Natural abundance oxygen-17 solid-state NMR of metal organic frameworks enhanced by dynamic nuclear polarization - CNRS - Centre national de la recherche scientifique Accéder directement au contenu
Article Dans Une Revue Physical Chemistry Chemical Physics Année : 2021

Natural abundance oxygen-17 solid-state NMR of metal organic frameworks enhanced by dynamic nuclear polarization

Résumé

The 17 O resonances of Zirconium-oxo clusters that can be found in porous Zr carboxylate metal-organic frameworks (MOFs) have been investigated by magic-angle spinning (MAS) NMR spectroscopy enhanced by dynamic nuclear polarization (DNP). High-resolution 17 O spectra at 0.037 % natural abundance could be obtained in 48 hours, thanks to DNP enhancement of the 1 H polarization by factors   = S with /S without = 28, followed by 1 H 17 O cross-polarization, allowing a saving in experimental time by a factor of ca. 800. The distinct 17 O sites from the oxo-clusters can be resolved at 18.8 T. Their assignment is supported by density functional theory (DFT) calculations of chemical shifts and quadrupolar parameters. Protonation of 17 O sites seems to be leading to large characteristic shifts. Markedly, natural abundance 17 O NMR spectra of diamagnetic MOFs can thus be used to probe and characterize the local environment of different 17 O sites on an atomic scale.
Fichier principal
Vignette du fichier
2021_PCCP.pdf (772.98 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03453303 , version 1 (06-01-2021)
hal-03453303 , version 2 (23-11-2021)
hal-03453303 , version 3 (28-11-2021)

Identifiants

Citer

Diego Carnevale, Georges Mouchaham, Sujing Wang, Mathieu Baudin, Christian Serre, et al.. Natural abundance oxygen-17 solid-state NMR of metal organic frameworks enhanced by dynamic nuclear polarization. Physical Chemistry Chemical Physics, 2021, 23 (3), pp.2245 - 2251. ⟨10.1039/d0cp06064j⟩. ⟨hal-03453303v3⟩
131 Consultations
123 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More