
HAL Id: hal-03441875
https://cnrs.hal.science/hal-03441875

Preprint submitted on 22 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Convex Minimization With Nonlinear Compositions
Luis M Briceño-Arias, Patrick L Combettes

To cite this version:
Luis M Briceño-Arias, Patrick L Combettes. Convex Minimization With Nonlinear Compositions.
2021. �hal-03441875�

https://cnrs.hal.science/hal-03441875
https://hal.archives-ouvertes.fr


Convex Minimization With Nonlinear Compositions*

Luis M. Briceño-Arias1 and Patrick L. Combettes2
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1 Introduction

The goal of this paper is to investigate the following minimization problem, and to propose splitting

algorithms to solve it. Given a real Banach space X , Γ0(X ) designates the class of proper lower

semicontinuous convex functions from X to ]−∞,+∞].

Problem 1.1 Let X and Y be reflexive real Banach spaces, let f ∈ Γ0(X ), let g ∈ Γ0(Y), let L : X →
Y be a bounded linear operator, and let φ ∈ Γ0(R) be increasing. Set

φ ◦ f : X → ]−∞,+∞] : x 7→

{
φ
(
f(x)

)
, if f(x) ∈ domφ;

+∞, if f(x) /∈ domφ.
(1.1)

The goal is to

minimize
x∈X

φ
(
f(x)

)
+ g(Lx), (1.2)

and P denotes its set of solutions.

To motivate this formulation, let us consider a few special cases of interest (see Section 2 for

notation).

Example 1.2 In Problem 1.1 suppose that φ = ι]−∞,0]. Then (1.1) reduces to the constrained mini-

mization problem

minimize
x∈X

f(x)60

g(Lx), (1.3)

which is pervasive in nonlinear programming.

Example 1.3 Let θ ∈ Γ0(R) be an increasing function such that dom θ = ]−∞, η[ for some η ∈ R,

limξ↑η θ(ξ) = +∞, and (rec θ)(1) > 0. Let α : ]0,+∞[ → ]0,+∞[ be such that limρ↓0 α(ρ) = 0 and

limρ↓0 α(ρ)/ρ > 0. Set X = R
N and L = Id. Given ρ ∈ ]0,+∞[, set φ : ξ 7→ α(ρ)θ(ξ/ρ). Then

Problem 1.1 becomes

minimize
x∈RN

α(ρ)θ(f(x)/ρ) + g(x). (1.4)

The asymptotic behavior of this family of penalty-barrier minimization problems as ρ ↓ 0 is investi-

gated in [1].

Example 1.4 In Problem 1.1 suppose that φ = θ ◦max{0, · − ρ}, where θ ∈ Γ0(R) is increasing and

ρ ∈ R. Then (1.1) reduces to

minimize
x∈X

θ
(
max{0, f(x)− ρ}

)
+ g(Lx). (1.5)

For instance, if C is a nonempty closed convex subset of X and f = dC , we recover the setting of

[14, Example 2.4].
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Example 1.5 Let p ∈ [1,+∞[ and let (Xi)i∈I and (Yk)k∈K be finite families of reflexive real Banach

spaces. For every i ∈ I, let Ci be a nonempty closed convex subset of Xi, and, for every k ∈ K,

let Lik : Xi → Yk be a bounded linear operator. Set X =
⊕

i∈I Xi, Y =
⊕

k∈K Yk, C = ×i∈I Ci,

f : (xi)i∈I 7→ (
∑p

i=1 d
p
Ci
(xi))

1/p, φ = (max{0, ·})p, g : (yk)k∈K 7→
∑

k∈K gk(yk), and L : (xi)i∈I 7→
(
∑

i∈I Likxi)k∈K . Then (1.1) reduces to

minimize
(xi)i∈I∈×

i∈I

Xi

∑

i∈I

dpCi
(xi) +

∑

k∈K

gk

(∑

i∈I

Likxi

)
. (1.6)

This formulation covers problems in signal processing and location problems [4, 14, 21].

There is a vast literature on Problem 1.1 in the case of linear compositions, that is, when φ : t 7→ t.
In this context, the duality theory goes back to [23], and various solution methods are available,

e.g., [5, 9, 15, 30]. In the nonlinear setting, in terms of convex analysis, the conjugate and the

subdifferential of φ ◦ f in (1.1) have been derived in [11, 12], building up on the work of [18,

19, 17, 27]. However, duality theory for the minimization problem (1.1) does not seem to have

been studied. On the numerical side, in the finite dimensional setting, with f smooth and g = 0,

Problem 1.1 has been studied in [3] in the case when f is vector-valued by linearizing the objective

function (see also [8, 20, 22, 31] and the references therein for the case when f is not convex in this

scenario). However, in the general setting of Problem 1.1, solution methods are not available. The

goal of the present paper is to address these gaps by first extending the classical Fenchel–Rockafellar

theory to Problem 1.1, and then exploiting it to design proximal splitting algorithms to solve it.

We introduce our notation in Section 2. In Section 3, we develop a duality theory for Problem 1.1.

In particular, we establish a connection between the conjugate of composite functions and perspec-

tive functions. We then derive a dual problem and show that primal-dual solutions can be obtained

as the zeros of a nonlinear monotone Kuhn–Tucker operator. This property is used in Section 4 to de-

rive splitting algorithms that use φ, f , g, and L separately to solve Problem 1.1 via the computation

of resolvents of suitable monotone operators.

2 Notation and background

Let X and Y be reflexive real Banach spaces, and let X ∗ and Y∗ denote their respective topological

duals. The symbol X ⊕ Y designates the standard vector space X × Y equipped with the pairing

(∀(x, y) ∈ X × Y)(∀(x∗, y∗) ∈ X ∗ × Y∗) 〈(x, y), (x∗, y∗)〉 = 〈x, x∗〉+ 〈y, y∗〉 (2.1)

and the norm

(∀(x, y) ∈ X × Y) ‖(x, y)‖ =
√

‖x‖2 + ‖y‖2. (2.2)

The power set of X ∗ is denoted by 2X
∗

. Let A : X → 2X
∗

be a set-valued operator. We denote by

ranA =
{
x∗ ∈ X ∗ | (∃x ∈ X ) x∗ ∈ Ax

}
the range of A, by domA =

{
x ∈ X | Ax 6= ∅

}
the domain

of A, by zerA =
{
x ∈ X | 0 ∈ Ax

}
the set of zeros of A, by graA =

{
(x, x∗) ∈ X × X ∗ | x∗ ∈ Ax

}

graph of A, and by A−1 the inverse of A, which has graph
{
(x∗, x) ∈ X ∗ × X | x∗ ∈ Ax

}
. Moreover,

A is monotone if

(∀(x, y) ∈ X × X )(∀(x∗, y∗) ∈ Ax×Ay) 〈x− y, x∗ − y∗〉 > 0, (2.3)
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and maximally so if there exists no monotone operator B : X → 2X
∗

such that graA ⊂ graB 6=
graA. If X is Hilbertian, the resolvent of A is JA = (Id +A)−1.

A function f : X → [−∞,+∞] is proper if −∞ /∈ f(X ) 6= {+∞}. The domain of f : X →
[−∞,+∞] is dom f =

{
x ∈ X | f(x) < +∞

}
and its epigraph is epi f =

{
(x, ξ) ∈ X ×R | f(x) 6 ξ

}
.

Let f ∈ Γ0(X ). The recession function of f is rec f , the conjugate of f is the function f∗ ∈ Γ0(X
∗)

defined by f∗ : x∗ 7→ supx∈X (〈x, x
∗〉 − f(x)), and the perspective of f is the function f̃ ∈ Γ0(X ⊕ R)

defined by

f̃ : X × R → ]−∞,+∞] : (x, ξ) 7→





ξ f(x/ξ), if ξ > 0;

(rec f)(x), if ξ = 0;

+∞, otherwise.

(2.4)

If f is proper, its subdifferential is the maximally monotone operator

∂f : X → 2X
∗

: x 7→
{
x∗ ∈ X ∗ | (∀y ∈ dom f) 〈y − x, x∗〉+ f(x) 6 f(y)

}
. (2.5)

Let C be a convex subset of X . The indicator function of C is denoted by ιC , the strong relative

interior of C, i.e., the set of points x ∈ C such that the cone generated by −x+ C is a closed vector

subspace of X , by sriC, and the distance to C is the function dC : x 7→ infy∈C ‖x − y‖. If X is

Hilbertian, for every x ∈ X , proxfx = J∂fx denotes the unique minimizer of f + ‖ · −x‖2/2.

For background on convex analysis and monotone operators, see [2, 32].

3 Duality theory for nonlinear composite minimization

We start with a technical fact.

Lemma 3.1 Let φ : R → ]−∞,+∞] be an increasing proper convex function. Then the following hold:

(i) domφ is an interval and inf dom φ = −∞.

(ii) domφ∗ ⊂ [0,+∞[.

Proof. (i): Since φ is convex, domφ is convex, hence an interval. Now take ξ ∈ domφ and η < ξ.

Then φ(η) 6 φ(ξ) < +∞ and hence η ∈ domφ. Consequently, inf domφ = −∞.

(ii): Since φ is increasing, it follows from (i) that

(∀ξ∗ ∈ ]−∞, 0[) φ∗(ξ∗) = sup
ξ∈domφ

(
ξξ∗ − φ(ξ)

)
= +∞, (3.1)

which yields domφ∗ ⊂ [0,+∞[.

The next result concerns convex analytical properties of φ ◦ f and establishes in particular a con-

nection between the conjugate of a composite function and function and the marginal of a function

that involves the perspective (see (2.4)) of its conjugate.

Proposition 3.2 Let X be a real Banach space, let f ∈ Γ0(X ), and let φ ∈ Γ0(R) be an increasing

function such that domφ ∩ f(dom f) 6= ∅. Then
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(i) dom (φ ◦ f) = f−1(domφ).

(ii) φ ◦ f ∈ Γ0(X ).

(iii) Suppose that there exists x ∈ X such that f(x) ∈ int domφ. Then

(∀x∗ ∈ X ∗) (φ ◦ f)∗(x∗) = min
ξ∗∈R

(
φ∗(ξ∗) + f̃∗(x∗, ξ∗)

)
. (3.2)

(iv) Suppose that there exists z ∈ dom f such that f(z) ∈ int domφ. Then

(∀x ∈ X ) ∂(φ ◦ f)(x) =
⋃

ξ∗∈∂φ
(
f(x)

)
ξ∗∂f(x). (3.3)

(v) Suppose that there exists z ∈ dom f such that f(z) ∈ int domφ, and let x ∈ X and ξ∗ ∈ R. Then

{
ξ∗ ∈ ∂φ

(
f(x)

)

x∗ ∈ ξ∗∂f(x)
⇔

{
x∗ ∈ ∂(φ ◦ f)(x)

ξ∗ ∈ Argmin
(
φ∗ + f̃∗(x∗, ·)

)
.

(3.4)

Proof. (i): See (1.1).

(ii): In view of (1.1), convexity is established as in [2, Proposition 8.21], lower semicontinuity

follows from [10, Proposition II.8.4], and properness follows from (i).

(iii): It follows from [11, Proposition 4.11ii)] and Lemma 3.1(ii) that

(∀x∗ ∈ X ∗) (φ ◦ f)∗(x∗) = min
ξ∗∈[0,+∞[

(
φ∗(ξ∗) + (ξ∗f)∗(x∗)

)

= min
ξ∗∈R

(
φ∗(ξ∗) + f̃∗(x∗, ξ∗)

)
, (3.5)

which completes the proof.

(iv): See [11, Proposition 4.11i)].

(v): It follows from (iv) and the Fenchel–Young identity that

{
ξ∗ ∈ ∂φ

(
f(x)

)

x∗ ∈ ξ∗∂f(x)
⇔ (∃z∗ ∈ X ∗)

{
(ξ∗, z∗) ∈ ∂φ

(
f(x)

)
× ∂f(x)

x∗ = ξ∗z∗ ∈ ∂(φ ◦ f)(x)

⇔ (∃z∗ ∈ X ∗)





φ
(
f(x)

)
+ φ∗(ξ∗) = ξ∗f(x)

f(x) + f∗(z∗) = 〈x, z∗〉

x∗ = ξ∗z∗ ∈ ∂(φ ◦ f)(x)

⇔ (∃z∗ ∈ X ∗)





(φ ◦ f)(x) + φ∗(ξ∗) = ξ∗
(
〈x, z∗〉 − f∗(z∗)

)

f(x) + f∗(z∗) = 〈x, z∗〉

x∗ = ξ∗z∗ ∈ ∂(φ ◦ f)(x)

⇔ (∃z∗ ∈ X ∗)





(φ ◦ f)(x) + φ∗(ξ∗) + ξ∗f∗(z∗) = 〈x, x∗〉

f(x) + f∗(z∗) = 〈x, z∗〉

x∗ = ξ∗z∗ ∈ ∂(φ ◦ f)(x).

(3.6)
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Let µ = (φ ◦ f)∗(x∗) = min(φ∗ + f̃∗(x∗, ·)) and note that, by Fenchel–Young inequality [32, Theo-

rem 2.3.1(ii)], we have

µ > 〈x∗, x〉 − (φ ◦ f)(x). (3.7)

We consider two cases.

• ξ∗ = 0: In this case x∗ = 0, µ 6 φ∗(0) + f̃∗(0, 0) = φ∗(0), and (3.7) yields −(φ ◦ f)(x) 6 µ.

Altogether,

(3.6) ⇔ (∃z∗ ∈ X ∗)





µ 6 φ∗(0)

(φ ◦ f)(x) + φ∗(0) = 0

f(x) + f∗(z∗) = 〈x, z∗〉

(3.8)

⇔ (∃z∗ ∈ X ∗)





µ 6 φ∗(0) = −(φ ◦ f)(x)

f(x) + f∗(z∗) = 〈x, z∗〉

(φ ◦ f)(x) + µ > 0

⇔ (∃z∗ ∈ X ∗)





(φ ◦ f)(x) = −φ∗(0)

f(x) + f∗(z∗) = 〈x, z∗〉

µ = φ∗(0),

(3.9)

which is equivalent to 0 ∈ Argmin (φ∗ + f̃∗(0, ·)).

• ξ∗ 6= 0: In this case, it follows from Lemma 3.1(ii) that ξ∗ > 0. Therefore, (3.7) yields

(3.6) ⇔ (∃z∗ ∈ X ∗)





φ∗(ξ∗) + f̃∗(x∗, ξ∗) = 〈x, x∗〉 − (φ ◦ f)(x) 6 µ

f(x) + f∗(z∗) = 〈x, z∗〉

x∗ = ξ∗z∗,

(3.10)

and the result follows.

Next, we provide a characterization of the solutions to Problem 1.1 in terms of a monotone inclu-

sion problem in X × R. It will necessitate the following qualification conditions.

Assumption 3.3 In Problem 1.1,

0 ∈ sri
(
L(f−1(dom φ))− dom g

)
and (∃ z ∈ dom f) f(z) ∈ int domφ. (3.11)

Proposition 3.4 Consider the setting of Problem 1.1 under Assumption 3.3, and set




A : X ⊕ R → 2X

∗⊕R : (x, ξ∗) 7→

{
ξ∗∂f(x)×

(
∂φ∗(ξ∗)− f(x)

)
, if (x, ξ∗) ∈ dom ∂f × dom ∂φ∗;

∅, otherwise.

B : X ⊕ R → 2X
∗⊕R : (x, ξ∗) 7→

(
L∗(∂g(Lx))

)
× {0}.

(3.12)

Then the following hold:
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(i) domA = dom ∂f × dom ∂φ∗ ⊂ dom f × [0,+∞[.

(ii) A and B are maximally monotone.

(iii) P =
⋃

ξ∗∈R

{
x ∈ X | (x, ξ∗) ∈ zer (A+B)

}
.

Proof. (i): This follows from (3.12) and Lemma 3.1(ii).

(ii): Set

F : X ×R → [−∞,+∞] : (x, ξ∗) 7→





+∞, if x /∈ dom f ;

ξ∗f(x)− φ∗(ξ∗), if x ∈ dom f and ξ∗ ∈ domφ∗;

−∞, if x ∈ dom f and ξ∗ /∈ domφ∗.

(3.13)

Note that, for every (x, ξ∗) ∈ X × R, −F (x, ·) ∈ Γ0(R) and, in view of Lemma 3.1(ii), F (·, ξ∗) ∈
Γ0(X ). As a result, the associated saddle operator A is maximally monotone [24, 25]. On the other

hand, it follows from Assumption 3.3 and [32, Theorem 2.8.3(vii)] that L∗ ◦ ∂g ◦ L = ∂(g ◦ L) is

maximally monotone, which implies that B is maximally monotone.

(iii): Since f−1(int domφ) 6= ∅, it follows from [32, Theorems 2.8.3(vii)], Proposition 3.2(iv),

and [32, Theorem 2.4.2(iii)] that

x ∈ P ⇔ 0 ∈ ∂
(
φ ◦ f + g ◦ L

)
(x)

⇔
(
∃ ξ∗ ∈ ∂φ

(
f(x)

))
0 ∈ ξ∗∂f(x) + L∗(∂g

(
Lx)

)
(3.14)

⇔ (∃ ξ∗ ∈ R)

{
0 ∈ ∂φ∗(ξ∗)− f(x)

0 ∈ ξ∗∂f(x) + L∗
(
∂g(Lx)

)
,

(3.15)

and the result follows.

To advance further our the investigation of Problem 1.1, we introduce an auxiliary problem.

Problem 3.5 Let X and Y be reflexive real Banach spaces, let f ∈ Γ0(X ), let g ∈ Γ0(Y), let L : X →
Y be a bounded linear operator, and let φ ∈ Γ0(R) be increasing. The goal is to

minimize
ξ∗∈R
y∗∈Y∗

φ∗(ξ∗) + f̃∗(−L∗y∗, ξ∗) + g∗(y∗), (3.16)

and D denotes its set of solutions.

Proposition 3.6 Consider the setting of Problem 3.5. Then the following hold:

(i) The Fenchel–Rockafellar of Problem 3.5 in X ⊕R is

minimize
(x,ξ)∈epi f

φ
(
ξ
)
+ g(Lx). (3.17)

(ii) Let x ∈ f−1(domφ). Then x solves Problem 1.1 if and only if (x, f(x)) solves (3.17).

Proof. (i): Set




Φ: Y∗ ×R → ]−∞,+∞] : (y∗, ξ∗) 7→ g∗(y∗) + φ∗(ξ∗)

Ψ: X ∗ ×R → ]−∞,+∞] : (x∗, ξ∗) 7→ f̃∗(x∗,−ξ∗)

Λ: Y∗ × R → X ∗ × R : (y∗, ξ∗) 7→ (−L∗y∗,−ξ∗)

C =
{
(x, ξ) ∈ X × R | f(x) + ξ 6 0

}
.

(3.18)
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We have Φ∗ : Y×R → ]−∞,+∞] : (y, ξ) 7→ g(y)+φ(ξ) and Λ∗ : X ×R → Y×R : (x, ξ) 7→ (−Lx,−ξ).
Moreover, Ψ∗ : (x, ξ) 7→ ιC(x,−ξ) = ιepi f (x, ξ). Hence, we rewrite (3.16) as

minimize
(y∗,ξ∗)∈Y∗×R

Φ(y∗, ξ∗) + Ψ
(
Λ(y∗, ξ∗)

)
, (3.19)

and its Fenchel–Rockafellar dual is

minimize
(x,ξ)∈X×R

Φ∗
(
− Λ∗(x, ξ)

)
+Ψ∗(x, ξ), (3.20)

which is precisely (3.17).

(ii): Since φ is increasing, it follows from (1.1) that

(
∀x ∈ f−1(dom φ)

)
φ
(
f(x)

)
= min

ξ∈[f(x),+∞[
φ(ξ). (3.21)

Hence, since (x, f(x)) ∈ epi f , x solves Problem 1.1 if and only if

min
x∈X

φ
(
f(x)

)
+ g(Lx) = φ

(
f(x)

)
+ g(Lx) = min

(x,ξ)∈epi f
φ
(
ξ
)
+ g(Lx), (3.22)

which is equivalent to saying that (x, f(x)) solves (3.17).

We are now ready to present the main result of this section, which connects Problems 1.1 and 3.5

with a monotone inclusion in X ⊕ R⊕Y∗.

Theorem 3.7 Consider the framework of Problem 1.1 under Assumption 3.3, set X = X ⊕R⊕Y∗, let

A be as in (3.12), and set

{
M : X → 2X

∗

: (x, ξ∗, y∗) 7→ A(x, ξ∗)× ∂g∗(y∗)

S : X → X
∗ : (x, ξ∗, y∗) 7→ (L∗y∗, 0,−Lx).

(3.23)

Then the following hold:

(i) The Fenchel–Rockafellar dual of Problem 1.1 is represented by Problem 3.5 and D 6= ∅.

(ii) M is maximally monotone.

(iii) S is skew and ‖L‖-Lipschitzian.

(iv) zer (M + S) is a closed convex subset of P × D .

(v) P =
⋃

(ξ∗,y∗)∈R×Y∗

{
x ∈ X | (x, ξ∗, y∗) ∈ zer (M + S)

}
.

Proof. (i): The Fenchel–Rockafellar dual of (1.2) is

minimize
y∗∈Y∗

(φ ◦ f)∗(−L∗y∗) + g∗(y∗). (3.24)

In view of Proposition 3.2(iii), this gives (3.16). In addition, (3.11) and Proposition 3.2(i) entail

that

0 ∈ sri
(
L(dom (φ ◦ f))− dom g

)
, (3.25)
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and it therefore follows from [32, Corollary 2.8.5] that (3.24) admits a solution.

(ii): As seen in Proposition 3.4(ii), A is maximally monotone. Therefore, it follows from [32,

Theorems 2.3.3 and 3.2.8] that M is maximally monotone. On the other hand, S is maximally

monotone by [28, Chapter 8].

(iii): It is clear that S∗ = −S. Now let x = (x, ξ∗, y∗) ∈ X . Then (2.2) yields

‖Sx‖2 = ‖L∗y∗‖2 + ‖Lx‖2 6 ‖L‖2‖x‖2, (3.26)

which shows that ‖S‖ 6 ‖L‖. Conversely, suppose that ‖x‖ 6 1 and that (ξ∗, y∗) = (0, 0). Then

‖Lx‖ = ‖Sx‖ 6 ‖S‖ and, therefore, ‖L‖ 6 ‖S‖.

(iv): We derive from (ii), the skewness of S, and [28, Theorem 42.1] that M + S is maximally

monotone. This implies that its inverse is maximally monotone and therefore that

zer (M + S) = (M + S)−1
0 =

⋂

(y,y∗)∈gra (M+S)

{
x ∈ X | 〈x− y,y∗〉 6 0

}
(3.27)

is closed and convex as an intersection of such sets. Now, let (x, ξ∗, y∗) ∈ zer (M + S), that is,





0 ∈ ∂φ∗(ξ∗)− f(x)

0 ∈ ξ∗∂f(x) + L∗y∗

0 ∈ ∂g∗(y∗)− Lx.

(3.28)

Then, in view of Proposition 3.2(iv),

{
0 ∈ ∂(φ ◦ f)(x) + L∗y∗

0 ∈ ∂g∗(y∗)− Lx.
(3.29)

Hence, it follows from Proposition 3.2(ii) and [32, Corollary 2.8.5 and Theorem 2.4.4(iv)] that

x ∈ P and y∗ solves (3.24). Next, we derive from (3.28) and Proposition 3.2(v) that

−L∗y∗ ∈ ∂(φ ◦ f)(x) and ξ∗ ∈ Argmin
(
φ∗ + f̃∗(−L∗y∗, ·)

)
. (3.30)

In addition, it results from Proposition 3.2(iii)

φ∗(ξ∗) + f̃∗(−L∗y∗, ξ∗) = min
(
φ∗ + f̃∗(−L∗y∗, ·)

)
(R) = (φ ◦ f)∗(−L∗y∗). (3.31)

Therefore, (y∗, ξ∗) solves

minimize
y∗∈Y∗

(
g∗(y∗) + minimize

ξ∗∈R
φ∗(ξ∗) + f̃∗(−L∗y∗, ξ∗)

)
, (3.32)

which shows that (y∗, ξ∗) ∈ D .

(v): Suppose that x ∈ P. Then it follows from Proposition 3.4(iii) that there exists ξ∗ ∈ R such

that
{
0 ∈ ∂φ∗(ξ∗)− f(x)

0 ∈ ξ∗∂f(x) + L∗
(
∂g(Lx)

)
.

(3.33)
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Thus, there exists (ξ∗, y∗) ∈ R× Y∗ such that





0 ∈ ∂φ∗(ξ∗)− f(x)

0 ∈ ξ∗∂f(x) + L∗y∗

0 ∈ ∂g∗(y∗)− Lx,

(3.34)

which shows that

(x, ξ∗, y∗) ∈ zer (M + S). (3.35)

To show the reverse inclusion, suppose that (x, ξ∗, y∗) ∈ zer (M + S). Then, by (iv), x ∈ P.

Remark 3.8 By analogy with the standard Fenchel–Rockafellar theory [26], where φ : t 7→ t, we call

the operator M + S in Theorem 3.7 the Kuhn–Tucker operator associated with Problem 1.1.

4 Proximal analysis and solution methods

Theorem 3.7 opens a path for solving Problem 1.1 and the dual Problem 3.5 by finding a zero of the

Kuhn–Tucker operator of Remark 3.8, i.e., of the sum of a maximally monotone operator M and a

monotone Lipschitzian operator S. In a Hilbertian setting, this can be achieved by splitting methods

that involve the resolvent of M , which is computed below.

Proposition 4.1 Suppose that X and Y are real Hilbert spaces. Let x ∈ X , ξ∗ ∈ R, y∗ ∈ Y, and

γ ∈ ]0,+∞[. Then the following hold:

(i) JM (x, ξ, y∗) = (JA(ξ, x),proxg∗y
∗).

(ii) There exists a unique µ ∈ [0,+∞[ such that µ = proxγφ∗(ξ∗ + γf(proxµγfx)), and JγA(x, ξ∗) =
(proxµγfx, µ).

Proof. (i): This follows from Theorem 3.7(ii), Proposition 3.4(ii), and [2, Propositions 23.8 and

23.18].

(ii): Set (p, µ) ∈ X × R. Then

(p, µ) = JγA(x, ξ∗) ⇔ (x, ξ∗) ∈ (p, µ) + γA(p, µ) (4.1)

⇔

{
x ∈ p+ µγ∂f(p)

ξ∗ ∈ µ+ γ∂φ∗(µ)− γf(p)

⇔

{
p = proxµγfx

µ = proxγφ∗

(
ξ∗ + γf(p)

)

⇔

{
p = proxµγfx

µ = proxγφ∗

(
ξ∗ + γf(proxµγfx)

)
.

(4.2)

We observe that Proposition 3.4(i) implies that µ in (4.1) lies in [0,+∞[.
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Remark 4.2 Let γ ∈ ]0,+∞[, let (x, ξ∗) ∈ X × R, and denote by m(γ, x, ξ∗) the unique µ ∈ [0,+∞[
identified in Proposition 4.1. Then

m(γ, x, ξ∗) ∈ [0,+∞[ is the unique fixed point of the operator

T : R → R

µ 7→ proxγφ∗

(
ξ∗ + γf(proxµγfx)

)
.

(4.3)

Note that, in view of [2, Propositions 12.27 and 24.31], T is decreasing.

In the following examples we provide the computation of m in (4.3) and JγA, where γ ∈ ]0,+∞[
and A is defined in (3.12).

Example 4.3 In the context of Example 1.2, suppose that X is a real Hilbert space, let γ ∈ ]0,+∞[.
let (x, ξ∗) ∈ X × R, and let µ ∈ [0,+∞[ be the unique solution to

µ =

{
ξ∗ + γf

(
proxµγfx

)
, if ξ∗ + γf(x) > 0;

0, if ξ∗ + γf(x) 6 0.
(4.4)

Since φ∗ = ι[0,+∞[, Proposition 4.1 and (4.3) yield

m(γ, x, ξ∗) = µ and JγA(x, ξ∗) =

{
(x, 0), if ξ∗ + γf(x) 6 0;(
proxµγfx, µ

)
, if ξ∗ + γf(x) > 0.

(4.5)

Example 4.4 In Example 1.3, suppose that X is a real Hilbert space, set α : ρ 7→ ρ, let γ ∈ ]0,+∞[,
let (x, ξ∗) ∈ X × R, and let µ ∈ [0,+∞[ be the unique solution to

µ = proxγρθ∗
(
ξ∗ + γf(proxµγfx)

)
. (4.6)

Then, by [2, Proposition 13.23(ii)], φ∗ = ρθ∗ and it follows from Proposition 4.1 and (4.3) that

m(γ, x, ξ∗) = µ and that JγA(x, ξ∗) = (proxµγfx, µ).

Example 4.5 In Example 1.4, let γ ∈ ]0,+∞[, let (x, ξ∗) ∈ X × R and let µ ∈ ]0,+∞[ is the unique

solution to

µ =

{
proxγθ∗

(
ξ∗ + γ(f(proxµγfx)− ρ)

)
, if ξ∗ + γf(x) > γρ;

0. if ξ∗ + γf(x) 6 γρ.
(4.7)

We deduce from [14, Example 2.4] and [2, Proposition 24.8(ix)] that

proxγφ∗ : ξ∗ 7→

{
proxγθ∗(ξ

∗ − γρ), if ξ∗ > γρ;

0, if ξ∗ 6 γρ.
(4.8)

Hence, Proposition 4.1 and (4.3) yield

m(γ, x, ξ∗) = µ and JγA(x, ξ∗) =

{
(x, 0), if ξ∗ + γf(x) 6 γρ;(
proxµγfx, µ

)
, if ξ∗ + γf(x) > γρ.

(4.9)

We now turn to the design of algorithms for solving Problems 1.1 and 3.5 using Theorem 3.7 and

Proposition 4.1. The following approach is based on Tseng’s splitting method [29].
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Theorem 4.6 Consider the framework of Problem 1.1 under Assumption 3.3, and define m as in (4.3).

Suppose that X and Y are real Hilbert spaces, and that P 6= ∅. Let x0 ∈ X , ξ0 ∈ R, y∗0 ∈ Y, let

ε ∈ ]0, 1/(‖L‖ + 1)[, let (γn)n∈N be a sequence in [ε, (1 − ε)/‖L‖], and set

for n = 0, 1, . . .

zn = xn − γnL
∗y∗n

z∗n = y∗n + γnLxn
ξn+1 = m(γn, zn, ξn)
pn = proxξn+1γnfzn
p∗n = proxγng∗z

∗
n

qn = pn − γnL
∗p∗n

q∗n = p∗n + γnLpn
xn+1 = xn − zn + qn
y∗n+1 = y∗n − z∗n + q∗n.

(4.10)

Then xn ⇀ x, y∗n ⇀ y∗, and ξn → ξ, where x ∈ P and (ξ, y∗) ∈ D .

Proof. Set X = X ⊕ R ⊕ Y. It follows from Theorem 3.7(v) that zer (M + S) 6= ∅. In addi-

tion, Theorem 3.7(ii)-(iii) implies that M is maximally monotone and S is monotone and ‖L‖-

Lipschitzian. Now set, for every n ∈ N, xn = (xn, ξn, y
∗
n), zn = (zn, ξn, z

∗
n), pn = (pn, ξn+1, p

∗
n), and

qn = (qn, ξn+1, q
∗
n). Then, in view of (3.23) and Proposition 4.1, we can express (4.10) as

for n = 0, 1, . . .

zn = xn − γnSxn

pn = JγnM zn

qn = pn − γnSpn

xn+1 = xn − zn + qn.

(4.11)

In turn, we derive from [29, Theorem 3.4] that (xn)n∈N converges weakly to a point x ∈ zer (M+S).
In view of Theorem 3.7(iv), the proof is complete.

Remark 4.7

(i) In particular, Examples 1.2-1.4 can be solved via Theorem 4.6. Note that in these settings

m(γn, zn, ξn) in (4.10) is computed in Examples 4.3-4.5.

(ii) In the particular case of Example 1.2, (1.3) is solved by (4.10). The algorithm activates the

inequality constraint f(x) 6 0 through proxξn+1γnf , where ξn+1 is the solution of the scalar

equation in (4.4). Note that general convex inequalities are hard to treat directly in the context

of standard proximal methods since they involve the projection onto the 0-sublevel set of

f , which is typically not explicit (see [6] for an alternative approach in the smooth case).

We circumvent this problem by requiring only the proximity operator of f . For instance, if

X = R
N , p ∈ [1,+∞[, η ∈ ]0,+∞[, and f = ‖ · ‖pp − ηp, (1.3) reduces to

minimize
x∈RN

‖x‖p6η

g(Lx), (4.12)

a formulation which arises in machine learning [16] and for which the projection is expen-

sive to compute [13]. Within our framework, (4.12) can be solved by (4.10) for a general

nonsmooth g, where ξn+1 = m(γn, zn, ξn) is computed as in Example 4.3 and proxξn+1γnf =
(proxξn+1γn|·|p)16i6N , which is computable in view of [2, Example 24.38].
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Remark 4.8 In view of Theorem 3.7(iv), we have reduced Problem 1.1 and Problem 3.5 to finding

a zero of the sum of a maximally monotone operator and a monotone Lipschitzian operator. Theo-

rem 4.6 addresses this inclusion problem via the basic form of Tseng’s splitting method [29]. Let us

add a few comments.

(i) Errors can be incorporated in (4.11) by using the error-tolerant version of Tseng’s method [5,

Theorem 2.5].

(ii) Another method tailored to inclusions involving the sum of a maximally monotone operator

and a monotone Lipschitzian operator is that of [7, Corollary 5.2], which can also incorporate

inertial effects. Another advantage of this framework is that it features, through [7, Theo-

rem 4.8], a strongly convergent variant which does not require any additional assumptions on

the operators.

(iii) A zero of M+S can also be found by generic splitting methods which do not exploit specifically

the Lipschitz continuity of S. For instance, the Douglas–Rachford algorithm can be employed;

see [5, Remark 2.9] for an implementation with a skew operator similar to S in (3.23).

A noteworthy special case of Problem 1.1 is when Y = X and L = Id. In this setting, Propo-

sition 3.4 asserts that Problem 1.1 can be solved by finding a zero of the sum of the monotone

operators A and B defined in (3.12). We can for instance use the Douglas–Rachford algorithm for

this task, which leads to the following implementation.

Proposition 4.9 Consider the framework of Problem 1.1 under Assumption 3.3, and define m as in

(4.3). Suppose that X = Y is a real Hilbert space, that L = Id, and that P 6= ∅. Let z0 ∈ X , η0 ∈ R,

let γ ∈ ]0,+∞[, let (λn)n∈N be a sequence on ]0,+∞[ such that
∑

n∈N λn(2− λn) = +∞, and set

for n = 0, 1, . . .

ξn = m(γ, zn, ηn)
xn = proxξnγfzn
zn+1 = zn + λn

(
proxγg(2xn − zn)− xn

)

ηn+1 = ηn + λn(ξn − ηn).

(4.13)

Then xn ⇀ x, where x ∈ P.

Proof. It follows from Proposition 3.4(iii) that zer (A + B) 6= ∅, where A and B are defined in

(3.12). Now set, for every n ∈ N, xn = (xn, ξn) ∈ X ⊕ R and yn = (zn, ηn) ∈ X ⊕ R. Note

that [2, Proposition 23.18] yields JγB : (x, ξ) 7→ (proxγgx, ξ). Hence, it follows from (3.12) and

Proposition 4.1 that (4.13) can be written as

(∀n ∈ N)

⌊
xn = JγA yn

yn+1 = yn + λn

(
JγB(2xn − yn)− xn

)
.

(4.14)

In turn, [2, Theorem 26.11] yields xn ⇀ x for some x ∈ zer (A + B) and the result follows from

Proposition 3.4(iii).

Remark 4.10 Although we have investigated Problem 1.1 with a single linear composite term, it

also models formulations with several such terms. Indeed, let X be a real reflexive Banach space, let

f ∈ Γ0(X ), let φ ∈ Γ0(R) be increasing, and let (Yk)k∈K be a finite family of reflexive real Banach
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spaces. For every k ∈ K, let gk ∈ Γ0(Yk), let Lk : X → Yk be linear and bounded. Set Y =
⊕

k∈K Yk,

g : Y → ]−∞,+∞] : (yk)k∈K 7→
∑

k∈K gk(yk), and L : X → Y : x 7→ (Lkx)k∈K . Then (1.2) becomes

minimize
x∈X

φ
(
f(x)

)
+

∑

k∈K

gk(Lkx). (4.15)

Furthermore, in the Hilbertian setting, the implementation of (4.10) is

for n = 0, 1, . . .

zn = xn − γn
∑

k∈K L∗
ky

∗
k,n

ξn+1 = m(γn, zn, ξn)
pn = proxξn+1γnfzn
for every k ∈ K

z∗k,n = y∗k,n + γnLkxn
p∗k,n = proxγng∗k

z∗k,n
q∗k,n = p∗k,n + γnLkpn

qn = pn − γn
∑

k∈K L∗
kp

∗
k,n

xn+1 = xn − zn + qn
for every k ∈ K⌊
y∗k,n+1 = y∗k,n − z∗k,n + q∗k,n,

(4.16)

and Theorem 4.6 provides conditions for the weak convergence of (xn)n∈N to a solution to (4.15).
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