
HAL Id: hal-03389659
https://cnrs.hal.science/hal-03389659

Preprint submitted on 29 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Programming with union, intersection, and negation
types

Giuseppe Castagna

To cite this version:

Giuseppe Castagna. Programming with union, intersection, and negation types. 2021. �hal-03389659�

https://cnrs.hal.science/hal-03389659
https://hal.archives-ouvertes.fr

Programming with union, intersection,
and negation types

Giuseppe Castagna

CNRS - Université de Paris

Based on joint work with Pietro Abate, Véronique Benzaken, Alain Frisch,
Hyeonseung Im, Victor Lanvin, Mickäel Laurent, Sergueı̈ Lenglet, Matthew Lutze

Kim Nguyen, Luca Padovani, Tommaso Petrucciani, Zhiwu Xu

Abstract. In this essay I present the advantages and, I dare say, the beauty of pro-
gramming in a language with set-theoretic types, that is, types that include union,
intersection, and negation type connectives. I show by several examples how set-
theoretic types are necessary to type some common programming patterns, but
also how they play a key role in typing several language constructs—from branch-
ing and pattern matching to function overloading and type-cases—very precisely.
I start by presenting the theory of types known as semantic subtyping and extend
it to include polymorphic types. Next, I discuss the design of languages that use
these types. I start by defining a theoretical framework that covers all the exam-
ples given in the first part of the presentation. Since the system of the framework
cannot be effectively implemented, I then describe three effective restrictions of
this system: (i) a polymorphic language with explicitly-typed functions, (ii) an
implicitly typed polymorphic language à la Hindley-Milner, and (iii) a monomor-
phic language that, by implementing classic union-elimination, precisely recon-
structs intersection types for functions and implements a very general form of
occurrence typing.
I conclude the presentation with a short overview of other aspects of these lan-
guages, such as pattern matching, gradual typing, and denotational semantics.

Keywords: Type-theory · Subtyping · Union types · Intersection types · Negation
types · Polymorphism · Overloading · Semantic subtyping.

1 Introduction

In this essay we present the use of set-theoretic types in programming languages and
outline their theory. Set theoretic types include union types t1 ∨ t2, intersection types
t1∧ t2, and negation types ¬t. In strict languages it is sensible to interpret a type as the
set of values that have that type (e.g., Bool is interpreted as the set containing the values
true and false). Under this assumption, then, t1∨ t2 is the set of values that are either
of type t1 or of type t2; t1 ∧ t2 is the set of values that are both of type t1 and of type
t2; ¬t is the set of all values that are not of type t. Set-theoretic types are polymorphic
when they include type variables (that we range over by Greek letters, α , β ,. . .).

To give an idea of the kind of programming that set-theoretic types enable and that
we describe in this article, consider the classic recursive flatten function that transforms
arbitrarily nested lists in the list of their elements. In a ML-like language with pattern
matching it can be defined as simply as

2 G. Castagna

let rec flatten = function
| [] -> []
| h::t -> (flatten h)@(flatten t)
| x -> [x]

flatten returns the empty list [] when its argument is an empty list; if its argument
is a non-empty list, then it flattens the argument’s head h and tail t and returns the
concatenation (denoted by @) of the results; if its argument is not a list, then flatten

returns the list containing just the argument.
The flatten function is completely polymorphic: it can be applied to any argu-

ment and, if lists are finite, always terminates. Although its semantics is easy to under-
stand, giving a simple and general polymorphic type to this function (i.e., a type that,
without complex metaprogramming constructions, allows the function to be applied to
every well-typed argument) defies all existing programming languages [29] with a sin-
gle exception: CDuce [17]. This is because CDuce is a language that uses a complete
set of set-theoretic type connectives and we need all of them (union, intersection, and
negation) to define Tree(α), the type of nested lists whose elements are of type α:

type Tree(α) = (α\List(Any)) | List(Tree(α))

in this type definition “|” denotes a union, “\” difference (i.e., intersection with the
negation: t1\t2 =def t1∧¬t2), List(t) is the type of lists of elements of type t, and Any

is the type of all values, so that List(Any) is the type of any list.1 In words, Tree(α)

is the type of nested lists whose leaves (i.e., the elements that are not lists) have type α .
Thus it is either a leaf or a list of Tree(α). Then, it just suffices to annotate flatten
with the right type

let rec flatten: Tree(α)→List(α) = function ...

for the definition to type-check in CDuce. In other terms, in CDuce the above definition
of flatten is of type ∀α.Tree(α)→List(α). The important point is that whatever
the type of the argument of flatten is, the application is always well-typed: if the
argument is not a list, then α is instantiated to the type of the argument; if it is a list,
then it is also a nested list, and α is instantiated with the union of the types of the non-
list elements of this nested list. In other terms, flatten can be applied to expressions
of any type and the type inferred for such an application is List(t) where the type t is
the union of the types of all the leaves of the argument, a non-list argument being itself
a leaf. For instance, the type statically deduced for the application

flatten [3 "r" [4 [true 5]] ["quo" [[false] "stop"]]]

is List(Int|Bool|String).2

1 We mainly use “&”, “|”, and “\” in code snippets for intersections, unions, and differences
and reserve “∨” , “∧”, and “¬” for formal types.

2 CDuce syntax is actually slightly different. The valid CDuce code for our example is:
type Tree('a) = ('a\[Any*]) | [(Tree('a))*]

let flatten ((Tree('a)) -> ['a*])
| [] -> []
| [h;t] -> (flatten h)@(flatten t)
| x -> [x]

and the type deduced by CDuce for the application is more precise than the above since it is:
[(Bool | 3--5 | 'o'--'u')*] (“--” is for intervals and [t*] for lists of t elements).

Programming with union, intersection, and negation types 3

The overall type inference system is quite expressive: it types more expressions
or gives more precise types (but worse error messages) than typical core-ML systems.
However, such a deduction is possible only because the function flatten is explicitly
typed: fail to specify the type annotation Tree(α)→List(α) and flatten will be
rejected by all existing type-checking systems. That current type-systems cannot infer
a type as sophisticated as the type of flatten without an explicit annotation is not
surprising as it combines the full palette of set-theoretic connectives (union, intersec-
tion, and negation) and recursive types. However, an important limitation of current
programming languages is that none of them is able to infer intersection types for func-
tions without explicit annotations. So while any ML-like language can deduce for

let not = fun x -> if x then false else true

the type Bool→Bool, current languages with intersection types cannot deduce for the
same function the more precise type (true→false)&(false→true) (where true

and false denote the singleton types containing the respective values) without being
instructed to do so by an explicit type annotation. The latter type is an intersection of
types, meaning that not has both type true→false and type false→true. The in-
tersection type is more precise than the type Bool→Bool: it states that when not is ap-
plied to an expression of type true, the result is not only a Boolean but actually false,
and likewise for arguments of type false. As we show later on, this degree of “preci-
sion” between two types is formally defined since (true→false)&(false→true)

is a strict subtype of Bool→Bool: every function of the former type is also of the
latter type, but not viceversa. Actually, if we adopt for if-then-else a semantics sim-
ilar to the one in JavaScript and consider every expression different from false to be
“truthy” (i.e., equivalent to true), then a even better intersection type for not would
be (¬false→false)&(false→true) which completely specifies the behavior of
the function since the function not above returns false for every argument that is not
false (i.e., for “truthy” values such as 42). The more precise is a type the less functions
it types, a most precise type being one that, as (¬false→false)&(false→true)

completely defines the semantics of a function.
We will discuss recent systems by Castagna et al. [15, 16] that are able to deduce

the most precise intersection type for the definition of not even without any annota-
tion. This inference is obtained by considering the conditional in the definition of not
akin to a type-case that tests whether x is of type ¬false or not. The body of not is
then analyzed separately under the hypotheses that x has type ¬false and ¬¬false
(i.e., false), yielding the corresponding intersection type. This is performed also for
multiple arguments, allowing the cited systems to deduce for

let and = fun x y ->

if x then (if y then false else true) else false

the following type
(false→Any→false) & (¬false→ ((¬false→true)&(false→false))),

which completely specifies the semantics of and : if the first argument is false, then
the result will be false for a second argument of any type; if the first argument is not
false then the result will be true for a second argument not false, and false oth-
erwise. It is important to notice that the analysis performed in [15, 16] is type-theoretic

4 G. Castagna

rather than syntactic: the arrows forming the intersection type of a function are not
determined by a syntactic recognition of type-cases, but are inferred from the types
involved in the definition of the function. To illustrate the advantages of a type-based
approach over a syntactic one it suffices to consider the following definition of or that
combines the previous not and and definitions according to De Morgan’s laws:

let or = fun x y -> not (and (not x) (not y))

The type (¬false→Any→true) & (false→ ((¬false→true)&(false→false)))

is deduced for this definition despite that no branching appears in it. For the same rea-
sons we could equivalently define the previous and function using a double call to
not so that a second argument that is not false yields true:

let and = fun x y -> if x then not (not y) else false

and obtain the same type as for the previous definition of and .
The ultimate goal of the research we present in this article is to define a program-

ming language whose type-inference subsumes ML-core type-inference, that can also
deduce intersections of arrows types for implicitly-typed functions such as not , and ,
and or , and where the programmer would be obliged to specify type annotations only
in particular cases, such as for flatten. Unfortunately, while there exist systems that
provide some of these features, it is not currently possible to have all of them simulta-
neously in a unique language, as we discuss in Section 4.

2 Motivations

In the previous section we gave few specific examples of use of polymorphic set-
theoretic types. One of the key features of these types that makes them versatile is
that they encompass all the three main forms of polymorphism, namely:

Parametric polymorphism: which describes code that can act uniformly on any type,
using type variables that can be instantiated with the appropriate type (e.g., typing
the identity function as ∀α.α → α). In this article we consider only the so-called
prenex or second-class polymorphism (in the sense of [31]) where variable quan-
tification cannot appear below type constructors or type connectives.

Ad-hoc polymorphism: which allows code that can act on more than one type, possibly
with different behavior in each case, as in function overloading (e.g., allowing + to
have both types Int×Int→ Int and String×String→String, corresponding
to different implementations).

Subtype polymorphism: which creates a hierarchy of more or less precise types for the
same code allowing it to be used wherever any of these type is expected (e.g., typing
3 as both Int and Real, with Int≤Real).

In this section we reframe polymorphic set-theoretic types in a more general setting
showing how these types allow us to type several features and idioms of programming
languages effectively. We illustrate this with some examples.

UNION TYPES: The simplest use cases for union types include branching constructs.
In a language with union types, we can type precisely conditionals that return results of

Programming with union, intersection, and negation types 5

different types: for instance, if e then 3 else true has type Int∨Bool (provided
that e has type Bool). Without union types, it could have an approximated type (e.g., a
top type) or be ill-typed. Similarly, we can use union types for structures like lists that
mix different types: we already saw an example of this in the previous section when an
application of flatten returned the list [3 "r" 4 true 5 "quo" false "stop"]

of type List(Int|Bool|String).
This makes union types invaluable to design type systems for previously untyped

languages: witness for example their inclusion in Typed Racket [59] which allows the
incremental addition of statically-checked type annotations on a dialect of Scheme and
in TypeScript [43] and Flow [21] which extend JavaScript with static type checking.

FUNCTION OVERLOADING: We can use intersection types to assign more than one
type to an expression. This is particularly relevant for functions. We have already seen
it in the previous section for the functions not , and , and or . But even the simple
identity function can be typed as (Int→Int)∧ (Bool→Bool): this means it has both
types Int→Int and Bool→Bool, because it maps integers to integers and Booleans to
Booleans. This type describes a uniform behavior over two different argument types
(the function uniformly maps an argument into itself independently from the argu-
ment’s type), which can also be described using parametric polymorphism. However,
intersection types let us express ad-hoc polymorphism (i.e., function overloading) if
coupled with some mechanism that allows functions to test the type of their argu-
ments. For example, let (e∈t)?e1 :e2 be the type-case expression that first evaluates
e to a value v and continues as e1 if v is of type t, and as e2 otherwise. The function
λx.(x∈Int)?(x+1) :¬x checks whether its argument x is an Int and returns the suc-
cessor of x in that case, its negation otherwise. The function can be applied to integers,
returning their successor, and to Booleans, returning their negation. This behavior can
be described by the same type (Int→ Int)∧ (Bool→ Bool) used for the identity
function, but does not correspond to parametric behavior.

A function of type (t1→ t ′1)∧(t2→ t ′2) can be safely applied to any argument of type
t1∨t2, since it is defined on both t1 and t2. We know that the result will always have type
t ′1 ∨ t ′2. However, if we know the type of the argument more precisely, we can predict
the type of the result more precisely: for example, if the argument is of type t1, then
the result will be of type t ′1. So the intersection type of the function λx.(x∈Int)?(x+
1) :¬x allows us to deduce that its application to an integer will return an integer.

We said that the type (Int→Int)∧ (Bool→Bool) can be assigned to the iden-
tity function and expresses parametric behavior. In this respect, we can see intersection
types as a finitary form of parametric polymorphism; however, they are not constrained
to represent uniform behavior, as our other example illustrates. Conversely, we could
see a polymorphic type (or type scheme) ∀α.α → α as an infinite intersection (intu-
itively,

∧
t∈Types t → t, where Types is the set of all types), but infinite intersections do

not actually exist in our types.

OCCURRENCE TYPING: Occurrence typing or flow typing [60, 47, 18] is a typing
technique pioneered by Typed Racket that uses the information provided by a type test
to specialize the type of some variables in the branches of a conditional. For example,
if x is of type Int∨Bool, then to type an expression (x∈Int)?e1 :e2 we can assume
that the occurrences of x in e1 have type Int and those in e2 have type Bool, because

6 G. Castagna

the first branch will only be reached if x is an Int and the second if it is not an Int (and
is therefore a Bool). Intersection and negation types are useful to describe this type
discipline. If we test x for the type Int as in our example, then we can assign to x the
type Int if the test succeeds and ¬Int if it fails. Using intersections, we can add this
information to what we had already, so the type of x is (Int∨ Bool)∧ Int (which is
equivalent to Int) in the first branch and (Int∨Bool)∧¬Int (which is equivalent to
Bool) in the second branch. We already implicitly used this technique when, earlier in
this section, we said that λx.(x∈Int)?(x+1) :¬x is of type (Int→ Int)∧ (Bool→
Bool) since we must assume that x is of type Int to type x+ 1 and that it is of type
Bool to type ¬x: we took into account the result of the type-test.

This method of refining types according to conditionals is important in type systems
for dynamic languages and in those that enforce null safety: some examples include
Ceylon [39], Dart [28], Flow, Kotlin [38], Typed Racket, TypeScript, and Whiley [48].
In particular, Ceylon relies on intersection types [39, 44] and Whiley on both intersec-
tion and negation types [47].

This same method is at the basis of the systems by Castagna et al. [15, 16] we
cited in the introduction as the sole capable of inferring intersection of arrow types
for functions without needing explicit type annotations. These use the characteristics
of set-theoretic types, as outlined above, to implement and generalize occurrence typ-
ing and decide how to split the type analysis to deduce intersection types for function
expressions, as we detail in Section 4.4.

ENCODING DISJOINT UNION TYPES: Disjoint union types (also known as variant or
sum types) are an important feature of functional programming languages. They can be
encoded using union types and product (or record, or object) types. It is also useful to
have singleton types, that is, types that correspond to a single value as we already saw
with the two types true and false for the respective constants, both subtypes of the
Boolean type (which we can then see as equivalent to the union true∨false).

For instance, consider this example in Flow.3

type Success = { success: true, value: boolean }
type Failed = { success: false, error: string }
type Response = Success | Failed

function handleResponse(response: Response) {
if (response.success) { var value: boolean = response.value }
else { var error: string = response.error }

}

The type Response is the union (denoted by |) of two object types: both have a Boolean
field success, but the types state that success must be true for objects of type Success
and false for objects of type Failure. An analogous type could be declared in OCaml
as type response = Success of bool | Failed of string. Occurrence typ-
ing is used to distinguish the two cases, like pattern matching could do in ML: if re-
sponse.success is true, then response must be of type Success; if it is false, response
must be of type Failure.

3 This example is copied verbatim from the documentation of Flow, available at https://
flow.org/en/docs/types/unions.

https://flow.org/en/docs/types/unions
https://flow.org/en/docs/types/unions

Programming with union, intersection, and negation types 7

ENCODING BOUNDED POLYMORPHISM: Using union and intersection types, we can
encode bounded polymorphism without adding specific syntax for the bounds in quan-
tifications. For example, a type scheme with bounded polymorphism is ∀(α ≤ t).α →
α: it describes functions that can be applied to arguments of any subtype of t and that
return a result of the same type as the argument. Using intersection types, we can write
∀α.(α ∧ t)→ (α ∧ t), writing the bound on the occurrences of the type variable and not
on the quantifier. Analogously, we can use union types to represent lower bounds: in
general, a bound t ′ ≤ α ≤ t on a type variable can be eliminated by replacing every
occurrence of α in the type with t ′ ∨ (α ∧ t), yielding bounded quantifications of the
form ∀(t ′≤α≤t).t ′′. Notice however that the form of bounded polymorphism we obtain
by this encoding is limited, insofar as two bounded types may be in subtyping relation
only if they have the same bounds,4 yielding a second-class polymorphism more akin
to Fun [3] (where ∀(α≤s1).t1 ≤ ∀(α≤s2).t2 is possible only for s1 = s2) than to F<: [4]
(which allows ∀(α≤s1).t1 ≤ ∀(α≤s2).t2 even for s1 6= s2, typically s2 ≤ s1).

As a concrete example, consider again the flatten function of the introduction. We
can give this function a type slightly more precise than the one in the introduction by us-
ing the annotation Tree(α)→List((α\List(Any))) which states that the elements
of the resulting list cannot be themselves lists: the list is flat. With such an annotation
the current version of polymorphic CDuce deduces for flatten the (equivalent) type
∀α.Tree(α\List(Any)))→List((α\List(Any))). Since t1\ t2 = t1∧¬t2, this cor-
responds to the bounded quantification ∀(α ≤ ¬List(Any)).Tree(α)→List(α)

stating that α can be instantiated with any type that is not a list (though the domain
Tree(α) can still match any type).

TYPING PATTERN MATCHING: Pattern matching is widely used in functional program-
ming. However, using pattern matching in ML-like languages, we can write functions
that cannot be given an exact domain in the type system. For instance, the OCaml code

let f = function 0 -> true | 1 -> false

defines a function that can only be applied to the integers 0 and 1, but OCaml infers the
unsafe type int→ bool (albeit with a warning that pattern matching is not exhaustive).
The precise domain cannot be expressed in OCaml. Using set-theoretic types and sin-
gleton types, we can express it precisely as 0∨1. Furthermore, we can use the inference
of intersection of arrows we outlined in the introduction, which for the function f gives
the type (0→true)&(1→false) which completely defines the semantics of f.

More generally, set-theoretic types are a key ingredient to achieve a precise typ-
ing of pattern matching. For instance, in a language as CDuce the set of values that
match a given pattern form a type (see Section 5.1). This can be used to precisely
type a single branch of pattern matching since the set of values processed by a given
branch are all the values in the type of the matched expression minus (set-theoretic
difference) the union (set-theoretic union) of all the values matched by the preced-
ing branches, intersected (set-theoretic intersection) with the values matched by the

4 This is necessary only for bounded variables that occur in the type both in covariant and in
contravariant positions. Notice however that variables that do not satisfy this property can be
easily eliminated by replacing Any for all covariantly-only occurring variables, and ¬Any for
all contravariantly-only occurring ones.

8 G. Castagna

pattern of the branch at issue. We will give all the details about it in Section 5.1 but
in this essay we already met several examples of application of this technique. For
instance, in the definition of flatten in the introduction, the first pattern [] cap-
tures the empty list, that is the singleton type []; the second pattern h::t captures
all the non-empty lists, that is the type List(Any)\[]; the third pattern x captures
all values, that is the type Any. From that CDuce deduces that the variable x in the
third branch will capture any value that is not captured by the two previous patterns,
that is Any minus []∨(List(Any)\[])=List(Any) (i.e., the type captured by the
first pattern union the type captured by the second pattern) and deduce that the list
returned by the branch cannot contain other lists: this is the key mechanism that al-
lows CDuce to type flatten also when it is annotated with the more precise type
Tree(α)→List((α\List(Any))).

NEGATION TYPES: We have already seen several applications of negation types. In
the examples we gave we mostly used type differences, since they better fit a usage
for programming, but this is completely equivalent since negation and differences can
encode each other (i.e., t1\t2 = t1 ∧¬t2 and ¬t = Any\t). As a matter of fact, type
difference is pervasive in all programming languages that use union types. However
the vast majority of these languages hide type difference to the programmer and use it
only as a meta-operation on types, implemented in the type-checker which uses it to
produce precise types or analyze the flow of values in pattern matching. For instance,
to type the type-case expression (x∈Int)?e1 :e2 where x has type Int∨Bool, a type
checker such as the one for Flow would assume that the occurrences of x in e2 have type
Bool, since this type is the result of (Int∨ Bool)\Int. But to compute this result it
would use an internal type-difference operator without exposing it to the programmer:
the programmer can write its types by using unions, intersections, but not differences.

Nevertheless, first-class difference (or negation) types are useful to type several pro-
gramming patterns and idioms. We already seen this with the flatten function, whose
type critically relies on the use of difference types to define the type of nested lists. But
much simpler examples exist: consider for instance a function λx.(x∈Int)?(x+1) :x.
It can act on arguments of any type, computing the successor of integers and returning
any other argument unchanged. Using intersection and difference types, plus paramet-
ric polymorphism, we can type it as ∀α.(Int→ Int)∧ (α\Int→ α\Int), which
expresses the function’s behavior fairly precisely and that corresponds to the bounded
quantification ∀(α ≤ ¬Int).(Int→ Int)∧ (α → α): the function returns integer re-
sults for integer arguments and returns α results for α arguments that are not integers.

Although the example λx.(x∈Int)?(x+ 1) :x is not very compelling it yields a
type that is extremely useful in practice since it precisely types functions defined by
pattern matching with a last default case that returns the argument. In [10, Appendix A]
the reader can find the detailed presentation of a couple of compelling examples of
standard functions (on binary trees and SOAP envelopes) whose typing is only possible
or can be improved thanks to set-theoretic types that use differences as in the example
above. In particular, [10] shows how to type the function to insert a new node in a
red-black tree (one of the most popular implementation of self-balancing binary search
tree, due to Guibas and Sedgewick [30]). The types used in the definition given in [10]

Programming with union, intersection, and negation types 9

enforce three out of the four invariants of red-black trees,5 requiring only the addition
of type annotations to the code and no other change to a standard implementation due to
Okasaki [45, 46] to which the reader can refer for more details. The core of Okasaki’s
definition is the balance function which is defined (in our ML-like syntax) as follows:

type RBTree(α) = Leaf | ((Red|Black), α, RBTree(α), RBTree(α))

let balance = function
| (Black, z, (Red, y, (Red, x, a, b), c), d)
| (Black, z, (Red, x, a, (Red, y, b, c)), d)
| (Black, x, a, (Red, z, (Red, y, b, c), d))
| (Black, x, a, (Red, y, b, (Red, z, c, d))) ->

(Red, y, (Black, x, a, b), (Black, z, c, d))
| x -> x

which is of type RBTree(α)→RBTree(α). In the definition of RBTree(α) nothing
distinguishes a red-black tree from a vanilla binary tree with some red or black tags. If
we want to enforce some of the invariants of red-black trees (cf. Footnote 5) we must
modify the type definition as follows

type RBTree(α) = BTree(α) | RTree(α)
type BTree(α) = (Black, α, RBTree(α), RBTree(α)) | Leaf
type RTree(α) = (Red, α, BTree(α), BTree(α))

However, with these definitions the insert function of binary trees no longer type-
checks. But it is just the matter of giving a precise type to balance, since it suffices to
add the following type annotation:
(Unbalanced(α)→ RTree(α)) & (β\Unbalanced(α)→ β\Unbalanced(α))

where

type WrongTree(α) = (Red, α, RTree(α), BTree(α))
| (Red, α, BTree(α), RTree(α))

type Unbalanced(α) = (Black, α, WrongTree(α), RBTree(α))
| (Black, α, RBTree(α), WrongTree(α))

The two type definitions state that a wrong tree is a red tree with a black child and
that an unbalanced tree is a black tree with a wrong child. The annotation describes
the semantics of balance: it transforms an unbalanced tree into a red tree and leaves
any other argument unchanged. We recognize in this type the pattern of our simpler
example (the same pattern appears also in some other parts of the red-black tree imple-
mentation). It is then possible to deduce for the insertion function for red-black trees
the type BTree(α)→ α →BTree(α). For the valid CDuce code with an explanation
of subtler typing details, the reader can refer to Appendix A of [10].

Recap. In this section we have seen several examples of use of set-theoretic types. In
the next sections we outline their theory. In particular, in Section 3 we formally define

5 Specifically, that the root of the tree is black, that the leaves of the tree are black, and that no
red node has a red child; the missing invariant is that every path from the root to a leaf should
contain the same number of black nodes.

10 G. Castagna

set-theoretic types, their subtyping relation, as well as their extension with type vari-
ables for parametric polymorphism. Section 4 presents various languages that use these
types: we start with a theoretical language that covers all the examples we used in this
presentation so far and then describe three practical systems that partially implement
this theoretical language, each implementation being the result of a certain number of
choices and trade-offs that we will discuss.

3 Types

We have seen in the previous section that set-theoretic types play a key role in typing
several language constructs—from branching and pattern matching to function overlo-
ading—very precisely. However, we have glossed over exactly how a type checker
should treat them. It is essential to define a suitable notion of subtyping on these types.
The informal description we have given suggests that certain properties should hold. In
particular, we expect union and intersection types to satisfy commutative and distribu-
tive properties of Boolean algebras. Moreover, we expect, for example,

(Int→ Int)∧ (Bool→ Bool)≤ (Int∨Bool)→ (Int∨Bool)
to hold, so that the typing of functions with type-cases works as we sketched. To
model occurrence typing, we want (Int∨ Bool)∧ Int to be equivalent to Int and
(Int∨Bool)∧¬Int to be equivalent to Bool.

Arguably, it is intuitive to view types and subtyping in terms of sets and set in-
clusion, especially to describe set-theoretic types.6 We can see a type as the set of the
values of that type in the language we consider. Then, we expect t1 to be a subtype of
t2 if every value of type t1 is also of type t2, that is, if the set of values denoted by t1 is
included in the set denoted by t2. In this view, union and intersection types correspond
naturally to union and intersections of sets; negation corresponds to complementation
with respect to the set of all values.

However, most systems reason on subtyping using rules that are sound but not com-
plete with respect to this model: that is, they do not allow t1 ≤ t2 in some cases in which
every value of type t1 is in fact a value of type t2. Incompleteness is not necessarily a
problem, but it can result in unintuitive behavior. We show two examples below.

LACK OF DISTRIBUTIVITY: Consider this code in Flow.7

type A = { a: number }
type B = { kind: ”b”, b: number }
type C = { kind: ”c”, c: number }

type T = (A & B) | (A & C)
function f (x: T) { return (x.kind === ”b”) ? x.b : x.c }

6 For instance, this model is used to explain subtyping in the online documentation of Flow at
https://flow.org/en/docs/lang/subtypes.

7 Adapted from the StackOverflow question at https://stackoverflow.com/questions/
44635326.

https://flow.org/en/docs/lang/subtypes
https://stackoverflow.com/questions/44635326
https://stackoverflow.com/questions/44635326

Programming with union, intersection, and negation types 11

The first three lines declare three object types; in B and C, ”b” and ”c” are the singleton
types of the corresponding strings. The type T is defined as the union of two intersection
types.

The function f is well typed: as in handleResponse before, occurrence typing rec-
ognizes that x is of type A & B in the branch x.b and of type A & C in the branch x.c.
However, if we replace the definition of T to be type T = A & (B | C), the code is
rejected by the type checker of Flow. Occurrence typing does not work because T is no
longer explicitly a union type. Flow considers (A & B) | (A & C) to be a subtype of
A & (B | C): indeed, this can be proven just by assuming that unions and intersections
are respectively joins and meets for subtyping. But subtyping does not hold in the other
direction, because Flow does not consider distributivity.

UNION AND PRODUCT TYPES: Apart from distributivity laws, we could also expect
interaction between union and intersection types and various type constructors. Con-
sider product types; we might expect the two types (t1× t)∨ (t2× t) and (t1∨ t2)× t to
be equivalent (i.e., each one subtype of the other one): intuitively, both of them describe
the pairs whose first component is either in t1 or in t2 and whose second component is
in t. But this reasoning is not always reflected in the behavior of type checkers.

For example, consider this code in Typed Racket (similar examples can be written
in Flow or TypeScript).

(define-type U-of-Pair (U (Pair Integer Boolean) (Pair String Boolean)))
(define-type Pair-of-U (Pair (U Integer String) Boolean))

(define f (lambda ([x : U-of-Pair]) x))
(define x (ann (cons 3 #f) Pair-of-U))
(f x)

We define two type abbreviations. In Typed Racket, U denotes a union type and Pair a
product type, so U-of-Pair is (Integer×Boolean)∨(String×Boolean), and Pair-of-U is
(Integer∨String)×Boolean. The two types are not considered equivalent. To show it,
we define a function f whose domain is U-of-Pair (for simplicity, we take the identity
function) and try to apply it to an argument x of type Pair-of-U; to define x, we use
an explicit type annotation (ann) to mark the pair (cons 3 #f) as having type Pair-
of-U. The application is rejected. If we exchange the two type annotations, instead, it
is accepted: the type checker considers U-of-Pair a subtype of Pair-of-U, but not the
reverse.

3.1 Semantic subtyping

In a nutshell we have to define the subtyping relation so that the types satisfy all the
commutative and distributive laws we expect from their set-theoretic interpretation.
But a “syntactic” definition of subtyping—i.e., a definition given by a set of deduc-
tion rules—is hard to devise since, as shown by the previous examples, it may yield
a definition that is sound but not complete. To obviate this problem we follow the se-
mantic subtyping approach [23, 24]. In this approach subtyping is defined by giving an
interpretation J·K of types as sets and defining t1 ≤ t2 as the inclusion of the interpre-
tations, that is, t1 ≤ t2 is defined as Jt1K ⊆ Jt2K. Intuitively, we can see JtK as the set of

12 G. Castagna

values that inhabit t in the language. By interpreting union, intersection, and negation
as the corresponding operations on sets and by giving appropriate interpretations to the
other constructors, we ensure that subtyping will satisfy all expected commutative and
distributive laws.

Formally, we proceed as follows. We first fix two countable sets: a set C of language
constants (ranged over by c) and a set B of basic types (ranged over by b). For example,
we can take constants to be Booleans and integers: C = {true, false,0,1, -1, . . .}. B
might then contain Bool and Int; however, we also assume that, for every constant c,
there is a “singleton” basic type which corresponds to that constant alone (for example,
a type for true, which will be a subtype of Bool). We assume that a function B : B→
P(C) assigns to each basic type the set of constants of that type and that a function
b(·) : C →B assigns to each constant c a basic type bc such that B(bc) = {c}.

Definition 1 (Types). The set T of types is the set of terms t coinductively produced
by the following grammar

t ::= b | t× t | t→ t | t ∨ t | ¬t | 0
and which satisfy two additional constraints: (1) regularity: the term must have a finite
number of different sub-terms; (2) contractivity: every infinite branch must contain an
infinite number of occurrences of the product or arrow type constructors.

We use the abbreviations t1 ∧ t2 =
def ¬(¬t1 ∨¬t2), t1\t2 =

def t1 ∧ (¬t2), and 1 =
def ¬0 (in

particular, 1 corresponds to the type Any we used in the examples of Section 2). We
refer to b, ×, and → as type constructors, and to ∨, ¬, ∧, and \ as type connectives.
As customary, connectives have priority over constructors and negation has the highest
priority—e.g., ¬s∨t→ u∧v denotes ((¬s)∨t)→ (u∧v).

The regularity condition is necessary only to ensure the decidability of the subtyp-
ing relation. Contractivity, instead, is crucial because it excludes terms which do not
have a meaningful interpretation as types or sets of values: for instance, the trees satis-
fying the equations t = t ∨ t (which gives no information on which values are in it) or
t = ¬t (which cannot represent any set of values). Contractivity also gives an induction
principle on T that allows us to apply the induction hypothesis below type connec-
tives (union and negation), but not below type constructors (product and arrow). As a
consequence of contractivity, types cannot contain infinite unions or intersections.

In the semantic subtyping approach we give an interpretation of types as sets; this
interpretation is used to define the subtyping relation in terms of set containment. We
want to see a type as the set of the values that have that type in a given language. How-
ever, this set of values cannot be used directly to define the interpretation, because of
a problem of circularity. Indeed, in a higher-order language, values include well-typed
λ -abstractions; hence to know which values inhabit a type we need to have already de-
fined the type system (to type λ -abstractions), which depends on the subtyping relation,
which in turn depends on the interpretation of types. To break this circularity, types are
actually interpreted as subsets of a set D , an interpretation domain, which is not the
set of values, though it corresponds to it intuitively (in [24], a correspondence is also
shown formally: we return to this point in Section 4.2.1). We use the following domain.

Definition 2 (Interpretation domain). The interpretation domain D is the set of finite
terms d produced inductively by the following grammar

Programming with union, intersection, and negation types 13

d ::= c | (d,d) | {(d,∂), . . . ,(d,∂)} ∂ ::= d |Ω
where c ranges over the set C of constants and where Ω is such that Ω /∈D .

The elements of D correspond, intuitively, to the results of the evaluation of ex-
pressions. These can be constants or pairs of results, so we include both in D . Also, in
a higher-order language, the result of a computation can be a function which are rep-
resented in this model by finite relations of the form {(d1,∂1), . . . ,(dn,∂n)}, where Ω

(which is not in D) can appear in second components to signify that the function fails
(i.e., evaluation is stuck) on the corresponding input.

The restriction to finite relations is standard in semantic subtyping and it is one
of its subtler aspects (see [6] for a detailed explanation of this aspect). In principle,
given some mathematical domain D , we would like to interpret t1 → t2 as the set of
functions from Jt1K to Jt2K. For instance if we consider functions as binary relations,
then Jt1→ t2K could be the set { f ⊆ D2 | for all (d1,d2)∈ f , if d1∈Jt1K then d2∈Jt2K }
or, compactly, P(Jt1K×Jt2K), where the S denotes the complement of the set S within
the appropriate universe (in words, these are the sets of pairs in which it is not true that
the first projection belongs to Jt1K and the second does not belong to Jt2K). But here the
problem is not circularity but cardinality, since this would require D to contain P(D2),
which is impossible. The solution given by [24] relies on the observation that in order
to use types in a programming language we do not need to know what types are, but just
how they are related (by subtyping). In other terms, we do not require the interpretation
of an arrow type to be exactly the set of all functions of that type. We just require that
this interpretation induces the same subtyping relation as interpreting an arrow type
with this set would yield. That is, the interpretation must satisfy the (weaker) property

Js1→s2K⊆ Jt1→t2K ⇐⇒ P(Js1K×Js2K)⊆P(Jt1K×Jt2K).

If we interpret t1→t2 as the set Pfin(Jt1K×Jt2K) (where Pfin denotes the restriction of the
powerset to finite subsets), then this property holds.

The above explains why we use a domain D with finite relations and define the
interpretation JtK of a type t so that it satisfies the following equalities, where DΩ =
D ∪{Ω}:

Jt1∨ t2K = Jt1K∪ Jt2K J¬tK = D\JtK J0K = /0
JbK = B(b) Jt1× t2K = Jt1K× Jt2K

Jt1→ t2K = {R ∈Pfin(D×DΩ) | ∀(d,∂) ∈ R.d ∈ Jt1K =⇒ ∂ ∈ Jt2K}

This interpretation is reminiscent of a common practice in denotational semantics that
consists in interpreting functions as the set of their finite approximations: we will dis-
cuss this relation more in Section 5.3. A consequence of this interpretation is that the
type 0→ 1 contains all the (well-typed) functions: it will play an important role in Sec-
tion 4. The interpretation also explains the need of the constant Ω : this constant is used
to ensure that 1→ 1 is not a supertype of all function types: in a domain without Ω

(i.e., where the last of the equalities above would use d instead of ∂) every well-typed
function could be subsumed to 1→ 1 and, therefore, every application could be given
the type 1, independently from the types of the function and of its argument; thanks
to Ω instead 1→ 1 contains only the functions whose domain is exactly 1, since a

14 G. Castagna

function with domain, say, Int, could map non-integer elements to Ω , thus excluding
it from 1→ 1 (since Ω 6∈ 1): see Section 4.2 of [24] for details.

We cannot take the equations above directly as an inductive definition of J·K because
types are not defined inductively but coinductively. Therefore we give the following def-
inition, which validates these equalities and which uses the aforementioned induction
principle on types and structural induction on D .

Definition 3 (Set-theoretic interpretation of types). We define a binary predicate
(∂ : t) (“the element ∂ belongs to the type t”), where ∂ ∈ D ∪ {Ω} and t ∈ T , by
induction on the pair (∂ , t) ordered lexicographically. The predicate is defined as:

(c : b) = c ∈ B(b)
((d1,d2) : t1× t2) = (d1 : t1) and (d2 : t2)

({(d1,∂1), . . . ,(dn,∂n)} : t1→ t2) = ∀i ∈ {1, . . . ,n}. if (di : t1) then (∂i : t2)
(d : t1∨ t2) = (d : t1) or (d : t2)

(d : ¬t) = not (d : t)
(∂ : t) = false otherwise

We define the set-theoretic interpretation J·K : T →P(D) as JtK = {d ∈D | (d : t)}.

Notice that Ω 6∈ JtK, for any type t. Finally, we define the subtyping preorder and its
associated equivalence relation as:

Definition 4 (Subtyping). We define the subtyping relation≤ and the subtyping equiv-
alence relation ' as t1 ≤ t2

def⇐⇒ Jt1K⊆ Jt2K and t1 ' t2
def⇐⇒ (t1 ≤ t2) and (t2 ≤ t1) .

The subtyping relation is decidable. Deciding whether t1 is a subtype of t2 is equivalent
to deciding whether t1∧¬t2 is the empty type, insofar as t1 ≤ t2 ⇐⇒ Jt1K⊆ Jt2K ⇐⇒
Jt1K∩ (D\Jt2K)⊆∅ ⇐⇒ Jt1∧¬t2K ⊆∅ ⇐⇒ t1∧¬t2 ≤ 0. A detailed description of
the subtyping algorithm and of the data structures used to implement it efficiently can
be found in [5].

3.2 Polymorphic Extension

The examples we gave at the beginning of this article used polymorphic types. Syntac-
tically, this means extending the grammar of types with type variables drawn from a
countable set V ranged over by α:

t ::= b | t× t | t→ t | t ∨ t | ¬t | 0 | α (1)

However, extending the semantic subtyping approach to define a subtyping relation on
these types is not straightforward and has been a longstanding open problem. The reason
is explained by Hosoya et al. [37] who point out that the naive solution of defining
subtyping of two polymorphic types as equivalent to the subtyping of all their ground
instances yields a subtyping relation that is both untreatable and counterintuitive. They
demonstrate this by defining the following problematic example:

t×α ≤ (t×¬t)∨ (α× t)

Programming with union, intersection, and negation types 15

One could expect this judgment not to hold, because the type variable α appears in
unrelated positions in the two types (in the second component on the left of a product,
in the first one on the right). According to the naive definition, instead, the judgment
holds if and only if t is a singleton type.

The solution to this problem was found by Castagna and Xu [8] who argue that
one should consider only interpretations of types where judgments such as the above
do not hold. This should ensure that subtyping on type variables behaves closer to the
expectations for parametric polymorphism, so that a type variable can occur on the
right-hand side of a subtyping judgment only if it occurs in a corresponding position
on the left-hand side. To that end Castagna and Xu [8] propose convexity as a general
property of interpretations that avoid pathological behavior such as the example above.
We leave the interested reader to refer to [8] for details on the convexity property and
its interpretation. Here we present a very simple way to extend the interpretation of
Definition 3 into a convex interpretation for polymorphic types. The idea, due to Gesbert
et al. [26, 27], is to consider the domain D of Definition 2 in which all elements are
labeled by a finite set of type variables

d ::= cL | (d,d)L | {(d,∂), . . . ,(d,∂)}L
∂ ::= d |Ω

with L ∈Pfin(V), and interpret a type variable α by the set of all elements that are
labeled by α , that is JαK = {d | α ∈ tags(d)} (where tags(cL) = tags((d,d′)L) =
tags({(d1,∂1), . . . ,(dn,∂n)}L) = L). The interpretation of all other types disregards la-
bels (e.g., the interpretation of Int is the set of all integer constants labeled by any
set of variables). It is straightforward to modify Definition 3 to validate the equality
JαK = {d | α ∈ tags(d)}: it suffices to use the new domain and just add the clause

(d : α) = α ∈ tags(d)
No further modification is needed (apart from adding labels in the first clauses) and
Definition 4 is still valid.8

While the interpretation of type variables is not very intuitive, it is easy to check
that it yields a subtyping relation that has all the sought properties. First and foremost,
according to this interpretation a type is empty if and only if all its instances are empty.
In particular, as expected, the interpretation of a type variable α is never empty (it con-
tains all the elements tagged by α) insofar as α could be instantiated into a non-empty
type. Also, the interpretation of a variable is contained in the interpretation of another
variable if and only if the two variables are the same. Finally, α ∧ t is empty if and
only if t is empty since, otherwise, we could obtain a non-empty type by instantiating
α with t. For instance, since JαK = {d | α ∈ tags(d)} and JIntK = {nL | n ∈ Z}, then
Jα ∧IntK = {nL | n ∈ Z,α ∈ L}: we see that α ∧Int is not empty since it contains at
least 42{α}. Likewise, since Jα ∧ IntK contains both 42{α} and 42{α,β}, then neither
α∧Int≤ β nor α∧Int≤¬β hold, the former because 42{α} 6∈ Jβ K the latter because
42{α,β} 6∈ J¬β K (by definition J¬β K = {d | β 6∈ tags(d)}). The subtyping relation is
again decidable (see [8] for a detailed description of the algorithm) and, although it is

8 The reason why the interpretation thus obtained is convex is that every type is interpreted
into an infinite set (even singletons types, since, e.g., JtrueK = {trueL | L ∈ Pfin(V)}).
See Castagna and Xu [8] to see how this implies convexity.

16 G. Castagna

not evident from the interpretation, the subtyping relation is preserved by type substitu-
tions, a property needed to ensure soundness for polymorphic type systems.

4 Languages

The natural candidate languages for the types we presented in the previous section are
λ -calculi (functional languages) with at least pairs and type-cases. Intuitively, we need
a λ -calculus because we have arrow types, we need pairs to inhabit product types, while
type-cases are needed to define overloaded functions and thus inhabit any intersection
of arrow types. We will see in Section 4.2 (cf. Section 4.2.1 in particular) that the cor-
respondence between set-theoretic types and a language satisfying these criteria can be
formally stated.

We start by describing a generic theoretical language that covers all the features
we outlined in the motivation section. While theoretically interesting the language will
not be effective: it is a language so generic and expressive that defining a reasonably
complete type-inference algorithm seems very hard. We will then discuss some trade-
offs and define three effective (sub-)systems for which type inference is possible, but
each of which will be able to capture only a part of the examples of Section 2.

4.1 Theoretical framework

The expressions and values of our theoretical language are defined as follows:

Expressions e ::= c | x | λx.e | ee | (e,e) | πie | (e∈t)?e :e
Values v ::= c | λx.e | (v,v) (2)

Expressions are an untyped λ -calculus with constants c, pairs (e,e), pair projections
πie, and type-cases (e∈t)?e :e. A type-case (e0∈t)?e1 :e2 is a dynamic type test that
first evaluates e0 and, then, if e0 reduces to a value v evaluates e1 if v has type t or e2
otherwise. Formally, the reduction semantics is that of a call-by-value pure λ -calculus
with pairs and type-cases. The reduction is given by the following notions of reductions
(where e{v/x} denotes the capture avoiding substitution of v for x in e)

(λx.e)v e{v/x}
π1(v1,v2) v1
π2(v1,v2) v2

(v∈t)?e1 :e2 e1 if v ∈ t
(v∈t)?e1 :e2 e2 if v 6∈ t

together with the context rules that implement a leftmost outermost reduction strategy,
that is, E[e] E[e′] if e e′ where the evaluation contexts E[·] are defined as E ::= [] |
vE | Ee | (v,E) | (E,e) | πiE | (E∈t)?e :e. In the reduction rules we used the notation
v ∈ t to indicate that the value v has type t. Here, this corresponds to deducing the
judgment ∅ ` v : t using the rules given in Figure 1, rules that form the type-system of
our language; but we will see that for the three system variations we present later on, the
relation v ∈ t can be defined without resorting to the type-system: this is an important
property since we do not want to call the type-inference algorithm to decide at run-time
the branching of a type-case.

Programming with union, intersection, and negation types 17

[CONST]
Γ ` c : bc

[VAR]
Γ ` x : Γ (x)

x ∈ dom(Γ)

[→I]
Γ ,x : t1 ` e : t2

Γ ` λx.e : t1→ t2
[→E]

Γ ` e1 : t1→ t2 Γ ` e2 : t1
Γ ` e1e2 : t2

[×I]
Γ ` e1 : t1 Γ ` e2 : t2

Γ ` (e1,e2) : t1× t2
[×E1]

Γ ` e : t1× t2
Γ ` π1e : t1

[×E2]
Γ ` e : t1× t2
Γ ` π2e : t2

[∧]
Γ ` e : t1 Γ ` e : t2

Γ ` e : t1∧ t2
[∨]

Γ ` e′ : t1∨t2 Γ ,x : t1 ` e : t Γ ,x : t2 ` e : t

Γ ` e{e′/x} : t
[≤]

Γ ` e : t t ≤ t ′

Γ ` e : t ′

[0]
Γ ` e : 0

Γ ` (e∈t)?e1 :e2 : 0
[∈1]

Γ ` e : t Γ ` e1 : t1
Γ ` (e∈t)?e1 :e2 : t1

[∈2]
Γ ` e : ¬t Γ ` e2 : t2

Γ ` (e∈t)?e1 :e2 : t2

Fig. 1: Declarative type system

The rules in the first three rows of Figure 1 do not deserve any special comment:
they are the standard typing rules for a simply-typed λ -calculus with pairs where, as
customary, Γ ranges over type environments, that is, finite mappings from variables
to types, Γ ,x : t denotes the extension of the environment Γ with the mapping x 7→ t
provided that x 6∈ dom(Γ), and ∅ is the empty type environment.

The rules in the fourth row are also standard. The first rule [∧] is the classic intro-
duction rule for intersection: it states that if an expression has two types, then it has
their intersection, too. The second rule [∨] is the classic union elimination rule as it
was first introduced by MacQueen et al. [41]: it states that given some expression (here,
e{e′/x}) with a subexpression e′ of type t1∨t2, if we can give to this expression the
type t both under the hypothesis that e′ produces a result of type t1 and under the hy-
pothesis that e′ produces a result in t2, then we can safely give this expression type t.
The last rule of the row is the subsumption rule [≤] that states that if an expression has
some type t, then it has all super-types of t, too. Together with the previous rules, these
rules form a well-known type-system, since they are the same rules as those in Defini-
tion 3.5 of the classic work on union and intersection types by Barbanera, Dezani, and
de’Liguoro [1]. Although the rules are textually the same as in [1], there is an important
difference between the system in [1] and the one in Figure 1, namely, that our types
are an extension of those of [1] since we also have recursive types, negation types, and
the empty type. As a consequence our subsumption rule uses the subtyping relation of
Definition 4 which is more general than the one in [1] of which it is a conservative
extension (cf. [19]).

Finally, the last three rules are specific to systems with set-theoretic types and type-
cases. They are rather new (they were first introduced in [16]) and provide a natural and
nifty way to type type-case expressions. The first rule states that if the tested expression
e has the empty type (i.e., if e diverges, that is, it can only produce a value that is in the
empty set), then so has the whole type-case expression. The second rule states that if e
can only produce a result in t, then the type of (e∈t)?e1 :e2 is the type of e1. The third
rule states that if e can only produce a result in ¬t, then the type of (e∈t)?e1 :e2 is
the type of e2: since the negation type ¬t is interpreted set-theoretically as the set of all

18 G. Castagna

values that are not of type t, this means that, in that case, e can only produce a result not
of type t. The reader may wonder how we type a type-case expression (e∈t)?e1 :e2
when the tested expression e is neither of type t nor of type ¬t. As a matter of fact, a
type-case is interesting only if we cannot statically determine whether it will succeed
or fail. For instance, when discussing occurrence typing, we informally described how
to type the expression (x∈Int)?(x+ 1) :¬x when x is of type Int∨Bool, that is, in
that case, when x is neither of type Int nor of type ¬Int. Here is where the union
elimination rule [∨] shows its full potential. Even though the expression e tested in
(e∈t)?e1 :e2 has some type s that is neither contained in (i.e., subtype of) t nor in ¬t,
we can use intersection and negation to split s into the union of two types that have this
property, since s ' (s∧ t)∨ (s∧¬t). We can thus apply the union rule and check the
type-case under the hypothesis that the tested expression has type (s∧ t) and under the
hypothesis that it has type (s∧¬t). For instance, for (x∈Int)?(x+1) :¬x we check the
type-case under the hypothesis that x has type Int (i.e., (Int∨Bool)∧Int) and deduce
the type Int, and under the hypothesis that x has type Bool (i.e., (Int∨Bool)∧¬Int)
and deduce the type Bool which, by subsumption, gives for the whole expression the
type Int∨Bool.

A final important remark is that the deduction system in Figure 1 is defined modulo
α-conversion. This is crucial in systems with union types since the rule [∨] breaks the
α-invariance property (see Section 2.4 in [16] and Discussion 12.5 in [32]).

4.1.1 On deriving negation types. The language and the typing rules we just defined
are expressive enough to cover all the examples we described in the first two sections.
However, the rules of Figure 1 are yet not enough to cover the whole palette of appli-
cation of set-theoretic types. The reason is that in the current system the only way to
derive for an expression a negation type is to use the subsumption rule. For instance,
we can deduce 42 : ¬Bool by subsumption, since 42 : Int and Int ≤ ¬Bool. But
while subsumption is sufficient for values formed only by constants,9 it is not enough
for values with functional components. For example, consider the successor function
λx.(x + 1). This function has type Int→ Int but not type Bool→ Bool: it maps
integers to integers but when applied to a Boolean it does not return a Boolean. There-
fore, one would expect the type system to deduce for the successor function the type
¬(Bool→ Bool). However, in this case subsumption is of no use since Int→Int is
not a subtype of ¬(Bool→ Bool), and rightly so since it is easy to find a value that is
of the former type but not of the latter one: for instance, the identity function λx.x is a
function that has type Int→ Int but—since it is also of type Bool→Bool—is not of
type ¬(Bool→ Bool).

Intuitively, we would like the type-system to deduce for an expression e the type ¬t
whenever (i) e is typable with some type t ′ and (ii) it is not possible to deduce the type

9 These are either constants or possibly nested pairs of constants. All these values have a smallest
type deduced by the rules of Figure 1 and this smallest type is indivisible (i.e., its only proper
subtype is the empty type: cf. [8]). An indivisible type acts like a point in the type hierarchy:
it is either contained in a type or in its negation. Thus, so are the values with indivisible types.
Functions, in general, do not have a smallest type.

Programming with union, intersection, and negation types 19

t for it. In a sense we would like to have a rule such as the pseudo-rule [¬] here below:

[¬]
Γ ` e : t ′ Γ 6` e : t

Γ ` e : ¬t
[¬(→)]

Γ ` λx.e : t ′ Γ 6` λx.e : t→ t ′′

Γ ` λx.e : ¬(t→ t ′′)

This pseudo-rule, which puts in formulas what we explained in prose, deduces negation
types for a generic expression e. However, from a practical perspective a less generic
rule such as [¬(→)] above on the right would suffice: as a matter of fact, deciding nega-
tion types is useful in practice to evaluate type-cases and these are decided on values
rather than generic expressions. So from a practical viewpoint it suffices to deduce
negation types only for values rather than for all expressions and, in particular, for
λ -abstractions, since for all the other values subsumption is enough (see Footnote 9).
So instead of deducing generic negation types for generic expressions, it is enough to
deduce negated arrow types for λ -abstractions, yielding the less general pseudo-rule
[¬(→)] above.

A different motivation for deducing negation types is that, for the reasons we explain
in Section 4.1.3, few practical systems implement the union elimination rule [∨] in its
full generality, insofar as deciding when [∨] is to be applied is still an open problem
(technically, this corresponds to determining an inversion lemma for the [∨] rule). Now,
in the absence of a [∨] rule (e.g., in the systems in Section 4.2 and 4.3), the property
of type preservation by reduction (also known as the property of subject reduction)
requires the following property to hold:

For every type t and well-typed value v, either ∅ ` v : t or ∅ ` v : ¬t holds. (3)

To illustrate why this is required, consider the expression λx.(x,x) and the following
typing derivation (for some arbitrary type t).

[≤]

[∧]

...
∅ ` λx.(x,x) : t→ (t× t)

...
∅ ` λx.(x,x) : ¬t→ (¬t×¬t)

∅ ` λx.(x,x) : (t→ (t× t))∧ (¬t→ (¬t×¬t))
∅ ` λx.(x,x) : 1→ ((t× t)∨ (¬t×¬t))

The subsumption rule can be applied because

(t→ (t× t))∧ (¬t→ (¬t×¬t))≤ 1→ ((t× t)∨ (¬t×¬t)) :

in general, it holds that (t ′1→ t1)∧ (t ′2→ t2)≤ (t ′1∨ t ′2)→ (t1∨ t2), and t∨¬t ' 1. Now
consider an arbitrary type t and a well-typed value v. Since v has type 1 by subsumption,
the application (λx.(x,x))v can be typed as (t× t)∨ (¬t×¬t). This application reduces
to (v,v). Therefore, either (v,v) has type (t×t)∨(¬t×¬t) or subject reduction does not
hold. Since t× t and ¬t×¬t are disjoint, to derive the union type for v we need either
the system to have the [∨] rule, or v to have either type t or type ¬t. This illustrates the
need for the property above which in particular requires to be able to derive negation
types for functions other than by subsumption: e.g., since we cannot derive for λx.x the
type Int→ Bool, then we must be able to derive for it the type ¬(Int→Bool).

20 G. Castagna

However, both [¬] and [¬(→)], untamed, do not make much sense (which is why we
called them pseudo-rules). First, their definitions are circular since they depend on the
very relation they are defining. Furthermore they cannot be used in a deduction system
since they would correspond to non-monotone immediate-consequence operators for
which a fix-point may not exist and thus cannot be used to define the typing relation by
induction. Therefore, it is necessary to put some tight-knit restrictions on the inference
of negation types. This requires a lot of care because the very presence of negation types
may yield to paradoxes, as it can be evinced from considering the recursive function10

let rec f = λx.(f∈true → true)?false:true; it is easy to see that f maps
true to true if and only if it does not have type true→ true.

As hard the inference of negation types is, it cannot be dismissed lightheartedly,
since the definition of the relation v ∈ t depends on it and so does the semantics of
type-cases: if we perform a type test such as v ∈ ¬(Bool→ Bool), then we expect it to
succeed at least for some functional values (e.g., the successor function). In the second
part of this section we will show different solutions proposed in the literature to infer
negation types in a controlled way.

4.1.2 On the feasibility of type-inference. Defining inference of negation types is
not the only problem to be solved before obtaining a language usable in practice. The
rules of Figure 1 are still a far cry from a practical system that can decide whether a
program is well-typed or not. As customary, there are essentially two problems:
1. the rules are not syntax directed: given a term, to type it we can try to apply some

elimination/introduction rule, but also to apply the intersection rule [∧], or the sub-
sumption rule [≤], or the union rule [∨].

2. some rules are non-analytic:11 if we use the [→I] rule to type some λ -abstraction
we do not know how to determine the type t1 in the premise; if we use the [∨] rule
we know neither how to determine e′ nor how to determine the types t1 and t2 that
split the type of e′.

Notice that [∨] cumulates both problems. The problem that some rules are not syntax
directed can be already solved in this system for at least two of the three rules at is-
sue: for the rules [∧] and [≤] it is possible to eliminate them and refactor the use of
intersections and subtyping in the remaining rules. This essentially amounts to resort-
ing to some form of canonical derivations in which intersection [∧] and subsumption
[≤] rules are used at specific places: it can be proved (cf. [16]) that a typing judgment
is provable with the system of Figure 1 if and only if there exists a derivation for that
typing judgment where (i) subsumption is only used on the left premise of an applica-

10 Thanks to recursive types it is easy to define a polymorphic fix-point combinator and
thus define recursive functions: for every type t it is possible to define Curry’s fix-
point combinator Zt : (t→t)→t as λ f :t→t.∆ t∆ t where ∆ t = λx:µX .X→t. f (xx). Since
our calculus is strict, it is more interesting to define, for any type s and t the strict fix-
point combinator Zs,t : ((s→t)→s→t)→s→t as λ f :(s→t)→ s→t.Es,tEs,t where Es,t =
λx:µX .X→s→t. f (λv:s.xxv).

11 We consider non-analytic (or synthetic) a rule in which the input (i.e., Γ and e) of the judgment
at the conclusion is not sufficient to determine the inputs of the judgments at the premises (cf.
[42, 61]).

Programming with union, intersection, and negation types 21

tion or a type-case rule, on the right premises of the union rule, and on the premise of a
projection rule and (ii) intersection is only used for expressions that are λ -abstractions,
that is, all the premises of an intersection rule are the consequence of a [→I]. This
yields an equivalent system formed by the rules in Figure 2, plus the rules [CONST],

[→I(∧)]
∀i ∈ I Γ ,x : si `can e : ti
Γ `can λx.e :

∧
i∈I si→ ti

[→E(≤)]
Γ `can e1 : t ≤ t1→ t2 Γ `can e2 : t1

Γ `can e1e2 : t2

[×E(≤)
1]

Γ `can e : t ≤ t1× t2
Γ `can π1e : t1

[×E(≤)
2]

Γ `can e : t ≤ t1× t2
Γ `can π2e : t2

[∨(≤)]
Γ ` e′ : t1∨ t2 Γ ,x : t1 ` e : s1 ≤ t Γ ,x : t2 ` e : s2 ≤ t

Γ ` e{e′/x} : t

[∈(≤)1]
Γ `can e : t◦ ≤ t Γ `can e1 : t1

Γ `can (e∈t)?e1 :e2 : t1
[∈(≤)2]

Γ `can e : t◦ ≤ ¬t Γ `can e2 : t2
Γ `can (e∈t)?e1 :e2 : t2

Fig. 2: Canonical typing rules

[VAR], [×I], and [0] of Figure 1, which do not change. We improved the situation on
the syntax-directed front since we got rid of [∧] and [≤], but it looks as we worsened
the non-analytic front since now all rules in Figure 2 are non-analytic. In particular,
nothing tells us how to determine the larger types in the subtyping relations occurring
at the premises of these rules. Actually, for the three elimination rules [...E(≤)] in Fig-
ure 2 there exists a standard way to determine these larger types which resorts to using
some type operators defined by Frisch et al. [24]. To understand it, consider the rule
[→E] for applications in Figure 1. It essentially does three things: (i) it checks that the
expression in the function position has a functional type; (ii) it checks that the argu-
ment is in the domain of the function, and (iii) it returns the type of the application.
In systems without set-theoretic types these operations are straightforward: (i) corre-
sponds to checking that the expression in the function position has an arrow type, (ii)
corresponds to checking that the argument is in the domain of the arrow deduced for
the function, and (iii) corresponds to returning the codomain of that arrow. With set-
theoretic types things get more complicated, since in general the type of a function is
not always a single arrow, but it can be a union of intersections of arrows types and their
negations.12 Checking that the expression in the function position has a functional type
is easy since it corresponds to checking that it has a type subtype of 0→1, the type of all
functions. Determining its domain and the type of the application is more complicated
and needs the operators dom() and ◦ defined as dom(t) =def max{u | t ≤ u→ 1} and
t ◦ s =def min{u | t ≤ s→ u}. In short, dom(t) is the largest domain of any single arrow
that subsumes t while t ◦ s is the smallest codomain of any arrow type that subsumes t

12 This is the reason why, having eliminated in Figure 2 the subsumption rule from the system,
we need in rule [→E(≤)] to subsume the type t deduced for the function e1 to an arrow type.
Likewise for the type t of the expression e in [×Ei] which might be different from a product.

22 G. Castagna

and has domain s. Thus the non-analytic rule [→E(≤)] in Figure 2 can be replaced by
its analytic version [→E(A)] below:

[→E(A)]
Γ ` e1 : t1 Γ ` e2 : t2

Γ ` e1e2 : t1 ◦ t2
t1 ≤ 0→ 1
t2 ≤ dom(t1)

[×E(A)
i]

Γ ` e : t
Γ ` πie : πππ iii(t)

t ≤ 1×1
i = 1,2

We need similar operators for projections since in the rules [×E(≤)
i] (i = 1,2) the type

t of e in πie may not be a single product type but, say, a union of products: all we know
is that for the projection to be well-typed t must be a subtype of 1× 1. So let t be a
type such that t ≤ 1×1, we define πππ111(t) =def min{u | t ≤ u×1} and πππ222(t) =def min{u |
t ≤ 1×u} and replace each non-analytic rule [×E(≤)

i] with the corresponding analytic
version [×E(A)

i] above. All these type operators can be effectively computed (see [24]).

4.1.3 Practical systems. Although we showed how to handle some non-analytic
and/or non-syntax-directed rules, filling the gap between our theoretical setting and
practical languages still requires to solve three non-trivial problems:
1. how to infer the type of λ -abstractions since the rule [→ I(∧)] in Figure 2 not only

is non-analytic, but also states that we must be able to deduce for λ -abstractions
intersection of arrows rather than just a single arrow;

2. how to deduce negation types for expressions or, at least, how to deduce negated
arrow types for λ -abstractions.

3. how to infer the type of type-cases; this in particular implies to tame the union-
elimination rule [∨] which, in its present formulation, is still too generic: to use
this rule to type some expression e one has to guess which subexpression e′ of e to
single out, which occurrences of e′ in e are to be tested by replacing them by x, and
how to split the type of this e′ in a union of types to be tested separately.

These three problems are tightly connected: the inference of negation types essentially
concerns the typing of functions and it affects the semantics of type-cases; the typ-
ing of type-cases must be based on their semantics, and since this typing is essentially
performed by the union elimination rule, the taming of this rule cannot thus be discon-
nected from the semantics of type-cases, ergo, from the deduction of negation types,
ergo, from the typing of λ -abstractions.

Unfortunately, for these three problems there is not a one-size-fits-all solution, yet.
In the next three subsections we are going to present three different ways to address
these problems yielding to three different practical systems, and discuss their advan-
tages and drawbacks. We can summarize these three solutions as follows:

Core CDuce. Everything is explicit: every function is explicitly annotated with its type
and the use of union elimination is limited to type-cases and needs to explicitly
specify a variable to capture the tested value. In summary, no type-reconstruction,
no general occurrence typing, but intersection of arrows and negation types inferred
for the functions.

Type Reconstruction. Functions are implicitly typed, that is, they need no annotation:
their type is reconstructed but an intersection type can be deduced only if the func-
tion is explicitly annotated with it. No general occurrence typing and type-cases

Programming with union, intersection, and negation types 23

can test functional values only in a limited form. Inference of negation types is not
performed: it is only used for proving type soundness.

General Occurrence Typing. Everything can be implicit, full use of union elimina-
tion to implement occurrence typing, reconstruction of intersections of arrow types
for functions, but no polymorphism or inference of negation types. The typing al-
gorithm is sound but cannot be complete.

4.2 Core CDuce

The first solution for the three problems just described in Section 4.1.3 was given with
the definition of the calculus introduced in [23, 24] to study semantic subtyping, cal-
culus which constitutes the functional core of the programming language CDuce [2].
In this Core Calculus of CDuce (from now on, just CDuce for short), the problem of
inferring intersection types for λ -abstractions is solved by annotating them with an in-
tersection type. Annotations solve also the problem of inferring negated arrow types
for λ -abstractions since, as we detail below, we can deduce any negated arrow for a
λ -abstraction as long as the intersection of this type with the type annotating the func-
tion is not empty. Finally, for what concerns type-cases and union-elimination, CDuce
restricts union elimination to type-cases expressions whose syntax is modified so that
they specify the binding of the variable used in the union rule.

Before detailing these technical choices it is important to understand the reason that
drove their definition. These choices were made to “close the circle”:

4.2.1 Closing the circle. All this presentation long we spoke of types as sets of val-
ues. In particular, we said that semantic subtyping consists in interpreting types as sets
of values and then defining one type to be subtype of another if and only if the inter-
pretation of the one type is contained in the interpretation of the other type. Since a
subtyping relation is a pre-order, then it immediately induces the notions of least upper
bound and greatest lower bound of a set of types. It is then natural to use such notions—
thus, the subtyping relation—to characterize, respectively, union and intersection types.
This property was used in the context of XML processing languages by Hosoya, Pierce,
and Vouillon [36, 34, 33, 35]: by combining union types with product and recursive
types they encode XML typing systems such as DTDs or XML Schemas. The work of
Hosoya et al., however, had an important limitation, since it could not define the sub-
typing relation for functions types and, therefore, it could not be used to type languages
with higher order functions. This impossibility resided in a circularity of the definition
we already hinted at in Section 3.1: to define subtyping one needs to define the type of
each value; for non functional values this can be done by induction on their structure,
but with functional values—i.e., λ -abstractions—this requires to type the bodies of the
functions which, in turn, needs the very subtyping relation one is defining.

The solution to this circularity problem was found by Frisch et al. [23, 24] and
consisted of three steps: (I) interpret types as sets of elements of some domain D and
use this interpretation to define a subtyping relation; (II) use the subtyping relation just
defined to type a specifically tailored functional language and in particular its values;
(III) show that if we interpret a type as the set of values of this language that have that

24 G. Castagna

type, then this new interpretation induces the same subtyping relation as the starting
one (which interprets types into subsets of the domain D).

Step (I) yielded the definition of the interpretation we gave in Definition 3 resulting
in the subtyping relation of Definition 4. For step (II) we need to define a language such
that its set of values satisfies the property in (III). For that, the language must provide
enough values to separate every pair of distinct types. In other terms, whenever two
types do not have the same interpretation in the denotational model, then there must
exist a value in the language that is in one type but not in the other one. In order to
provide enough values to distinguish semantically different types we need three ingre-
dients, two of which are already present in our system: (i) the inference of intersection
types for functions (ii) a type-case expression, and (iii) a random choice operator. We
detail each of them in the next subsections.

4.2.2 Inferring Intersection Types for Functions. The first problem we encounter
is how to deduce intersection types for functions. In particular, for every distinct pair
of intersections of arrows, we want to be able to define a function that distinguishes
them (an intersection of arrow is never empty since it contains at least the function
that diverges on all arguments). This is difficult to do in practice unless functions are
explicitly annotated. As a matter of fact, λx.x has type t → t for every type t, and
thus it has all possible finite intersections of these types, thus providing an infinite
search space for an intersection type, without a best solution (since we do not have
infinite intersections). To address this problem one could be tempted to annotate the
parameter of a function with the set of the domains of the intersection type we want
to deduce. In other terms, one could try to explicitly list the set of the types si to be
used by the rule [→ I(∧)] so that, for instance, the type deduced for λx:{Int,Bool}.x
would be (Int→Int)∧ (Bool→Bool). Still, this is not enough because it does not
avoid the paradoxes we presented at the end of Section 4.1.1. To solve these problems,
Frisch et al. [24] annotate λ -abstractions with their intersection types, thus providing
also their return type(s). So the identity function for integer and Booleans is written in
the syntax of [24] as λ (Int→Int)∧(Bool→Bool)x.x and the system deduces for it the type
(Int→Int)∧ (Bool→Bool). Using the right annotations it is then easy to define a
value that distinguishes two functional types that have different interpretations.

The first modification to the system of Section 4.1 is then to adopt for functions the
syntax and typing rules of Frisch et al. [24], that is, we replace in (2) the production
for λ -abstractions by the production e ::= λ∧i∈Isi→tix.e (where I is finite) and replace in
Figure 2 the rule [→ I(∧)] by the following one:

[→I(CDUCE)]
∀i ∈ I Γ ,x : si ` e : ti
Γ ` λ

∧i∈Isi→tix.e : t ∧ t ′
t = ∧i∈I(si→ ti)
t ′ = ∧ j∈J¬(s′j→ t ′j)
t ∧ t ′ 6' 0

This rule (taken verbatim from [24]) checks whether a λ -abstraction has all the arrow
types listed in its annotation t and deduces for the term this type t intersected with an
arbitrary finite number of negated arrow types. These negated arrow types can be cho-
sen freely provided that the type t ∧ t ′ remains non-empty. This rule ensures that given
a function λ tx.e (where t is an intersection type), for every type t1→ t2, either t1→ t2
can be obtained by subsumption from t or ¬(t1→ t2) can be added to the intersection t.

Programming with union, intersection, and negation types 25

In turn this ensures that, for any function and any type t either the function has type t or
it has type ¬t (see [49, Sections 3.3.2 and 3.3.3] for a thorough discussion on this rule).
The consequences of this may look surprising. For example, it allows the system to type
λ Int→Intx.x as (Int→Int)∧¬(Bool→Bool) (notice the negation) even though, dis-
regarding its annotation, the function does map Booleans to Booleans. But the language
is explicitly typed, and thus we cannot ignore the annotations: indeed, the function does
not have type Bool→Bool insofar as its application to a Boolean does not return an-
other Boolean but an error Ω . The point is that the theory of semantic subtyping defined
by [24] gives expressions an intrinsic semantics (in the sense of Reynolds [54]) since
the semantics of λ -abstractions depends on their explicit type annotations. This aspect
is apparent when one studies the denotational semantics of CDuce (see Lanvin’s PhD
dissertation [40, Chapter 11]): in particular, notice that according to rule [→I(CDUCE)] we
have λ Int→42x.42 : Int→42 while λ Int→Intx.42 : ¬(Int→42) (notice the difference
in the annotations). Therefore, λ Int→Intx.42 and λ Int→42x.42 must have different de-
notations since they may yield different results for a type-case on the type Int→42.

The purpose of the rule [→I(CDUCE)] is to ensure that, given any function and any type
t, either the function has type t or it has type ¬t. This property not only matches the view
of types as sets of values that underpins semantic subtyping, but also it is necessary to
ensure subject reduction, as we explained in Section 4.1.1 (see [24] for details).13

4.2.3 Type-cases. The second ingredient to obtain the system of Frisch et al. [24] is
the modification of the syntax for type-case expressions by adding an explicit binding.
Formally, we replace the type-case expression in (2) by the following production:

e ::= (x=e∈t)?e :e
The expression (x=e∈t)?e1 :e2 binds the value produced by e to the variable x, checks
whether this value is of type t, if so it reduces to e1, otherwise it reduces to e2. Formally:

(x=v∈t)?e1 :e2 e1{v/x} if v ∈ t
(x=v∈t)?e1 :e2 e2{v/x} if v 6∈ t

Since functions are explicitly annotated by their types, it is now possible to define the
relation v ∈ t without using the type-deduction systems.14 It is easy to prove that for a
well typed value v and type t that v ∈ t is decidable (cf. Lemma 6.41 in [24])) and that
we have v ∈ t ⇐⇒` v : t ⇐⇒ 6` v : ¬t ⇐⇒ v 6∈ ¬t (cf. Lemma 6.22 in [24]).

Type-case expressions are needed to define full-fledged overloaded functions as op-
posed to having just “coherent overloading” as found in Forsythe [53]. Indeed, the rule
[→I(CDUCE)] we added in the previous subsection, when it is not coupled with a type-
case expression, allows the system to type only a limited form of ad hoc polymorphism
known as coherent overloading [51, 53]. In languages with coherent overloading, such

13 Although by this rule it is possible to deduce infinite many distinct types for the same ex-
pression, the system still have a notion of principality, obtained by the introduction of type
schemes: see Section 6.12 in [24].

14 We have v ∈ t def⇐⇒ ∃s∈typeof(v) .s ≤ t where typeof(v) is inductively defined as:
typeof(c) def

= {bc}, typeof(λ
∧

i∈I si→ti x.e) def
= {t | t ' (

∧
i∈I si→ ti)∧ (

∧
j∈J ¬(s′j → t ′j)), t 6≤ 0},

typeof((v1,v2))
def
= typeof(v1)× typeof(v2).

26 G. Castagna

as Forsythe or the system by Barbanera et al. [1] (or our system without type-case ex-
pressions), it is not possible to distinguish (s1→t1)∧ (s2→t2) from (s1∨s2)→ (t1∧t2),
in the sense that they both type exactly the same set of expressions.15 The equivalence
(or indistinguishability) of the two types above states that it is not possible to have a
function with two distinct behaviors chosen according to the type of the argument: the
behavior is the same for inputs of type s1 or s2 and the intersection of the arrow types
is just a way to “refine” this behavior for specific cases. In the subtyping relation of
Definition 4, instead, the relation

s1∨ s2→ t1∧ t2 ≤ (s1→ t1)∧ (s2→ t2) (4)

is strict (i.e., the converse does not hold). Therefore, for the step (III) of [24] to hold, the
language must provide a λ -abstraction that is in the larger type but not in the smaller
one, for instance because for some argument in s1 the λ -abstraction returns a result
that is in t1 but not in t2. In general this may require the use of a type-case in the
body of the function, as for λ (Int→Bool)∧(Bool→Int)x.(y=x∈Int)?(y==1) :42 which is
a function that has type (Int→Bool)∧(Bool→Int) but not Int∨Bool→ Int∧Bool:
since Int∧Bool = 0, then the second type contains only functions that diverge on
arguments in Int∨ Bool, which is not the case for the function above. Thanks to the
presence of type-cases we can thus distinguish these two types by a value; without
type-cases, the only functions in (Int→Bool)∧ (Bool→Int) we could define would
be those that (disregarding their annontations) could be typed also by Int∨Bool→ 0
and, thus, they would diverge on all their arguments.

The typing rules for type-case expressions are, once again, taken verbatim from [24]

[CASE]
Γ ` e : t ′ Γ ,x : t ′∧t ` e1 : s Γ ,x : t ′∧¬t ` e2 : s

Γ ` (x=e∈t)?e1 :e2 : s
[EFQ]

Γ ,x : 0 ` e : t

and they replace the rules [∨(≤)], [∈(≤)1], and [∈(≤)2] of Figure 2 (thus solving the last
problem listed in Section 4.1.3). The [CASE] rule infers the type t ′ of the tested expres-
sion e, and then infers the types of the branches by taking into account the outcome of
the test. Namely, it infers the type of e1 under the hypothesis that x is bound to a value
that was produced by e (i.e., of type t ′) and passed the test (i.e., of type t): that is, a value
of type t∧t ′; it infers the type of e2 under the hypothesis that x is bound to a value that
was produced by e (i.e., of type t ′) and did not pass the test (i.e., of type ¬t). The reader
will surely have recognized that the rule [CASE] is nothing but a specific instance of
the union-elimination rule [∨] for a type-case expression, where the expression e′ of
[∨] is the expression tested by the type-case and the bind for the variable x is explicitly
given by the syntax of the expression. Finally, rule [EFQ] (ex falso quodlibet) is used for
when in the rule [CASE] either t∧t ′ or ¬t∧t ′ is empty: this means that the corresponding
branch cannot be selected whatever the result of e is and therefore, thanks to [EFQ] the
branch is not typed (it is given any type, in particular the type of the other branch). For
more discussion on the [CASE] rule and its various implications, the reader can refer to
Section 3.3 of [24] or Section 3.3 of [6] (see also the related work section of [15]).

15 It is not possible to prove that the two types are equivalent in the system of [53] but this can
be done for the system of [1].

Programming with union, intersection, and negation types 27

4.2.4 Random choice. The very last ingredient to obtain the system of Frisch et
al. [24] is the addition of expressions for random choice.

Formally we add to the previous grammar the production e ::= choice(e,e). The
semantics of this expression is just a random choice of one of its arguments:

choice(e1,e2) e1
choice(e1,e2) e2

The need for a choice operator can be evinced by considering the interpretation of
function spaces given in Definition 3. Notice indeed that functions are interpreted as
finite relations, but we do not require them to be deterministic, that is, in a finite relation
there may be two pairs with the same first projection but different second projections.
More concretely, if e1 : t1 and e2 : t2 then choice(e1,e2) allows us to define a value
that separates the type s→ t1∨ t2 from the type (s→t1)∨ (s→t2) (in Definition 3 the
interpretation of the latter type is strictly contained in the interpretation of the former
type), since λx.choice(e1,e2) is a value in the first type that it is not in the second type.
This is formalized by the following straightforward typing rule.

[CHOICE]
Γ ` e1 : t1 Γ ` e2 : t2
Γ ` choice(e1,e2) : t1∨ t2

The complete deduction system for Core CDuce is summarized in Figure 3. It is formed

[CONST]
Γ ` c : bc

[VAR]
Γ ` x : Γ (x)

x ∈ dom(Γ)

[→I]
∀i ∈ I Γ ,x : si ` e : ti
Γ ` λ

∧i∈I si→ti x.e : t ∧ t ′
t = ∧i∈I(si→ ti)
t ′ = ∧ j∈J¬(s′j→ t ′j)
t ∧ t ′ 6' 0

[→E]
Γ ` e1 : t1 Γ ` e2 : t2

Γ ` e1e2 : t1 ◦ t2
t1 ≤ 0→ 1
t2 ≤ dom(t1)

[×I]
Γ ` e1 : t1 Γ ` e2 : t2

Γ ` (e1,e2) : t1× t2
[×Ei]

Γ ` e : t

Γ ` πie : πππ iii(t)
t ≤ 1×1
i = 1,2

[CASE]
Γ ` e : t ′ Γ ,x : t∧t ′ ` e1 : s Γ ,x : ¬t∧t ′ ` e2 : s

Γ ` (x=e∈t)?e1 :e2 : s
[EFQ]

Γ ,x : 0 ` e : t

[CHOICE]
Γ ` e1 : t1 Γ ` e2 : t2
Γ ` choice(e1,e2) : t1∨ t2

Fig. 3: Algorithmic system for the core calculus of CDuce

by the choice rule plus the rules [CASE] and [EFQ] of Section 4.2.3, the rule [→ I(∧)] of
Section 4.2.2, the rules [→E(A)] and [×E(A)

i] of Section 4.1.2, and the rules [CONST],
[VAR], and [×I] of Figure 1. The resulting deduction system is algorithmic: it is syntax-
directed and formed by analytic rules (with a small caveat for [→I], see Footnote 13).
The complete definition of the core calculus for CDuce is summarized for the reader’s

28 G. Castagna

convenience in Appendix A. Finally, the resulting system has enough points to distin-
guish all types that have different interpretations. In particular, the value interpretation
of types for this language, defined as JtKV = {v |∅ ` v : t}, induces the same subtyping
relation as the interpretation J·K of Definition 3: the circle is closed.

4.2.5 Polymorphic language. Hitherto, the system presented in this section is monomor-
phic. Although we did not explicitly state it, the meta-variable t used so far ranged
over the monomorphic types of Definition 1, which did not include type-variables. In
particular, Theorem 5.2 of [24] that states the equivalence of type containment in the
value interpretation and in the domain D and, thus, “closed the circle”, is valid only for
monomorphic types: it is not possible to give a value interpretation to polymorphic types
insofar as there is no value whose type is a type variable, even though type-variables
are not empty types. Likewise, the property that for every value v and type t either v : t
or v : ¬t no longer holds if type variables may occur in types: for instance, 42 is neither
of type α nor of type ¬α .

Nevertheless, if we want the function flatten in the introduction to be applicable
to any well-typed argument, then we need to add polymorphic types to CDuce, since the
monomorphic version of this function requires a different implementation of flatten
for each ground instantiation of the type Tree(α)→List(α). A similar argument
holds for the function balance in Section 2.

The extension of CDuce with polymorphic types is as conceptually simple as its
practical implementation is difficult. To add polymorphism to CDuce it suffices to take
the grammar of the monomorphic expressions of CDuce as is and use polymorphic
types wherever monomorphic ones were used, with a single exception: since the prop-
erty that a value v has either type t or type ¬t, no longer holds for every type t, but just
for closed types, then we restrict type-case expressions to test only closed types, that is:

Types t ::= b | t× t | t→ t | t ∨ t | ¬t | 0 | α
Test Types τ ::= b | τ× τ | τ → τ | τ ∨ τ | ¬τ | 0
Expressions e ::= c | x | λ∧i∈I ti→tix.e | ee | πie | (e,e) | (x=e∈τ)?e :e | choice(e,e)

To type these expressions all we need to do is to add a single typing rule to account
for the fact that if an expression has a polymorphic type, then it has also all the in-
stances of this type; and since there are multiple instances of a type, then it has also
their intersection. In other terms we add to Figure 3 the following rule

[INST(∧)]
Γ ` e : t

Γ ` e :
∧

i∈I tσi

where I is a finite set, σi’s denote type substitutions, that is, finite mappings from vari-
able to types, and tσi is their application to a type t. No other modification is necessary.

Thanks to these modifications it is now possible to define in CDuce, say, the poly-
morphic identity function λ α→α x.x which is of type α → α . By an application of the
[INST(∧)] rule we can deduce for it the type (Int→Int)∧ (Bool→Bool) and, thanks
to this deduction it is possible to infer for the application (λ α→α x.x)(choice(3,true))
the type Int∨Bool.16

16 As a side note, even if property (3) does not hold in this system (e.g., 42 is neither of type α

nor of type ¬α) this does not hinder the soundness of system since subject reduction holds for

Programming with union, intersection, and negation types 29

Why then is the practical implementation of this system so difficult? The reader
will have noticed that since we added [INST(∧)] to the deduction system in Figure 3,
then the system is no longer algorithmic. The new rule is neither syntax-directed (it
applies to a generic expression e) nor analytic (it is not clear how to determine the set
of type substitutions {σi}i∈I to apply in the rule). The latter, that is determining type
substitutions, is the real challenge for implementing polymorphic CDuce. We will not
explain the details about how to do it: this has needed two distinct papers (part 1 [9] and
part 2 [11]) to which the reader can refer for all details. Bottom line, all this complexity
is hidden to the programmer: CDuce does it for her. Nevertheless, we want to outline
some aspects that can give the reader a flavor of the complexity that underlies this
implementation.

A first ingredient that is necessary in all languages with implicit parametric poly-
morphism (also known as prenex or second-order polymorphism) is type unification: to
type the application of a (polymorphic) function of type t→ t ′ to an argument of type t ′′

one has to unify the type of the argument with the domain of the function, viz., to find
a type substitution σ such that tσ = t ′′σ . However, in a polymorphic language with
subtyping this may not be enough since, in general, we need a type-substitution that
makes the type of the argument a subtype of the domain of the function. In other terms
we need to solve the type tallying problem [11], that is, given two types t and t ′ find all
type substitutions σ such that tσ ≤ t ′σ . For instance, consider the types we defined at
the end of Section 2: if we want to apply a function whose domain is RBTree(α) (a
red-black tree with generic labels) to an argument of type RTree(Int) (a red tree with
integer labels), then we need the substitution σ = {α 7→ Int} since (RTree(Int))σ
= RTree(Int)≤ (BTree(Int)∨RTree(Int)) = (RBTree(α))σ (notice that the sub-
typing relation in the middle is strict). The type tallying problem is decidable for the
polymorphic types of Section 3. In Castagna et al. [11, Appendix C] we defined an algo-
rithm that returns a set of type-substitutions that is sound and complete with respect to
the tallying problem: every substitution in the set is a solution, and every solution is an
instance of the substitutions in the set. The reason why the tallying problem admits as
solution a principal set of substitutions—rather than a single principal substitution—is
due to the presence of set-theoretic types. For instance the problem of finding a sub-
stitution σ such that (α1×α2)σ ≤ (β1× β2)σ admits three incomparable solutions:
(i) {α1 7→ 0}, (ii) {α2 7→ 0}, and (iii) {α1 7→ β1,α2 7→ β2}.

While the capacity of solving the type tallying problem is necessary to type the
applications of polymorphic functions, this capacity alone is not sufficient. The reason
is that functions can be typed not only by instantiating their types, but also by what is
commonly called expansion: as stated by rule [INST(∧)] an expression, thus a function,
can be typed by any intersection of instantiations of its type. Consider the function:

let even : (Int→Bool) & (α\Int→α\Int) =

fun x -> (x∈Int) ? ((x mod 2)==0) : x

or, in Core CDuce syntax, λ (Int→Bool)∧(α\Int→α\Int)x.(y=x∈Int)?((ymod 2)==0) :y.
The function is polymorphic: if applied to an integer it returns a Boolean (i.e., whether

all well typed terms with ground types, that is for all ground instances of a program. This is
enough to prove the soundness of the system.

30 G. Castagna

the argument is even or not), otherwise it returns the argument. Notice that the type of
this function is not weird since it follows the same pattern as the type of the balance

function we defined in Section 2. Next consider the classic map function:

let rec map : (α→β)→List(α)→List(β) =
fun f l -> match l with (5)
| [] -> []
| h::t -> (f h)::(map f t)

and the partial application map even for which polymorphic CDuce infers the type

map even : (List(Int) → List(Bool)) ∧
(List(γ\Int) → (List(γ\Int)) ∧ (6)
(List(γ∨Int)) → List((γ\Int)∨Bool))

stating that map even returns a function that when applied to a list of integers it returns a
list of Booleans; when applied to a list that does not contain any integer, then it returns
a list of the same type (actually, the same list); and when it is applied to a list that
may contain some integers (e.g., a list of reals), then it returns a list of the same type,
without the integers but with some Booleans instead (in the case of reals, a list with
Booleans and with reals that are not integers). The typing of map even shows that the
sole tallying is not sufficient to obtain such a precise type: the result is obtained by
inferring three different instantiations17 of the type of map, taking their intersection and
tallying it with the type of even. This is obtained by the CDuce type-checker by trying
different expansions of the types of the function and of the argument, implementing a
dove-tail search. For a detailed explanation the reader can refer to Castagna et al. [11].

The language presented in this subsection is the core of the polymorphic version of
CDuce implemented in the development branch of the language. It is possible to define
in it the functions flatten, balance, map, and even of Sections 1, 2 and here above as
long as they are explicitly typed: CDuce requires every function to be annotated with its
type. CDuce also performs occurrence typing, but it requires the tested expression either
to be a variable or to be explicitly bound to a variable on which the union elimination
rule is applied.

In the next section we show how to get rid of the mandatory annotations for func-
tions (alas at the expense of inferring intersection types for them), while in Section 4.4
we present a language in which union elimination is implemented without any restric-
tion and intersection types for functions are inferred without need of annotations (alas
at the expense of polymorphism).

4.3 An Implicitly-Typed Polymorphic Language with Set-Theoretic Types

The polymorphic language of the previous section requires to explicitly annotate ev-
ery function with its type. While for top-level functions this may be often advisable

17 For map even we need to infer just two instantiations, namely, {α 7→ (γ\Int),β 7→ (γ\Int)}
and {α 7→ (γ∨Int),β 7→ (γ\Int)∨Bool}. The type in (6) is redundant since the first type of
the intersection is an instance (e.g., for γ=Int) of the third. We included it just for the sake of
the presentation.

Programming with union, intersection, and negation types 31

and sometime necessary—e.g., for documentation purposes or for exporting the func-
tions in a library—, it is in general an annoying burden for the programmer, especially
for local functions many of which seldom require to be documented with a precise
type. Besides, determining the right annotation may be mind-boggling if not impossi-
ble, even for very simple functions: for instance, consider the function λx.(λy.(x,y))x
which clearly has the type (Int→Int×Int)∧ (Bool→Bool×Bool) since it always
returns a pair obtained by duplicating the function’s argument; as an exercise the reader
may try to annotate it without polymorphic types (and without reading the solution in
the footnote), so as to deduce the above intersection type.18

To obviate these problems we studied how to type the implicitly-typed language of
grammar (2) in Section 4.1, whose λ -abstractions are not annotated, using the poly-
morphic types of Section 3.2. The first results of this study were presented in Castagna
et al. [12] whose system was later greatly improved and superseded by Petrucciani’s
Ph.D. dissertation [49, see Part 2] on which the rest of this subsection is largely based.
In order to make type-inference for the implicitly-typed λ -abstractions in (2) feasible,
we define a system that imposes several restrictions that are absent from the explicitly-
typed polymorphic CDuce we described in Section 4.2.5, namely:
1. the system implements the so-called let-polymorphism, characteristic of languages

of the ML-family or Hindley-Milner systems, according to which the type system
can only instantiate the type of expressions19 that are bound in a let construct. This
contrasts with the system in Section 4.2.5 where the type of every expression can
be instantiated.

2. type-case expressions can test only types that do not have any functional subcom-
ponent other than 0→ 1;

3. the type-system does not infer negated arrow types for functions;
4. the reconstruction algorithm does not infer intersection types for functions.

Obviously, to implement let-polymorphism we need to extend the grammar (2) with a
let-expression. The language thus has the following definition:

Test Types τ ::= b | τ× τ | 0→ 1 | τ ∨ τ | ¬τ | 0
Expressions e ::= c | x | λx.e | ee | (e,e) | πie | (e∈τ)?e :e | letx=ein e

As anticipated type-cases cannot test arbitrary types, since they use the restricted gram-
mar for test types τ . There are two restrictions with respect to the types in (1): types
must be ground (as in Section 4.2.5, α does not appear in the definition of τ) and
the only arrow type that can appear is 0→1, that is, the type of all functions. This
means that type-cases can distinguish functions from non-functions but cannot dis-
tinguish, say, the functions that have type Int→Int from those that do not. Type-
cases of this form have the same expressiveness as the type-testing primitives of dy-
namic languages like JavaScript and Racket. The definitions of values and of the re-

18 This is impossible since the type to give to the local function λy.(x,y) depends on the hypoth-
esis on x: annotating the inner function with the above intersection type would not work since
when x is of type Int, then the local function does not have type Bool→ Bool×Bool and
similarly for the case when x is of type Bool. The only solution is to annotate both functions
with the type α→ α×α and deduce the intersection type by applying rule [INST(∧)]. See also
Section 4.4 which introduces more expressive annotations that can type this example.

19 In practice, values, see the so called value restriction suggested by Wright [64].

32 G. Castagna

duction semantics rules given in Section 4.1 do not change. To account for the new
let-expressions we add to these definitions the notion of reduction letx=vin e
e{v/x} together with the new evaluation context letx=E in e. As for CDuce, the re-
lation v ∈ t (actually, v ∈ τ) used in the reduction semantics of type-cases can be de-
fined independently from the type system. Here the definition is even simpler than the
one given in Section 4.2.3 (cf. Footnote 14) since we have v ∈ t def⇐⇒ typeof(v) ≤ t
and v 6∈ t def⇐⇒ typeof(v) ≤ ¬t where typeof(c) =def bc, typeof(λx.e) =def 0→1, and
typeof((v1,v2)) =def typeof(v1)×typeof(v2). Note that typeof maps every λ -abstraction
to 0→1. This approximation is allowed by the restriction on test types in type-cases.

The most important changes with respect to the theoretical framework of Section 4.1
are to be found in the type-system, defined in Figure 4 where, as anticipated, t, t ′, t1,

[CONST]
Γ ` c : bc

[VAR]
Γ ` x : t{~α 7→~t}

Γ (x) = ∀~α.t

[→I]
Γ ,x : t1 ` e : t2

Γ ` λx.e : t1→ t2
[→E]

Γ ` e1 : t1→ t2 Γ ` e2 : t1
Γ ` e1e2 : t2

[×I]
Γ ` e1 : t1 Γ ` e2 : t2

Γ ` (e1,e2) : t1× t2
[×E1]

Γ ` e : t1× t2
Γ ` π1e : t1

[×E2]
Γ ` e : t1× t2
Γ ` π2e : t2

[CASE]
Γ ` e : t ′ either t ′ ≤ ¬t or Γ ` e1 : s either t ′ ≤ t or Γ ` e2 : s

Γ ` (e∈t)?e1 :e2 : s

[LET]
Γ ` e1 : t1 Γ ,x : ∀~α.t1 ` e2 : t

Γ ` letx=e1 in e2 : t
~α] Γ

[∧]
Γ ` e : t1 Γ ` e : t2

Γ ` e : t1∧ t2
[≤]

Γ ` e : t t ≤ t ′

Γ ` e : t ′

Fig. 4: Typing rule for let-polymorphism

and t2 range over the polymorphic types defined in Section 3.2 grammar (1). The type
system described in Figure 4 is very similar to a standard Hindley-Milner system: the
differences are just the addition of subtyping and intersection introduction, as well as
a rule for type-cases. As in Hindley-Milner type systems, we introduce a notion of
type scheme separate from that of types. A type scheme, denoted by ∀α1,,αn.t and
abbreviated as ∀~α.t, binds the type variables α1, ...,αn in t. We view types as a subset of
type schemes identifying ∀~α.t with t if ~α is empty. Type environments map variables
into type-schemes and we write α] Γ for the property that α does not occur free in Γ

(type schemes are considered equivalent modulo α-renaming of the type variables).
If we compare the rules in Figure 4 with those of the theoretical framework in

Figure 1 we will notice several differences. Foremost, the union elimination rule [∨]
is no longer present. Since this rule played a key role in typing type-case expressions,
then the three rules [0], [∈1], and [∈2] for type cases are replaced in Figure 4 by a

Programming with union, intersection, and negation types 33

single rule [CASE] that skips the typing of a branch when this is not selectable. The
only other difference is in the rule [VAR]. This is classic in Hindley-Milner system: type
environments maps variables into type-schemes and [VAR] instantiates these variables
with a set of types~t. This rule is coupled with the new rule [LET] that infers the type
t1 of the argument of the let-expression and generalizes this type by binding in the type
of x all variables ~α that are not free in Γ . A final observation, while by the rule [∧] it is
possible to deduce intersection types for functions, it is not possible to deduce negation
types (other than by subsumption). Nevertheless the system is sound, but the proof
needs to deduce these negation types which, since the λ -abstractions are not annotated,
is not straightforward: see Petrucciani [49, §3.3].

4.3.1 Type reconstruction. The next problem is to define an algorithm of type re-
construction20 for this implicitly-typed language with set-theoretic types (that we dub
Implicit CDuce, for short). The algorithm defined by Petrucciani [49, Chapter 4] does
not attempt to infer intersection types: that would complicate type inference because we
cannot easily know how many types we should infer and intersect for a given expres-
sion, notably for a function. Therefore, the algorithm of type reconstruction is sound
with respect to the type system in Figure 4 and complete with respect the same system
without the rule [∧]. The algorithm follows a pattern that is common with Hindley-
Milner system and consists in producing sets of structured constraints, that are then
simplified into sets of subtyping constraints to be solved by the tallying algorithm we
hinted at in Section 4.2.5. For space reasons we just outline its main characteristics and
some specificities of type reconstruction for set-theoretic types.

The main difference with respect to Hindley-Milner systems is that we reduce type
reconstruction to solving sets of constraints that are subtyping constraints (rather than
type equality constraints) that we then solve by using tallying (rather than unification).

A subtlety of the Hindley-Milner type system is in generalization: to type e2 in
letx=e1 in e2, we assign to x the type scheme obtained from the type of e1 by quan-
tifying over all type variables except those that are free in the type environment. This
restriction is needed to ensure soundness. Therefore, whether the binding for a vari-
able x of a let-expression is polymorphic or not (and if it is, which type variables we
can instantiate) depends on a comparison of the type variables that appear syntactically
in the type of the bound expression and in the type environment. This is problematic
with semantic subtyping: we want to see types up to the equivalence relation ' (that
is, to identify types with the same set-theoretic interpretation), but two types can be
equivalent while having different type variables in them. For instance, α ∧0 and α\α

are both equivalent to 0, but α occurs in them and not in 0. This means that we can-
not see type environments up to equivalence of their types, since the type schemes in
them were generalized according to the variables that syntactically occurred in the en-
vironment. The absence of this property is problematic during constraint resolution, in
particular when applying type substitutions. The solution to this problem is to adopt a
technique akin to the reformulated typing rules of Dolan and Mycroft [20]. First of all,

20 We use this term in the sense of Pierce [50], that is, reconstructing the type information in an
implicitly-typed language. Sometimes the terms type inference or type assignment system are
equivalently used in the literature.

34 G. Castagna

note that our current type environments Γ bring two different kinds of hypotheses: they
map λ -abstracted variables into types (that cannot be instantiated: the variables have
monomorphic types) and let-abstracted variables into type schemes (which can be in-
stantiated by replacing the quantified variables by types: the variables have polymorphic
types). As a first step, let us separate these two kinds of hypotheses and replace our type
environment Γ by a monomorphic type environment M for λ -abstracted variables and a
polymorphic type environment P for let-abstracted variables: for clarity we distinguish
the latter variables by superposing a hat on them, such as in x̂ and ŷ. The second step is
to notice that type schemes are obtained by generalizing the type variables that do not
occur in the monomorphic part of the type environment. This observation allows us to
get rid of type schemes and generalization by replacing them with typing schemes [20]
that record how a polymorphic type depends on the current monomorphic type environ-
ment. So while a monomorphic type environment M still maps a λ -abstracted variable
x into a type t, a polymorphic environment P maps a let-abstracted variable x̂ into a
typing scheme 〈M〉t where M is a monomorphic type environment and t a type. For in-
stance, consider the expression λx.(let x̂=λy.(x,y)in e). With type schemes we would
choose α as the type of x, type λy.(x,y) as β → α ×β , and then, to type e, we would
assign to x̂ the type scheme ∀β .β → α×β (we generalized β but not α). In the refor-
mulated system, in contrast, x̂ is assigned the typing scheme 〈x : α〉(β → α×β) where
all type variables are implicitly quantified (the reconstruction algorithm will be allowed
to instantiate all of them: cf., rule [x̂] in Figure 6) and can be α-renamed: we could
equivalently choose for x̂ the typing scheme 〈x : γ〉(δ → γ × δ), since we do not care
which type variables we use, but only that the dependency is recorded correctly. Using
this system, the previous difficulties with generalization do not arise: we can give x̂ the
type α ∨ (γ\γ) equivalent to α as long as this does not capture an implicitly quantified
type variable of the typing scheme (in the present case γ).

Once we have fixed this point, then reconstruction consists in constraint generation
and constraint solving. On the lines of Pottier and Rémy [52], Petrucciani [49, Chap-
ter 4] introduces two notions of constraint. The first, type constraints (t1 ◦< t2), constrain
a solution (a type substitution σ) to satisfy subtyping between two types (that is, to sat-
isfy t1σ ≤ t2σ). In the absence of let-polymorphism, the type inference problem can
be reduced to solving such type constraints, as done by Wand [63] for unification. In
our setting, as for type inference for ML, it would force us to mix constraint generation
with constraint solving. Therefore, we introduce structured constraints, which allow us
to keep the two phases of constraint generation and constraint solving separate. These
constraints can mention expression variables and include binders to introduce new vari-
ables. Structured constraints are closely related to those in the work of Pottier and Rémy
[52] on type inference for ML and are defined as follows:

C ::= (t ◦< t) | (x ≤̇ t) | (x̂ ≤̇ t) |C∧C |C∨C | ∃~α.C | def x : t in C | let x̂ : ∀α[C] in C

Structured constraints include type constraints (t ◦< t) but also several other forms.
The two forms (x ≤̇ t) and (x̂ ≤̇ t) constrain the type or typing scheme of the variable.
Constraints include conjunction and disjunction. The existential constraint ∃~α.C intro-
duces new type variables (it simplifies freshness conditions). Finally, the def and let
constraints introduce the two forms of expression variables and are used to describe

Programming with union, intersection, and negation types 35

the constraints for λ -abstractions and let-expressions, respectively. Their meaning can
be evinced from the definition of the constraint generation function 〈〈· : ·〉〉 that, given
an expression e and a type t, yields a structured constraint 〈〈e : t〉〉. This constraint ex-
presses the conditions under which e has type tσ for some type substitution σ . It is
defined in Figure 5 where α,α1,α2 do not occur in t. The constraints for variables and

〈〈x̂ : t〉〉= (x̂ ≤̇ t)
〈〈x : t〉〉= (x ≤̇ t)
〈〈c : t〉〉= (bc ◦< t)

〈〈(λx.e) : t〉〉= ∃α1,α2.(def x : α1 in 〈〈e : α2〉〉)∧ (α1→α2 ◦< t)
〈〈e1e2 : t〉〉= ∃α.〈〈e1 : α → t〉〉∧ 〈〈e2 : t〉〉

〈〈(e1,e2) : t〉〉= ∃α1,α2.〈〈e1 : α1〉〉∧ 〈〈e2 : α2〉〉∧ (α1×α2 ◦< t)
〈〈πie : t〉〉= ∃α1,α2.〈〈e : α1×α2〉〉∧ (αi ◦< t)

〈〈((e0∈τ)?e1 :e2) : t〉〉= ∃α.〈〈e0 : α〉〉∧
(
(α ◦<¬τ)∨〈〈e1 : t〉〉

)
∧
(
(α ◦< τ)∨〈〈e2 : t〉〉

)
〈〈(let x̂=e1 in e2) : t〉〉= let x̂ : ∀α[〈〈e1 : α〉〉] in 〈〈e2 : t〉〉

Fig. 5: Constraint generation

constants are straightforward. To type λx.e with type t, the system generates two fresh
variables α1 and α2, generates the constraint for e to be of type α2 under the hypothesis
that x is of type α1, and adds the constraint that t subsumes α1 → α2. Note that the
constraint generation associates λx.e to a single arrow α1→ α2 since, as anticipated, it
does not attempt to infer intersection types. The constraints for applications, pairs and
projections are self-explaining. For type-cases, the system generates the constraint for
the tested expression to be of type α , for a fresh α , and then it types the two branches
provided that they can be selected, viz., either the constraint that e1 is of type t must be
satisfied or the first branch cannot be selected since α is a subtype of ¬τ , and similarly
for the second branch. Finally, for let-expressions it generates the constraints for e1 re-
membering that the type α of e1 can be generalized, and under this hypothesis generates
the constraints for e2 to be of type t.

Once the structured constraints are generated for a given expression they are simpli-
fied to obtain a set of type constraints whose solution yields the type of the expression.
This is done by an algorithm that takes as input a polymorphic type environment P and
a structured constraint C and produces a set of type constraints D (which is then solved
by tallying), a monomorphic type-environment M (which collects the constraints x ≤̇ t
in C) and a set of variables ~α (that collects the type variables introduced during the
simplification of C). This is written as P `C D |M |~α and defined by the deduction
rules in Figure 6.

A type constraint yields the singleton containing the type constraint itself (rule [◦<])
while a constraint for a λ -abstracted variable returns the corresponding monomorphic
environment without any other constraint (rule [x]). The first interesting rule is the one
for the constraint of a let-abstracted variable (rule [x̂]), since it performs the instanti-
ation: if the typing scheme of x̂ is 〈M1〉t1, then the simplification instantiates all the
type variables in the typing scheme (i.e., tvar(M1σ1))by some fresh variables ~β (pre-
cisely, some variables ~β not occurring in t, noted ~β] t), and returns the constraint
that the type of x̂ so instantiated is subsumed by t, the monomorphic environment M1

36 G. Castagna

[◦<]
P ` (t1 ◦< t2) {t1 ◦< t2} |∅ |∅

[x]
P ` (x ≤̇ t) ∅ | (x : t) |∅

[x̂]
P ` (x̂ ≤̇ t) {t1{~α 7→~β} ◦< t} |M1{~α 7→~β} | ~β

{
P(x̂) = 〈M1〉t1
~α = tvar(〈M1〉t1)
~β] t

[∧]
P `C1 D1 |M1 | ~α1 P `C2 D2 |M2 | ~α2

P `C1∧C2 D1∪D2 |M1∧M2 | ~α1∪~α2

{
~α1] ~α2,C2
~α2]C1

[∨]
P `Ci D |M | ~α

P `C1∨C2 D |M | ~α
[∃]

P `C D |M | ~α ′

P ` ∃~α.C D |M | ~α ′∪~α
~α ′] ~α

[DEF]
P `C D |M | ~α

P ` def x : t inC D∪{t ◦< M(x)} |M\x | ~α
~α] t

[LET]

P `C1 D1 |M1 | ~α1
(P, x̂ : 〈M1σ1 : ασ1〉) `C2 D2 |M2 | ~α2

P ` let x̂ : ∀α[C1] inC2 D2 |M1σ1{~α 7→~β}∧M2 | ~α2∪~β


σ1 ∈ tally(D1)
~α = tvar(M1σ1)
~α1] α

~β]C1,~α2

Fig. 6: Constraint simplification rules

of the constraint so instantiated, and the set ~β of fresh variables used for this instan-
tiation. The rule for conjunction [∧] requires all the constraints to be satisfied and
merges the monomorphic environments (where M1 ∧M2 denotes the pointwise inter-
section of the environments21). Rule [∨] non-deterministically chooses a constraint,
while [∃] ensures that the constraint uses fresh variables and records them. Rule [DEF]
simplifies the constraint C and adds a new type constraint t ◦< M(x) (notice the con-
travariance, since t is the type hypothesis of a λ -abstracted variable it must be smaller
than the type M(x) needed to type the body of the function) to remove the binding
of x from M, so that the domain of a monomorphic environment obtained by sim-
plifying a constraint C is always the set of λ -abstracted variables free in C. Finally,
because of let-polymorphism, the simplification algorithm uses the tallying algorithm
internally to simplify let-constraints. This is done in [LET] where tally(D) denotes the
set of type-substitutions that solve the set of type constraints D. The rule first sim-
plifies the structured constraint C1 and solves the resulting D1 using tallying. Then it
non-deterministically chooses a solution σ1 of D1 to obtain the typing scheme for x̂,
and simplifies C2 in the expanded environment. The final monomorphic environment
returned is the intersection of M2 and a fresh renaming of M1σ1. In most rules, the side
conditions force the choice of fresh variables.

The type reconstruction algorithm is sound: let e be a program (i.e., a closed ex-
pressions) and α a type variable, if ∅ ` 〈〈e : α〉〉 D | ∅ | α and σ ∈ tally(D), then
∅ ` e : ασ is derivable by the system in Figure 4. The algorithm is also complete with
respect to the system without the intersection rule, viz., if a type t can be deduced for
an expression e without using the rule [∧], then ∅ ` 〈〈e : α〉〉 D | ∅ | α for some

21 In this rule and in the rule [DEF] we suppose that M(x) = 1 for x 6∈ dom(M). Thus if x 6∈
dom(M), then (M∧M′)(x) = M′(x) and (t ◦< M(x)) = (t ◦< 1).

Programming with union, intersection, and negation types 37

D and there exists σ ∈ tally(D), such that t is an instance of ασ . The system we pre-
sented here is a simplification of the one by Petrucciani [49]. In particular we glossed
over how to handle non-determinism (disjunctive constraints and multiple solutions of
tally(D) are the two sources of non-determinism for the algorithm) and how the intro-
duction of fresh variables during tallying is addressed. The reader can find these details
in Petrucciani [49, Chapter 4].

In this system we can now write the map function defined in (5) without specifying
its type in the annotation: the type reconstruction algorithm will deduce it for us. This
same type is deduced for the map function by any language of the ML-family. But of
course, the use of set-theoretic types goes beyond what can be reconstructed in ML.
We already gave an example in Section 2 that shows that, thanks to set-theoretic types,
pattern matching can be typed to ensure exhaustivity. A second example is given by the
function f below which returns true for the pair of tags (akin to user-defined constants)
(À, B̀), and false for the symmetric pair:

let f = function let g = function

| (`A,`B) -> true | `A -> `B (7)
| (`B,`A) -> false | x -> x

the type returned by the reconstruction algorithm for implicit CDuce and the one by
OCaml (where this kind of tags are called polymorphic variants) are given below.

Implicit CDuce OCaml
f: (À, B̀)∨(B̀, À) → Bool (À∨ B̀ , À∨ B̀) → Bool

g: ∀α. À∨ B̀∨(α\(À∨ B̀)) → B̀∨α ∀(α ≥ À∨ B̀) .α → α

While OCaml states that the function f can be applied to any pair of tags À or B̀ (but
the type-checker warns that pattern matching may not be exhaustive since it fails for,
say, the pair (À, À)) the reconstruction in implicit CDuce bars out all pairs that would
make pattern matching fail. But even when exhaustivity is not an issue, implicit CDuce
can return more precise types, as the function g defined in (7) shows. The type returned
by OCaml states that the function g will return either À or B̀ or any other value that is
passed to the function.22 The type inferred by implicit CDuce states that the function g

will return either B̀ or any other value passed to the function provided that it is neither
À or B̀: contrary to OCaml, it correctly detects that g will never return a tag À.

Finally, to understand how the reconstruction algorithm works in the presence of
subtyping, consider the following OCaml code snippet (that does not involve any pattern
matching or fancy data type: just products) that OCaml fails to type:

fun x -> if (fst x) then (1 + snd x) else x

Our reconstruction algorithm deduces for this function the type
(Bool×Int) → (Int | (Bool×Int))

To that end, the constraint generation and simplification systems assign to the function
the type α → β and, after simplification, generates a set of four constraints: {(α ◦<

22 In OCaml this value can only be another polymorphic variant.

38 G. Castagna

Bool×1),(α ◦< 1×Int),(Int ◦< β),(α ◦< β)}. The first constraint is generated be-
cause fst x is used in a position where a Boolean is expected; the second comes from
the use of snd x in an integer position; the last two constraints are produced to type the
result of an if then else expression (with a supertype of the types of both branches).
To compute the solution of two constraints of the form α ◦< t1 and α ◦< t2, the tally-
ing algorithm must compute the greatest lower bound of t1 and t2 (or an approximation
thereof); likewise for two constraints of the form s1 ◦< β and s2 ◦< β the best solu-
tion is the least upper bound of s1 and s2. This yields Bool× Int for the domain —
i.e., the intersection of the upper bounds for α— and (Int | (Bool×Int)) for the
codomain—i.e., the union of the lower bounds for β .

This last example further witnesses the interest of having set-theoretic types ex-
posed to the programmer rather than just as meta-operations implemented by the type
checker. To perform type reconstruction in the presence of subtyping, one must be able
to compute unions and intersections of types. In some cases, as for the domain in the
example above, the solution of these operations is a type of ML (or of the language at
issue): then the operations can be meta-operators computed by the type-checker but not
exposed to the programmer. In other cases, as for the codomain in the example, the solu-
tion is a type which might not already exist in the language: therefore, the only solution
to type the expression precisely is to add the corresponding set-theoretic operations to
the types of the language.

4.3.2 Adding type annotations. The type reconstruction algorithm we just described
cannot infer intersection types for functions. However it is possible to explicitly anno-
tate functions (actually, any expression) with an intersection type and the system will
check whether the function has that type [see 49, Chapter 5]. For instance, we can spec-
ify for the functions f and g in (7) the following annotations.

f : ((À, B̀)→ true) ∧ ((B̀, À)→ false)

g : ∀α.(À→ B̀) ∧ ((α\ À)→ (α\ À))

and the type system will accept both of them. With these explicit annotations we almost
recover all the expressiveness of the system in Section 4.2.5 (it just lacks the possibil-
ity of testing function types other than 0→1). So for instance, the application of the
(implicitly-typed) map to the function g explicitly annotated with the type above, will
return in the system of Petrucciani [49, Chapter 5] exactly the same type as as the type
of map even given in (6) where À is replaced for Int and B̀ is replaced for Bool.

Adding annotations requires few modifications to the previous system. First of all
we have, of course, to add annotations to our syntax. Here we present a simplified
setting in which annotations are added only to let-expressions (see [49, Chapter 5] for
the system where annotations can be added to any expressions anywhere in a program),
which corresponds to adding the following production:

e ::= let x̂ : ∀~α.t =ein e

A let-abstracted variable can now be annotated with an annotation ∀~α.t which specifies
the type t to check for the expression bound to the variable, as well as the type variables
~α that are polymorphic in t. Like in the annotation given above to the function g, we
can specify all the variables occurring in t, but we can also omit some, meaning that

Programming with union, intersection, and negation types 39

they will be considered monomorphic. For instance, let x̂ : ∀α.α→α =λx.xin x̂3 is
well typed, because α is bound in the let and can be instantiated in the body of the
let. Instead, let x̂ : α→α =λx.xin x̂3 is ill-typed, because α is not bound in the let
and cannot be instantiated when typing the body x̂3—in practice, this means that α is
bound in some outer scope and is polymorphic only outside that scope.

The addition of annotations has as a consequence that now expressions may have
some free type variables (e.g., tvar(let x̂ : ∀~α.t =e1 in e2) = ((tvar(t)∪ tvar(e1))\~α)∪
tvar(e2)) which are monomorphic and, thus, cannot be instantiated. To cope with this
fact all the constructions we introduced previously in this section must be enriched by
a set ∆ of monomorphic type variables that cannot be instantiated. So for instance the
typing rule for let-expressions has ∆ as extra hypothesis and becomes:

[LET]
Γ ;∆∪~α ` e1 : t1 ≤ t ′ Γ ,x : ∀~α.t1;∆ ` e2 : t

Γ ;∆ ` let x̂ : ∀~α.t ′ =e1 in e2 : t
~α] Γ ,∆

The set ∆ must also be added as a parameter of constraint generation. Furthermore,
constraint generation must be modified to exploit type annotations. In particular, we
want to generate different constraints for an x̂ variable or a function when we know the
type it should have. For instance, if a function λx.e is annotated by an intersection type∧

i∈I t ′i → ti, then we want to generate separate constraints from e for each arrow: we
break up the intersection into the set {t ′i → ti | i ∈ I} and generate a def-constraint for
each element in the set. If the type in the annotation is not syntactically an intersection
of arrow, we can still try to rewrite it to an equivalent intersection (as a trivial example,
we could treat the annotation (t ′→ t)∨0 like t ′→ t). Formally, we need a function d∆(t)
that given a type t and a set of monomorphic variables ∆ returns a set of arrow types
such that, if it is not empty, then it satisfies (i) t '

∧
t ′∈d∆(t) t ′; (ii) var

∧
t ′∈d∆(t) t ′ ⊆ ∆ ;

(iii) for all t1 → t2 ∈ d∆(t), t1 6' 0. Essentially, d∆(t) decomposes the type t into an
equivalent intersection of arrow types such that these arrows are not of the form 0→ s
(which not only would be redundat but also problematic [see 49, Section 5.2.2]) and do
not contain monomorphic variables. If this decomposition is not possible d∆(t) returns
the empty set. Once we have a function satisfying these properties (its definition is not
important), then we can modify the constraint generation function so that it takes into
account the monomorphic variables ∆ and the annotations. The crucial modifications
are the following ones.

〈〈x̂ : t〉〉∆ =
∧

i∈I(x̂ ≤̇ t) if t '
∧

i∈I ti
〈〈(λx.e) : t〉〉∆ = ∃α1,α2.(def x : α1 in 〈〈e : α2〉〉∆)∧ (α1→α2 ◦< t) if d∆(t) =∅
〈〈(λx.e) : t〉〉∆ =

∧
t1→t2∈d∆(t)(def x : t1 in 〈〈e : t2〉〉∆) otherwise

〈〈(let x̂ : ∀~α.t ′ =e1 in e2) : t〉〉∆ = let x̂ : ∀~α,α[〈〈e1 : t ′〉〉∆∪~α ∧ (t ′ ◦< α)] in 〈〈e2 : t〉〉∆

with the conditions α1,α2] t,e,∆ in the second line and α,~α] e1,∆ in the last one.
If a let-abstracted variable is typed by an intersection, then we generate the constraints
for each type in the intersection separately and take their conjunction. If the type of a
λ -abstraction can be decomposed into an intersection of arrows, then we generate the
constraints for each single arrow separately and take their conjunction; otherwise we
proceed as before (in this case the type t is likely to be a type variable). For annotated

40 G. Castagna

let-expressions we generate the constraint that expresses the conditions under which e1
has the type in the annotation, adding the variables ~α to those that cannot be instan-
tiated when typing e1. Note that the freshness conditions now regard both ∆ and the
subexpressions of the program (since free type variables may occur in them). Similar
modifications must be done on the freshness conditions of the remaining generation
rules.

Finally, the constraint simplification rules must also take into account the set of
monomorphic variables. Thus, for instance, we have to modify the simplification rule
for let-abstracted variables, so that the fresh instantiation does not use variables in ∆ ,
and likewise for let-expressions:

[x̂]
P;∆ ` (x̂ ≤̇ t) {t1{~α 7→~β} ◦< t} |M1{~α 7→~β} | ~β

{
P(x̂) = 〈M1〉t1
~α = tvar(〈M1〉t1)
~β] t,∆

[LET]

P;∆ ∪~α `C1 D1 |M1 | ~α1
(P, x̂ : 〈M1σ1 : ασ1〉);∆ `C2 D2 |M2 | ~α2

P;∆ ` let x̂ : ∀~α,α[C1] in C2 D2 |M1σ1{~β 7→~γ}∧M2 | ~α2∪~β


σ1 ∈ tally∆∪~α (D1)
~α] ∆ ,M1σ1
~β = tvar(M1σ1)\∆

~α1] α

~γ]C1,~α2,∆

notice in the last rule that the appropriate set of monomorphic variables is now passed
to tally, so that it will not instantiate them to solve the constraints (see Petrucciani [49]
for details).

4.3.3 Occurrence typing As a final remark, notice that since the type-system in Fig-
ure 4 does not include any form of a union elimination rule, this system cannot perform
occurrence typing. It is possible to proceed as in Section 4.2.5 and change the syntax
of type-cases so as they specify a binding for the tested expression obtaining the same
limited form of occurrence typing present in the CDuce language.

4.4 Occurrence Typing and Reconstruction of Intersections

The two systems described in the preceding sections—i.e., the explicitly-typed version
and the implicitly-typed version of CDuce—present two limitations with respect to the
theoretical framework of Section 4.1:
1. No occurrence typing: neither system includes the union elimination rule [∨] of

Figure 1 which, combined with the rules [∈i], implements occurrence typing.
2. No reconstruction for intersection types: in both systems the only way to deduce

an intersection type for a function is to explicitly annotate it with the sought type.
The approach we describe next, proposed by Castagna et al. [16], targets precisely these
two problems but, for the time being, at the expense of polymorphism. The work studies
whether it is possible to define a type-inference algorithm for the system of the theoret-
ical framework, as is: we use the language defined in (2) with the type-system defined
by rules in Figure 1 and the monomorphic types of Definition 1. The technical problems
to solve in order to define a typing algorithm for this system are those evoked in Sec-
tions 4.1.2 and 4.1.3, namely, (i) how to determine the arrows that form the intersection

Programming with union, intersection, and negation types 41

type of a λ -abstraction that is not annotated, (ii) how to deduce negation types for a
function, (iii) which expressions and which occurrences of these expressions should
the system choose when it applies an instance of the rule [∨], and (iv) how to determine
the union of types into which the system should split the type of an expression chosen
for [∨].

We have seen that the previous two systems simply avoided the technical problems
(iii) and (iv) by excluding the rule [∨] and by typing type-case expressions with custom
rules (possibly adding an explicit binding to the syntax of the type-cases so as to have a
limited form of occurrence typing). The system described in [16], instead, follows the
opposite approach: it keeps the rule [∨] as is and introduces specific sound (though, not
complete) algorithmic solutions for these two technical problems. For (iii) it virtually
applies the [∨] rule to all subexpressions of a program and for each such subexpression
it takes into account all its occurrences in the program. For (iv) it uses the type-cases
and the applications of overloaded functions that occur in the program to determine the
split in union types: for instance, if e1 : (Int→ Char)∧ (Bool∨Char→ Bool), e2 :
Int∨Bool and there is in the program a type-case of the form (e1e2∈Bool)? · · · : · · · ,
then the system splits the type of e1e2 (which is Char∨Bool) into two separates types,
Char and Bool, since they yield different results for the type-case; but the system will
also split the type of e2 into Int and Bool since they yield two distinct result types for
the application of the overloaded function e1 (and incidentally for the type-case at is-
sue). The same solution as for technical problem (iv) is also used for the technical prob-
lem (i), viz., given a function with a certain domain the system uses the type-cases and
the applications of overloaded functions occurring in the program to determine how to
split the function’s domain into a union of types to be checked separately and, thus, de-
duce an intersection type for the function: for instance, if e1 has the same type as above
and it is applied to the parameter x of some function—e.g., λxe1(x)...—, then the
system will deduce that the domain of the function is (a subtype of) Int∨Bool∨Char
and split this domain in two, that is, it tries to type the body of the function under the
hypothesis x : Int and under the hypothesis x : Bool∨Char to deduce for the function
a type of the form (Int→ ...)∧ (Bool∨Char→ ...). Finally, the system in Castagna
et al. [16] avoids technical problem (ii) in the same way as implicit CDuce does: nega-
tion types are not inferred, but type-cases cannot test functional types other than 0→ 1.
This of course implies that property (3) in Sectionn 4.1.1—i.e., that every value has
a type or its negation—does not hold. But this does not hinder the property of type
preservation since, as we explained in Section 4.1.1, the presence of the union elimi-
nation rule [∨] suffices for it (even though it holds only for ad hoc parallel reductions:
cf. Barbanera et al. [1] and Castagna et al. [16]).

To obtain a type-inference algorithm with the characteristics outlined above, Castagna
et al. [16] proceed in four steps, that we describe next.

First, we introduce an intermediate language that adds to the theoretical frame-
work’s original language defined in (2) (henceforth, the source language) a “bind”
construct that factors out common subexpressions. The type system of this new in-
termediate language limits the introduction of intersection and union types in the rules
for typing functions and bind forms, respectively. Typeability in the source and the in-
termediate language coincide up to refactoring with bind.

42 G. Castagna

Second, we introduce a syntactic restriction on terms of the intermediate language
dubbed maximal-sharing canonical form (MSC-form), reminiscent of an aggressive A-
normal form [55]. A MSC-form is essentially a list of bindings from variables to atoms.
An atom is either an expression of our source language in which all subexpressions
are variables, or it is a λ -abstraction whose body is a MSC-form. These forms are
called maximal-sharing forms because they must satisfy the property that there cannot
be two distinct bindings for the same atom. This is a crucial property because it ensures
that every expression of the source language (i) is equivalent to a unique (modulo the
order of bindings) MSC-form and (ii) is well-typed if and only if its MSC-form is. For
instance, consider the expression

(a1a2∈Int)?(a2 +1) :((a1a2)@a2) (8)

where a1 and a2 are generic atoms of type t1 = (Int→Int)∧ (String→String) and
t2 = Int∨ String, respectively, and @ denotes string concatenation. This expression
is well-typed with type Int∨String. Its MSC-form will look like the term in Table 1.
Notice that this term satisfies the maximal sharing property because the two occur-

bind x1 = a1 in
bind x2 = a2 in
bind x3 = x1x2 in
bind x4 = x2 + 1 in
bind x5 = x3@x2 in
bind x6 = (x3∈Int)?x4 :x5
in x6

Table 1: Pure MSC-form

bind x1 : {t1} = a1 in
bind x2 : {Int , String} = a2 in
bind x3 : {x2:Int.Int , x2:String.String} = x1x2 in
bind x4 : {Int} = x2 + 1 in
bind x5 : {String} = x3@x2 in
bind x6 : {t2} = (x3∈Int)?x4 :x5
in x6

Table 2: Annotated MSC-form

rences of the application a1a2 in the source language expression (8) are bound by the
same variable x3. Essentially MSC-forms are our solution to technical problem (iii) we
evoked at the beginning of this section, namely, which subexpressions and which oc-
currences of these subexpressions should the system choose for applying [∨]: the fact
that all proper subexpressions of an atom are variables means that the system chooses
all subexpressions, while the maximal sharing property means that the system chooses
all occurrences of each subexpression since it replaces all of them by the same variable.

Third, we prove that an MSC-form is well-typed if and only if it is possible to
explicitly annotate all the bindings of variables so that the MSC-form type-checks. The
annotations essentially define how to split the type of the bound variables into a union
of types (when the variable is bound by a λ this corresponds to splitting the type of the
λ -abstraction into an intersection, when the variable is bound by a bind this corresponds
to splitting the argument of the bind-expression into a union) and the annotated MSC-
form type-checks if the rest of the expression type-checks for each of the splits specified
in its annotations. Table 2 gives the annotations for the MSC-form of Table 1. The
important annotations are those of the variables x2 and x3. The first states that to type
the expression, the type Int∨String of a2 must be split and the expression must be
checked separately for x2 : Int and x2 : String. The annotation of x3 states that when x2
has type Int then x3 must be assumed to be of type Int and when x2 has type String
so must have x3. Since we can effectively transform a source language expression into

Programming with union, intersection, and negation types 43

its MSC-form, then we have a method to check the well-typedness of an expression of
the source language: transform it into its MSC-form and infer all the annotations of its
variables, if possible. Inferring the annotations of a MSC-form boils down to deciding
how to split the types of its variables.

Fourth, we define an algorithm which infers how to split the types of atoms. It
starts from a MSC-form in which all variables are annotated with the top type Any

and performs several passes to refine these annotations. Each pass has three possible
outcomes: either (a.) the MSC-form type-checks with its current annotations and the
algorithm stops with a success, or (b.) the MSC-form does not type-check, the pass
proposes a new version of the same MSC-form but with refined annotations, and a new
pass is started, or (c.) the MSC-form does not check and it is not possible to further
refine the annotations so that the form may become typable, then the algorithm stops
with a failure. The algorithm refines the annotations differently for variables that are
bound by lambdas and by binds. For the variables in binds the algorithm produces a set
of disjoint types so that their union is the type of the atom in the bind; for lambdas the
algorithm splits the type of the parameter into a set of disjoint types and rejects the types
in this set for which the function does not type-check, thus determining the domain of
the function. The very last point that remains to explain is how to determine the split of
a type: as a matter of fact, in general there are infinitely many different ways to split a
type. The split of the types is driven by the types tested in type-cases and the operations
applied to their components. For instance, the split of the type of a2 for the variable
x2 in Tables 1 and 2 is determined by the test x3∈Int: the algorithm will propose to
split the type t3 of x3 into t3 ∧ Int and t3 ∧¬Int. Since t3 is Int∨String, the split
proposed for x3 is actually Int or String. This split triggers in the subsequent pass
the split for the type of x2 since x3 is defined as x1x2 and x3 can be of type Int only
if x2 is of type Int and it can be of type String only if x2 is of type String. We just
got the expected annotations. Essentially, this fourth step is our solution to the technical
problems (iv) and (i) we evoked at the beginning of this section, namely, how to split
the type of a subexpression chosen to apply [∨] into a union of types, and how to split
the type of an implicitly-typed function into an intersection of arrows: we split these
types by analyzing the type-cases and the overloaded function applications occurring in
the program.

Formally, [16] defines the following intermediate language

Intermediate exp eee::= c | x | λx.eee | eeeeee | (eee,eee) | πieee | (eee∈τ)?eee :eee | bindx=eeeineee (9)

with the typing rules given in Figure 7 (where we omitted the rules for constants, vari-
ables, and pairs since they are the same as in Figure 1).23 A well-typed expression of
the intermediate language is typed by derivations in which every instance of the [∨] rule
(here declined in two forms) corresponds to a bind-expression. Any such derivation cor-
responds to a canonical derivation (Figure 2) for a particular expression of the source
language in (2). This expression can be obtained from the intermediate language expres-
sion by unfolding its bindings. Formally, this is obtained by the unwinding operation,

23 Notice that we do not define a reduction semantics for the intermediate language since the sole
purpose of the intermediate expressions is to encode typing derivations. But a call-by-need
semantics for the new bind-expressions would be appropriate [16, see Appendix A.6].

44 G. Castagna

[→I]
(∀ j ∈ J) Γ ,x : t j Ì eee : s j

Γ Ì λx.eee :
∧

j∈J t j→ s j
J 6=∅ [→E]

Γ Ì eee1 : t1 Γ Ì eee2 : t2
Γ Ì eee1eee2 : t1 ◦ t2

t1 ≤ 0→ 1
t2 ≤ dom(t1)

[×E1]
Γ Ì eee : t ≤ (1×1)

Γ Ì π1eee : π1(t)
[×E2]

Γ Ì eee : t ≤ (1×1)

Γ Ì π2eee : π2(t)
[0]

Γ Ì eee : 0

Γ Ì (eee∈t)?eee1 :eee2 : 0

[∈1]
Γ ` eee : t0 ≤ t Γ ` eee1 : t1

Γ ` (eee∈t)?eee1 :eee2 : t1
t0 6' 0 [∈2]

Γ Ì eee : t0 ≤ ¬t Γ ` eee2 : t2
Γ Ì (eee∈t)?eee1 :eee2 : t2

t0 6' 0

[∨1]
Γ Ì eee2 : s

Γ Ì bindx=eee1 ineee2 : s
x 6∈dom(Γ) [∨2]

Γ Ì eee1 :
∨

j∈J t j (∀ j∈J) Γ ,x:t j Ì eee2 : s j

Γ Ì bindx=eee1 ineee2 :
∨

j∈J s j
J 6=∅

Fig. 7: Intermediate typing rules

noted d.e and defined for binding expressions as dbindx=eee1 ineee2 e =def deee2e{deee1e/x},
as the identity for constants and variables, and homomorphically for all the other expres-
sions. It is possible to prove that the problem of typing an expression of our source lan-
guage is equivalent to the problem of finding a typable intermediate expression whose
unwinding is that declarative expression. In other terms, a declarative expression is
typable if and only if we can enrich it with bindings so that it becomes a typable inter-
mediate expression.

The definition of the intermediate expressions is a step forward in solving the prob-
lem of typing a declarative expression, but it also brings a new problem, since we now
have to decide where to add the bindings in a declarative expression so as to make it
typable in the intermediate system. We get rid of this problem by defining the maximal
sharing canonical forms (MSC-form for short). The idea is pretty simple, and consists
in adding a new binding for every distinct (modulo α-conversion) sub-expressions of a
declarative expression. Formally, this transformation yields a MSC-form:

Definition 5 (MSC Forms). An intermediate expression eee is a maximal sharing canon-
ical form if it is produced by the following grammar:

Atomic expressions aaa ::= c | λx.κκκ | (x,x) | xx | (x∈τ)?x :x | πix
MSC-forms κκκ ::= x | bindx=aaainκκκ

(10)

and is α-equivalent to an expression κκκ that satisfies the following properties: (1) if
bindx1 =aaa1 inκκκ1 and bindx2 =aaa2 inκκκ2 are distinct sub-expressions of κκκ , then daaa1e 6≡α

daaa2e; (2) if λx.κκκ1 is a sub-expression of κκκ and bindy=aaainκκκ2 a sub-expression of κκκ1,
then fv(aaa) 6⊆ fv(λx.κκκ1); (3) if bindx=aaainκκκ ′ is a sub-expression of κκκ , then x ∈ fv(κκκ ′).

MSC-forms, ranged over by κκκ , are variables preceded by a list of bindings of variables
to atoms. Atoms are either λ -abstractions whose body is a MSC-form or any other
expression in which all proper sub-expressions are variables. Therefore, bindings can
appear in a MSC-form either at top-level or at the beginning of the body of a function.
Definition 5 ensures that given an expression e of the source language (2) there exists
a unique (modulo α-conversion and the order of bindings) MSC-form whose unwind-
ing is e: we denote this MSC-form by MSC(e) and it is easy to effectively produce it
from e (roughly, visit e bottom up and generate a distinct binding for each distinct sub-
expression). Furthermore, e is typable if and only if MSC(e) is: we reduced the problem

Programming with union, intersection, and negation types 45

of typing e to the one of typing MSC(e), a form that we can effectively produce from e
and for which we have the syntax-directed type system of Figure 7.

The type system of Figure 7 is syntax directed, but it still includes non-analytic
rules for functions and bind-expressions. Thus, the next step consists in adding an-
notations to intermediate expressions, so as to make these rules analytic: we consider
expressions of the form λx:A.eee and bindx:A=eeeineee , where A ranges over annotations
of the form {Γ .t, . . . ,Γ .t}. Our annotations are, thus, finite relations between type en-
vironments and types. An annotation of the form x : {Γi.ti}i∈I indicates that under the
hypothesis Γi the variable x must be supposed to be of type ti. We write {t1, . . . ,tn} for
{∅.t1, . . . ,∅.tn} and just t for {∅.t}. So for instance we write λx:t.eee for λx:{∅.t}.eee
while, say, bindx:{t1, . . . ,tn}=eee1 ineee2 stands for bindx:{∅.t1, . . . ,∅.tn}=eee1 ineee2 .

In this system terms encode derivations. Terms with simple annotations such as
λx:t.eee represent derivations as they can be found in the simply-typed λ -calculus: in
other terms, to type the function the system must look for a type s such that λx:t.eee is
of type t→ s. When annotations are sets of types, such as in λx:{t1, . . . , tn}.eee, then the
term represents a derivation for an intersection type, such as the derivations that can be
found in semantic subtyping calculi: in other terms, to type the function the system look
for a set of types {s1, . . . ,sn} such that λx:{t1, . . . , tn}.eee has type

∧n
i=1 ti → si. Finally,

the reason why we need the more complex annotations of the form {Γ1.t1, . . . ,Γ1.t1}
can be shown by an example. Consider λx.((λy.(x,y))x): in the declarative system we
can deduce for it the type (Int→Int×Int)∧ (Bool→Bool×Bool). We must find the
annotations A1 and A2 such that λx:A1.((λy:A2.(x,y))x) has type (Int→Int×Int)∧
(Bool→Bool×Bool). Clearly A1 = {Int,Bool}. However, the typing of the param-
eter y depends on the typing of x: when x:Int then y must have type Int (the type
of y must be larger than the one of x—the argument it will be bound to—, but also
smaller than Int so as to deduce that λy.(x,y) returns a pair in Int×Int). Likewise
when x:Bool, then y must be of type Bool, too. Therefore, we use as A2 the annota-
tion {x:Int.Int,x:Bool.Bool}, which precisely states that when x:Int, then we must
suppose that y (the variable annotated by A2) is of type Int, and likewise for Bool.

[→I]
(∀ j ∈ J) Γ ,x : t j À κ : s j

Γ À λx:{Γi.ti}i∈I .κ :
∧

j∈J t j→ s j
J = {i ∈ I | Γ ≤ Γi} 6=∅

[∨1]
Γ À κ : s

Γ À bindx:{Γi.ti}i∈I =ainκ : s
x 6∈ dom(Γ)

{i ∈ I | Γ ≤ Γi}=∅

[∨2]
Γ À a :

∨
j∈J t j (∀ j ∈ J) Γ ,x : t j À κ : s j

Γ À bindx:{Γi.ti}i∈I =ainκ :
∨

j∈J s j
J = {i ∈ I | Γ ≤ Γi} 6=∅

Fig. 8: Algorithmic typing rules

The type system for annotated terms is given by the rules for abstractions and bind-
ing in Figure 8 plus all the other rules of the intermediate type system (specialized for
MSC-forms, i.e., where every subexpression is a variable). The system is algorithmic
since it is syntax-directed and uses only analytic rules.

The main interest of this algorithmic system is that a well-typed annotated term
univocally encodes a type derivation for a MSC-form and, therefore, it also encodes a

46 G. Castagna

particular canonical derivation for an expression of the source language. All this gives
us a procedure to check whether an expression e of the source language (2) is well
typed or not: produce MSC(e) and look for a way to annotate it so that it becomes a
well-typed annotated expression. If we find such annotations, then e is well typed. If
such annotations do not exist, then e is not well-typed.

The last final step is then to define an algorithm to find whether there exists a
way to annotate an MSC-form to make it well-typed. Different algorithms are possi-
ble. Castagna et al. [16, Section 5] describe an algorithm that starts by annotating all
bound variables with Any and then performs several passes in which it analyses the
type-cases and overloaded applications of the term to determine how to split the types
of the concerned expression and thus refining the annotations of their bindings. The
reader may refer to [16, Section 5] for the details of this algorithm. Here we just stress
that, contrary to the previous systems presented here, the algorithm is able to deduce
the precise intersection types for the (non-annotated) functions not , and (both ver-
sions), and or we gave at the end of the introduction, as well as reconstruct the type
(Int→Int)∧ (Bool→Bool) for the function λx.(x∈Int)?(x+ 1) :¬x given in Sec-
tion 2.

4.5 Summary

In this section we presented three practical variations of the theoretical language we
defined in Section 4.1. The ultimate goal of our research is to have a unique language
that covers the characteristics of the three of them. The current implementation of poly-
morphic CDuce corresponds to the language we presented in Section 4.2.5 but work
is in progress to merge it with the implicitly-typed language of Petrucciani’s disserta-
tion [49, Part I] that we presented in Section 4.3. The idea is to completely move to
the constraint generation and resolution we surveyed in Section 4.3.1 and consider the
current version of polymorphic CDuce as the special case of the annotated expressions
presented in Section 4.3.2. This may require to change the notation of explicitly-typed
polymorphic functions, which is the reason why a polymorphic version of CDuce was
not released, yet. The only problem to solve to obtain a conservative extension of (both
monomorphic and polymorphic) CDuce will then be how to deal in Petrucciani’s sys-
tem with the type-cases of values with functional components (since in CDuce you can
test whether a function has a given arrow type). The final step will be then to integrate
the resulting system with the general usage of the union elimination rules on the lines
of the system we described in Section 4.4.

5 Further Features

In this section we briefly overview few extra features that were developed in the context
of the study of set-theoretic types.

5.1 Pattern Matching

Several examples presented in this article use pattern matching. Furthermore, in Sec-
tion 2 we cited the precise typing of pattern matching expressions as one of the main

Programming with union, intersection, and negation types 47

motivations of using set-theoretic types. However, the languages we formalized in Sec-
tion 4 do not include pattern matching expressions: they just have type-case expressions
which, in their binding variant of Section 4.2.3, may be considered a very simplistic
version of pattern matching. Here, we outline how full-fledged pattern matching can
be added to the languages presented in Section 4. Similar formalizations of pattern
matching for set-theoretic type systems have been described by Frisch [22, Chapter 6],
Castagna et al. [11, Appendix E], and Castagna et al. [12].

For simplicity, we only consider two-branch pattern matching. We extend the syntax
with the match construct and with patterns:

e ::= · · · | match e with p→ e | p→ e p ::= τ | x | (p, p) | p& p | p| p ,

where τ are the test types defined in Section 4 (ground types for CDuce and its explicit
polymorphic variant, ground non-functional types for implicitly-typed CDuce and the
variant for occurrence typing) and with some restrictions on the variables that can ap-
pear in patterns: in (p1, p2) and p1 & p2, p1 and p2 must have distinct variables; in
p1| p2, p1 and p2 must have the same variables.

A more familiar syntax for patterns is p ::= | c | x | (p, p) | p as x | p| p, with wild-
cards and constants instead of τ types and with as-patterns “p as x” (in OCaml syntax;
x@p in Haskell) instead of conjunction. We can encode and c as 1 and bc (both are in
the grammar for τ), while “p as x” is p&x, as will soon be clear.

v/x = {v/x}
v/τ = {} if v ∈ τ

v/(p1, p2) = ς1∪ ς2 if v = (v1,v2), v1/p1 = ς1, and v2/p2 = ς2

v/p1& p2 = ς1∪ ς2 if v/p1 = ς1 and v/p2 = ς2

v/p1| p2 = v/p1 if v/p1 6= fail

v/p1| p2 = v/p2 if v/p1 = fail

v/p = fail otherwise

Fig. 9: Semantics of patterns

To describe the semantics of pattern matching, we define a function (·)/(·) that,
given a value v and a pattern p, yields a result v/p which is either fail or a substitution
ς mapping the variables in p to values (subterms of v). This function is defined in
Figure 9. Then, we augment the reduction rules with

(match v with p1→ e1 | p2→ e2) e1ς if v/p1 = ς

(match v with p1→ e1 | p2→ e2) e2ς if v/p1 = fail and v/p2 = ς

and add matchE with p→ e | p→ e to the grammar of evaluation contexts.
Given each pattern p, we can define a type *p+ that describes exactly the values that

match the pattern:

*τ+ = τ *x+ = 1

*(p1, p2)+ = *p1 +× * p2+ *p1 & p2+ = *p1 +∧ * p2+ *p1| p2+ = *p1 +∨ * p2+

48 G. Castagna

It can be shown that, for every well-typed value v and every pattern p, we have v/p 6= fail
if and only if ∅ ` v : *p+. This allows us to formalize purely at the level of types the
exhaustiveness and redundancy checks that are often performed on pattern matching.
The typing rule for match is the following.

Γ ` e0 : t0
either t0 ≤ ¬ * p1+ or Γ ,(t0∧ *p1+)/p1 ` e1 : t

either t0 ≤ *p1+ or Γ ,(t0\ * p1+)/p2 ` e2 : t
Γ ` match e0 with p1→ e1 | p2→ e2 : t

t0 ≤ *p1 +∨ * p2+

The “either . . . or . . . ” conditions have the same purpose as for type-case rule [CASE]
in Figure 4, namely, they skip the typing of branches that cannot be selected. The side
condition t0 ≤ *p1 +∨ * p2+ ensures that matching is exhaustive: any value produced
by e0 has type t0 and therefore matches either p1 or p2. When a branch is selectable
it is typed under the hypothesis Γ extended with a type environment produced by ap-
plying the operator t/p, which given a type t and a pattern p with t ≤ *p+ produces
the type environment that can be assumed for the variables in p when a value of type
t is matched against p and matching succeeds. Thus e1 is typed under the hypothesis
obtained supposing that p1 was matched against a value produced by e0 (i.e., in t0) and
accepted by p1 (i.e., in *p1+), while the hypotheses for e2 are obtained supposing that
p2 was matched against a value produced by e0 (i.e., in t0) and not accepted by p1 (i.e.,
in ¬ * p1+: remind that t0\ * p1+ = t0∧¬ * p1+). The operator is defined as follows

t/τ =∅
t/x = x : t

t/(p1, p2) = t/p1 & p2 = (t/p1)∪(t/p2)

t/p1| p2 = ((t ∧ *p1+)/p1)∪((t\ * p1+)/p2)

and satisfies the property that for every t, p, and v, if ∅ ` v : t and v/p = ς , then, for
every variable x in p, the judgment ∅ ` xς : (t/p)(x) holds.

Finally, we said that the condition t0 ≤ *p1 +∨ * p2+ in the typing rule for match-
expressions ensures the exhaustiveness of pattern matching, but what about redun-
dancy? When t0 ≤ ¬ * p1+ should not the system return a warning that e1 cannot be
selected and likewise for e2 when t0 ≤ *p1+? In general it should not, since skip-
ping the typing of some branches is necessary for inferring intersection types for over-
loaded functions. For instance, consider again the function that we defined in Section 2
λ (Int→Int)∧(Bool→Bool)x.(x∈Int)?(x+1) :¬x whose definition with pattern matching
would be:

λ (Int→Int)∧(Bool→Bool)x .match x with Int→ (x+1) | 1→¬x
When typing the body of the function under the hypothesis x : Int it is important not to
check the type of the second branch (since ¬x would be ill typed) and under the hypoth-
esis x : Bool it is important not to check the type of the first branch (since x+1 would
be ill typed). However, neither of the branches is redundant because each of them is
type-checked at least once. Redundancy corresponds to branches that are never type-
checked, as, for instance, the second branch in the following definition

Programming with union, intersection, and negation types 49

λ (Int→Int)∧(Bool→Bool)x .match x with (Int∨Bool)→ x | 1→¬x
which is skipped both under the hypothesis x : Int and under the hypothesis x : Bool
and, therefore, must be fingered as redundant (but the function is well-typed). In con-
clusion, as it is the case for exhaustiveness, redundancy of pattern matching, too, can
be characterized in terms of a type system that includes set-theoretic types.

5.2 Gradual Typing

Gradual typing is an approach proposed by Siek and Taha [56] to combine the safety
guarantees of static typing with the programming flexibility of dynamic typing. The idea
is to introduce an unknown (or dynamic) type, denoted ?, used to inform the compiler
that some static type-checking can be omitted, at the cost of some additional runtime
checks. The use of both static typing and dynamic typing in a same program creates a
boundary between the two, where the compiler automatically adds—often costly [58]—
dynamic type-checks to ensure that a value crossing the barrier is correctly typed.

Occurrence typing—that we discussed in Sections 2 and 4.4—and gradual typing
often have common use cases. For instance the example we gave for occurrence typing
in Section 2, λx.(x∈Int)?(x+1) :¬x, can also be typed by gradual typing as follows:

λx : ?.(x∈Int)?(x+1) :¬x (11)

“Standard” or “safe” gradual typing inserts two dynamic checks since it compiles the
code above into λx : ?.(x∈Int)?(x〈Int〉+1) :¬(x〈Bool〉), where e〈t〉 is a type-cast
that dynamically checks whether the value returned by e has type t.24 The type deduced
for the function in (11) is ?→ Int∨Bool meaning that it is a function that can be
applied to any argument (which may have its type dynamically checked if needs to be)
and will return either an integer or a Boolean (or a cast exception if a dynamic check
fails). This type is not very precise since it allows the function to be applied to any
argument, even if we already know that it will fail with a cast exception for arguments
that are neither integers nor Booleans. Whence the interest of having full-fledged set-
theoretic types thanks to which the programmer can shrink the domain of the function
as follows:

λx : (?∧ (Int∨Bool)).(x∈Int)?(x+1) :¬x (12)

Intuitively, this annotation means that the function above accepts for x a value of any
type (which is indicated by ?), as long as this value is also either an Int or a Bool. So
the type-casts will never fail. This was the initial motivation of our study of integrating
gradual and set-theoretic types [7, 14]. Of course, the example above does not need
gradual typing if the systems provides occurence typing: this provides a better solution
since, as we showed before, it returns a more precise type ((Int→Int)∧(Bool→Bool))
and avoids the insertion of superfluous run-time checks. But there are some cases in
which the occurrence typing analysis may fail to type-check, since either they are too
complex or they are not covered by the formalism (e.g., when polymorphic types are

24 Intuitively, e〈t〉 is syntactic sugar for, say, in JavaScript (typeof(e)==="t") ? e : (throw
"Type error"). Not exactly though, since to implement compilation à la sound gradual typ-
ing it is necessary to use casts on function types that need special handling.

50 G. Castagna

needed, which are not captured by the system presented in Section 4.4). In those cases
gradual typing is a viable alternative to no typing at all. In a sense, occurrence typing
is a discipline designed to push forward the frontiers beyond which gradual typing is
necessary, thus reducing the amount of runtime checks needed (see Castagna et al. [16,
Section 3.3] for more a detailed treatment).

But the interest of integrating gradual and set-theoretic types is not limited to having
a more precise typing of some applications like the ones above. The main interest of this
integration is that the introduction of set-theoretic types allows us to give a semantic
foundation to gradual typing, and explain the type-theory of gradual types only in terms
of non-gradual ones. The core of the type-systems for gradually-typed expressions such
as (11) or (12) is the definition of a precision relation 4 on types [57, 25] (called naive
subtyping in [62]). In the cited works the definition of this relation is very simple: given
two gradual types τ1, τ2, the type τ1 is less precise than τ2, written τ1 4 τ2, if and
only if τ2 is obtained from τ1 by replacing some occurrences of ? by some types (we
use τ to range over gradual types to distinguish them from types in which ? does not
occur and that are called static types). So for instance ?→?×? 4 Int→?×Bool 4
Int→Int×Bool. Intuitively, the precision relation indicates in which types a gradual
type may “materialize” (i.e., turn out to be) at runtime. So the type ?→? of a function
materializes into Int→? if this function happens at runtime to be applied to an integer.
Castagna et al. [14] demonstrate that to extend with gradual typing an existing statically-
typed language all is needed is (i) to add ? to the types (as a new basic type), (ii) define
the precision relation 4 (and, if used, the subtyping rela-

[4]
Γ ` e : τ τ 4 τ

′

Γ ` e : τ
′

tion ≤) on the new types, and (iii) add the subsumption-
like materialization rule here on the right to the existing
typing rules. Of course, this does not immediately yield an
effective implementation (one has to find a type-inference algorithm, define the lan-
guage with the explicit casts and the compilation of well-typed terms into it, compila-
tion that, roughly, must insert a dynamic type-cast wherever the typing algorithm had
to use a materialization rule) but conceptually this is all is needed. The difficult point
is to define the precision relation (but also to extend an existing subtyping relation to
gradual types). The simple definition of the precision relation we gave above is syntax
based and, as such, it shows its limits as soon as we add type connectives. In semantic
subtyping equivalence between types plays a central role: two types are equivalent if
and only if they represent the same set of values, and this makes them to behave identi-
cally in every context. So one would expect equivalent types to materialize in the same
set of types, but this is not the case: consider for example the types Int∨? and ?∨Int;
although they are equivalent, the former materializes into Int∨Bool while the latter
does not. The latter does, however, materialize into Bool∨Int which is equivalent to
Int∨Bool. A similar reasoning can be done for ? and ¬? which intuitively behave in
exactly the same way. We thus need a more robust, syntax independent characterization
of the precision relation.

In his Ph.D. dissertation, Lanvin [40] showed that this characterization can be given
just in terms of static types (i.e., the types without any occurrence of ? in them). Take
as static types either the set-theoretic types of Definition 1 or their polymorphic exten-
sion given by grammar (1), together with their respective subtyping relations. To obtain

Programming with union, intersection, and negation types 51

gradual types add to the grammars of these types the production t ::= ? (still, we use τ

to range over gradual types and reserve t for static types). Given a gradual type τ , the
set of all static types it materializes to forms a complete lattice, with a maximum and
a minimum static type that we denote by τ⇑ and τ⇓, respectively. So we have that for
all τ , if τ 4 t, then τ⇓ ≤ t ≤ τ⇑, where ≤ is the subtyping relation for the static types.
It is very easy to derive the materialization extrema τ⇑ and τ⇓ from τ: you get τ⇑ by
replacing in τ every covariant occurrence of ? by 1 and every contravariant occurrence
of ? by 0; τ⇓ is obtained in the same way, by replacing in τ every covariant occurrence
of ? by 0 and every contravariant one by 1. The definition of the minimal and maxi-
mal static materializations together with the subtyping relation on static types is all is
needed to define the precision relation and the subtyping relation on the newly defined
gradual types. Lanvin [40] shows that it is possible to define the precision relation 4
and the subtyping relation ≤̇ on gradual types as follows:

τ1 4 τ2
def⇐⇒ τ1

⇓ ≤ τ2
⇓ and τ2

⇑ ≤ τ1
⇑ (13)

τ1 ≤̇ τ2
def⇐⇒ τ1

⇓ ≤ τ2
⇓ and τ1

⇑ ≤ τ2
⇑ (14)

where ≤ denotes the subtyping relation given on static types—e.g., the two subtyping
relations induced by interpretations of types given in Sections 3.1 and 3.2—.25

Equation (13) conveys a strong message: any gradual type can be seen as an interval
of possible types, where ? denotes the interval of all types, and a type τ denotes the
interval ranging from τ⇓ to τ⇑ (or, more precisely, the sub-lattice of the types included
between the two). Semantic materialization then allows us to reduce this interval, by
going to any type τ ′ such that τ⇓ ≤ τ ′⇓ and τ ′⇑ ≤ τ⇑, possibly until reaching a static
type (that is, a type τ such that τ⇓ = τ⇑).

Equation (14) extends this interval interpretation to the subtyping relation of gradual
types, stating that a type τ1 is a subtype of τ2 if the interval denoted by τ1 only contains
subtypes of elements of the interval denoted by τ2.

Notice that these two definitions also provide an effective way to decide precision
and subtyping for gradual types: generate the gradual extrema and check on them the
subtyping relations for static types according to (13) or (14).

Lanvin justifies these definitions by giving a semantic interpretation of all gradual
types (i.e., not just of the static ones) and proving all the needed properties. In particular,
he proves a series of properties that show the robustness of the relations defined in (13)
and (14). First, for all gradual types τ and τ ′ such that τ 4 τ ′ we have τ⇓ ≤̇ τ ′ ≤̇ τ⇑,
that is, all the materializations of a gradual type form a complete sub-lattice (not just
the static materializations). More surprisingly, for every gradual type τ we have τ '̇
τ⇓ ∨ (?∧ τ⇑), where '̇ is the symmetric closure of the gradual subtyping relation ≤̇.
According to this last property, every gradual type τ is equivalent to the ? type as long as
we bound it with the two extrema τ⇓ and τ⇑, thus strengthening the intuition of gradual
types as intervals of static types. Therefore, every gradual type can be represented by
a pair of static types, and to add gradual typing to a system, it suffices to augment
the types with a single constant ? that only needs to appear at top level, that is, under

25 Strictly speaking, it is necessary slightly to modify these interpretations so that all the types of
the form 0→t are not all equivalent: see Lanvin [40, Section 6.1.2].

52 G. Castagna

neither an arrow nor a product. This characterization can then be used to define the
gradual counterparts d̃om(.), ◦̃, and π̃ππ iii(.) of the type operators dom(.), ◦, and πππ iii(.) we
defined at the end of Section 4.1.2, thus providing a further proof of the robustness of
the definitions in (13) and (14). So we have:

d̃om(τ) =def dom(τ⇑)∨ (?∧dom(τ⇓))

τ ◦̃ τ
′ =

def
(τ⇓ ◦ τ

′⇑)∨ (?∧ (τ⇑ ◦ τ
′⇓))

π̃ππ iii(τ) =
def

(πππ iii(τ
⇓))∨ (?∧ (πππ iii(τ

⇑)))

for which we can prove that d̃om(τ) = max{τ ′ | τ ≤̇ τ ′→ 1}, τ1 ◦̃ τ2 = min{τ | τ1 ≤̇
τ2→ τ}, π̃ππ111(τ) = min{τ ′ | τ ≤̇ τ ′×1}, and π̃ππ222(τ) = min{τ ′ | τ ≤̇ 1× τ ′}.

5.3 Denotational Semantics

We have seen in Section 3 that the essence of semantic subtyping is to interpret types
as sets of values. However, for the circularity problem described in Section 4.2.1 this
cannot be done directly on the values of some language, but must pass via an interpreta-
tion in a domain D whose elements represent these values. Furthermore, for cardinality
problems, functional values cannot be represented directly as elements of the domain,
and one has to interpret types as sets containing only functions with finite graphs. Even
if at the end one obtains the same subtyping relation as if we had considered infinite
functions (cf., Section 3.1) this solution has been making readers uneasy. The fact of
using finite graph functions to define a relation for general function spaces looked more
as a technical trick than as a theoretical breakthrough. Pierre-Louis Curien suggested
that the construction was a pied de nez to (it cocked a snook at) denotational semantics,
insofar as it used a semantic construction to define a language for which a denotational
semantics was not known to exist. The common belief was that the solution worked
because considering all finite functions in the interpretation of a function space was
equivalent to give the finite approximations of the non-finite functions in that space, in
the same way as, say, Scott domains are built by giving finite approximations of the
functions therein.

Very recently, Lanvin’s Ph.D. dissertation [40, Part 2] has formalized this intuition
and defined a denotational semantics for a language with semantic subtyping (actually,
the language of Sections 4.2.2–4.2.4), in which functions are interpreted as the infinite
set of their finite approximations. This yields a model with a simple inductive definition,
which does not need isomorphisms or the solution of domain equation. The idea is to in-
terpret not only types but also terms in the domain D of Definition 2. Unfortunately, the
domain D cannot be used as is,26 but it must be slightly modified to account for the fact
that functions map finite approximations (rather single denotations) into denotations. In
practice, one has to modify the domain as follows

d ::= c | (d,d) | {(S,∂), . . . ,(S,∂)} S ::= {d, . . . ,d} ∂ ::= d |Ω

26 Actually, it can but it yields a weak property of computational soundness: cf. [40, Chapter 9].

Programming with union, intersection, and negation types 53

where, thus, the domain now includes finite maps from finite and non-empty sets of ele-
ments (ranged over by S) into other elements or Ω . The interpretation of types must also
be slightly modified to make the interpretation of arrows satisfy the following equation:

Jt1→ t2K = {R ∈Pfin(Pfin(D)×DΩ) | ∀(S,∂) ∈ R .S∩ Jt1K 6=∅ =⇒ ∂ ∈ Jt2K}}

modification that yields the same subtyping relation as the one produced by the inter-
pretation of Definition 3. In this domain it is then not very difficult to interpret every
term of the language into the (possibly infinite) set of its finite approximations. For in-
stance, a constant c will be interpreted as the singleton {c}. The only delicate part is the
interpretation of λ -abstractions, that is defined as follows:

Jλx:t.eKρ = {R ∈Pfin(Pfin(D)×DΩ) | ∀(S,∂) ∈ R, either S⊆ JtK and ∂ ∈ JeKρ,x 7→S
or S⊆ J¬tK and ∂ = Ω}

where ρ is a semantic environment that maps variables into approximations, that is, into
sets in Pfin(D). The definition above states that a λ -abstraction is interpreted as the set
of all finite approximations that map any approximation in the domain of the function to
the interpretation of the body where the parameter is associated to that approximation,
and any approximation that is outside this domain to the failure Ω .

For this interpretation it is possible to prove three fundamental properties:

1. Type soundness: if Γ ` e : t, then JeKρ ⊆ JtK, for every ρ ∈ JΓ K.27

2. Computational soundness: if Γ ` e : t, and e e′, then JeKρ = Je′Kρ , for all ρ ∈ JΓ K.
3. Computational adequacy: JeKρ =∅, for every well-typed closed diverging term e.

This interpretation works only for a language without type-cases and overloaded func-
tions (notice the syntax of annotations which are just on the parameter of λ -abstractions
and not on the full term). The reader can refer to Lanvin [40, Part 2] for all details and
a denotational semantics of the whole Core CDuce language.

6 Conclusion

In this essay I tried to survey the multiple advantages and usages of set-theoretic types
in programming. Set-theoretic types are sometimes the only way to type some partic-
ular functions, sometimes as simple as the flatten function of the introduction. This
is so because set-theoretic types provide a suitable language to describe many non-
conventional, but not uncommon, programming patterns. This is demonstrated by the
fact that the need of set-theoretic types naturally arises when trying to fit type-systems
on dynamic languages: union and negations become necessary to capture the nature
of branching and of pattern matching, intersections are often the only way to describe
the polymorphic use of some functions whose definition lacks the uniformity required
by parametric polymorphism. The development of languages such as Flow, TypeScript,
and Typed Racket is the latest witness of this fact. I also showed that even when set-
theoretic types are not exposed to the programmer, they are often present at meta level

27 Where JΓ K = {ρ | ∀x ∈ dom(Γ) . ρ(x)⊆ JΓ (x)K}.

54 G. Castagna

since they provide the basic tools to precisely type some program constructions such as
type-cases and pattern matching. Finally, set-theoretic types provide a powerful theo-
retic toolbox to explore, understand, and formalize existing type disciplines: I demon-
strated this with gradual types which, thanks to set-theoretic types, can be understood
as intervals of static types, an analogy that we can use to rethink both their theory (see
Lanvin’s dissertation [40]) and their practice (e.g., the implementation of gradual virtual
machines as in [13]).

This survey is necessarily incomplete. For instance I barely spoke of XML types
and XML programming even though they were the first motivation for developing the
theory of semantic subtyping and to design and implement programming languages
such as XDuce and CDuce. Also, I completely swept under the carpet how to han-
dle features that are common in modern programming languages such as the use of
abstract types—whose integration with structural subtyping and polymorphism may re-
sult delicate—and the presence of side-effects. The latter is particular sensitive for the
language presented in Section 4.4, insofar as the use of MSC-forms is sound only for
pure expressions. Nevertheless, I hope I gave a good idea of the potentiality of having
set-theoretic types in a programming language and how the addition of these types can
be done.

It is not all a bed of roses though. From a formal point of view we did not succeed,
yet, to define a unique formalism that mixes implicitly and explicitly typed functions,
reconstruction of intersection types, and an advanced use of occurrence typing. But we
are not far from it. From a practical viewpoint even more work is needed. We have seen
that parametric polymorphism with set-theoretic types implies constraint generation and
constraint resolution (i.e., structured and (sub-)typing constraints in the implicitly-typed
language and only the latter in the explicitly-typed one). This has several drawbacks.
Foremost, because of the presence of unions and of subtyping, constraint solving is a po-
tential source of computational explosion that we do not master well yet. Furthermore,
constraint solving makes the generation of informative error messages very difficult for
the case when it fails, but even pretty printing the deduced types in a form easily under-
standable by the programmer may sometimes happen to be challenging. So the positive
message with which I want to conclude this presentation is that, all in all, the research
of set-theoretic types still is a very nice playground that reserves us several interesting
and challenging problems yet to be solved.

Acknowledgements: The work presented here is the result of many collaborations
with many coauthors that I listed in the first page of this article. The “we” I used all
the presentation long and abandoned from the conclusion must be intended as inclu-
sive of all of them. Not only the results exposed here were first presented in articles I
co-authored or dissertations I supervised but, in some cases, I also adapted or reused
verbatim the text of these works. Thus several parts of this presentation are borrowed
from Castagna et al. [16]. Section 2 and the beginning of Section 3 faithfully repro-
duce and extend Section 1.1 of Tommaso Petrucciani PhD thesis [49] whose reading I
warmly recommend. Sections 3.1 and 3.2 follow a presentation that can be found in sev-
eral papers I co-authored. Most of Section 4.2 comes from some unpublished notes that
Victor Lanvin and I wrote on the denotational semantics of CDuce, while Section 5.2

Programming with union, intersection, and negation types 55

reuses parts of Lanvin [40, Chapter 6]. Guillaume Duboc, Victor Lanvin, Mickaël Lau-
rent, Matt Lutze, and Kim Nguyen provided useful feedback on an early version of this
manuscript.

References

1. Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo de’Liguoro. Intersec-
tion and union types. Inf. Comput., 119(2):202–230, June 1995. ISSN 0890-5401.
https://doi.org/10.1006/inco.1995.1086.

2. Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. CDuce: an XML-
centric general-purpose language. In ICFP ’03, 8th ACM International Confer-
ence on Functional Programming, pages 51–63, Uppsala, Sweden, 2003. ACM Press.
https://doi.org/10.1145/944705.944711.

3. Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymor-
phism. ACM Comput. Surv., 17(4):471–522, 1985. https://doi.org/10.1145/6041.6042.

4. Luca Cardelli, Simone Martini, John C. Mitchell, and Andre Scedrov. An
extension of system F with subtyping. Inf. Comput., 109(1/2):4–56, 1994.
https://doi.org/10.1006/inco.1994.1013.

5. Giuseppe Castagna. Covariance and controvariance: a fresh look at an old issue (a primer in
advanced type systems for learning functional programmers). Logical Methods in Computer
Science, 16(1):15:1–15:58, 2020. https://doi.org/10.23638/LMCS-16(1:15)2020.

6. Giuseppe Castagna and Alain Frisch. A gentle introduction to semantic subtyping. In Pro-
ceedings of PPDP ’05, the 7th ACM SIGPLAN International Symposium on Principles and
Practice of Declarative Programming, pages 198-208, ACM Press (full version) and ICALP
’05, 32nd International Colloquium on Automata, Languages and Programming, Lecture
Notes in Computer Science n. 3580, pages 30-34, Springer (summary), Lisboa, Portugal,
July 2005. https://doi.org/10.1145/1069774.1069793. Joint ICALP-PPDP keynote talk.

7. Giuseppe Castagna and Victor Lanvin. Gradual typing with union and intersec-
tion types. Proc. ACM Program. Lang., 1, Article 41(ICFP ’17), September 2017.
https://doi.org/10.1145/3110285.

8. Giuseppe Castagna and Zhiwu Xu. Set-theoretic foundation of parametric polymorphism
and subtyping. In ICFP ’11: 16th ACM-SIGPLAN International Conference on Functional
Programming, pages 94–106, 2011. https://doi.org/10.1145/2034773.2034788.

9. Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, Hyeonseung Im, Sergueı̈ Lenglet, and Luca
Padovani. Polymorphic functions with set-theoretic types. Part 1: Syntax, semantics,
and evaluation. In Proceedings of the 41st Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL ’14, pages 5–17, January 2014.
https://doi.org/10.1145/2676726.2676991.

10. Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, and Pietro Abate. Polymorphic functions with
set-theoretic types. Part 2: local type inference and type reconstruction. In Proceedings of the
42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
Castagna et al. [11], pages 289–302. https://doi.org/10.1145/2676726.2676991.

11. Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, and Pietro Abate. Polymorphic functions with
set-theoretic types. Part 2: local type inference and type reconstruction. In Proceedings of
the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’15, pages 289–302, January 2015. https://doi.org/10.1145/2676726.2676991.

12. Giuseppe Castagna, Tommaso Petrucciani, and Kim Nguyen. Set-theoretic types for poly-
morphic variants. In ICFP ’16, 21st ACM SIGPLAN International Conference on Functional
Programming, pages 378–391, September 2016. https://doi.org/10.1145/2951913.2951928.

https://doi.org/10.1006/inco.1995.1086
https://doi.org/10.1145/944705.944711
https://doi.org/10.1145/6041.6042
https://doi.org/10.1006/inco.1994.1013
https://doi.org/10.23638/LMCS-16(1:15)2020
https://doi.org/10.1145/1069774.1069793
https://doi.org/10.1145/3110285
https://doi.org/10.1145/2034773.2034788
https://doi.org/10.1145/2676726.2676991
https://doi.org/10.1145/2676726.2676991
https://doi.org/10.1145/2676726.2676991
https://doi.org/10.1145/2951913.2951928

56 G. Castagna

13. Giuseppe Castagna, Guillaume Duboc, Victor Lanvin, and Jeremy G. Siek. A space-efficient
call-by-value virtual machine for gradual set-theoretic types. In Proceedings of the 31st
Symposium on Implementation and Application of Functional Languages, IFL ’19, New
York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450375627.
https://doi.org/10.1145/3412932.3412940.

14. Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek. Grad-
ual typing: a new perspective. Proc. ACM Program. Lang., 3(POPL), January 2019.
https://doi.org/10.1145/3290329.

15. Giuseppe Castagna, Victor Lanvin, Mickaël Laurent, and Kim Nguyen. Revisiting oc-
currence typing. https://arxiv.org/abs/1907.05590. Unpublished manuscript, mar
2021.

16. Giuseppe Castagna, Mickaël Laurent, Kim Nguyen, and Matthew Lutze. On type-cases,
union elimination, and occurrence-typing. Proc. ACM Program. Lang., 6(POPL), 2022. To
appear.

17. CDuce. The CDuce Compiler. https://www.cduce.org.
18. Avik Chaudhuri, Panagiotis Vekris, Sam Goldman, Marshall Roch, and Gabriel Levi.

Fast and precise type checking for javascript. Proceedings of the ACM on Pro-
gramming Languages, 1(OOPSLA):48:1–48:30, October 2017. ISSN 2475-1421.
https://doi.org/10.1145/3133872.

19. Mariangiola Dezani-Ciancaglini, Alain Frisch, Elio Giovannetti, and Yoko Motohama. The
relevance of semantic subtyping. Electronic Notes in Theoretical Computer Science, 70(1):
88 – 105, 2003. ISSN 1571-0661. https://doi.org/10.1016/S1571-0661(04)80492-4. ITRS
’02, Intersection Types and Related Systems.

20. Stephen Dolan and Alan Mycroft. Polymorphism, subtyping, and type inference in ml-
sub. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Program-
ming Languages, POPL 2017, pages 60–72. ACM, 2017. ISBN 978-1-4503-4660-3.
https://doi.org/10.1145/3009837.3009882.

21. Facebook. Flow. https://flow.org/.
22. Alain Frisch. Théorie, conception et réalisation d’un langage de programmation adapté à

XML. PhD thesis, Université Paris 7 – Denis Diderot, 12 2004. http://www.cduce.org/
papers/frisch_phd.pdf.

23. Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. Semantic Subtyping. In LICS
’02, 17th Annual IEEE Symposium on Logic in Computer Science, pages 137–146. IEEE
Computer Society Press, 2002. https://doi.org/10.1109/LICS.2002.1029823.

24. Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. Semantic subtyp-
ing: dealing set-theoretically with function, union, intersection, and negation
types. Journal of the ACM, 55(4):19:1–19:64, September 2008. ISSN 0004-5411.
https://doi.org/10.1145/1391289.1391293.

25. Ronald Garcia. Calculating threesomes, with blame. In ICFP ’13: Pro-
ceedings of the International Conference on Functional Programming, 2013.
https://doi.org/10.1145/2500365.2500603.

26. Nils Gesbert, Pierre Genevès, and Nabil Layaı̈da. Parametric polymorphism and semantic
subtyping: the logical connection. In Proceedings of the 16th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’11, pages 107–116, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0865-6. https://doi.org/10.1145/2034773.2034789.

27. Nils Gesbert, Pierre Genevès, and Nabil Layaı̈da. A logical approach to deciding seman-
tic subtyping. ACM Transactions on Programming Languages and Systems, 38(1):3, 2015.
https://doi.org/10.1145/2812805.

28. Google. Dart programming language specification. https://dart.dev/guides/

language/spec.

https://doi.org/10.1145/3412932.3412940
https://doi.org/10.1145/3290329
https://arxiv.org/abs/1907.05590
https://www.cduce.org
https://doi.org/10.1145/3133872
https://doi.org/10.1016/S1571-0661(04)80492-4
https://doi.org/10.1145/3009837.3009882
https://flow.org/
http://www.cduce.org/papers/frisch_phd.pdf
http://www.cduce.org/papers/frisch_phd.pdf
https://doi.org/10.1109/LICS.2002.1029823
https://doi.org/10.1145/1391289.1391293
https://doi.org/10.1145/2500365.2500603
https://doi.org/10.1145/2034773.2034789
https://doi.org/10.1145/2812805
https://dart.dev/guides/language/spec
https://dart.dev/guides/language/spec

Programming with union, intersection, and negation types 57

29. Michael Greenberg. The Dynamic Practice and Static Theory of Gradual Typing. In 3rd
Summit on Advances in Programming Languages (SNAPL 2019), volume 136 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 6:1–6:20, 2019. ISBN 978-3-95977-
113-9. https://doi.org/10.4230/LIPIcs.SNAPL.2019.6.

30. Leo J. Guibas and Robert Sedgewick. A dichromatic framework for balanced trees. In 19th
Annual Symposium on Foundations of Computer Science (sfcs 1978), pages 8–21, 1978.
https://doi.org/10.1109/SFCS.1978.3.

31. Robert Harper. Programming Languages: Theory and Practice. Carnegie Mellon Univer-
sity, 2006. Available on the web: http://fpl.cs.depaul.edu/jriely/547/extras/
online.pdf.

32. J. Roger Hindley and Jonathan P. Seldin. Lambda-Calculus and Combinators An Introduc-
tion. Cambridge University Press, 2008.

33. Haruo Hosoya. Regular Expression Types for XML. PhD thesis, The University of Tokyo,
2001.

34. Haruo Hosoya and Benjamin C. Pierce. Regular expression pattern matching for XML.
In POPL ’01, 25th ACM Symposium on Principles of Programming Languages, 2001.
https://doi.org/10.1145/360204.360209.

35. Haruo Hosoya and Benjamin C. Pierce. XDuce: A statically typed XML
processing language. ACM Trans. Internet Techn., 3(2):117–148, 2003.
https://doi.org/10.1145/767193.767195.

36. Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. Regular expres-
sion types for XML. In ICFP ’00, volume 35(9) of SIGPLAN Notices, 2000.
https://doi.org/10.1145/351240.351242.

37. Haruo Hosoya, Alain Frisch, and Giuseppe Castagna. Parametric polymorphism for
XML. ACM Transactions on Programming Languages and Systems, 32(1):1–56, 2009.
https://doi.org/10.1145/1596527.1596529.

38. JetBrains. Kotlin documentation. Available at http://kotlinlang.org/docs/

reference, 2018.
39. Gavin King. The ceylon language specification, version 1.3. Available at https://

ceylon-lang.org/documentation/1.3/spec, 2017.
40. Victor Lanvin. A Semantic Foundation for Gradual Set-Theoretic Types. PhD thesis, Univer-

sité de Paris, November 2021. URL https://tel.archives-ouvertes.fr/tel-?????

???

41. David MacQueen, Gordon Plotkin, and Ravi Sethi. An ideal model for recursive
polymorphic types. Information and Control, 71(1):95–130, 1986. ISSN 0019-9958.
https://doi.org/10.1016/S0019-9958(86)80019-5.

42. Per Martin-Löf. Analytic and Synthetic Judgements in Type Theory, pages 87–99. Springer
Netherlands, Dordrecht, 1994. ISBN 978-94-011-0834-8. https://doi.org/10.1007/978-94-
011-0834-8 5.

43. Microsoft. TypeScript. https://www.typescriptlang.org/.
44. Fabian Muehlboeck and Ross Tate. Empowering union and intersection types with inte-

grated subtyping. Proceedings of the ACM on Programming Languages, 2(OOPSLA):112:1–
112:29, October 2018. ISSN 2475-1421. https://doi.org/10.1145/3276482.

45. Chris Okasaki. Purely Functional Data Structures. Cambridge University Press, 1998.
https://doi.org/10.1017/CBO9780511530104.

46. Chris Okasaki. Red-black trees in a functional setting. J. Funct. Program., 9(4):471–477,
1999.

47. David J. Pearce. Sound and complete flow typing with unions, intersections and negations. In
Verification, Model Checking, and Abstract Interpretation, pages 335–354. Springer, 2013.

https://doi.org/10.4230/LIPIcs.SNAPL.2019.6
https://doi.org/10.1109/SFCS.1978.3
http://fpl.cs.depaul.edu/jriely/547/extras/online.pdf
http://fpl.cs.depaul.edu/jriely/547/extras/online.pdf
https://doi.org/10.1145/360204.360209
https://doi.org/10.1145/767193.767195
https://doi.org/10.1145/351240.351242
https://doi.org/10.1145/1596527.1596529
http://kotlinlang.org/docs/reference
http://kotlinlang.org/docs/reference
https://ceylon-lang.org/documentation/1.3/spec
https://ceylon-lang.org/documentation/1.3/spec
https://tel.archives-ouvertes.fr/tel-????????
https://tel.archives-ouvertes.fr/tel-????????
https://doi.org/10.1016/S0019-9958(86)80019-5
https://doi.org/10.1007/978-94-011-0834-8_5
https://doi.org/10.1007/978-94-011-0834-8_5
https://www.typescriptlang.org/
https://doi.org/10.1145/3276482
https://doi.org/10.1017/CBO9780511530104

58 G. Castagna

48. David J. Pearce and Lindsay Groves. Whiley: a platform for research in software verifica-
tion. In Software Language Engineering, pages 238–248, Cham, 2013. Springer International
Publishing. ISBN 978-3-319-02654-1.

49. Tommaso Petrucciani. Polymorphic Set-Theoretic Types for Functional Languages. PhD
thesis, Joint Ph.D. Thesis, Università di Genova and Université Paris Diderot, March 2019.
URL https://tel.archives-ouvertes.fr/tel-02119930.

50. Benjamin C. Pierce. Types and programming languages. MIT Press, 2002.
51. Benjamin Crawford Pierce. Programming with Intersection Types and Bounded Polymor-

phism. PhD thesis, Carnegie Mellon University, USA, 1992. URL https://www.cis.

upenn.edu/~bcpierce/papers/thesis.pdf.
52. François Pottier and Didier Rémy. The essence of ML type inference, chapter 10, pages

389–489. MIT Press, 2005.
53. John C. Reynolds. Design of the programming language Forsythe. Technical Report CMU-

CS-96-146, Carnegie Mellon University, 1996.
54. John C. Reynolds. Programming Methodology, chapter What do types mean? – From intrin-

sic to extrinsic semantics. Monographs in Computer Science. Springer, 2003.
55. Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing

style. In Proceedings of the 1992 ACM Conference on LISP and Functional Program-
ming, page 288–298, New York, NY, USA, 1992. Association for Computing Machinery.
https://doi.org/10.1145/141471.141563.

56. Jeremy G. Siek and Walid Taha. Gradual typing for functional languages. In Scheme and
Functional Programming Workshop, volume 6, pages 81–92, 2006.

57. Jeremy G. Siek and Manish Vachharajani. Gradual typing with unification-based inference.
Technical Report CU-CS-1039-08, University of Colorado at Boulder, January 2008.

58. Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and Matthias
Felleisen. Is sound gradual typing dead? In Proceedings of the 43rd Annual ACM SIG-
PLAN Symposium on Principles of Programming Languages, POPL ’16, pages 456–468.
ACM, 2016. ISBN 978-1-4503-3549-2. https://doi.org/10.1145/2914770.2837630. URL
http://doi.acm.org/10.1145/2914770.2837630.

59. Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of typed
scheme. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’08, pages 395–406, New York, NY, USA,
2008. ACM. ISBN 978-1-59593-689-9. https://doi.org/10.1145/1328438.1328486. URL
http://doi.acm.org/10.1145/1328438.1328486.

60. Sam Tobin-Hochstadt and Matthias Felleisen. Logical types for untyped languages. In
Proceedings of the 15th ACM SIGPLAN International Conference on Functional Program-
ming, ICFP ’10, pages 117–128, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-
794-3. https://doi.org/10.1145/1863543.1863561. URL http://doi.acm.org/10.1145/

1863543.1863561.
61. Types. What exactly should we call syntax-directed inference rules? Discussion on the Types

mailing list, jun 2019. http://lists.seas.upenn.edu/pipermail/types-list/

2019/002138.html.
62. Philip Wadler and Robert Bruce Findler. Well-typed programs can’t be blamed.

In European Symposium on Programming, ESOP ’09, pages 1–16. Springer, 2009.
https://doi.org/10.1007/978-3-642-00590-9 1.

63. Mitchell Wand. A simple algorithm and proof for type inference. Fundamenta Informaticæ,
10:115–122, 1987. https://doi.org/10.3233/FI-1987-10202.

64. Andrew K. Wright. Simple imperative polymorphism. LISP Symb. Comput., 8(4):343–355,
1995. https://doi.org/10.1007/BF01018828.

https://tel.archives-ouvertes.fr/tel-02119930
https://www.cis.upenn.edu/~bcpierce/papers/thesis.pdf
https://www.cis.upenn.edu/~bcpierce/papers/thesis.pdf
https://doi.org/10.1145/141471.141563
https://doi.org/10.1145/2914770.2837630
http://doi.acm.org/10.1145/2914770.2837630
https://doi.org/10.1145/1328438.1328486
http://doi.acm.org/10.1145/1328438.1328486
https://doi.org/10.1145/1863543.1863561
http://doi.acm.org/10.1145/1863543.1863561
http://doi.acm.org/10.1145/1863543.1863561
http://lists.seas.upenn.edu/pipermail/types-list/2019/002138.html
http://lists.seas.upenn.edu/pipermail/types-list/2019/002138.html
https://doi.org/10.1007/978-3-642-00590-9_1
https://doi.org/10.3233/FI-1987-10202
https://doi.org/10.1007/BF01018828

Programming with union, intersection, and negation types 59

A Core Calculus of CDuce [24]

Syntax

Types t ::= b | t× t | t→ t | t ∨ t | ¬t | 0
Expressions e ::= c | x | λ∧i∈I ti→tix.e | ee | πie | (e,e) | (x=e∈t)?e :e | choice(e,e)
Values v ::= c | x | λ∧i∈Isi→tix.e | (v,v)

Reduction semantics

(λ∧i∈Isi→tix.e)v e{v/x}
πi(v1,v2) vi i = 1,2

choice(e1,e2) ei i = 1,2
(x=v∈t)?e1 :e2 e1{v/x} if v ∈ t
(x=v∈t)?e1 :e2 e2{v/x} if v 6∈ t

where v ∈ t def⇐⇒ typeof(v)∧¬t ≤ 0 with

typeof(c) =def bc

typeof(λ
∧

i∈I si→tix.e) =def ∧
i∈I si→ ti

typeof((v1,v2)) =def typeof(v1)× typeof(v2)

plus the standard context rule implementing a leftmost outermost strategy, namely,
E[e] E[e′] if e e′, where

E ::= [] | Ee | vE | (E,e) | (v,E) | πiE | (x=E∈t)?e :e

Type-system

[CONST]
Γ ` c : bc

[VAR]
Γ ` x : Γ (x)

x ∈ dom(Γ)

[→I]
∀i ∈ I Γ ,x : si ` e : ti
Γ ` λ

∧i∈Isi→tix.e : t ∧ t ′
t = ∧i∈I(si→ ti)
t ′ = ∧ j∈J¬(s′j→ t ′j)
t ∧ t ′ 6' 0

[→E]
Γ ` e1 : t1 Γ ` e2 : t2

Γ ` e1e2 : t1 ◦ t2
t1 ≤ 0→ 1
t2 ≤ dom(t1)

[×I]
Γ ` e1 : t1 Γ ` e2 : t2

Γ ` (e1,e2) : t1× t2
[×Ei]

Γ ` e : t
Γ ` πie : πππ iii(t)

t ≤ 1×1
i = 1,2

[CASE]
Γ ` e : t ′ Γ ,x : t∧t ′ ` e1 : s Γ ,x : ¬t∧t ′ ` e2 : s

Γ ` (x=e∈t)?e1 :e2 : s
[EFQ]

Γ ,x : 0 ` e : t

[CHOICE]
Γ ` e1 : t1 Γ ` e2 : t2
Γ ` choice(e1,e2) : t1∨ t2

	Programming with union, intersection, and negation types

