occur that prevents the realization of a future outcome, i.e. something may go wrong
before payoffs actually materialize. An unforeseen contingency may arise, such as missing one’s
transatlantic flight because the taxi driver was late, or realizing that one has forgotten one’s
passport at home. Presumably, almost everyone can readily recall such an incident. We capture
the notion that something may go wrong by introducing a survival probability 0 < s < 1 that
applies also to allegedly certain future outcomes.

Second, if future prospects are perceived as inherently risky, people’s risk tolerance must
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play a role in their valuations of future prospects. Therefore, the characteristics of (atemporal)
risk preferences are crucial not only for evaluating delayed risky prospects but also for delayed
(allegedly) certain ones. There is abundant evidence from the field and the laboratory that risk
taking behavior depends nonlinearly on the objective probabilities (Prelec, 1998; Fehr-Duda and
Epper, 2012; Barberis, 2013; O’Donoghue and Somerville, 2018). For this reason, models in-
volving probability weighting, such as rank-dependent utility theory (RDU) (Quiggin, 1982) and
cumulative prospect theory (Tversky and Kahneman, 1992) have been strong contenders of ex-
pected utility theory (EUT) (Wakker, 2010).

Our approach relies on a key characteristic of probability weighting, proneness to Allais-
type common-ratio violations, that is one of the most widely replicated experimental regularities,
found in human and animal behavior: Probabilistically mixing two lotteries with an inferior
lottery frequently leads to preference reversals (Kahneman and Tversky, 1979; Gonzalez and Wu,
1999). This feature of probability weighting is called subproportionality and was characterized
axiomatically by Prelec (1998).

Our contribution to the literature is fourfold. First and foremost, we show for general
m-outcome prospects that subproportional probability weighting under rank-dependent utility
(RDU) together with the assumption that (even allegedly certain) future outcomes are inherently
risky provides an integrative account of all the above mentioned experimental regularities. We
rely on a well-established model of risk preferences with axiomatic foundations (e.g. Quiggin
(1982); Yaari (1987); Segal (1990); Wakker (1994); Chateauneuf and Wakker (1999); Abdellaoui
(2002)) that we combine with the plausible assumption that something may go wrong in the
future.

Second, we demonstrate that all seven stylized facts can be quantitatively predicted with
the same set of preference parameters with survival probability lying in a narrow and plausible
range. For this exercise, we quantitatively predict such diverse magnitudes as present certainty
equivalents, discount rates, discount fractions and probability weights.

Third, addressing our theoretical contribution, we build on Halevy (2008), followed by Saito
(2011) and Chakraborty, Halevy, and Saito (2020), who demonstrate that there is a tight two-way
relationship between hyperbolic discounting and the property of subproportionality.2 Our paper
is inspired by their insight and extends it by showing that, beyond the two-way relationship
between hyperbolic discounting and subproportionality, many additional important regularities
in observed risk taking and time discounting follow from subproportional probability weighting
and the assumption of an inherently uncertain future. In particular, we derive novel predictions
regarding (i) the delay dependence of probability weights and (ii) the intrinsic preference for
late resolution of uncertainty. Furthermore, we take advantage of Segal’s work (Segal, 1987a,b,
1990) on two-stage prospect evaluation by explicitly integrating the dimension of time delay and
show that (i) subproportional risk preferences imply subadditive discounting and (ii) that, under

2Relatedly, Chakraborty (2021) explores risk-time separability violations by adopting a weaker version of the station-
arity axiom to simple risky prospects (x, p; 0, 1− p).
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certain circumstances, an aversion to sequential resolution of uncertainty arises and remains
intact under inherent future uncertainty.

Fourth, we derive new predictions which can be put to the test by future research. We
show for example, that the decrease in risk tolerance, induced by the sequential resolution of
uncertainty of (atemporal) prospect risks, carries over, under certain conditions, to the sequential
resolution of uncertainty for delayed future prospects. This prediction is important as many
societal risks (e.g. climate risks) and asset market risks resolve sequentially over time. However,
so far this prediction has not been tested.

While there is a large empirical and theoretical literature on the domain of risk taking and
an equally large one on time discounting, there are, in comparison, relatively few papers dealing
with an integrated view of risk and time. However, the subject has recently gained traction. For
example, motivated by the similarities of anomalies in risk taking and time discounting behav-
iors, Prelec and Loewenstein (1991) develop psychological properties of multi-attribute prospect
valuation that may be common in both decision domains. Thus, common ratio violations and
decreasing impatience may be driven by the same psychological principles. The authors do not
address how features of risk preferences and time preferences interact with each other, however.

Similarly, Quiggin and Horowitz (1995) analyze parallels between the theories of choice un-
der risk and choice over time and show the usefulness of RDU for understanding the analogy
between risk aversion and impatience. Baucells and Heukamp (2012) restrict their analysis to the
case of simple prospects (x, p; 0, 1− p) that pay x with probability p at time t and zero otherwise,
and link risk taking and time discounting by making assumptions on how people trade off delays
in future outcomes against reductions in the probability with which these outcomes occur.

Leland and Schneider (2017) propose a different theory that can account for many anomalies
in risk taking and time discounting behavior. Their approach extends the concept of salience
from outcome differences to differences in probabilities and differences in delays. This enables
the authors to explain a large set of interesting facts in risk taking, time discounting and consumer
behavior. However, they explicitly mention on page 20 that their theory “does not account for
interaction effects between risk and time” that are exactly the object of our paper. On the other
hand, our paper does not explain facts such as labeling effects, framing effects or peanut effects
which are the explicanda of Leland and Schneider (2017)’s paper.

DeJarnette, Dillenberger, Gottlieb, and Ortoleva (2020) study a setting that is complementary
to ours: Their time lotteries have fixed prices, but random payment dates. In contrast, we explic-
itly abstract from uncertainty with regard to the timing of outcomes. However, extending our
approach to their time-lotteries setting may be an interesting direction of future research.

The remainder of the paper is organized as follows: Section 2 discusses the key assumptions
of our model. Its implications for explaining the seven stylized facts are developed in Section 3.
Section 4 is devoted to a quantitative assessment of our model predictions. Section 5 presents
the experimental findings on the seven stylized facts in more detail and discusses other theoret-
ical approaches that address some of these empirical regularities. Finally, Section 6 concludes.
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Propositions including proofs and complementary materials are available in the appendix.

2 The Model

In the following, we will first present the general setup of our approach. Second, we justify our
assumptions on the characteristics of the probability weighting function. Finally, we explain how
we integrate that “something may go wrong” into the model.

2.1 Risk Preferences

In this paper, we rely on rank dependent utility theory (RDU), a generalization of expected
utility theory (EUT), that allows for nonlinear weighting of the probabilities. This additional
feature has proven to be an exceptionally powerful component. First, overweighting of small
probabilities may counteract risk aversion embodied in the utility function. Thus, RDU can
handle the empirically observed probability dependence of risk tolerance (for an early example
see Preston and Baratta (1948)). Probability weighting captures the intuition that “attention given
to an outcome depends not only on the probability of the outcome but also on the favorability of the outcome
in comparison to the other possible outcomes” (Diecidue and Wakker (2001), page 284). Typically,
decision makers focus on the worst and best possible outcomes and give much less attention
to intermediate outcomes that will generally be underweighted even when they have the same
objective probabilities as the extreme outcomes (Quiggin, 1982).

Second, RDU displays first-order risk aversion, i.e. preferences between prospects whose
consequences are sufficiently close to one another do not necessarily tend to risk neutrality.
Thus, the experimental evidence of pronounced risk aversion over small stakes favors RDU over
many other approaches that accommodate non-EUT behavior but display only second-order risk
aversion (Sugden, 2004). Additionally, RDU was axiomatized by several authors and respects
completeness, transitivity, continuity, and first-order stochastic dominance, qualities that many
economists are hesitant to dispense with.3 Of course, RDU is not perfect, in the sense that it
is always the best model to rationalize data. For example, it cannot handle choice-set depen-
dent preferences, the strength of regret theory (Loomes and Sugden, 1987) and salience theory
(Bordalo, Gennaioli, and Shleifer, 2012). In our view, choice sets can be tightly controlled in
experimental settings, but are usually quite elusive in other contexts.

According to RDU, a decision maker’s atemporal risk preferences over prospects that are
played out and paid out with negligible time delay can be represented by a rank-dependent
functional. Consider a prospect P = (x1, p1; ...; xm, pm) over (terminal) monetary outcomes x1 >

x2 > ... > xm with xi ∈ X ⊂ R, pi ∈ [0, 1] and Σpi = 1. The function u denotes the utility

3RDU can handle other behavioral phenomena as well, such as correlation aversion: When decision makers evaluate
risky consumption streams they often have a preference for diversifying consumption across time, i.e. they prefer
some good and some bad to all or nothing (Kihlstrom and Mirman, 1974; Richard, 1975; Epstein and Tanny, 1980;
Bommier, 2007; Denuit, Eeckhoudt, and Rey, 2010). Epper and Fehr-Duda (2015) show that RDU implies correlation
aversion if the decision maker is sufficiently pessimistic, which is usually borne out by the data.
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of monetary amounts x, and w denotes the subjective probability weight attached to p1, the
probability of the best outcome x1. As usual, both u and w are assumed to be monotonically
increasing, w to be twice differentiable on (0, 1) and to satisfy w(0) = 0 and w(1) = 1. Decision
weights πi are defined as4

πi =

{
w(p1) for i = 1

w
(

∑i
k=1 pk

)
− w

(
∑i−1

k=1 pk

)
for 1 < i ≤ m

. (1)

Thus, the decision weight of xi is the probability weight attached to the probability of obtain-
ing something at least as good as xi minus the probability weight attached to the probability of
obtaining something strictly better than xi. Consequently, decision weights sum to one. Finally,
the prospect’s value is represented by

V(P) =
m

∑
i=1

u(xi)πi . (2)

To keep the logic of our approach as transparent as possible we present the following steps
for m = 2 and delegate the general case to Appendix A.1. For m = 2, the prospect reduces to
P = (x1, p; x2, 1− p) and Equation 2 reads as

V(P) = u(x1)w(p) + u(x2)
(

1− w(p)
)

=
(

u(x1)− u(x2)
)

w(p) + u(x2) .
(3)

This representation of V clarifies that x2 is effectively a sure thing whereas obtaining something
better than x2 is risky.

If the prospect is not played out and paid out in the present, but at some future time t > 0,
prospect value is affected by time discounting as well. We follow the standard approach and
model people’s willingness to postpone gratification by a constant rate of time preference η ≥ 0,
yielding a discount weight of ρ(t) = exp(−ηt).5 A prospect to be played out and paid out at
t > 0 is discounted for time in the following standard way:

V0(P) = V(P)ρ(t) . (4)

Abundant empirical evidence has demonstrated that risk taking behavior depends nonlinearly
on the probabilities (Starmer, 2000; Fehr-Duda and Epper, 2012). However, in order to explain
the observed interaction effects, we need to put more structure on the type of nonlinearity.

4Alternatively, decision weights πi can be expressed in terms of the cumulative distribution function F of the outcomes
xi: πi = w(1− F(xi+1))− w(1− F(xi)) for 1 ≤ i ≤ m, where F(xm+1) := 0.

5This assumption is not crucial for our results - neither a zero rate of time preference, i.e. ρ = 1, nor genuinely
hyperbolic time preferences affect our conclusions.
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2.2 Probability Weighting

Inspired by one of Allais (1953)’s famous examples, Kahneman and Tversky (1979) presented
subjects with the following experiment: Subjects had to choose between 3000 Israeli pounds for
sure and 4000 Israeli pounds materializing with a probability of 80%. Most people chose the sure
option of 3000 pounds. When confronted with the choice between a 25%-chance of receiving
3000 pounds and a 20%-chance of receiving 4000 pounds, the majority opted for the 4000-pound
alternative. Scaling down the probabilities of 100% and 80% by a common factor, in this example
1/4, induced many people to reverse their preferences. Obviously, such Allais-type behavior is
inconsistent with EUT.

An intuitive explanation for common-ratio violations is fear of disappointment:6 Losing a
gamble over very likely 4000 pounds is anticipated to be much more disappointing than losing a
gamble over 4000 pounds with only a small chance of materializing. On the other hand, winning
4000 pounds in the unlikely situation of a 20%-chance may trigger feelings of elation. Thus, when
people are prone to disappointment and/or elation, their behavior appears to depend nonlinearly
on the probabilities (Bell, 1985; Loomes and Sugden, 1986; Gul, 1991; Wu, 1999; Rottenstreich and
Hsee, 2001; Walther, 2003).7

In RDU, common-ratio violations are mapped by subproportionality of probability weights.
Formally, subproportionality holds if 1 ≥ p > q > 0 and 0 < λ < 1 imply the inequality

w(p)
w(q)

>
w(λp)
w(λq)

(5)

(Prelec, 1998). Kahneman and Tversky (1979) note that this property imposes considerable con-
straints on the shape of w: it holds if and only if ln w is a convex function of ln p. In other words,(

d ln w
d ln p

)′
> 0, or the elasticity of w, εw(p) = d ln w

d ln p , is increasing in p.8

Subproportionality implies the certainty effect, which constitutes the special case of p = 1.
Therefore,

w(λq) > w(λ)w(q) (6)

is satisfied for any λ, q such that 0 < λ, q < 1.9 This feature of subproportional probability

6It is interesting to note that Gul (1991)’s theory of disappointment aversion is observationally equivalent to RDU
with a specific convex subproproportional probability weighting function if prospects have only two outcomes, see
also Appendix B.4.

7Perceptual and procedural factors are potential drivers of probability distortions as well. The fathers of prospect
theory, Kahneman and Tversky, attributed probability dependence to the psychophysics of perception according to
which the sensitivity toward changes in probabilities diminishes with the distance to the natural reference points
of certainty and impossibility (Tversky and Kahneman, 1992). Several other contributions focused on procedural
aspects of choice (Rubinstein, 1988; Loomes, 2010). In these models, a prospect’s value depends not only on the
prospect’s own characteristics but also on other prospects in the choice set. A recent contribution in this category is
Bordalo, Gennaioli, and Shleifer (2012) who posit that probabilities are distorted in favor of payoffs that are perceived
as particularly salient. Whatever its cause, we interpret probability weighting in rank-dependent models as a kind
of reduced form generated by some psychological mechanism.

8The equivalence of subproportionality and increasing elasticity is shown in Appendix B.1.
9The numerical example above is a manifestation of the certainty effect, as the smaller outcome in the first decision
situation, 3000 pounds, materializes with certainty.
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weights has a crucial implication: It produces an aversion to compounding of probability weights
(Segal, 1987a,b, 1990). We will use this insight when we discuss aspects of uncertainty resolution.
There is also ample evidence for general common-ratio violations that do not involve a sure
outcome (e.g. Loomes and Sugden (1987); Nebout and Dubois (2014)). However, not everyone
is prone to common ratio violations. Usually, there is great heterogeneity in people’s behaviors,
with the aggregate often exhibiting the common ratio effect.

On average, estimated probability weighting curves overweight small probabilities and un-
derweight large probabilities of the best outcome, which is also a common characteristic of in-
dividual estimates (Gonzalez and Wu, 1999; Bruhin, Fehr-Duda, and Epper, 2010). This feature
is labeled regressiveness, i.e. the probability weighting curve cuts the diagonal from above.
In the context of rank-dependent models, regressiveness of the probability weighting function
generates overweighting of a prospect’s tail outcomes and underweighting of its intermediate
outcomes, which nicely captures the notion that more extreme outcomes within a given prospect
are more salient. While the driver of our results is subproportionality, regressiveness is an inde-
pendent additional characteristic that captures key features of observed behavior.10 Aside from
regressive shapes, convex weighting curves which globally underweight probabilities comprise
another common category of individuals’ probability weighting functions (see e.g. van de Kuilen
and Wakker (2011)), which may be subproportional as well.

When inspecting the graph of w(p), one cannot detect subproportionality with the naked
eye. In fact, many different shapes of w(p) display subproportionality, at least over some range of
probabilities. Figure 1 depicts three examples of subproportional probability weighting functions
that display starkly different shapes, a regressive function and two non-regressive ones.

Aside from the examples in Figure 1, many other functional specifications have been proposed
in the literature (see Appendix B.4). Perhaps the most widely used representative of a globally
subproportional function is Prelec (1998)’s flexible two-parameter specification of the compound
invariant class, designed to map common-ratio violations. Throughout the paper, we will use
this “standard” functional specification to illustrate our results,11 defined as

w(p) = exp
(
− β

(
− ln(p)

)α
)

, (7)

where 0 < α < 1 indicates the degree of subproportionality and 0 < β governs the range of
convexity. The smaller is α, the more pronounced is subproportionality and the greater is the
departure from linearity. The greater is β, the greater, ceteris paribus, is the range of probabilities
for which the curve is convex, i.e. underweighting p.

10Empirical estimates are often based on inverse-S shaped functional forms, that are concave over small probabilities
and convex over large probabilities.

11Aydogan, Bleichrodt, and Gao (2016) provide experimental support for the compound invariant specification at the
level of preference conditions.

8



Figure 1: Examples of Subproportional Probability Weighting Functions
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2.3 Future Uncertainty

The final building block of our model concerns the integration of “something may go wrong” due
to events unrelated to the prospect under consideration. This (uninsurable) risk inherent in the
future, survival risk for short, turns allegedly guaranteed payoffs into risky ones and introduces
an additional layer of risk over and above the objective probability distributions of risky payoffs
(henceforth referred to as prospect risk). Consequently, there are two distinct types of risk, prospect
risk which may resolve at any time between the present and the payment date, and survival
risk which resolves fully only at the payment date. Thus, the subjective perception of future
uncertainty changes the nature of the prospect. Formally, let 0 < s < 1 denote the constant
per-period probability of prospect survival, i.e. the probability that the decision maker will
actually obtain the promised rewards by the end of the period. Essentially, there are two ways of
accounting for this subjective probability s. First, for a delay t, the probability st is transformed
according to the decision maker’s probability weighting function, and the resulting w(st) affects
the prospect as a whole, i.e. all outcomes equally. In this case, prospect value amounts to

V0(P) = V(P)w(st)ρ(t) . (8)

Such an approach only affects measured discount rates but cannot handle the observed in-
teraction effects. Thus, we work with the second solution, namely that s impacts the perceived
probability distribution of the prospect. Then the probability that the allegedly guaranteed pay-
ment xm materializes at the end of period t is perceived to be st, and the probabilities of ob-
taining something better than xm are scaled down by st. Therefore, the objective m-outcome
prospect is subjectively perceived as an (m+1)-outcome prospect. Focusing on m = 2 again,
P̃ = (P, st; x, 1− st) =

(
x1, pst; x2, (1− p)st; x, 1− st

)
, where x < xm captures that “something

may go wrong”.
Setting u(x) = 0, the subjective present value of the prospect amounts to

V0(P̃) =
((

u(x1)− u(x2)
)

w(pst) + u(x2)w(st)

)
ρ(t)

=

((
u(x1)− u(x2)

)
w(pst)
w(st)

+ u(x2)

)
w(st)ρ(t) .

(9)

From the point of view of an outsider, the subjective probability distribution of prospect P
is not observable. Consequently, she infers probability weights w̃ and discount weights ρ̃ from
observed behavior on the presumption that the decision maker evaluates the objectively given
prospect P, and estimates preference parameters according to RDU in the standard way:12

V0(P̃) =
((

u(x1)− u(x2)
)

w̃(p) + u(x2)

)
ρ̃(t) , (10)

12Note that it takes at least two non-zero outcomes to separate risk taking and time discounting.
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interpreting w̃ as true probability weights and ρ̃ as true discount weights, while in fact the
weights are distorted by survival risk. By comparing Equation 9 with Equation 10 we can see
that the relationships between true and observed weights are given by

w̃(p) =
w(pst)

w(st)
(11)

and
ρ̃(t) = w(st)ρ(t) . (12)

These equations define the central relationships between observed and true underlying prob-
ability and discount weights. Concerning observed discount weights, Equation 12 resembles
Halevy (2008)’s representation for consumption streams in discrete time, while the focus here is
on temporal prospects in continuous time. This equation is the basis for explaining hyperbolic
and subadditive discounting, while all the other facts rest on Equation 11, a novel prediction of
our model.

Since w̃(p) 6= w(p) and ρ̃(t) 6= ρ(t), the presence of survival risk drives a wedge between
true underlying preferences and observed risk taking and discounting behavior. Thus, future
risk conjointly with proneness to Allais-type behavior provides the mechanism by which behav-
ior under risk and behavior over time are intertwined. A summary of the model variables is
provided in Table 2.

Table 2: Model Variables

Variable Description Characteristics

Pr
os

pe
ct

s x monetary payoff x ≥ 0
p probability of x 0 ≤ p ≤ 1
s probability of prospect survival 0 < s < 1
1− s survival risk ”
t length of time delay t ≥ 0

Pr
ef

er
en

ce
s u(x) utility function u(0) = 0, u′ > 0

w(p) true probability weight w(0) = 0, w(1) = 1, w′ > 0
η rate of pure time preference η ≥ 0, constant
ρ(t) discount weight ρ(t) = exp(−ηt)

Be
ha

vi
or w̃(p) observed probability weight w̃(p) = w(pst)

w(st)

ρ̃(t) observed discount weight ρ̃(t) = w(st)ρ(t)
η̃(t) observed discount rate η̃(t) = − ρ̃′(t)

ρ̃(t)
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3 Unifying the Experimental Evidence

In the following, we discuss the implications of our approach for the experimental phenomena
listed in Table 1 and demonstrate that, qualitatively, all the Facts #1 through #7 can be explained
within our framework. A quantitative assessment of the model predictions is presented in Section
4. While we retain some of the fundamental calculations in the main text, propositions and their
proofs are presented in Appendix A.

3.1 Fact #1: Delay Dependence of Risk Taking Behavior

The first fact in our list considers the observation that risk tolerance for delayed prospects seems
to be higher than risk tolerance for present ones. Concerning delayed risky prospects, we examine
the case when prospect risk and survival risk are resolved simultaneously in one shot at time t.
We have seen from Equation 11 that observed probability weights w̃(p) deviate systematically
from the underlying atemporal ones w(p),

w̃(p) =
w(pst)

w(st)
.

As w(st) < 1, the denominator boosts observed probability weights, whereas the additional st in
the argument of w in the numerator distorts them. Due to subproportionality

w̃(p) =
w(pst)

w(st)
>

w(p)
w(1)

= w(p) , (13)

implying that w̃ is more elevated than w, i.e. that w̃ lies above w, which constitutes one of the
central implications of our model. Since the probability weighting function maps the decision
weight of the best possible outcome, an increase in the elevation of the probability weighting
curve gets directly translated into higher revealed risk tolerance. For m = 2 and a given observed
discount weight ρ̃(t) = w(st)ρ(t),

V0(P̃) =
((

u(x1)− u(x2)
)

w̃(p) + u(x2)

)
w(st)ρ(t) >

V0(P) =
((

u(x1)− u(x2)
)

w(p) + u(x2)

)
w(st)ρ(t) .

(14)

Thus, the presence of survival risk makes people appear more risk tolerant for delayed prospects
than for present ones. Intuitively, the event of something going wrong takes on the role of
the perceived sure outcome, which makes x2 an intermediate one and, thus, less salient to the
decision maker. In addition, this risk-tolerance increasing effect is particularly strong for small
probabilities, i.e. positively skewed prospects are subject to more pronounced increases in risk
tolerance, as w̃(p)

w(p) declines in p (see Proposition 1 in Appendix A.2). Such a prediction would
not be possible if the utility function were the carrier of delay dependence, as for instance in

12



Eisenbach and Schmalz (2016).
The delay dependence of observed probability weights w̃ is illustrated in Figure 2. The top

row of the figure characterizes preferences in the atemporal case. Panel 1a shows a typical speci-
men of a regressive subproportional probability weighting function w for t = 0, underweighting
large probabilities and overweighting small probabilities of the best outcome. For illustrative
purposes, Panel 1b on the right side depicts the corresponding decision weights πi for a prospect
involving 21 equiprobable outcome levels, with outcome rank 1 denoting the best outcome and
outcome rank 21 denoting the worst one. Their objective probabilities are represented on the
horizontal gray line. As one can see, a regressive w generates strong overweighting of the ex-
treme outcomes and underweighting of the intermediate ones relative to the objective probability
distribution.

The bottom row of Figure 2 demonstrates the predictions for the case when prospects are
played out and paid out simultaneously in the future, the focus of this section. Future uncertainty
is captured by the parameter s = 0.8, i.e. the per-period prospect survival rate is perceived to
be 80%. When payoffs are delayed by two periods, t = 2, observed probability weights w̃ shift
upwards, as shown in Panel 2a. This shift rotates the decision weights π̃i counterclockwise, as
depicted in Panel 2b. Now the worst outcomes are underweighted while the best ones are more
strongly overweighted. For longer time delays these effects become more pronounced and may
lead to a substantial underweighting of the worst outcomes. Thus, underweighting of adverse
extreme events becomes more likely with longer time horizons.

3.2 Fact #2: Delay Dependence of Time Discounting Behavior

The following section is dedicated to the fact that observed discount rates decrease with the
length of delay, i.e. exhibit a hyperbolic decline. Allegedly guaranteed future payoffs constitute
a special case of risky ones. As is evident from Equation 12, the observed discount weight
for time equals ρ̃(t) = w(st)ρ(t). Clearly, if w is linear, ρ̃ declines exponentially irrespective
of the magnitude of s. To see this, note that ρ(t) = exp(−ηt) and st = exp

(
−
(
− ln(s)

)
t
)

,
implying a discount rate η̃ = η − ln(s) > η for 0 < s < 1. In this case, uncertainty per se
increases the absolute level of revealed impatience, but cannot account for declining discount
rates. Thus, an expected utility maximizer will exhibit a constant discount rate that is higher
than her underlying rate of pure time preference, but her behavior will not show any of the
interaction effects addressed in this paper. If, however, w is subproportional and 0 < s < 1, the
component w(st) distorts the discount weight in a predictable way (see details in Proposition 2
in Appendix A.3): The discount function ρ̃(t) declines at a decreasing rate, i.e. in a hyperbolic
way. To show this result, we set ρ = 1 without loss of generality. The rate η̃(t) at which w(st)

declines is defined as

η̃(t) = −
∂w(st)

∂t
w(st)

= −w′(st)st ln s
w(st)

= −ε(st) ln s , (15)
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Figure 2: Fact #1. Delay Dependence of Risk Tolerance
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The Figure contrasts atemporal probability and decision weights with weights delayed by t = 2 periods. For purposes
of illustration, the probability weighting curves are derived from Prelec (1998)’s two-parameter probability weighting

function w(p) = exp
(
− β(− ln(p))α

)
, assuming degrees of subproportionality α = 0.5 and of convexity β = 1.

Survival risk s is set at 0.8 per period. Top row - (1) Atemporal: The graphs show atemporal probability weights w
(Panel 1a) and their associated decision weights π (Panel 1b) for a prospect involving 21 equiprobable outcomes, with
outcome rank 1 denoting the best outcome. Their objective probabilities are represented on the horizontal gray line.
Bottom row - (2) Delayed: Panel 2a and 2b show w̃ and π̃ for a delay of two periods when uncertainty resolves at
t = 2
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where ε denotes the elasticity of w. Therefore,

η̃′(t) = −ε′(st)st(ln s)2 < 0 , (16)

since the elasticity of w is increasing. As Chakraborty, Halevy, and Saito (2020) have clarified,
subproportionality not only predicts hyperbolic discounting, but the reverse relationship also
holds in our setting.

Figure 3: Facts #2 and #4: Hyperbolic and Subadditive Discount Rates η̃
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Panel a shows discount rates as they move with the length of delay t for different levels of survival risk 1− s, where
s denotes the probability of prospect survival. When there is no survival risk, s = 1, the observed discount rate
is constant and equals the rate of pure time preference (line labeled by s = 1.0). The higher is the level of risk,
the lower s, the more pronounced the hyperbolic decline of discount rates over time is for decision makers with
subproportional probability weights (curves labeled by s = 0.5 and s = 0.8). η̃(t) := − ∂ρ̃

∂t /ρ̃. w is specified as Prelec’s
probability weighting function (in this example α = 0.5 and β = 1). Panel b depicts discount rates for a constant
level of survival probability s = 0.8 and varying number of resolution stages n. The more often a particular delay is
divided into subintervals (of equal length in this graph), the higher is the discount rate, a manifestation of subadditive
discounting.

Thus, decreasing impatience is not a manifestation of pure time preferences but a conse-
quence of survival risk changing the subjective nature of future prospects. At the level of ob-
served behavior, decreasing impatience is the mirror image of increasing risk tolerance if survival
risk is integrated into the prospect’s probability distribution. In fact, the degree of proneness to
common-ratio violations, the degree of subproportionality, can be interpreted as the degree of
time insensitivity. Intuitively, when the future is inherently risky, promised rewards do not ma-
terialize with certainty and, therefore, they incorporate the potential of disappointment. Because
more immediate payoffs are more likely to actually materialize than more remote payoffs, this
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potential is perceived to decline with the passage of time and becomes almost negligible for pay-
offs far out in the future. Technically, since shifting a payoff into the future amounts to scaling
down its probability, which constitutes an intertemporal variant of the Allais common ratio effect,
a decision maker with subproportional preferences becomes progressively insensitive to a given
timing difference. This insight provides a test bed for analyzing risk taking and time discounting
behavior at the individual level because the characteristics of the probability weighting function
feed directly into the characteristics of the observed discount function. For example, a Prelec
compound invariant probability weighting function with α < 1 generates a Constant Relative
Decreasing Impatience (CRDI) discount function, frequently used to map hyperbolic discounting
(Bleichrodt, Rohde, and Wakker, 2009).

The effects of survival risk on revealed discount rates are presented in Panel a of Figure 3,
which depicts a typical decision maker’s observed discount rates η̃ as they react to varying levels
of s. The horizontal line represents the case of no survival risk, s = 1. In this case, the observed
discount rate η̃ is constant and coincides with the true underlying rate of time preference η.
When survival risk comes into play, however, discount rates decline in a hyperbolic fashion, and
depart from constant discounting increasingly strongly with rising uncertainty, as shown by the
curves for s = 0.8 and s = 0.5, respectively.

3.3 Fact #3: Process Dependence of Risk Taking

So far, we have considered the case when future prospects are evaluated in one single shot. In
the following section we analyze the situation of uncertainty resolving in several distinct stages.
In the domain of risk, sequential resolution of uncertainty frequently reduces a prospect’s value
relative to its one-shot counterpart, Fact #3.

In order to derive our predictions for sequential resolution of uncertainty, we need to discuss
the method by which multi-stage prospects are transformed into single-stage ones, the domain
over which risk preferences are defined. In principle, there are two different transformation
methods, reduction by probability calculus and folding back.13 Reduction involves the calculation
of the probabilities of the final outcomes and the transformation of these values by the appropri-
ate weighting function. Folding back, on the other hand, weights the probabilities at each stage
and then compounds these weights. Segal (1990) argues that folding back is particularly plausi-
ble when the stages are clearly distinct. It is well known that a naive RDU decision maker will
be dynamically inconsistent if she cares only about the probabilities of the final outcomes - as
the payment date draws near, she will re-evaluate the prospect and, because of the delay depen-
dence of risk tolerance, become comparatively more risk averse. Folding back ensures dynamic
consistency but has substantial consequences for prospect valuation.

Experiments on compound risks show that people frequently violate the reduction axiom

13Alternatively, the term backward induction has been used in the literature. Segal (1990) replaces the reduction ax-
iom by an axiom of compound independence which ensures the applicability of folding back as transformation
mechanism.
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of EUT, i.e. the value of a prospect resolving in several stages differs from the value of the
probabilistically equivalent one-stage prospect. Therefore, we assume that the decision maker
applies folding back when evaluating the prospect under consideration.

Figure 4: One-Shot and Sequential Resolution of Prospect Risk

(1) one-shot (2) sequential

x2

1− qr

x1
qr

x2

1− q

x2

1− r

x1
r

q

(1) one-shot: The tree depicts uncertainty resolution in one stage. (2) sequential: The probability tree shows the
sequential resolution of uncertainty of a prospect P = (x1, qr; x2) in two stages with partial probabilities q and r.

Figure 4 depicts the sequential resolution of a two-outcome prospect P = (x1, p; x2, 1− p) in
n = 2 stages with partial probabilities q and r and the corresponding one-shot resolution case.
Under folding back, the prospects’ values are given by

V1(P) =
(

u(x1)− u(x2)
)

w(qr) + u(x2) ,

and
V2(P) =

(
u(x1)− u(x2)

)
w(r)w(q) + u(x2) ,

where the subscripts of V denote the number of resolution stages. As already noted, and dis-
cussed in detail in Segal’s work (Segal, 1987a,b, 1990), the certainty effect embodied in subpro-
portional preferences generates an aversion to compounded probability weights: For 1 > p =

qr > 0 the compounding of the respective weights always leads to lower prospect values, i.e.
w(qr) > w(q)w(r) holds whatever are the values of q and r. Here the order of r and q, i.e. which
probability resolves first, does not play a role, a feature labeled event commutativity (Chung, von
Winterfeldt, and Luce, 1994). Furthermore, a prospect’s minimum value is attained when com-
pounding occurs over equiprobable stages, i.e. when r = q =

√
p . Partitions of equal length

correspond to the least degenerate multi-stage prospect and can be interpreted as the compar-
atively most ambiguous situation, which is strongly disliked by people with subproportional
preferences.14

14Because of this characteristic, Segal (1987b) proposes to model ambiguity aversion by subproportional risk prefer-
ences over two-stage lotteries. A recent paper by Dillenberger and Segal (2014) shows that such an approach has
another attractive implication: It is able to solve Machina (2009, 2014)’s paradoxes which involve a number of situa-
tions where standard models of ambiguity aversion are unable to capture plausible features of ambiguity attitudes
(Baillon, l’Haridon, and Placido, 2011).
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In principle, uncertainty may resolve in many different ways. This raises the question how
general the prediction is that subproportional decision makers undervalue prospects with se-
quential resolution of uncertainty relative to those with one-shot resolution. Here we focus on
sequential resolution in the form of prospect survival, i.e. we only consider probability trees
that, at each stage, render either x2 or the chance that x1 is still available at a later stage. We term
trees with this structure “survival trees”. For example, a third stage with partial probability v
could be appended to the tree in Figure 4, such that x1 materializes with probability qrv. For
survival trees with m = 2, Segal’s insights on two-stage prospects generalize to n > 2 stages, i.e.
w(∏n

i=1 qi) > ∏n
i=1 w(qi) for ∏n

i=1 qi = p, as shown in Proposition 3 in Appendix A.5.
Another type of survival tree emerges when, at each stage, either the worst possible out-

come materializes or “everything is still possible” which could be any number m of probabilistic
outcomes that materialize at the final stage. Thus, the survival tree has two branches at all the
chance nodes before the final stage, and m branches at the terminal resolution of uncertainty. An
example for m = 3 and n = 3 is discussed in Appendix A.4. Subproportionality makes clear
predictions for this type of sequential resolution of uncertainty as well: The prospect’s one-shot
value will be greater than its folded back version. Thus, such a resolution process has the flavor
of disappointment aversion since at each stage something better than xm may turn out to be un-
reachable. For n resolution stages and m outcomes, the resulting probability weighting function
for ∏n

i=1 qi = p is given by

wn(p) =
n

∏
i=1

w(qi). (17)

Details are set out in Proposition 3 in Appendix A.5.
The top row of Figure 5 shows the basic probabiliy weighting function and the decision

weights of 21 equiprobable outcomes when uncertainty resolves in one shot. On the bottom, the
probability weighting function and the corresponding decision weights are displayed that result
from compounding over 12 stages of equal partial probability. As one can see, the originally re-
gressive probability weighting function is transformed into a strongly convex one. The decision
weight curve now rotates clockwise, implying substantial underweighting of the best outcomes
and overweighting of the worst outcomes, as is evident in Panel 2b. Thus, compounding prob-
ability weights greatly reduces risk tolerance. Sequential valuation of this type, therefore, has a
dramatic effect on the overweighting of adverse tail events. This effect may be called myopic prob-
ability weighting in the style of myopic loss aversion (Benartzi and Thaler, 1995) which has similar
consequences on risk taking behavior when short-sighted investors are frequently exposed to the
possibility of facing losses.

To sum up: If uncertainty resolves according to a survival tree, one-shot resolution is always
preferred to sequential resolution of uncertainty. A preference for one-shot resolution of uncer-
tainty does not hold generally under subproportionality in RDU (Dillenberger, 2010), however,
but only applies to the class of resolution processes studied here.15 For details see our discussion

15An example for which a general preference for one-shot resolution cannot be predicted is the series of experiments
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in Appendix B.2.

3.4 Extension: Process Dependence of Risk Taking and the Passage of Time

The property of aversion to compound risk carries over to the case when the passage of time
with its inherent uncertainty is introduced. In our view, this situation constitutes a much more
interesting case than the frequently observed aversion to sequential resolution in atemporal ex-
perimental settings. However, we are not aware of any studies involving the sequential resolution
of uncertainty of genuinely delayed prospects. Thus, the following insights provide the basis for
novel experimental investigations.

In the following, we set ρ = 1 for ease of exposition. Let us first consider a two-outcome
prospect P = (x1, p; x2) resolving in n = 2 stages denoted by corresponding subscripts to w̃ and
ρ̃, such that uncertainty is partially resolved at some future time t1 and fully resolved at the
payment date t > t1, as depicted in Panel (ii) of Figure 6. Applying folding back, the resulting
two-stage prospect is evaluated as

[V2(P̃)]0 =
(

u(x1)− u(x2)
)

w
(

p
t1
t st1

)
w
(

p
t−t1

t st−t1

)
+ u(x2)w

(
st1
)

w
(
st−t1

)

=

((
u(x1)− u(x2)

)w
(

p
t1
t st1

)
w
(

p
t−t1

t st−t1

)

w(st1)w(st−t1)
+ u(x2)

)
w
(
st1
)

w
(
st−t1

)

=

((
u(x1)− u(x2)

)
w̃2(p) + u(x2)

)
ρ̃2(t) ,

(18)

which yields the relationships

w̃2(p) =
w
(

p
t1
t st1

)
w
(

p
t−t1

t st−t1

)

w (st1)w (st−t1)
(19)

and
ρ̃2(t) = w

(
st1
)

w
(
st−t1

)
, (20)

where ρ̃2(t) is interpreted as the discount weight attached to the allegedly certain outcome
x2. Subproportionality ensures that

w̃2(p) =
w
(

p
t1
t st1

)
w
(

p
t−t1

t st−t1

)

w (st1)w (st−t1)
<

w(pst)

w(st)
= w̃(p) , (21)

i.e. under folding back observed risk tolerance is smaller than in the one-shot case, one of the
main results generalized in Proposition 4 in Appendix A.6 where we provide a characterization

based on the investment games by Gneezy and Potters (1997); Gneezy, Kapteyn, and Potters (2003); Bellemare,
Krause, Kröger, and Zhang (2005). In these experiments, participants face three independent draws of the same
probability distribution and have to decide how much of their initial endowment they want to invest into the risky
asset. The resulting probability tree does not belong to the class of survival trees studied in the current paper
because at each stage the player may lose only one invested amount and does not face the worst case of losing the
total of three invested amounts. Such a situation only arises at the third draw.
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Figure 5: Fact #3: Preferences for the Resolution of Atemporal Uncertainty
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The figure contrasts probability and decision weights for one-shot resolution of uncertainty with the weights for
sequential resolution if the passage of time does not play a role. For purposes of illustration, the curves are derived

from Prelec (1998)’s two-parameter probability weighting function w(p) = exp
(
− β(− ln(p))α

)
, assuming degrees

of subproportionality α = 0.5 and of convexity β = 1. Top row - (1) One-shot: The graphs show probability weights
w (Panel 1a) and their associated decision weights π (Panel 1b) for a prospect involving 21 equiprobable outcomes,
with outcome rank 1 denoting the best outcome when uncertainty resolves in one-shot. Their objective probabilities
are represented on the horizontal gray line. Bottom row - (2) Sequential: Panel 2a and 2b show the compounded
probability weights wn(p) = ∏n

i=1 w(qi) and the corresponding decision weights πn when uncertainty resolves in
n = 12 equiprobable stages, qi = p1/12.
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Figure 6: One-Shot and Sequential Resolution of Prospect and Survival Risk

(i) one-shot (ii) sequential
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(1) one-shot: The tree depicts uncertainty resolution of a prospect (x1, pst; x2, (1− p)st; x) in one stage. (2) sequential:
The probability tree shows the sequential resolution of uncertainty of the same prospect in two stages with partial
probabilities (p1/ts)t1 and (p1/ts)t−t1 .

of w̃n. Furthermore, total prospect value is also smaller than for one-shot resolution as both
w(pst) and w(st) are greater than any products of probability weights of partial probabilities.
Thus, the preference for one-shot resolution of uncertainty is preserved when “something may
go wrong”. Probability weights w̃ and w̃n as well as their corresponding decision weights π̃ and
π̃n are depicted in Figure 7, which show the same patterns as for the atemporal case of Figure 5,
but less pronounced because delay dependence shifts the original atemporal probability weights
upwards.

3.5 Fact #4: Process Dependence of Time Discounting

Fact #4 pertains to the finding that discount rates compounded over partial periods are higher
than discount rates applied to the total period under consideration, so-called subadditive dis-
counting. As we will see shortly, we can transfer all our insights for the sequential resolution
of uncertainty to discounting behavior as allegedly certain future outcomes are a special case
within the class of two-outcome prospects. According to our model an allegedly certain outcome
x payable at delay t is perceived as a risky future prospect (x, st; x, 1− st). Suppose now that
future uncertainty resolves in two stages, first at t1 and finally at t. Coming back to Figure 4,
redefine x2 as x and the partial probabilities as survival probabilities, q = st1 and r = st−t1 .
Subproportionaliy implies w(st) > w(st1)w(st−t1), in other words discounting is subadditive, de-
scribed as Fact #4. As before, this result holds for any number of resolution stages, and the more
stages are involved the stronger the compounding effect.

Panel b of Figure 3 shows the effect of varying the number of compounding stages on ob-
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Figure 7: Extension: Preferences for the Resolution of Uncertainty with Survival Risk
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The figure shows the impact of one-shot resolution of uncertainty versus the sequential resolution of uncertainty in
the presence of survival risk when the prospect under consideration is delayed by t = 2 periods. For purposes of
illustration, the curves are derived from Prelec (1998)’s compound invariant probability weighting function w(p) =

exp
(
− β(− ln(p))α

)
, assuming degrees of subproportionality α = 0.5 and of convexity β = 1. Top row - (1) One

shot: The graphs show delay-dependent probability weights w̃ (Panel 1a) and their associated decision weights π̃
(Panel 1b) for a prospect involving 21 equiprobable outcomes, with outcome rank 1 denoting the best outcome. Their
objective probabilities are represented on the horizontal gray line. Bottom row - (2) Sequential: Panel 2a and 2b show

w̃n(p) =
(

w((pst)1/n)
w((st)1/n)

)n
and the corresponding decision weights πn when uncertainty resolves in n = 24 equiprobable

stages.
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served discount rates. As predicted, discount rates increase in the number of stages. In our
model, subadditive discounting is the result of decision makers’ aversion to compounded prob-
ability weights and not a feature of pure time preferences themselves, as often posited in the
literature.

3.6 Fact #5: Preferences for the Timing of Uncertainty Resolution

The experimental evidence has found quite a puzzling result: a substantial share of participants
prefer uncertainty to be resolved at the payment date, even in circumstances when one would
expect that it is advantageous to know the outcome of one’s financial decisions as early as pos-
sible. In this section, we explore the consequences of subproportionality for the preferences for
the timing of uncertainty resolution.

Figure 8: Late and Immediate Resolution of Prospect Risk

(i) late (ii) immediate
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1 − s t

x2
(1 − p)st
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(1) late: The tree depicts uncertainty resolution in one stage at the payment date t. (2) immediate: The probability
tree shows the immediate resolution of prospect risk, with survival risk resolving at t.

Figure 8 depicts two different cases of the timing of uncertainty resolution: either the prospect
is played out at the payment date, corresponding to one-shot resolution and labeled “late” (Panel
i), or the prospect is played out immediately after prospect valuation, labeled “immediate” (Panel
ii). In the latter case, the decision maker will know the outcome right after her decision and faces
only survival risk. Contrasting the resulting prospect values,

V0(P̃)late =

((
u(x1)− u(x2)

)
w(pst)
w(st)

+ u(x2)

)
w(st)ρ(t) >

V0(P̃)immediate =

((
u(x1)− u(x2)

)
w(p) + u(x2)

)
w(st)ρ(t) ,

(22)

shows that late resolution is always preferred as w(pst)
w(st)

> w(p) is implied by subproportionality.
Thus, if no other considerations, such as being able to make better future plans, play a role, a
subproportional decision maker will exhibit a preference for late resolution of uncertainty. In
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fact, she will prefer resolution at t to any earlier resolution time t1 < t, as shown in Appendix
A.7.

In our view, that subproportional risk preferences induce an intrinsic preference for late
resolution of prospect risk constitutes the third important result besides delay- and process-
dependence. If decision makers perceive the future as inherently risky and apply folding back,
this property follows endogenously from subproportionality and does not constitute an inde-
pendent preference as in the theoretical literature on resolution timing (Kreps and Porteus, 1978;
Chew and Epstein, 1989; Grant, Kajii, and Polak, 2000). Moreover, our model not only predicts
a general preference for late resolution of prospect risk, it also specifically addresses skewness
preferences because the effect is larger for small probabilities (see Proposition 5 in Appendix
A.7), which cannot be handled by utility-based explanations. Additionally, this preference for
late resolution of uncertainty of positively skewed prospects increases with time delay.

3.7 Fact # 6: Risk Dependence of Patience

Researchers have been puzzled not only by delay-dependent risk tolerance and preferences with
respect to resolution timing but also by other interactions between time and risk, encompass-
ing risk-dependent discounting and diminishing immediacy: Certain outcomes tend to be dis-
counted much more heavily than risky outcomes are (Stevenson, 1992; Ahlbrecht and Weber,
1997). As we will show below, these findings can be naturally accommodated within our frame-
work.

Let V0 denote the present value of the prospect P = (x1, p; x2, 1 − p) delayed by t periods.
Hence, for ρ = 1,

V0 =

((
u(x1)− u(x2)

)w(pst)

w(st)
+ u(x2)

)
w(st) . (23)

Furthermore, let Vt denote the future value of P as of t:

Vt =
(

u(x1)− u(x2)
)

w(p) + u(x2) . (24)

Discounting by w(st) yields

Vtw(st) =

((
u(x1)− u(x2)

)
w(p) + u(x2)

)
w(st) . (25)

According to standard discounting theory, the present value V0 should be equal to the dis-
counted value of Vt, namely Vtw(st). However, because w(p) < w(pst)

w(st)
, actually Vtw(st) < V0.

Therefore, it seems as if the certain value Vt is discounted more heavily than the (at t equally
attractive) future prospect. The difference in the valuations is not caused by different rates of
time preference for risky and certain payoffs, however, but by survival risk changing the nature
of the future prospect when evaluated from the point of view of the present rather than from the
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point of view of the future.
The same kind of risk dependence is at work when the revealed preference for a certain

smaller present payoff over an allegedly certain larger later payoff decreases substantially when
both payoffs are made (objectively) probabilistic, a phenomenon termed diminishing immediacy
(Keren and Roelofsma, 1995; Weber and Chapman, 2005). Because of the certainty effect, the
additional layer of riskiness affects the later payoff much less than the present one because, due
to survival risk, it is viewed as a risky prospect already from the outset.

3.8 Fact #7: Order Dependence of Risk Tolerance

Order dependence refers to the phenomenon that it makes a difference in which order a prospect
is discounted for risk and for time. In principle, there are three different methods of establishing
a decision maker’s value of a prospect P = (x1, p; x2, 1 − p) delayed by t periods: the risk-
first order, the time-first order, and the direct method by which both operations are performed
simultaneously.

The risk-first order assesses the certainty equivalent as of time t at the first stage and its
present value at the second stage. The time-first order reverses the elicitation stages and encom-
passes, at the first stage, the elicitation of the present risky prospect which is considered to be
equivalent to the future one and, at the second stage, the elicitation of the certainty equivalent of
this present risky prospect. The direct method, finally, elicits the present certainty equivalent of
the delayed prospect in one single operation.

When the decision maker is required to state the prospect’s value when discounting solely
for risk, she ignores the dimension of time and reports Vt which gets discounted to Vtw(st) at the
second stage:

Vtw(st) =
(
(u(x1)− u(x2))w(p) + u(x2)

)
w(st). (26)

Conversely, when discounting for time first, she states the present prospect which is equivalent
to the delayed one. Discounting for risk at the second stage results in its value V0, evaluated as

V0 =

((
u(x1)− u(x2)

)w(pst)

w(st)
+ u(x2)

)
w(st), (27)

which is equal to the present value elicited by the direct method.
Due to subproportionality, w(pst)

w(st)
> w(p). Therefore, we predict that discounting for risk first

results in a lower prospect valuation than discounting for time first. Moreover, discounting for
time first is equivalent to prospect evaluation in one single operation. In their study on order
dependence, Öncüler and Onay (2009) indeed found this pattern: While valuations resulting
from the time-risk order and the direct method are not statistically distinguishable from each
other, risk-time evaluations are significantly lower than the ones obtained from the other two
methods (see also Ahlbrecht and Weber (1997)).
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4 Quantitative Assessment

The previous results indicate that our model is capable of explaining all seven facts. The question
remains whether the model requires vastly different parameters to explain the various facts or
whether is it possible to explain them with a set of parameters within a relatively narrow and
plausible range.16 To address this question, we tie our hands and assume a fixed set of preference
parameter values for (i) the utility curvature, (ii) the degrees of subproportionality and convexity
of probability weights, and (iii) the rate of pure time preference, as specified in Table 3. These
parameters are suggested by typical estimates in the literature (see e.g. Abdellaoui, Diecidue,
and Öncüler (2011); Fehr-Duda and Epper (2012)). Together with an estimated value of the
survival probability s the preference parameters generate behavioral predictions that we can
quantitatively compare with the outcomes of experiments that documented the seven facts. In
other words, we use only one free parameter – the value of the (annualized) survival probability
s – to fit the experimental data.17

Ideally, for a given subject pool at a given point in time, and a given elicitation method,
the estimated value of s should be rather similar across experiments because in this case the
participants would have little reason to reveal different degrees of subjective uncertainty that
“something may go wrong”. However, the seven facts we discussed have been documented
at different points in time, with different elicitation methods, and with rather different subject
pools – French, Swiss, Swedish and US participants. Table 13 in the appendix summarizes the
experimental studies we used for our task. Therefore, the best we can hope for is that the
estimated value of s is roughly in a similar ballpark across the different experiments. In addition,
because all studies have been conducted with university students in advanced Western countries
with well-developed property rights, the estimated value of s should not be unreasonably low
(e.g., below 0.5 or 0.6 p.a.). As we will see below, our quantitative estimates nicely confirm these
expectations. The typical value of the survival probability across experiments is around 0.9 and
never below 0.825. Thus, all seven facts can be quantitatively explained with a plausible and
identical set of preference parameters and a narrow and plausible range of survival probabilities.

4.1 Fact #1: Delay Dependence of Probability Weights

To demonstrate the quantitative implications of our approach we proceed as follows. According
to our framework the driver of risk tolerance increasing with delay are delay-dependent prob-
ability weights. Delay-dependent risk tolerance was observed in many experiments, but only
a very few provide estimates of suitable probability weights. One particularly useful example
is Abdellaoui, Baillon, Placido, and Wakker (2011)’s investigation of the source dependence of
uncertainty attitudes. Their experiment also involved pure risk, i.e. given objective probabilities,
as a special source for which uncertainty resolved at the payment date three months after the

16We thank an anonymous referee for proposing this calibration exercise.
17Note that there are so far no stylized facts regarding the perceived subjective uncertainty captured by the survival

probability s. Therefore, it makes sense to estimate s.
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Table 3: Global Parameter Values

Function Specification Parameter Value
Probability weighting compound invariant α: subproportionality 0.50

β: convexity 0.95
Utility power γ: curvature 0.80
Time discounting exponential η: rate of time preference 0.10
The functions are specified as follows. Prelec (1998)’s compound-invariant probability weighting
function: w(p) = exp(−β(− ln(p))α). Power utility function: u(x) = xγ. Time discount function:
ρ(t) = exp(−ηt).

experimental sessions. Abdellaoui, Baillon, Placido, and Wakker (2011) assume a Prelec (1998)
compound-invariant probability weighting function and report α̂ = 0.67 and β̂ = 0.76 for the
delayed weights wt=3(p) (see their Figure 9 on page 713). Now, what is the level of survival
probability s such that their delayed weights wt=3(p) can be interpreted as w̃(p) based on the
atemporal weights wt=0(p) generated by our global parameters? We estimate s by minimizing
the sum of squares of the difference between w̃ and wt=3. This exercise yields an optimal s∗

of 0.825 p.a., which we deem a very plausible number. In other words, subjects behaved as if
they thought outcomes payable in one year would actually materialize with a 82.5% chance. As
one can see in Figure 9, the curve of w̃ predicted for this level of s∗ closely matches the actual
reported curve wt=3.

4.2 Fact #2: Hyperbolic Discounting

Epper, Fehr-Duda, and Bruhin (2011) elicited both time preferences and risk preferences of a
student sample.18 Comparing the average annualized discount rates observed for a two-month
delay and a four-month delay shows the usual picture: they decline from 0.368 to 0.299 when
the delay increases (all these numbers can be found in the first column of their Table 2 on page
183 of the paper). Assuming that the discount rates are generated by the theoretical discount
weights w(st) exp(−ηt), we estimate s by minimizing the sum of squared deviations between
model predictions and observations. This procedure yields s∗ = 0.947, resulting in predicted
discount rates of 0.372 for the two-month delay, and 0.293 for the four-month delay, shown in
Table 5, which are very close to the observed values.

Epper, Fehr-Duda, and Bruhin (2011) provide a number of additional insights. A large body
of empirical evidence documents the prevalence of common-ratio violations as well as of non-
exponential discounting, at least at the level of aggregate behavior (Kahneman and Tversky, 1979;
Thaler, 1981; Benzion, Rapoport, and Yagil, 1989; Starmer and Sugden, 1989; Prelec and Loewen-
stein, 1991). However, there is vast heterogeneity in individuals’ behaviors (Hey and Orme, 1994;

18Based on the risk taking data, Epper, Fehr-Duda, and Bruhin (2011) estimated the mean Prelec α = 0.505 and the
mean β = 0.974, which lie very close to our global parameter values.
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Increasing Risk Tolerance

Figure 9: Observed versus Predicted
Weighting Functions
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Table 4: Decision Weights

Probability Observed Predicted
0.125 0.289 0.308
0.250 0.388 0.395
0.500 0.552 0.544
0.750 0.719 0.710
0.875 0.821 0.821

Figure: The green curve corresponds to the atemporal probability weighting function, wt=0, generated by our global
parameter values. The red curve depicts the probability weighting function estimated by Abdellaoui, Baillon, Placido,
and Wakker (2011) for uncertainty resolution in three months, wt=3 (see Panel B in their Figure 9 on page 713). The
blue cross-shaped curve is our prediction for the global parameter values and a survival probability of s∗ = 0.825.
Table: For each of the five probabilities in Abdellaoui, Baillon, Placido, and Wakker (2011), the table contrasts observed
decision weights of the better outcome with decision weights predicted by our model with global parameter values
and s∗ = 0.825. The exact observed weights are computed using the probability weighting function estimated by
Abdellaoui, Baillon, Placido, and Wakker (2011).

Chesson and Viscusi, 2000; Bruhin, Fehr-Duda, and Epper, 2010) and the question arises whether
common-ratio violations and non-constant discounting are actually exhibited by the same peo-
ple. To our knowledge, potential links between risk preferences and time preferences at the
level of preference conditions or parameter estimates have not been explored so far. However,
using the decline of discount rates as a measure of decreasing impatience, Epper, Fehr-Duda,
and Bruhin (2011) provide evidence that subjects’ departures from linear probability weighting
are indeed highly significantly correlated with the strength of the decrease in discount rates.
In fact, the only variable associated with decreasing discount rates turns out to be the degree
of subproportionality of probability weights, which explains a large percentage of the variation
in the extent of the decline, whereas observable individual characteristics, such as gender, age,
experience with investment decisions and cognitive abilities are not significantly correlated with
the degree of non-constant discounting.

4.3 Fact #3: Preference for One-Shot Resolution of Uncertainty

To the best of our knowledge, the process dependence of risk taking behavior has not been in-
vestigated experimentally in situations when there is actually a substantial time delay present.
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Table 5: Hyperbolic Discounting - Observed versus Predicted Discount Rates

Delay Observed Predicted
2 months 0.368 0.372
4 months 0.299 0.293

The table lists observed and predicted annualized discount rates for the two different time delays in Epper, Fehr-Duda,
and Bruhin (2011). The observed rates can be found in the first column of Epper, Fehr-Duda, and Bruhin (2011)’s Table
2 (page 183). The predicted rates result from our model with the global parameter values and s∗ = 0.947.

Experimental tasks are typically based on one-stage and numerically equivalent multi-stage
prospects that are resolved almost immediately. In other words, survival probability s is ir-
relevant in such situations. Thus, we will illustrate an atemporal version of the preference for
one-shot resolution of uncertainty over sequential resolution by (i) documenting that the pre-
dicted certainty equivalents of one-shot resolved prospects are always higher than those of se-
quentially resolved prospects, and (ii) by comparing the actually observed certainty equivalents
with the predicted certainty equivalents.

Abdellaoui, Klibanoff, and Placido (2015) report mean certainty equivalents for simple prospects
(50, p; 0, 1− p) (their Table 2 on page 1310) that are resolved in one stage or in two stages. Ta-
ble 6 shows that one-shot certainty equivalents are always higher than sequential ones, and the
predicted values, based on our global parameters, are reasonably close to the observed ones,
particularly for the probabilities 1/2 and 11/12. For p = 1/12 the model overpredicts the difference
between one-shot and sequential values.19

Table 6: Process Dependence - Observed versus Predicted Certainty Equivalents

Prospect Condition Observed Predicted

(50, 1/12; 0)
one-shot 9.910 11.184
sequential 9.250 7.182

(50, 1/2; 0)
one-shot 22.650 22.671
sequential 20.720 19.052

(50, 11/12; 0)
one-shot 37.740 37.781
sequential 34.720 35.435

The table lists certainty equivalents documented in Table 2 on page 1310 of Abdellaoui, Klibanoff, and Placido (2015)
for one-shot and sequential resolution (their “CRG” condition). The predictions are obtained for our model with the
global parameter values listed.

19Regarding the other features of our model, event commutativity and aversion to equiprobable stages, the evidence
so far is mixed. For a review see Fan, Budescu, and Diecidue (2018).
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4.4 Fact #4: Subadditive Discounting

To illustrate the quantitative implications of our model we again examine the discounting data of
Epper, Fehr-Duda, and Bruhin (2011). In the experiment, future equivalents FEs of a fixed sooner
amount of CHF 60 were elicited for various time delays. We define the observed discount fraction
as

f (t1, t2) =
60
FE

,

where t1 is the payment date for the sooner amount 60 and t2 the payment date for the later
amount FE (Read, 2001). If the product f (t1, t2) f (t2, t3) is smaller than the discount fraction over
the total period, f (t1, t3), then discounting is subadditive. According to our model, indifference
between sooner and later payments is given by

u(60)w(st1) exp(−ηt1) = u(FE)w(st2−t1)w(st1) exp(−ηt2) .

Assuming power utility with parameter γ the predicted discount fraction equals to

f (t1, t2) =
60
FE

=

(
w(st2−t1) exp(−ηt2)

exp(−ηt1)

) 1
γ

.

Given the optimal survival probability derived for the same data set of Fact #2, s∗ = 0.947, the
following predictions for the discount fractions result, listed in Table 7.

Table 7: Subadditive Discounting - Observed versus Predicted Discount Fractions

Discount Fraction Observed Predicted
f (0, 2) 0.927 0.893
f (2, 4) 0.941 0.893
f (0, 4) 0.886 0.852
f (0, 2) f (2, 4) 0.872 0.797

The table lists discount fractions for various payment dates and the relevant product. Observed values are derived
from the values shown in Table 2 of Epper, Fehr-Duda, and Bruhin (2011) (page 183). Predictions are derived by our
model with global parameter values and s∗ = 0.947.

Both the observed mean discount fractions and the predicted ones clearly exhibit subadditiv-
ity, with predictions fitting fairly well.

4.5 Fact #5: Preferences for the Timing of Uncertainty Resolution

Arai (1997) measured (hypothetical) strength of preference (SOP) towards resolution timing for
delayed prospects that varied by outcome probability and time delay. In this case we do not have
present certainty equivalents at our disposal but have to rationalize strength of preference values.
We report Arai (1997)’s findings on the prospect (5000, p; 0, 1− p) listed in Table 1 on page 20 of
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his paper. Strength of preference was measured on a scale divided into 30 equal intervals, with
SOP = 0 denoting strong preference for immediate resolution and SOP = 30 denoting strong
preference for late resolution. Thus, SOP = 15 signals indifference between immediate and late
resolution of uncertainty.

Arai (1997) finds a very distinct pattern of strength of preference depending on time delay
and probability: The smaller the probability and the longer the time delay, the stronger the
preference for late resolution. Our task is to predict the patterns observed by Arai (1997). For
this purpose we examine the wedge W(p, t) := w(pst)

w(p)w(st)
which measures the decision weight

for late resolution relative to the decision weight for immediate resolution of uncertainty. We
hypothesize that it is more likely to observe strength of preference SOP > 15 in favor of late
resolution for greater values of the wedge W(p, t). We calculate W(p, t) by assuming our global
parameters and survival probability s = 0.9, which lies in the range of optimal s∗ found for the
other facts (see Table 12 below.)

Table 8: Resolution Timing - W(p, t) and Strength of Preference SOP

t = 1/4 t = 2 t = 10
p W(p, t) SOP W(p, t) SOP W(p, t) SOP

0.05 1.16 16.4 1.46 17.0 2.03 17.8
0.35 1.15 15.6 1.41 16.5 1.77 18.2
0.65 1.14 12.4 1.35 14.4 1.55 17.2
0.95 1.11 12.3 1.18 13.9 1.21 16.9

The table shows wedges W(p, t) =
w(pst)

w(p)w(st)
predicted by our model with global parameter values and s = 0.9 and

observed strength of preferences values reported in Arai (1997) (Table 1 on page 20).

Table 8 shows a totally consistent picture, W(p, t) is predicted to decrease in p and increase in
delay t, capturing the patterns in the observed strength of preference measures. The Spearman
rank correlation coefficient between SOP and W(p, t) amounts to 90.2%, which we deem an
excellent match.

4.6 Fact #6: Risk-Dependent Discounting

In their experiments, Weber and Chapman (2005) investigated whether delaying an outcome
is equivalent to making it risky. In one of these experiments participants’ present certainty
equivalents for delayed prospects were elicited through a series of choices using a bisection
algorithm. 124 participants supplied useful responses in the immediacy task, which involved
hypothetical amounts of $100 and $110. These amounts were payable either immediately or with
various time delays, and were supposedly certain or risky materializing with a probability of
p = 0.5.

Working with our global parameters we estimated the optimal survival probability that min-
imizes the sum of squares of differences between observed and predicted values. This exercise
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resulted in an estimate of s∗ = 0.872, again a very reasonable number.

Table 9: Risk-Dependent Discounting - Observed versus Predicted Present Certainty Equivalents

Delay Amount Probability Observed Predicted
0 100 1.0 100.00 100.00

0.5 38.32 37.21
4 110 1.0 70.52 81.86

0.5 35.46 38.02
26 100 1.0 41.11 39.94

0.5 23.34 23.40
30 110 1.0 47.85 40.16

0.5 23.75 24.03

The table lists present certainty equivalents reported in Weber and Chapman (2005), Table 5 (page 111). The predicted
present certainty equivalents are obtained using our model with global parameter values and s∗ = 0.872.

Table 9 contrasts observed present certainty equivalents20 with predicted ones. Generally, we
are able to produce an excellent match between observed and predicted values, only the present
value of 110 materializing in 4 months is overstated by the model, i.e. participants discounted
110 much more heavily than predicted. According to our model an allegedly certain outcome
payable at delay t, (x, t), is evaluated as u(x)w(st) exp(−ηt). Its risky counterpart is evaluated
as u(x)w(pst) exp(−ηt). Their corresponding non-delayed values amount to u(x) and u(x)w(p),
respectively, implying the discount weights w(st) < w(pst)

w(p) for the certain and risky outcomes.
Comparing the entries for p = 1 and p = 0.5 for the various delays in Table 10 clearly shows a
greater loss in value for allegedly certain outcomes than for risky ones.

Table 10: Diminishing Immediacy - Predicted Discount Weights

Delay t Amount Probability Discount Weight
4 110 1.0 92.4%

0.5 94.3%
26 100 1.0 59.8%

0.5 69.0%
30 110 1.0 55.3%

0.5 65.3%

The table list predicted discount weights for the different delayed prospects in Weber and Chapman (2005).

4.7 Fact #7: Order Dependence

In their study on order dependence, Öncüler and Onay (2009) found the following pattern: While
valuations of delayed risky prospects resulting from the time-risk order (“TR”, discounting for

20Values for present certain $100 were not elicited.
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time first and for risk thereafter) and the direct method (“D”, both operations performed si-
multaneously) are not statistically distinguishable from each other, risk-time evaluations (“RT”,
discounting for risk first and for time thereafter) are significantly lower than the ones obtained
from the other two methods. Here we proceeded as before, we minimized the sum of squared
deviations between observation and prediction based on our global parameters which resulted
in an optimal survival probability s∗ = 0.937. We report the observed and predicted present cer-
tainty equivalents for the three elicitation methods in Table 11. Predictions match observations
quite well.

Table 11: Order Dependence - Observed versus Predicted Present Certainty Equivalents

Probability Condition Observed Predicted
0.5 RT 35.94 34.09

TR 39.83 37.06
D 39.60 37.06

0.3 RT 22.07 24.89
TR 24.44 27.09

D 24.14 27.09

The table shows observed present certainty equivalents reported in Öncüler and Onay (2009), Table 1 on page 285.
The predictions are obtained by our model using global parameter values and s∗ = 0.937.

4.8 Summary

The quantitative assessments conducted in this section were based on the same set of preferences
parameters. We deliberately tied our hands for the quantitative predictions by assuming a plau-
sible set of preference parameters suggested by the literature. In this way, we avoid arbitrary
degrees of freedom in accommodating the data and enable a judgment to what extent our ap-
proach indeed facilitates a unifying explanation of a diverse set of facts. Table 12 shows that the
objects of interest that needed to be predicted to explain the facts were quite varied – ranging
from probability weights to discount rates, from discount fractions to (present) certainty equiv-
alents. Our quantitative analysis suggests that our predictions are in general well matched with
the observations. Furthermore, as Table 12 reveals, we find that observed behavior is consistent
with plausible values of an annual survival probability in the range of 0.825 to 0.947. In view
of the fact that the data were elicited from different subject pools in different countries and at
different points in time, we deem this a remarkably narrow and plausible range of values for
survival probability.
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Table 12: Summary: Optimal Survival Probability s∗

Fact # Output Variable s∗ p.a. Remark
1 Probability weights 0.825
2 Discount rates 0.947
3 Certainty equivalents - not relevant
4 Discount fractions 0.947 same as in #2
5 Correlation with preference strength 0.900 assumed
6 Present certainty equivalents 0.872
7 Present certainty equivalents 0.937

The table lists estimated optimal survival probabilities for each fact (see the remarks for exceptions). Survival prob-
abilities are estimated by minimization of the sum of square deviations between observed output variables and our
model with the global parameter values.

5 Experimental Findings and Related Literature

In the following we present the experimental evidence in more detail and discuss previous ex-
planations of the observed effects. Extant explanations usually deal with only one or a few
specific regularities and do not address the entirety of the phenomena summarized in Table 1.
By now, there is an extensive literature on many of these single aspects, for example on hyper-
bolic discounting, preferences for resolution timing and the value of information. As reviewing
this literature is beyond the scope of this paper, we focus on those contributions that are more
closely related to our work.

Delay dependence of risk taking behavior, Fact #1 in Table 1, has been documented by a range
of papers that do not distinguish between effects of delay on utility and probability weights (Jones
and Johnson, 1973; Shelley, 1994; Ahlbrecht and Weber, 1997; Sagristano, Trope, and Liberman,
2002; Noussair and Wu, 2006; Coble and Lusk, 2010). That, in fact, probability weights react to
delay, rather than the utility function, was shown experimentally by Abdellaoui, Diecidue, and
Öncüler (2011). They conducted a carefully designed experiment eliciting probability weights
for both present and delayed prospects. Their results provide support for our approach as the
probability weights of the best possible outcome, when delayed, are significantly greater than
their non-delayed counterparts, both in the aggregate as well as for the majority of the individu-
als. In their study on ambiguity attitudes, Abdellaoui, Baillon, Placido, and Wakker (2011) show
estimates of a probability weighting function derived from choices over prospects delayed by
three months which we used to assess the quality of our predictions. This function is also much
more elevated than typical atemporal estimates are, i.e. the curve lies above a typical atemporal
one, see Figure 9.

Baucells and Heukamp (2012) restrict their analysis to the case of simple prospects (x, p; 0, 1−
p) that pay x with probability p at time t and zero otherwise. In this setting, the authors predict
a number of effects by invoking varying additional assumptions. They model the delay depen-
dence of risk tolerance in the following way. Aside from their fundamental axiom of a direct
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probability-time trade-off, mentioned in the introduction, they make two additional assumptions
to predict risk premia declining with time delay. The first one is the common ratio effect, which
is equivalent to subproportionality in our framework. The second crucial assumption makes the
probability-time trade-off depend on outcome magnitude – the probability that renders an early
prospect equally attractive as a prospect with a fixed additional delay declines with outcome
magnitude. While they predict risk premia declining with delay, their time-dependent proba-
bility weights w̃(p) = w(p exp(−rxt)) clearly decrease with delay. Their approach also predicts
hyperbolic discounting (Fact #2) (for this result, the common ratio effect has to hold as well as
decreasing elasticity of the utility function) and risk dependence of patience (Fact #6), which is a
direct consequence of the probability-time trade-off under subproportionality.

It is well known by now that delay dependence is also manifest in discounting behavior,
which constitutes empirical Fact #2. There is abundant evidence that many people exhibit de-
creasing impatience, i.e. their discount rates are not constant but decline with the length of
delay (among many others Benzion, Rapoport, and Yagil (1989); Loewenstein and Thaler (1989);
Ainslie (1991); Halevy (2015)). This regularity has triggered a large literature on hyperbolic and
quasi-hyperbolic time preferences (e.g. Laibson (1997), for reviews see Frederick, Loewenstein,
and O’Donoghue (2002) and Ericson and Laibson (2019)). Most closely related to our approach
is a string of papers following Halevy (2008). His model derives hyperbolic discounting from
the same mechanism that we employ, namely a combination of future uncertainty with nonlinear
probability weighting. The subsequent contributions by Saito (2011) and Chakraborty, Halevy,
and Saito (2020) are concerned with establishing a two-way relationship between subproportional
probability weights and hyperbolic discounting. The final paper in this series clarifies that sub-
proportionality both implies and is implied by hyperbolic discounting in the domain of single
temporal prospects in continuous time, the objects of our model. For consumption streams in dis-
crete time, Halevy (2008)’s original topic, subproportionality still implies hyperbolic discounting,
but the reverse direction requires more involved conditions, however.

Another recent contribution to modeling intertemporal choice is Kőszegi and Szeidl (2013)’s
model of focusing. By explicitly taking into account attributes of the decision context, their
model of attention is able to predict when people exhibit present or future bias. Our approach
is able to generate future bias as well, if the decision maker is prone to a reverse common ratio
effect (i.e. if the probability weighting function is supraproportional). Gabaix and Laibson (2017)
propose a yet different approach to time discounting. They derive hyperbolic discounting from
the assumption that that decision makers obtain unbiased but noisy simulations of future utilities.
Both the source and the nature of uncertainty differ between their approach and ours: In their
model, uncertainty captures the fact that the decision maker does not know the actual future
utility she will experience. Simulation noise makes future utility more risky (in terms of second-
order stochastic dominance). In contrast, we model the fact that “something may go wrong”,
which adds a downside risk to future prospects (in terms of first-order stochastic dominance).
Moreover, Gabaix and Laibson (2017) do not study the interaction of risk and time preferences.
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Another regularity in the data concerns the process dependence of risk taking and time dis-
counting behavior, Facts #3 and #4. In the domain of risk, the prevalent finding is that, on
average, subjects do not reduce compound probabilities according to the rules of probability cal-
culus. For example, Aydogan, Bleichrodt, and Gao (2016) show that for their participants the
reduction principle is clearly violated at the aggregate level even though 60% of subjects be-
have in accordance with reduction. The aggregate result is driven by a minority of participants
who depart strongly from reduction - in this case in the direction of a preference for sequen-
tial resolution. The authors attribute this finding to the utility of gambling. However, there is
also abundant experimental evidence that the value of a compound lottery is smaller than the
value of the equivalent single-stage lottery, for example Chung, von Winterfeldt, and Luce (1994),
Budescu and Fischer (2001), and Fan, Budescu, and Diecidue (2018) to name a few. It seems to
be the case that the framing of the experimental tasks play a role whether one finds a preference
or an aversion to compound risks (Nielsen, 2020).

One category of results concerns investment games (Gneezy and Potters, 1997; Thaler, Tver-
sky, Kahneman, and Schwartz, 1997; Bellemare, Krause, Kröger, and Zhang, 2005; Gneezy, Kapteyn,
and Potters, 2003; Haigh and List, 2005). The general finding is that people tend to invest less
conservatively, i.e. they take on more risk, when they are informed about the outcomes of their
decisions only infrequently. This finding is often interpreted as a manifestation of myopic loss
aversion, a term coined by Benartzi and Thaler (1995). In this context, myopia is defined as nar-
row framing of decision situations which focuses on short-term consequences rather than on
long-term ones. Loss aversion, one of the key constituents of prospect theory, describes peo-
ple’s tendency to be more sensitive to losses than to gains. According to this interpretation, if
people evaluate their portfolios frequently, the probability of observing a loss is much greater
than if they do so infrequently.21 Whatever the specific experimental context, however, all these
experiments share the feature that time delays were negligible. Tests of process dependence in
genuinely temporal settings are still lacking.

Process dependence of risk taking was theoretically analyzed in the seminal contributions of
Segal who deals with the evaluation of two-stage prospects in the domain of RDU (Segal, 1987a,b,
1990). Dillenberger (2010) provides a necessary and sufficient condition for preferences for one-
shot resolution of uncertainty which holds for example in Gul (1991)’s theory of disappointment
aversion, but not generally in RDU. However, we show in Appendix B.2 that this preference
condition also applies to the class of resolution processes studied here.

In the domain of time discounting, a similar phenomenon of process dependence has been
observed: The discounting shown over a particular delay is greater when the delay is divided
into subintervals than when it is left undivided (Read, 2001; Read and Roelofsma, 2003; Ebert

21In these experiments subjects evaluate sequences of identical two-outcome lotteries over several periods where the
range of potential outcomes increases with the number of periods. As we noted in Section 3.3, subproportionality
does not deliver clear predictions for this class of prospects. However, Langer and Weber (2005) show that the same
is true for myopic loss aversion - for specific risk profiles, myopia will not decrease but increase the attractiveness
of a sequence. Blavatskyy and Pogrebna (2010) also contest the validity of the myopic loss aversion hypothesis.
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and Prelec, 2007; Epper, Fehr-Duda, and Bruhin, 2009; Dohmen, Falk, Huffman, and Sunde, 2012,
2017). This regularity of subadditive discounting has usually been interpreted as a manifestation
of (pure) time preferences.

Fact #5 refers to the effect of the timing of uncertainty resolution on risk taking behavior. Sev-
eral experimental studies investigated people’s intrinsic preferences for resolution timing. The
general finding is that there are varying percentages of people with preference for early resolu-
tion, preference for late resolution and timing indifference (Chew and Ho, 1994; Ahlbrecht and
Weber, 1996; Arai, 1997; Lovallo and Kahneman, 2000; Eliaz and Schotter, 2007; von Gaudecker,
van Soest, and Wengström, 2011; Nielsen, 2020). Often, the percentage of people with a prefer-
ence for late resolution is quite sizable (Chew and Ho, 1994; Ahlbrecht and Weber, 1996; Arai,
1997; Lovallo and Kahneman, 2000; Eliaz and Schotter, 2007; von Gaudecker, van Soest, and
Wengström, 2011; Ganguly and Tasoff, 2017).22 This finding is actually quite surprising, at least
for situations when real money is at stake. Knowing early how much income to expect should
always be advantageous for adapting one’s consumption plans even though one might not be
able to spend the money immediately.

In this context, a preference for late resolution of uncertainty can also be interpreted as an
aversion to non-instrumental information. Information is non-instrumental when no further
action can be taken that will change the decision maker’s utility.23 Grant, Kajii, and Polak (1998)
present the following example of non-instrumental information:

“Consider, for example, the decision of whether to be tested for an incurable genetic disorder. A director of
a genetic counseling program told the New York Times that there are basically two types of people. There
are ‘want-to-knowers’ and there are ‘avoiders’. There are some people who, even in the absence of being
able to alter outcomes, find information of this sort beneficial. The more they know, the more their anxiety
level goes down. But there are others who cope by avoiding, who would rather stay hopeful and optimistic
and not have the unanswered question answered.” (Grant, Kajii, and Polak (1998), page 234).

An intrinsic preference for resolution timing cannot be accommodated by EUT but is usually
modeled by an additional preference parameter (Kreps and Porteus, 1978; Chew and Epstein,
1989; Grant, Kajii, and Polak, 2000). What these models cannot capture, however, is the probabil-
ity dependence of timing preferences, as found by Arai (1997), for example. Epstein and Kopylov
(2007)’s and Epstein (2008)’s axiomatic papers analyze resolution timing as well. According to
their approach, decision makers may become more pessimistic as payoff time approaches, either
due to changes in beliefs or anticipatory feelings (see also Köszegi and Rabin (2009) and Caplin
and Leahy (2001)).

22Epstein and Zin (1991) also find a preference for late resolution of uncertainty in market data on U.S. consumption
and asset returns. In line with our predictions, preference for late resolution seems to be particularly pronounced
for positively skewed distributions, i.e. for prospects with small probabilities of the best outcome, and increases
with time delay - a prediction that is a distinguishing feature of our model.

23There is a number of papers studying preference for instrumental information in non-expected utility models (see for
instance Wakker (1988), Schlee (1990), Safra and Sulganik (1995). Li (2020) analyzes aversion to partial information
in the context of an ambiguity averse preferences. See also the discussion of the value of information in Dillenberger
(2010).
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Fact #6 pertains to a number of experimental studies that report systematic effects of risk on
discounting behavior: Discount rates for certain future payoffs tend to be higher than discount
rates for risky future payoffs (Stevenson, 1992; Ahlbrecht and Weber, 1997; Abdellaoui, Kemel,
Panin, and Vieider, 2018). Risk-dependent discounting is also evident in diminishing immediacy:
People’s preference for present certain outcomes over delayed ones, immediacy, weakens drasti-
cally when the outcomes become risky - they behave as if they discounted the risky reward less
heavily than the original certain one (Keren and Roelofsma, 1995; Weber and Chapman, 2005;
Baucells and Heukamp, 2010). This evidence motivated Halevy (2008)’s conjecture that future
uncertainty might be a driver of this phenomenon.

Furthermore, the valuation of future prospects appears to be order dependent: It makes
a difference whether a risky future payoff is first devalued for risk and then for delay or in
the opposite order (Öncüler and Onay, 2009). When payoffs are discounted for risk first they
are assigned a less favorable value than in the reverse case. Moreover, the delay-first value
practically coincides with the value reported when both dimensions are accounted for in one
single operation. This finding #7 can be also interpreted as a manifestation of risk dependence
of discounting.

6 Concluding Remarks

We have demonstrated that our modeling approach organizes all seven stylized facts of experi-
mental research and is also able to predict quantitatively aggregate experimental outcomes. In
our view, apart from explaining the seven stylized facts uncovered by experiments, the model
helps to better understand the patterns of heterogeneity in individual behaviors. Not everyone is
prone to common ratio violations. In fact, almost any kind of shape of probability weighting can
be found in individual estimates, and even among common-ratio violators the degree of subpro-
portionality may vary greatly. Thus, our framework provides a host of predictions that can be
investigated in future experimental research. For example, people with comparatively stronger
subproportional probability weights should, ceteris paribus, exhibit a greater increase in risk tol-
erance for delayed prospects than less subproportional decision makers do. Similarly, the former
group should show a greater preference for uncertainty to resolve in the future rather than in
the present. Moreover, these effects are predicted to be more pronounced for positively skewed
prospects - a prediction that is specific to our model. Sequential resolution of uncertainty is
another area where more work needs to be done as evidence on substantially delayed prospects
is still missing. Ideally, the same subjects should be exposed to the full program of experiments
delineated in this paper to find out if and when our predictions materialize.

Another interesting test of the model can be based on the model’s assumption that survival
probability depends on time horizon according to st. For a given subject pool at a given point
in time the preference parameters and the uncertainty perception s should not vary across time
horizons. Thus, if a given subject pool faces future prospects of different delays, we should
not observe a change in the estimated value of s (nor a change in estimated preference param-
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eters) because such a change would challenge the assumption that survival probability can be
represented by st.

The ultimate test of our model, however, is to exogenously manipulate the subjective prob-
ability that something may go wrong, s, the second crucial component of our approach aside
from subproportionality. As effect sizes also depend on the perceived uncertainty of the future,
such a manipulation can shed light on the question whether our model has actually identified an
important causal driver of behavior.

Aside from conducting new experiments, the usefulness of our approach should be tested in
the field as well. Both financial and insurance markets are fruitful areas for such an endeavor.
Barberis (2013) concludes his review of 30 years of prospect theory in the following way: “Proba-
bility weighting, [...] has drawn increasing interest in recent years. Indeed, within the risk-related areas of
finance, insurance, and gambling, probability weighting plays a more central role than loss aversion and
has attracted significantly more empirical support” (page 191). Thus, our survival-risk augmented
version of probability weighting could be put to the test in these fields as well. Puzzles like the
maturity dependence of risk premia may appear in a new light. Another fertile application may
be option prices: Polkovnichenko and Zhao (2013) show the usefulness of probability weighting
for explaining option prices which could be enhanced by incorporating the maturity dimension
as well.24 Insurance markets are another domain where our approach may reconcile conflicting
findings: Recognizing that risk preferences are delay dependent may help understand why peo-
ple are willing to pay outrageous premiums for certain insurance contracts, such as extended
warranties, and totally unwilling to take out insurance at all, such as in the health domain.

We do not claim that subproportionality plus future uncertainty are the only important
drivers in the domain of risk- and time-dependent decision making. Other factors such as con-
cave utility, intrinsically hyperbolic pure time preferences or reference dependence are also likely
to play a role. However, there is accumulating evidence that risk and time preferences are in-
tertwined and interact in systematic ways and we are just beginning to understand the factors
underlying these phenomena. We have shown that subproportionality plus subjectively per-
ceived future uncertainty provides a unifying explanation for a set of key facts – suggesting that
these factors should be taken seriously in future research.

24We thank an anonymous referee for suggesting this application.
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A Propositions and Proofs

A.1 The General m-Outcome Case

Rearranging terms in Equation 2 yields

V(P) = u(x1)w(p1) + u(x2)
(

w(p1 + p2)− w(p1)
)
+ ... + u(xm)

(
1− w(1− pm)

)

=
(

u(x1)− u(x2)
)

w(p1) + ... +
(

u(xm−1)− u(xm)
)

w(1− pm) + u(xm) .
(28)

This representation of V clarifies that xm is effectively a sure thing whereas obtaining something
better than xm is risky.

Setting u(x) = 0, the subjective present value of the prospect amounts to

V(P̃)0 =

((
u(x1)− u(x2)

)
w(p1st) + ...

... +
(

u(xm−1)− u(xm)
)

w
(
(1− pm)st

)
+ u(xm)w(st)

)
ρ(t)

=

((
u(x1)− u(x2)

)
w(p1st)

w(st)
+ ...

... +
(

u(xm−1)− u(xm)
)w
(
(1−pm)st

)
w(st)

+ u(xm)

)
w(st)ρ(t) .

(29)

From the point of view of an outsider observer, the subjective probability distribution of
prospect P is not observable. Consequently, she infers probability weights w̃ and discount
weights ρ̃ from observed behavior on the presumption that the decision maker evaluates the
objectively given prospect P, and estimates preference parameters according to RDU in the stan-
dard way:

V(P̃)0 =

((
u(x1)− u(x2)

)
w̃(p1) + ... +

(
u(xm−1)− u(xm)

)
w̃(1− pm) + u(xm)

)
ρ̃(t) . (30)

A.2 Proposition 1: Characteristics of w̃(p)

Given subproportionality of w, t > 0 and s < 1:

1. The function w̃ is a proper probability weighting function, i.e. monotonically increasing in
p with w̃(0) = 0, w̃(1) = 1.

2. w̃ is subproportional.

3. w̃ is more elevated than w: w̃(p) > w(p). The gap between w̃(p) and w(p) increases with

• time delay t,
• survival risk 1− s, and

• comparatively more subproportional w.

4. The relative gap w̃(p)
w(p) declines in p.
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5. w̃ is less elastic than w.

6. The decision weight of the (objectively) worst possible outcome, xm, decreases with delay t.

Proof of Proposition 1

1. Since w̃(0) = w(0)
w(st)

= 0, w̃(1) = w(st)
w(st)

= 1, and w̃′ = w′(pst)st

w(st)
> 0 hold, w̃ is a proper

probability weighting function.

2. Subproportionality of w̃ follows directly from subproportionality of w as for p > q and
0 < λ < 1:

w̃(λp)
w̃(λq)

=
w(λst p)
w(λstq)

<
w(st p)
w(stq)

=
w̃(p)
w̃(q)

. (31)

3. • Since w is subproportional,

w̃(p) =
w(pst)

w(st)
>

w(p)
w(1)

= w(p) (32)

holds for s < 1 and t > 0. Therefore, w̃ is more elevated than w.

• Obviously, elevation gets progressively higher with increasing t and an equivalent
effect is produced by decreasing s. Since w̃ increases monotonically in t and w̃ ≤ 1 for
any t, elevation increases at a decreasing rate.

• In order to show that a comparatively more subproportional probability weighting
function entails a greater increase in observed risk tolerance we examine the relation-
ship between the underlying atemporal probability weights w and observed ones w̃.
Let w1 and w2 denote two probability weighting functions, with w2 exhibiting greater
subproportionality.

If w1(λ)w1(p) = w1(λpq) holds for a probability q < 1, then w2(λ)w2(p) < w2(λpq)
follows as w2 is more subproportional than w1 (Prelec, 1998). Choose r < 1 such that
w2(λ)w2(p) = w2(λpqr). For λ = st, the following relationships hold:

w̃1(p)
w1(p)

=
w1(λp)

w1(λ)w1(p)
=

w1(λp)
w1(λpq)

. (33)

Applying the same logic to w2 yields

w̃2(p)
w2(p)

=
w2(λp)

w2(λ)w2(p)
=

w2(λp)
w2(λpqr)

>
w2(λp)
w2(λpq)

. (34)

Therefore, the relative wedge w̃2(p)
w2(p) caused by subproportionality is larger than the

corresponding one for w1.

4. It is straightforward to show that
∂
(

w̃(p)
w(p)

)

∂p = w(pst)
pw(st)w(p) [εw(pst)− εw(p)] < 0, as the elasticity

of a subproportional w, εw, is increasing in p.
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5. For the elasticity of w̃, εw̃(p), the following relationship holds:

εw̃(p) =
w̃′(p)p
w̃(p)

=
w′(pst)pst

w(pst)
= εw(pst) < εw(p) , (35)

as the elasticity εw increases in its argument iff w is subproportional.

6. As w̃(p) > w(p) holds for any 0 < p < 1, π̃m = 1− w̃(1− pm) < 1− w(1− pm) = πm

results for the decision weight of xm. As w̃ increases with t, the weight of xm declines with
time delay. �

A.3 Proposition 2: Characteristics of ρ̃(t)

Given subproportionality of w:

1. ρ̃(t) is a proper discount function for 0 < s ≤ 1, i.e. decreasing in t, converging to zero
with t→ ∞, and ρ̃(0) = 1.

2. Observed discount rates η̃(t) are higher than the rate of pure time preference η for s < 1.

3. Observed discount rates decline with the length of delay for s < 1.

4. Greater survival risk generates a greater departure from constant discounting.

5. Comparatively more subproportional probability weighting generates a comparatively greater
departure from constant discounting.

Proof of Proposition 2

1. ρ̃(0) = w(s0)ρ0 = 1. Since w′ > 0 holds, ∂w(st)
∂t < 0 and, therefore, ρ̃′ < 0. Finally,

lim
t→∞

ρ̃(t) = 0 (in terms of discount rates: lim
t→∞

η̃(t) = η).

2. Discount rates are generally defined as the rates of decline of the respective discount func-
tions, i.e. η = − ρ′(t)

ρ(t) and η̃(t) = − ρ̃′(t)
ρ̃(t) . Therefore,

η̃(t) = − ρ̃′(t)
ρ̃(t)

= −w′(st)st ln(s) exp(−ηt)− w(st) exp(−ηt)η
w(st) exp(−ηt)

= −
(

w′(st)st

w(st)
ln(s)− η

)

= − ln(s)εw(st) + η

> η

(36)
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since ln(s) < 0, w > 0, w′ > 0. Note that w′(st)
w(st)

st corresponds to the elasticity of the proba-
bility weighting function w evaluated at st, εw(st).

3. Since the elasticity of a subproportional function is increasing in its argument, the elasticity
of w(st) is decreasing in t. Thus,

η̃′(t) = − ln(s)
∂εw(st)

∂t
< 0 . (37)

4. In order to derive the effect of increasing survival risk, i.e. decreasing s, we examine the
sensitivity of ρ̃(t+1)

ρ̃(t)ρ̃(1) = w(st+1)
w(s)w(st)

, which measures the departure from constant discounting
between periods t + 1 and t, with respect to changing s:

∂
∂s

(
w(st+1)

w(s)w(st)

)

= 1(
w(s)w(st)

)2

(
(1 + t)stw(s)w(st)w′(st+1)− tst−1w(s)w(st+1)w′(st)− w(st)w(st+1)w′(s)

)

= 1

s
(

w(s)w(st)
)2

(
(1 + t)st+1w(s)w(st)w′(st+1)− tstw(s)w(st+1)w′(st)− sw(st)w(st+1)w′(s)

)

= w(st+1)
sw(s)w(st)

(
(1+t)st+1w′(st+1)

w(st+1)
− tstw′(st)

w(st)
− sw′(s)

w(s)

)

= w(st+1)
sw(s)w(st)

(
(1 + t)εw(st+1)− tεw(st)− εw(s)

)

< 0 .

As st+1 < st < s, εw(st+1) < εw(st) < εw(s) and, hence, the sum of the elasticities in the
final line of the derivation is negative. Therefore, increasing survival risk, i.e. decreasing s,
entails a greater departure from constant discounting.

5. In order to examine the effect of the degree of subproportionality on decreasing impatience,
suppose that the probability weighting function w2 is comparatively more subproportional
than w1, as defined in Prelec (1998), and that the following indifference relations hold for
two decision makers 1 and 2 at periods 0 and 1:

u1(y) = u1(x)w1(s)ρ for 0 < y < x,

u2(y′) = u2(x′)w2(s)ρ for 0 < y′ < x′ .
(38)

Due to subproportionality, the following relation holds for decision maker 1 in period t:

1 =
u1(x)w1(s)ρ

u1(y)
<

u1(x)w1(st+1)ρt+1

u1(y)w1(st)ρt . (39)

Therefore, the probability of prospect survival has to be reduced by compounding s over
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an additional time period ∆t to re-establish indifference:

u1(y)w1(st)ρt = u1(x)w1(st+1+∆t)ρt+1. (40)

It follows from the definition of comparative subproportionality that this adjustment of the
survival probability by ∆t is not sufficient to re-establish indifference with respect to w2,
i.e.

u2(y′)w2(st)ρt < u2(x′)w2(st+1+∆t)ρt+1. � (41)

A.4 Folding Back of Survival Trees

In RDU, subproportional preferences are generally not sufficient to produce a preference for one-
shot resolution of uncertainty. Resolution processes that can be represented by a survival tree
are an exception - in this case, folding back of the tree generates compounded decision weights
that are always smaller than the corresponding one-shot weights. To illustrate this result, we use
an example with n = 3 stages and m = 3 outcomes, as the n = m = 2-case is trivial.

A survival tree is characterized by the following resolution process: At each chance node
either the certain outcome materializes or the tree continues to the next stage when everything is
still possible. Our example is depicted in Figure 10.

Figure 10: Survival Tree with n = 3 Stages and m = 3 Outcomes

x3

1 − p

x3

1 − q

x3

1 − r1 − r2

x2
r2

x1

r1

q

p

The tree depicts the resolution of survival risk of a prospect P = (x1, pqr1; x2, pqr2; x3, 1− pq(r1 + r2)) in three stages.
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Applying folding back, the value of the prospect is given by

V3(P) =
(
(u(x1)− u(x2))w(r1) + (u(x2)− u(x3))w(r1 + r2) + u(x3)

)
w(q)w(p)

+ u(x3)(1− w(q))w(p) + 1− w(p))

=
(
(u(x1)− u(x2))w(r1) + (u(x2)− u(x3))w(r1 + r2) + u(x3)

)
w(q)w(p)

+ u(x3)(1− w(q)w(p))

=
(
(u(x1)− u(x2))w(r1) + (u(x2)− u(x3))w(r1 + r2)

)
w(q)w(p) + u(x3) .

(42)

Clearly, it does not matter how many final branches the tree possesses - the formula generalizes
to m outcomes in a straightforward way as the rank-dependent decision weights at the final stage
get compounded with w(p)w(q). The same applies if the number of stages is greater than three.
If uncertainty resolves in one shot, the value of the prospect is represented by

V1(P) =
(
(u(x1)− u(x2))w(pqr1) + (u(x2)− u(x3))w(pq(r1 + r2)) + u(x3) . (43)

Subproportionality implies that w(pqr1) > w(q)w(p)w(r1) and w(pq(r1 + r2)) > w(q)w(p)w(r1 +

r2) and, therefore, V1(P) > V3(P). In other words, if uncertainty resolves according to a survival
tree, one-shot resolution is preferred to sequential resolution.

When future uncertainty comes into play, the survival tree consists of an additional branch
at each chance node, as shown in Figure 11, and the former certain outcome x3 becomes risky
as it is subjected to survival probability, here assumed to be s at each stage. The question now
arises whether preference for one-shot resolution is preserved for this more complex resolution
process. Recalling that u(x) = 0,

V3(P̃) =
(
(u(x1)− u(x2))w(r1s) + (u(x2)− u(x3))w((r1 + r2)s)

)
w(qs)w(ps) + u(x3)(w(s))3 .

(44)
Its one-shot counterpart is evaluated as

V1(P̃) =
(
(u(x1)− u(x2))w

(
pqr1s3)+ (u(x2)− u(x3))w

(
pq(r1 + r2)s3) )+ u(x3)w

(
s3) . (45)

Obviously, the decision weights for V1(P̃) are greater than the respective ones for V3(P̃). Thus, for
this specific structure of uncertainty resolution, preference for one-shot resolution is preserved
under subproportionality for any n > 2 and m > 2. Consequently, w̃(pqr1) is defined as

w̃(pqr1) =
w
(

pqr1s3)

w (s3)
, (46)

and w̃3(pqr1) is defined as

w̃3(pqr1) =
w(ps)w(qs)w(r1s)

w(s)3 , (47)
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which corresponds to the representation in Equation 48 where the passage of time is modeled
explicitly by the partial probabilities.

Figure 11: Survival Tree with n = 3 Stages and m = 3 Outcomes with Future Uncertainty
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The tree depicts the resolution of survival risk of a prospect P̃ = (x1, pqr1s3; x2, pqr2s3; x3, (1− (r1 + r2))pqs3; x, 1−
pqs3) in three stages.

These results generalize to multi-outcome prospects resolving over more than two stages if
uncertainty resolves in a way analogous to the process described above: The topmost branch of
the survival tree defines the path to “everything is still possible” when uncertainty resolves fully
at the payment date. At each chance node along this topmost path the tree has three branches,
where the two branches below the topmost one reflect the partial resolution of uncertainty of xm

contingent on its stage-by-stage prospect survival, and of x, respectively. In this case, for any
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number of outcomes m ≥ 1, the observed probability weights are given by

w̃n(p, t) =
∏n

i=1 w
(

p
τi
t sτi

)

∏n
i=1 w (sτi)

=
n

∏
i=1

w̃
(

p
τi
t , τi

)
, (48)

when the interval [0, t] is partitioned into n subintervals with lengths τi, i ∈ {1, ..., n}, such that

∑n
i=1 τi = t.

The following Proposition 3 summarizes our insights on subproportional probability weights
w themselves, which drive overall prospect value, without teasing apart the separate effects
on observed risk tolerance and discounting behavior. We extend these results to observed risk
tolerance w̃ in Proposition 4. Since discount weights ρ̃(t) = w(st) are simple probability weights
themselves, Proposition 3 also speaks directly to observed discounting behavior.

Segal’s work on two-stage prospects encompass the following results: For 1 > p = qr > 0
the compounding of the respective weights always leads to lower prospect values, i.e. w(qr) >

w(q)w(r) holds whatever are the values of q and r. Here the order of r and q, i.e. which
probability resolves first, does not play a role. Furthermore, a prospect’s minimum value is
attained when compounding occurs over equiprobable stages, i.e. when r = q =

√
p. We

generalize these insights in Proposition 3.
Additionally, it can be schown that positively skewed prospects are affected more strongly by

compounding of the respective probability weights:
∂

∂p

[
w(p)

w(q)w(p/q)

]
= w(p)

pw(q)w(p/q) [ε(p) − ε(p/q)] < 0, as p < p/q and the elasticity of w, ε, is
increasing in p.

A.5 Proposition 3: Characteristics of wn(p)

Given subproportionality of w, s < 1, t > 0, prospect risk and survival risk resolving simultane-
ously along a survival tree, and folding back:

1. For any number of resolution stages n > 1, probability weights w for one-shot resolution
of uncertainty are greater than compounded probability weights for sequential resolution.

2. For a given number of resolution stages n, probability weights are smallest for evenly
spaced partitions τi =

t
n = τ.

3. For evenly spaced partitions, probability weights decline with the number of resolution
stages n.

Proof of Proposition 3

1. Setting q = pst or q = st, respectively, we prove by induction that w(q) > ∏n
i=1 w(qi) for

probability q, 0 < q < 1, and q = ∏n
i=1 qi.

• For n = 2 subproportionality implies w(q) = w(q1q2) > w(q1)w(q2).
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• Assume that w(∏n
i=1 ri) > ∏n

i=1 w(ri) for any probabilities 0 < ri < 1.

• For q = ∏n+1
j=1 qj subproportionality implies

w(q) = w

(
qn+1

n

∏
i=1

qi

)
> w(qn+1)w

(
n

∏
i=1

qi

)
> w(qn+1)

n

∏
i=1

w(qi) =
n+1

∏
j=1

w(qj).

2. Without loss of generality, we reorder the sequence of subintervals such that τ1 ≤ τ2 ≤ ... ≤
τn. For some i, τi−1 < τi holds because otherwise the partition would be equally spaced
right away. In this case, there exists ε > 0 such that τi−1 + ε < τi − ε is still satisfied. Due to
subproportionality, the following relationship holds for 0 < q < 1:

w(qτi−1)

w(qτi−ε)
>

w(qτi−1 qε)

w(qτi−εqε)
=

w(qτi−1+ε)

w(qτi)
, (49)

implying w(qτi−1)w(qτi) > w(qτi−ε)w(qτi−1+ε).

3. Consider two equally spaced partitions of [0, t]: (τi = t
n =: τ)i=1,...,n and (δi = t

n−1 =:
δ)i=1,...,n−1. Our claim is that for 0 < p ≤ 1,

n

∏
i=1

w
(

p
τ
t sτ
)
<

n−1

∏
i=1

w
(

p
δ
t sδ
)

. (50)

Setting q =
(

p
1
t s
) t

n(n−1) , we examine whether

(
w
(

qn−1
))n

<

(
w
(
qn)
)n−1

. (51)

Proceeding by induction:

• n = 2: Subproportionality implies
(

w(q)
)2

< w
(

q2
)

.

• n = 3: Subproportionality implies w
(

q3
)
>

(
w(q2)

)2

w(q) . Thus,

(
w(q3)

)2
>

(
w(q2)

)2

w(q)

(
w(q2)

)2

w(q)
>

(
w(q2)

)3
w(q2)

(
w(q)

)2

>

(
w(q2)

)3(
w(q)

)2

(
w(q)

)2 =
(

w(q2)
)3

.

(52)

• n→ n+ 1: Suppose that
(

w(qn−1)
)n

<
(

w(qn)
)n−1

holds. Subproportionality implies
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w(qn−1)
w(qn)

> w(qn)
w(qn+1)

. Hence,

(
w(qn+1)

)n
>

(
w(qn)w(qn)

w(qn−1)

)n

=

(
w(qn)

)n+1(
w(qn)

)n−1

(
w(qn−1)

)n

>

(
w(qn)

)n+1(
w(qn−1)

)n

(
w(qn−1)

)n =
(

w(qn)
)n+1

.

(53)

�

Since observed risk tolerance depends on the interaction of probability weights and discount
weights (subproportional probability weights themselves), it is a priori not clear whether all
these characteristics carry over to observed risk tolerance. As it turns out, with one exception,
the characteristics of subproportional probability weights shape observed delay-dependent risk
tolerance accordingly. We enter uncharted territory with the following proposition because to
our knowledge so far no experiments on the process dependence for genuinely delayed risks
exist.

A.6 Proposition 4: Characteristics of w̃n(p)

Given subproportionality of w, s < 1, t > 0, prospect risk and survival risk resolving simultane-
ously along a survival tree, and folding back:

1. For any number of resolution stages n > 1, risk tolerance is higher for one-shot resolution
of uncertainty than for sequential resolution of uncertainty, w̃(p, t) > w̃n(p, t).

2. For a given number of resolution stages n, risk tolerance is lowest for evenly spaced parti-
tions if the elasticity of w is concave.

3. For evenly spaced partitions, risk tolerance declines with the number of resolution stages,
w̃n(p, t) < w̃n−1(p, t).

Proof of Proposition 4

1. Consider Equation 48:

w̃n(p, t) =
n

∏
i=1

w̃
(

p
τi
t , τi

)
.

Note that w̃
(

p
τi
t , τi

)
=

w
(

p
τi
t sτi

)

w(sτi )
<

w
(

p
τi
t sτi st−τi

)

w(sτi st−τi)
=

w
(

p
τi
t st
)

w(st)
= w̃

(
p

τi
t , t
)

.
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According to Proposition 1, w̃ (p, t) is subproportional for a fixed length of delay t and,
therefore,

w̃n(p, t) <
n

∏
i=1

w̃
(

p
τi
t , t
)
< w̃

(
n

∏
i=1

p
τi
t , t

)
= w̃(p, t) . (54)

2. We proceed by induction.

• Consider the case of n = 2 and assume that the time interval of length t is divided
into two subintervals of lengths τ and t − τ with τ < t

2 < t − τ. We compare w̃n

corresponding to the evenly spaced partition
( t

2 , t
2

)
with the respective w̃n for (τ, t− τ)

by examining when

w
((

p
1
t s
) t

2
)

w
((

p
1
t s
) t

2
)

w
(

s
t
2

)
w
(

s
t
2

) <

w
((

p
1
t s
)τ)

w
((

p
1
t s
)t−τ

)

w (sτ)w (st−τ)

holds. Rearranging terms yields

w
((

p
1
t s
) t

2
)

w
((

p
1
t s
) t

2
)

w
((

p
1
t s
)τ)

w
((

p
1
t s
)t−τ

) <
w
(

s
t
2

)
w
(

s
t
2

)

w (sτ)w (st−τ)
.

Since p
1
t s < s for any 0 < p < 1, this condition amounts to requiring that

w
(

q
t
2

)
w
(

q
t
2

)

w(qτ)w(qt−τ)

increases in q, 0 < q < 1. It is straightforward to show that its derivative with respect
to q equals

∂

∂q

(
w(q

t
2 )w(q

t
2 )

w(qτ)w(qt−τ)

)
=

t
(

w
(

q
t
2

))2

qw(qτ)w(qt−τ)

(
εw(q

t
2 )−

(
λεw(qτ) + (1− λ)εw(qt−τ)

))
,

where λ = τ
t . As τ < t

2 < t− τ and εw
(
qt−τ

)
< εw

(
q

t
2

)
< εw (qτ), the term in the

brackets is positive if the elasticity of w, εw, is a strictly concave function.

• For n ≥ 2 the general formula for the derivative reads as

(
w(q

t
n )
)n

q ∏n
i=1 w(qτi)

(
tεw(q

t
n )−

n

∑
i=1

τiεw(qτi)

)
,

where (τi)i=1,...,n is a partition of the time interval t with ∑n
i=1 τi = t.
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• n→ n + 1: Assume that for t > 0

tεw(q
t
n )−

n

∑
i=1

τiεw(qτi) > 0 (55)

holds. Define a partition (δi)i=1,...,n+1 of t as follows:

δi =
nτi

n + 1
for 1 ≤ i ≤ n

δn+1 =t−
n

∑
i=1

δi =
t

n + 1

Then the following relationships result:

n+1

∑
i=1

δiεw

(
qδi
)
=

n

∑
i=1

nτi

n + 1
εw

(
q

nτi
n+1

)
+

t
n + 1

εw

(
q

t
n+1

)

tεw

(
q

t
n+1

)
− t

n + 1
εw

(
q

t
n+1

)
=

tn
n + 1

εw

(
q

t
n+1

)

Since Equation 55 holds for any t > 0 and, therefore, also for t̃ = tn
n+1 and τ̃i =

nτi
n+1 ,

t̃εw

(
q

t̃
n

)
−

n

∑
i=1

τ̃iεw
(
qτ̃i
)
> 0, (56)

which implies
tn

n + 1
εw

(
q

t
n+1

)
−

n

∑
i=1

nτi

n + 1
εw

(
q

nτi
n+1

)
> 0. (57)

3. We examine whether




w
(
(p

1
t s)

t
n

)

w(s
t
n )




n

<




w
(
(p

1
t s)

t
n−1

)

w(s
t

n−1 )




n−1

, which is equal to the condition

that (
w
(
(p

1
t s)

t
n

))n

(
w
(
(p

1
t s)

t
n−1

))n−1 <

(
w(s

t
n )
)n

(
w
(

s
t

n−1

) )n−1 .

Therefore, we examine whether the derivative of

(
w
(

q
t
n
))n

(
w
(

q
t

n−1

))n−1 with respect to q is positive.

It is straightforward to show that

∂

(
w
(

q
t
n
))n

(
w
(

q
t

n−1

))n−1

∂q
=

t
(
w
(

q
t
n

) )n

q
(
w
(

q
t

n−1

) )n−1

(
εw

(
q

t
n

)
− εw

(
q

t
n−1

))
> 0 (58)
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as the elasticity of w is increasing. �

Contrary to the underlying probability weights w themselves, subproportionality alone does
not guarantee that, for a given number of resolution stages, risk tolerance w̃ attains its minimum
at evenly spaced partitions. The additional requirement of concavity of the elasticity of w implies
that the elasticity increases more quickly for small probabilities than for large ones. While such
a characteristic has not attracted any attention in the literature, there is a nice specimen of a
subproportional regressive probability weighting function with concave elasticity, the so-called
neo-additive specification

w(p) =





0 for p = 0
β + αp for 0 < p < 1
1 for p = 1

. (59)

with 0 < β < 1, 0 < α ≤ 1 − β. If β = 0, w is not subproportional, for α + β = 1 it is
not regressive. It is linear over the inner probability interval and, thus, provides an excellent
approximation for the commonly used nonlinear functional forms. Since we rarely, if at all,
have experimental evidence for behavior over probabilities that are extremely small or extremely
large, such an approximation seems justified. This specification is also very useful for the case of
ambiguity, when the probabilities are not precisely known (Chateauneuf, Eichberger, and Grant,
2007).

A.7 Proposition 5: Preferences for Resolution Timing

Given subproportionality of w, s < 1, t1 < t, and folding back:

1. Prospects with prospect risk resolving at the time of payment t are valued more highly than
prospects resolving at t1 < t.

2. The wedge between late and immediate resolution, w(pst)
w(p)w(st)

, declines with probability p.

3. The wedge between late and immediate resolution increases with time horizon t and sur-
vival risk 1− s.

Proof of Proposition 5 Without loss of generality, we set the number of outcomes m = 2.

1. The value of the prospect to be resolved immediately amounts to

((
u(x1)− u(x2)

)
w(p) + u(x2)

)
w(st)

<

((
u(x1)− u(x2)

)w(pst)

w(st)
+ u(x2)

)
w(st) ,

(60)
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as w(pst) > w(p)w(st) is implied by subproportionality of w. Thus, prospects resolving at
the date of payment t are valued more highly than prospects with immediate resolution.

What happens if prospect risk is not resolved immediately but rather at some later time t1,
0 < t1 < t? After t1, only survival risk remains to be resolved. In this case, the prospect’s
present value amounts to

((
u(x1)− u(x2)

)w(pst1)

w(st1)
+ u(x2)

)
w(st1)w(st−t1) . (61)

Subproportionality implies w(p) < w(pst1 )

w(st1 )
< w(pst)

w(st)
and, therefore, observed risk tolerance

is highest for resolution at payment time t. Moreover, the late-resolution discount weight
w(st) = w(st1 st−t1) is also greater than w(st1)w(st−t1) for any earlier t1, implying that late
resolution is always preferred.

2. Examining the derivative of w(pst)
w(p) with respect to p yields

∂
(

w(pst)
w(p)

)

∂p
=

w(pst)

pw(p)

(
w′(pst)pst

w(pst)
− w′(p)p

w(p)

)

=
w(pst)

pw(p)

(
εw(pst)− εw(p)

)

<0 ,

(62)

as p > pst and the elasticity is increasing. Therefore, the wedge between late evaluation
and immediate evaluation decreases with p.

3. The derivative of w(pst)
w(st)

with respect to t yields

∂
(

w(pst)
w(st)

)

∂t
=

ln(s)w(pst)

w(st)

(
w′(pst)pst

w(pst)
− w′(st)st

w(st)

)

=
ln(s)w(pst)

w(st)

(
εw(pst)− εw(st)

)

>0 ,

(63)

as ln(s) < 0, st > pst and the elasticity is increasing. Therefore, the wedge between late
and immediate evaluation increases with time horizon t and, equivalently, with survival
risk 1− s. �

While it is always the case that late resolution at t is preferred to any earlier resolution time
t1, we cannot ascertain that preferences for later resolution timing increase monotonically in t1.
Examining the earlier situation (Panel ii) in Figure 12, renders the prospect value (setting ρ = 1
again) (

u(x1)− u(x2)
)

w(pst1)w(st−t1) + u(x2)w(st1)w(st−t1) . (64)
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Figure 12: Later and Sooner Resolution of Prospect Risk

(i) later (ii) sooner
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(1) Later: The tree depicts uncertainty resolution during the final stage. (2) Sooner: The probability tree shows the
resolution of prospect risk after the first stage, with survival risk fully resolving at t.

We have already established that the weight of the allegedly certain outcome x2, w(st1)w(st−t1),
attains its minimum value at t1 = t/2. Analogously, for the risky component pst1 = st−t1 must
hold at its minimum. Solving for t1 yields

t∗1 =
t
2
− ln(p)

2 ln(s)
, (65)

which lies below t
2 . Regarding a simple prospect (x, p), if t∗1 > 0, then earlier resolution may

be preferred to some later times before t
2 , otherwise prospect value increases monotonically in

resolution time. The latter is the case for p ≤ st. For a given prospect, this condition is more
likely to be met for low survival risk and/or short time horizons.

B Additional Materials

B.1 The Equivalence of Subproportionality and Increasing Elasticity

We use Prelec’s (1998) definition of (strict) subproportionality: A probability weighting function
w(p) is subproportional if for all 1 ≥ p > q > 0 and 0 < λ < 1

w(p)
w(q)

>
w(λp)
w(λq)

. (66)
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As p > q, Equation 66 holds if and only if

w(p)
w(λp) >

w(q)
w(λq) ⇐⇒ ∂

∂p

(
w(p)

w(λp)

)
> 0

⇐⇒ w(p)
pw(λp)

[
w′(p)p
w(p) −

w′(λp)λp
w(λp)

]

⇐⇒ ε(p) > ε(q) ,

(67)

where ε denotes the elasticity of w, i.e. iff the elasticity of w is increasing.

B.2 A Note on Sequential Evaluation

In his Proposition 1, Dillenberger (2010) shows that, under recursivity, negative certainty in-
dependence (NCI) and a weak preference for one-shot resolution of uncertainty (PORU) are
equivalent. The NCI axiom requires the following to hold: If a prospect P = (x1, r; x2, 1− r) is
weakly preferred to a degenerate prospect D = (y, 1), then mixing both with any other prospect
does not result in the mixture of the degenerate prospect D being preferred to the mixture of
P. This axiom is weaker than the standard independence axiom and does not put any restric-
tions on the reverse preference relation when a degenerate prospect is originally preferred to a
non-degenerate one. The latter case characterizes the typical Allais certainty effect. NCI allows
for Allais-type preference reversals but does not imply them. David Dillenberger’s Proposition
3 demonstrates that NCI is generally incompatible with rank-dependent utility unless the prob-
ability weighting function is linear, i.e. unless RDU collapses to EUT. An intuitive explanation
for Dillenberger’s Proposition 3 is that under RDU prospect valuation is sensitive to the rank
order of the outcomes and, therefore, mixtures with other prospects may affect the original rank
order of outcomes in P (and D). How does Dillenberger’s result relate to our claim that subpro-
portional probability weights conjointly with recursivity imply a strong preference for one-shot
resolution of uncertainty?

The crucial insight is that for the class of resolution processes studied in this paper changes in
rank order do not occur and NCI is satisfied. To see this, assume that the prospect (x1, p; x2, 1−
p), x1 > x2 ≥ 0, gets resolved in two stages

(
(x1, r; x2), q; (x2, 1), 1− q

)
such that p = qr. In the

atemporal case, when there is no additional survival risk, the two-stage prospect continues to be
a strictly two-outcome one and the only relevant mixtures are those involving x2. Suppose that
P = (x1, r; x2, 1− r) % (y, 1) = D, with x1 > y > x2 and consider the following mixtures with
(x2, 1− λ) for some λ ∈ (0, 1): P′ = (x1, λr; x2, 1− λr) and D′ = (y, λ; x2, 1− λ). The following
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relationships hold:

P % D ⇒ V(P) =
(

u(x1)− u(x2)
)

w(r) + u(x2) ≥ u(y) = V(D)

V(D′) = u(y)w(λ) + u(x2)
(

1− w(λ)
)

≤
((

u(x1)− u(x2)
)

w(r) + u(x2)

)
w(λ) + u(x2)

(
1− w(λ)

)

=
(

u(x2)− u(x1)
)

w(r)w(λ) + u(x2)

<
(

u(x2)− u(x1)
)

w(λr) + u(x2)

= V(P′)

(68)

because w(r)w(λ) < w(λr) for any λ ∈ (0, 1) (and hence also for λ = q) due to subproportional-
ity of w. Consequently, for mixtures with the smaller outcome x2, NCI, and therefore also PORU,
is strongly satisfied. If the mixing prospect may be any arbitrary prospect, in other words if
surprises are possible in the course of uncertainty resolution, this result does not hold generally.
The only surprise that is still admissible is the occurrence of an outcome worse than x2, say z.
Define P′′ =

(
x1, λr; x2, λ(1− r); z, 1− λ

)
and D′′ = (y, λ; z, 1− λ).

V(D′′) = u(y)w(λ) + u(z)
(

1− w(λ)
)

≤
((

u(x1)− u(x2)
)

w(r) + u(x2)

)
w(λ) + u(z)

(
1− w(λ)

)

=
(

u(x1)− u(x2)
)

w(r)w(λ) +
(

u(x2)− u(z)
)

w(λ) + u(z)

<
(

u(x1)− u(x2)
)

w(λr) +
(

u(x2)− u(z)
)

w(λ) + u(z)

= V(P′′) .

(69)

For u(z) = 0, this case is exactly the situation studied in this paper when survival risk comes
into play.
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B.3 Overview of Studies Used for Quantitative Assessment

Table 13: Study Overview

Fact Study Sample Elicitation method Incentives
#1 Abdellaoui, Baillon, Placido and Wakker Study 2: 31+31 French students certainty equivalents via 31 subjects: real

(2011) bisection 31 subjects: hypothetical
#2 Epper, Fehr-Duda and Bruhin (2011) 112 Swiss students certainty equivalents via real

choice lists
#3 Abdellaoui, Klibanoff and Placido (2015) 209 French students certainty equivalents via real

choice lists
#4 Epper, Fehr-Duda and Bruhin (2011) 112 Swiss students certainty equivalents via real

choice lists
#5 Arai (1997) 44 Swedish students rating scale and choice hypothetical

frequencies
#6 Weber and Chapman (2005) Experiment 2: 124 US students present certainty hypothetical

equivalents via
bisection

#7 Önculer and Onay (2009) Study 1a: 39 French students certainty/present hypothetical
equivalents via
text field

57



B.4 Characteristics of Functional Specifications of Probability Weights

In this section we review a number of probability weighting functions that are either globally
or locally subproportional. We limit our attention to functional forms with at most two param-
eters. Recall that subproportionality is equivalent to increasing elasticity. Consequently, if the
elasticity is U-shaped, the function is supraproportional over the range of small probabilities and
subproportional over large probabilities. These functions still capture the certainty effect but not
necessarily general common-ratio violations. Many specifications used in the literature exhibit
such a characteristic. Some experimenters found reverse common-ratio violations which require
supraproportionality over the relevant probability range (see e.g. Blavatskyy (2010)). Ultimately,
it is an empirical issue whether locally or globally subproportional functions fit better.

Polynomials are linear in the parameters and, thus, generally less flexible than specifications
that are nonlinear in the parameters. Note that second-order polynomials demarcate the inter-
section of the class of quadratic utility and RDU (see also the discussion in Masatlioglu and
Raymond (2016)).

Gul (1991)’s theory of disappointment aversion, for example, implies a strictly convex sub-
proportional function in the context of RDU for two-outcome prospects. Another interesting
specimen is the probability weighting function discussed in Delquié and Cillo (2006). In the
context of RDU, their model of disappointment aversion generates a subproportional second-
order polynomial that is equivalent to the one implied by Köszegi and Rabin (2007)’s choice-
acclimating personal equilibrium, which provides an endogenous reference point (Masatlioglu
and Raymond, 2016). The same polynomial also emerges in Safra and Segal (1998)’s approach
to constant risk aversion. This concept captures the idea that a decision maker commits to a
choice long before uncertainty is resolved, and is, therefore, particularly plausible in the con-
text of our model. Under specific assumptions, Bordalo, Gennaioli, and Shleifer (2012) derive
(discontinuous) context-dependent probability distortions from their salience theory. While their
concave segment is supraproportional, the convex segment is subproportional, both of the Gul
(1991) variety with 0 < β < 1 and β > 1, respectively. The psychological mechanisms underlying
probability weighting, therefore, often imply at least some extent of subproportionality.

An intermediate case is the constant-sensitivity specification suggested by Abdellaoui, l’Haridon,
and Zank (2010) which is subproportional for large probabilities but exhibits constant elasticity
for small probabilities. Thus, risk tolerance increases with delay until it hits an upper bound,
staying constant afterwards. Ultimately, it is an open question whether this feature is consistent
with actual behavior, which provides a fruitful avenue for future research. In particular, the
associated discount function is characterized by decreasing impatience for more imminent time
horizons, but constant impatience for more remote horizons. Thus, it constitutes an alternative
to the quasi-hyperbolic β-δ model.
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Table 14: Probability Weighting Functions

Probability weighting function w(p) Parameter range Elasticity∗ Shape∗∗ Reference

pα α > 1 constant convex
Luce, Mellers, and Chang
(1993)

p
2−p - increasing convex Yaari (1987)

exp
(
− β(− ln(p))α

)
0 < α < 1, β > 0

increasing, con-
cave/convex

regressive Prelec (1998)

α = 1, β > 1 constant convex Prelec (1998)1

exp
(
− β

α (1− pα)
)

α, β > 0 increasing
concave, re-
gressive

Prelec (1998)6

(1− α ln p)−
β
α α, β > 0 increasing regressive Prelec (1998)

pα

(pα+(1−p)α)1/α 0.279 < α < 1 U-shaped regressive Tversky and Kahneman (1992)
βpα

βpα+(1−p)α 0 < α < 1, β > 0 U-shaped regressive Goldstein and Einhorn (1987)
0 < α < 1, β = 1 U-shaped regressive Karmarkar (1979)

α = 1, β < 1
increasing, con-
vex

convex
Rachlin, Raineri, and Cross
(1991)

see text see text
Bordalo, Gennaioli, and
Shleifer (2012)2

p+αp(1−p)
1+(α+β)p(1−p) α > 0, β > 0 U-shaped regressive Walther (2003){

β1−α pα if (i) 0 ≤ p ≤ β
1− (1− β)1−α(1− p)α if (ii) β < p ≤ 1

0 < α, β < 1
(i) constant, (ii)
increasing

regressive
Abdellaoui, l’Haridon, and
Zank (2010)3

p
1+(1−p)β

β > 1
increasing, con-
vex

convex Gul (1991)

p
p+(1−p)β

β > 1
increasing, con-
vex

convex
Rachlin, Raineri, and Cross
(1991)

p− αp + αp2 0 < α < 1
increasing, con-
cave

convex
Masatlioglu and Raymond
(2016); Delquié and Cillo
(2006); Safra and Segal (1998)4

p + 3−3β
α2−α+1 (αp− (α + 1)p2 + p3) 0 < α, β < 1 U-shaped regressive Rieger and Wang (2006)

p− αp(1− p) + βp(1− p)(1− 2p) α depends on β variety variety Blavatskyy (2014)5




0 for p = 0
β + αp for 0 < p < 1
1 for p = 1

0 < β < 1, 0 <
α ≤ 1− β

increasing, con-
cave

regressive
Bell (1985); Cohen (1992);
Chateauneuf, Eichberger, and
Grant (2007)

∗ Increasing elasticity is equivalent to subproportionality. ∗∗ An inverse-S shape means that both tails are overweighted, i.e. that the weighting function is regressive.
(1) Equivalent to power specification w(p) = pβ.
(2) The weighting function consists of a concave and a convex segment with a jump discontinuity in between (see text).
(3) For α > 1, β = 1 constant elasticity, convex; for α < 1, β = 0 increasing elasticity, convex.
(4) Special case of Blavatskyy (2014) with β = 0.
(5) Specific parameter constellations with β > 0 generate regressive with U-shaped elasticity.
(6) The full specification of the conditional invariant form also contains the power function (see row 1) as a special case (Prelec (1998), Proposition 4).
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