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Abstract: An exact semi-analytical determination of the radiosity temperatures on the diffusely reflecting surfaces of a square
cavity filled with a non-isothermal absorbing and emitting semi-transparent medium containing a centered reflecting opaque
obstacle is proposed. One develops first the obstacle’s surfaces radiosity temperatures formulation before detailing all the
different possible configurations existing for the cavity’s surfaces radiosity temperatures determination. Thanks to the radiosity
technique, the integrals solutions of the radiative transfer equation are calculated for all listed cases. Then, the numerical
results of the radiosity temperatures are obtained from a Gauss quadrature and an adequate meshing grid, following an iterative
scheme. The effects of different parameters such as the size of the internal obstacle, the emissivities and the absorption

coefficient on the cavity’s radiosity temperatures behavior have also been investigated.

Keywords: Radiosity temperatures, Semi-analytical, Inner obstacle, Diffusely reflecting surfaces,

Radiative transfer, Absorbing-emitting medium

Nomenclature

Bis,, Cis,

(ex ey €;)

H

Altac angular integrated Bickley-Naylor functions

unit vectors of the x, y, z directions

length of the cavity (m)

h length of the obstacle (m)

(i) surface cells numbering

q- incident radiative flux on a surface (Wm™2)

() incoming intensity on a boundary surface (Wm~=2Sr~1)

i outgoing intensity leaving a boundary surface (Wm™2Sr™1)
Ki, Bickley-Naylor functions

N; total number of cells on a cavity’s surface

M number of cells on the length HT_h

p number of cells on the length %

T temperature (K)

TrEN,0.5) cavity’s radiosity temperatures on the eastern, northern, western and southern surfaces (K)

TRc(E,N,O,S)

obstacle’s radiosity temperatures on the four obstacle’s surfaces (K)



X, Y points coordinates

Greek letters and non Latin characters

Ax characteristic cell length along the x direction (m)

Ay characteristic cell length along the y direction (m), with Ay = Ax
€ surface emissivity

p surface reflection factor

absorption coefficient (m™1)

o Stephan-Boltzmann constant (5.67 1078 Wm™2K~%)

@,0 angular description of the unit vector 2

0 unit vector of radiation propagation

20,28, 25, Zg western, norther, eastern and southern boundary surfaces of the cavity
0p,0pN,0F,Og western, norther, eastern and southern boundary surfaces of the obstacle
T, T 0, T'o the three characteristic optical depths

R &0 &N &S characteristic angles associated to the obstacle

ag,as., g, A, ay SOMe characteristic angles associated to the cavity
N contribution of the semi-transparent medium to the radiosity temperatures

Subscripts (superscripts)
E,N,O,S east, north, west and south

I - INTRODUCTION

Closed or open cavities with diffusely reflecting boundary surfaces have been examined since it
has been observed that the presence of radiation incoming from the walls yields to complex interactions
with a convective fluid confined in the cavity [1], when the active boundaries are subjected to conditions
of imposed flux. Bairi et al. [2] by using the radiosity technique, note that in a diode cavity, presence of
radiation incoming from the interfaces strongly affects the natural convection in a non-participating
medium, and may reduce it substantially for particular edge angles. The case of participating semi-
transparent media confined in cartesian closed cavities has been examined for several decades: Tan and
Howell [3] studied the influence of radiation combined to convection in an active fluid inside a square
cavity by discretising the exact equations of the radiative transfer. Cartesian geometries are mostly
studied with discrete ordinates methods (DOM), Monte-Carlo or ray tracing methods to take into account
the directional nature of radiation [4-6], often combined with finite volumes methods (FVM) to deal with
the space discretisation. Han and Baek [7] used the FVM for solving the radiative transfer equation to
look at the influence of radiation combined to convection in a rectangular cavity with radiant surfaces,
and observed that radiation plays a significant role in developing the fluid dynamic. The DOM is suitable
and easily implementable in the case of diffusely reflecting surfaces in rectangular types cavities
discretized with regular structured grids, and significant improvements have been brought to this
technique by removing partially the ray effects. Mishra et al. [8] proposed an improved DOM by
choosing the quadrature angles and weights leading to accurate results, which partially removes the ray
effects. The DOM has also been extended to spherical geometries and used for analysing radiative
transfer in cavities with specularly reflecting walls. Li et al. [9] combined a conventional DOM and a



Chebyshev polynomial expansion for the space dependence in the treatment of the radiative transfer
equation (RTE) to deal with the combined conduction-radiation transfer inside a spherical participating
medium in a spherical annulus, and managed to obtain accurate results for the total heat flux compared to
an exact method, especially for moderately or highly absorbing media. Le Hardy et al. examined an
original way to discretize the specular boundary conditions by calculating a partition ratio coefficients for
the reflected solid angles combined with an adequate weak formulation in the frame of the DOM [10].
However, such techniques suffer from a lack of accuracy when dealing with internal media of small
absorption coefficients, or as soon as the geometry is more complex. Meshless-like methods have also
been developed to take into account radiation in closed cavities of complex shapes bounded by diffusely
reflecting surfaces to evaluate the radiative field by applying a specific treatment to the space derivation
operator of the radiative transfer equation [11], which produces accurate results in media of moderate to
strong absorption coefficients [12]. Semi-analytical methods have been proposed to deal with pure
radiation inside cavities of complex non-rectangular shapes, to avoid false diffusion and ray effects of the
DOM and deal with weakly absorbing media, either with or without reflecting walls [13-14], or both
conduction and radiation [15]. The elegant class of semi-analytical methods belongs to the alternative
works proposed by Altac et al. [16] who extended the pioneering study of Crosbie et al. [17] by
introducing a set of special analytical functions, which produces highly accurate values of the incident
radiation and radiative flux inside a scattering absorbing medium bounded by a two-dimensional cavity
with cold surfaces. This partially analytical method is particularly appropriate to obtain the radiative field
in complex geometries with reflecting surfaces, the analytical part being not limited to geometries of
regular shapes. It has been successfully applied to cylindrical and spherical annuli with diffuse or specular
reflector surfaces [18].

Although several complex geometries have been numerically studied with various techniques such
as meshless methods [12] when radiation holds in the cavity, the case of solid obstacles inside a closed
cavity with a radiant medium has not enhanced an abundant literature. Conductive and/or convective heat
transfer inside closed cavities with internal obstacles has been investigated without radiation: Ul Haq et
al. [19] studied the heat transfer inside a liquid through a triangular cavity with a heated cylindrical
obstacle. Mezrhab et al. [20] used the FVM to discuss the influence of radiant surfaces on the convection
through a transparent medium inside a square cavity with an inner centered square obstacle. The influence
of a participating radiant medium has been studied by Coelho et al. [21] who examined the radiative
transfer in a rectangular cavity with one-dimensional of zero thickness obstacles of finite length, and
compared the zones method, discrete transfer and DOM techniques efficiency in the calculation of the
heat fluxes on the cavity’s walls. Sakami et al. [22] used a modified DOM to analyse the radiative transfer
inside cavities of various shapes meshed by structured grids and containing an inner opaque black square
obstacle, to calculate the radiative flux on the walls of the cavity when the internal semi-transparent
medium is isothermal. Wang and Liu [23] applied a Galerkin finite elements method to solve the RTE in
a two-dimensional cavity with internal obstacles for unstructured grids to avoid the strong ray effects. In
the previous works, although the semi-transparent medium is both emitting-absorbing and scattering, it is
generally isothermal at an imposed constant temperature and no real heat transfer occurs, the main
problem being in the effective resolution of the RTE and applying it to the flux calculation. We recently
examined the case of a centred square opaque obstacle inside a square cavity containing an emitting-
absorbing medium at radiative equilibrium by using an exact analytical method [24] which proved its
robustness, both at radiative equilibrium and in situation of radiation/conduction coupling [25]. Although
quite complex to implement due to difficult calculations, it is to our best knowledge the only one method

which efficiently points out the major rule of the ratio % in the radiative behaviour of the whole device
and produces smooth accurate results for the different values of the previous ratio.



Up to now, a very few literature survey is available on the case of a reflecting surfaces obstacle
surrounded by a semi-transparent emitting-absorbing medium contained inside a cavity with reflecting
surfaces. The case of a centred spherical obstacle inside a spherical cavity [18] has strongly put in
evidence that reflecting surfaces could severely affect the radiative field inside the medium, and it is
highly probable that such a conclusion may arise inside a complex device of a reflecting square obstacle
inside a reflecting cavity. Due to the major difficulty of treating the radiative transfer in reflecting cavities
of complex non-cartesian shapes, as pointed out in [14], we shall hereafter limit our investigations first to
the determination of the radiosity temperatures on both the obstacle and cavity surfaces when all the
surfaces of the global device are purely diffusely reflectors. To our best knowledge, no study is available
concerning the radiative behaviour of a semi-transparent medium enclosed in a rectangular cavity with
reflecting surfaces and a rectangular opaque and reflecting obstacle inside the cavity: then our work is
new from a radiative point of view. The radiosity temperatures are nevertheless a good indicator of the
global radiative behaviour of the internal medium since they act like non-isothermal black surfaces.

The paper is organized as follows: in section Il we develop the exact expressions of the local
radiosity temperatures on the reflecting/emitting boundary surfaces, different from the real temperatures
due to the presence of diffuse reflection. In section 111 we explain the angular and spatial discretisation of
the useful integrals. Finally we present some numerical applications in section IV and end the work by a
short conclusion.

Il - PHYSICAL AND MATHEMATICAL MODELLING

One examines a two-dimensional square cavity with an internal non participating square opaque obstacle
at a centered position, as described in Fig. 1. The cavity is filled with a non-isothermal absorbing-emitting
gray semi-transparent medium characterized by its absorption coefficient k. The boundary surfaces of the
cavity and of the internal obstacle are opaque and diffusely reflecting, at imposed temperatures.

11-1. Geometry
The square section is divided into isothermal cells of depth Ax including 5 zero depth point cells on each
H—-h H H+h
2’27 2
determination of the radiosity temperatures, but where the radiosity temperatures can be determined as
soon as the temperatures in the non-zero depth cells have been calculated.

surface of the cavity and the obstacle at xE{O, ,H} which do not interfere in the
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Figure 1: Description of the cavity’s geometry and the discrete system

The coordinates of any calculation point are given following a numerical sequence defined by:



*x]_:O

*x. = (k= 3) ax 2<k<M-1
*xM=(M—2)Ax=H—_h
*xM_1+k=xM+(k—§)Ax 2<k<P-1
*yapr = (M+P—Hhx =3 (E)
* Xppep-zek = Xoep-1 + (k= 3) Ax 2<k<P-1
H+h

*Xpyizp—2 = (M + 2P — 6)Ax =

* Xm+2p—-3+k = Xm+2p—2 T+ (k - E) Ax 2<k<M-1
* x2M+2P_3 = Z(M + P - 4‘)Ax = H

The scheme generates a regular grid containing in each direction N, = 2M + 2P — 3 cells, five of which
being punctual (x1, Xy, Xp4+p—1, Xp4+2p—2 aNd Xop42p—3), the cell xy,.p_4 in the centre of a boundary

surface, with 2(M — 2) internal cells in the phyS|caI domain ]0 [ ]H+h H[ and 2(P — 2) internal

cells (centre excluded) in the domain ] — [ each point M;; centred in the square cell labelled (i, j)

of size AxAy = Ax? being defined as M;; xi,yj), with:

Gi,)) € {L,M}x{1,2M +2P =3}U{M + 1,M + 2P — 3} x {1, M} U {M + 1,M + 2P — 3}
X{M+2P—22M+2P —3}U{M +2P —22M + 2P — 3} X {1,2M + 2P — 3}

11-2. Definition and determination of the radiosity temperatures at the boundary surfaces
The incident radiative flux on a surface writes:

¢ = f 1-(@)|2nlde o)
on<o

where I (£2) stands for the radiative incoming intensity on the boundary surface and n its inward unit
normal vector. When the boundary is diffusely reflecting, the outgoing radiative intensity I~ leaving the
surface is deduced from the diffuse reflexion law:

oTy
P =g, 222 [ 1@)|enjda )
n n Nn<o

where gy, and py, are the emissivity and the reflexion factor of the boundary wall, with p,, = 1 — &,.
The incoming radiative intensity /() on a boundary surface for a given direction £ results from the
whole radiant contribution of the surrounding emitting-absorbing semi-transparent medium and the
proper contribution of the other system’s surfaces. The contributing intensity of the surrounding medium
is obtained by solving the radiative transfer equation (RTE), here written for a gray non-scattering non-
isothermal medium:

% (5. 2) + k(5. 2) = 1 (5) 3)



where the differential term stands for %(s, ) =02 -grad[i(s,2)], the dot noting the usual scalar

product and s the local curvilinear abscissa. Under this one-dimensional differential form, the solution of
(3) is immediately given by:

ko (5f
I1(s,2) = I(sf,.ﬂ)e"K(Sf"S) + ?j T4(s")e ¥~ (s’ (4)
s'=s

This fundamental expression will be rewritten under an adequate form depending on the geometry, which
shall be detailed in the next subsection.

Since each surface is perfectly diffusely reflecting, the outgoing intensity does not depend on the
outgoing direction, which defines a radiosity temperature T as:

oTy = gyoT + pwf 17(2)]|2n|dQ (5)
Mn<0

11-2.1: Exact expressions of the obstacle’s surfaces radiosity temperatures

We shall now develop the whole calculation for the eastern surface o of the internal obstacle. To
k(H-h)

simplify the notations, we introduce the three fundamental optical depths as 7, = and 'y = kH,
Wlth TIO —Tg = K(H;'h) = Tuo.

. . H+h H-h
For a given point M, (TT

environment is obtained from:

~ H+h . . .- . .
<V < —) on oy, the incoming radiative flux from its surrounding
2

[ reneolcosols
cos <0

§E 2m—¢g
=f 7 cos<pd(p+f I7(Zy) cos<pd<p+f 17 (Zg) cosp do (6)
=0 o= =0

27T
+] I7(Zg)cospde
p=2m—$g

cos @ sin 6
since the propagation angle 2 writes 2 = | sin ¢ sin 9) in the natural basis (e,, ey, e;).
cos 6

2(H—J7k)]’

In the previous expression (6) the limiting two angles &7 and & are defined by & = tan™?! [ P

¢z =tan™? (;L:’;L) and I (og, 0, @) represents the incident radiation on oy, the I~ being the outgoing

intensities from a surface cavity up to the point M.

The intensity 17 (Z#) incoming from the upper eastern surface of the cavity to the eastern obstacle’
surface for any direction in the figure’s plane is deduced from Eq. (4) in the general case of a non-
isothermal medium:

o -
I7(2§) = ngE(T; +Tptang)e oS¢

o T/ _Ta—T"g (7
f Tz}, + (W —1"y) tanple cos¢ dr;f

mCoS P Jrt_pn,



du
cos @

where 4 represents the coordinate along the axis e,, any point in the plane (ex, ey) on the line 2 between

since for a straight line in the direction £, the differential element ds of Eq. (4) is given by ds =

o and the surface X} being characterised by its local coordinates i and ¥, + (ﬁ — HTM) tan ¢. The local
optical depth of Eq. (7) are noted 7} = k¥, and 7} = ki, whence t} — (/¢ — 79) = 7o — T;; Where
T, =k(H—-0)=1"g—1)}

In the previous expression, Txy is the radiosity temperature of the cavity’s eastern boundary surface,
depending on the space location on the surface. Taking into account all the propagation directions not
only located in the figure’s plane leads to the integrated intensity expressed by, with the Ki,, Bickley-
Naylor functions [26]:

5 o . To
rEH = ;T,?E(T,;* + 7o tan @)Kis (cos <p)

(8)

7 fﬂo T}, o8 + (tf — t"y) tan @]Ki (TO TE) dr
TCOSQ Jrtop, w Tk u 0 AN Y) cos @ u

Similarly, noting 7, = k(H — ¥}), the contributing part of the cavity’s northern boundary surfaces leads
to the following expression:

o a L A T
"y = ETI?N (T ot tan (p) Kis (sin (p)

o /o ot — o+ — ot 9
+ — f T4<T"0+ s k,r{{)Ki2<u_ k dr;}
7 sin @ + tan ¢ sin @

+_
T =Ty

whence it comes for the southern boundary surface’s contribution:

(g = 218 (1 + — ) ki, (2
s) = s\ To [tan ¢| fa |sin ¢|

o w Ty — Tg Ty —Tj (10)
+ — f T4(‘t"0+ L k,f{{)Kiz(u, k)dr{[
m|sin ¢| =0 |tan @] |sin @]
Finally, the lower eastern surface of the cavity’s contribution is deduced from (9):
o T
I°(25) = = Tap (i — 1ot K'( ")
(ZE) - re (T — To tan @)Kis cos
Tl - (11)

o _ . (To— Ty
+ T4}, tf — (zg — 1) tan @]Ki ( )dr+
ncoscpjr;ﬂ-.O frd i = (1 = e tan JKy (St ar

From which the global expression of the eastern surface of the obstacle radiosity temperature writes:



H[Tlgcg(yk) EO'ET4 ]
2.065

§F e To
T tan @)Ki ( ) d
f:o re(Tx + Totan @)Ki; cos @ cospagp

1)
LA
2

T Ty
T4(" k)K'(k) d 12
+ pmtt RN T0+tan<p l3 sin @ cospae (12)

L i o
T, " — | Ki3 | —— d
+ ¢=3Tn RS (T ot |tan<p|> I3 <|sin<p|) cos@ae

2T TO
+ J. Treg(ti¥ — 1o tan @)Kis (
p=2m—E; oS

(,0> cospdp + ks,

where the global internal contribution X, due to the non-isothermal emitting-absorbing semi-transparent
medium itself is expressed by:

X —jEE jrlo T4}, 7 + ( ~) tan @] Ki (T"_T;)d td

+_
Tyu=

T/g T+ _ ,l-+ T+ — ,l.+ d
+J f T4<T"0+ = k,ﬁ)Ki2<u_ k)dr{{ ¢
o=ct Jet=ct tan ¢ sin ¢ tan @

2n—8p Tk T, — T, T, — T, d
J T4 TO u—k,ﬁ)Klz< u_ k)d’l-; (p
0=3F i |tan ¢| |sin ¢| |tan ¢|

I
J

INJEER N

(13)

27

+

To — Ty
[ r s o~ lan ik () art dg
p=2n—§g Jti=1"g cos o

Applying the variable changes ¢ < %— @ for the northern contribution, ¢ < ¢ — 37" for the southern one

and ¢ & 2w — ¢ for the lower part of the eastern cavity’s surface leads to:

n[TgGE(j;k) SO'ET4 ]

ZpGE
f& 4 o T
= Trp (T + 7o tan <p)Ki3( >cos<pd<p
9=0 cos ¢
$E 4t o
[ et — gk (2 eos
-[pzo re(Tk — To tan @) Kis cos ¢ cosp ag (14)

7 -
+ j Ty (T + T tan @) Kis ( ) sing do
9=0 cos ¢

+

ES Tk
+ f Trs(T"o + T4 tan @)Kis
9=0 cos

go) sinpde + k¥,

where the angles &y and &5 write é§ = tan™? [Z(Z_; )] = ; —é&Fand € =tan™? (th) =-—¢&.
-y .

Note that in a square cavity, y, = X, and we shall hereafter also note ¢ =tan™?! [2(5—_;“")] and
equivalently for the three other angles ¢z, &y and &J. Similarly the internal contribution X, writes:



3 o
f T*(z} + 1"y, T4 + 7} tan @)Ki, < > do
p=0 cos @

To
KNG, = f+
T3,=0

& ot
+ J. T*(t} + 1"y, 14 — 7 tan @)Ki, ( Z ) d(p} dr;}
p=0 cos

- e (15)
Tk N Tt
+J. f T*(z"y + 1 tan<p,r,?+‘r{{)1(i2< = )tancpdcp dr;}
74=079=0 cos o
T (8 o
+f f T*(z"y + 1} tang, 1, —T,:)Ki2< )tampd(p dr;
tr=0J9p=0 cos @

For isothermal media, the constant internal temperature T can be dropped from the integrals, leading to:

KR, T

T+ 3 Bis3(to,¢g) — Biss (7o, §g) — Cisz(ty, &5) — Ciss(tyf, &5) (16)

where the functions Bis; and Ciss [27] are defined by Bis,, (x,0) = f;zo Ki, (T) (cos )" 2d¢ and

X

s
Cis,(x,0) = f;=o Ki, (ﬁ) (cos @)™ 3sin g do.
The three other radiosity temperatures on the obstacle’s surfaces are obtained from formal substitutions
X & H — x for the western one, y < X for the northern one and y < H — y for the southern one from the
northern contribution, leading to similar expressions which are reported in the Annex 1.
When the obstacle’s surfaces radiosity temperatures are obtained, it is possible to determine the cavity’s
surfaces radiosity temperatures in a similar way, which is the aim of the subsection.

11-2.2: Exact expressions of the cavity’s surfaces radiosity temperatures

As for the obstacle, we pay attention to the eastern cavity’s surface radiosity temperature
determination. Let us name Pyq, Pyg, Psg and Psq the four obstacle’s edge points and define a calculation
point M, characterized by its ordinate y,.

We shall examine first points for which ¥, < HT_h as illustrated in Fig. 2:

My (NE)
R(NE)

Ix(NE)

Fu(50) P

=

M,(50))

$x(50)

@:5 = V5 —2and I < 9y < 55 () G < VE—2and 0 < 5, < 2

or(%>x/§—2and0§37kSHT_h)

. . ) e " H-h
Figure 2: Determination of the eastern cavity’s surface radiosity temperature when 9y, < 5



The point M, (S0) always located both on the western cavity’s surface X, and on the straight line passing
(H=h)(H=Yx)

H+h
Similarly, the abscissa of the point M, (NE) on X, and belonging to the straight line (Pyg, My ) is defined

R 2hH-(H+h)9
by 2, (NE) = szkk

through the two points Psy and M, is characterized by its ordinate 9, (S0) =

which may be negative if y, > % case implying that the point M, (NE)
cannot be on the northern surface but always on the western one. The simultaneous condition y, < HT_h
leads to% <+V5-2.

Then if & < V5 — 2 and 22= < §, < =", the point M, (NE) belongs to Zo with 9, (NE) = {000

whence the calculation point M; sees the whole northern cavity’s surface, the total southern cavity’s

surface and a small piece of the X, delimited on the segment y € [0, (H_'zi};_y")] U [(H”:(jl_y") , H].
In this case, the local eastern radiosity temperature writes:
oTrz(Px) — ego Ty
2pg
% n-a} n-ak,
"], n@plosplde+ [ 15@.9)lcos plde
6=0 /o= p=n-a}
T—Qsp n—agl (17)
w7 @eoselder [ 150.0cosgldo
n+ag 37”
+ f 12(6,9)|cos p|de + f 1(6,p)|cos p|dg|sin?6d6
p=n—-a}, p=m+agy

where the Iy 5 54,0, are the leaving intensities from the considered surfaces, taking into account the
internal contribution up to the calculation point M,,.

The different angles in the integrals of (17) are defined by a} = tan™?! (%) af, =tan™! (%)
ag, = tan™! (%__iy"), ab; =tan™? (%;iyk) and a5 = tan™? (%)

For a propagation direction (6, ¢) such that ¢ € En —a} ] the intensity leaving the northern cavity’s

boundary and arriving at M, writes, with ay = g —a} =tan™?! (H Hﬁ ):
—Jk

o T T
I+—’Mk 9, — _T4 (T' _ k )e sin¢ sinf
N ( (p) T RN 0 Itanqol

o /g T+ — T; -1 (18)

u T T
++f T*| 7'y — , Ty | e sinesinfqgh
7 sin ¢ sin 6 ch=tt |tan ¢|

Integrating on the whole surface by applying the variable change & = ¢ —g leads to:



T n-a}
2[, Heolcospldy
@
af Ty
= f Tay(t'o — 75 tan&)e cos&sind sin & d& (19)
f_
+

+

=0

1 ay rt'o __ti-t}

sin@f f+ T*[t'o — (v —tg)tang, r;f]e cos¢sinftan{ didry
§=0 Ty =9k

Integrating over the 6 range by using the special functions Ki,, writes for the northern contribution:

T 7 71'—(13
—J. J. - I3 (0, @)|cos @|de sin*0d6

0 Jg=o o=
a,"\', T}:
= f Tan (7’0 — T tan @)Kis ( ) sin g dg (20)
o=0 cos @
at 1o o — T;
+f T4[T'0—(T,j—T,J{)tanq),T;:]Ki2< - >d1’fjtan<pd<p
o=0Jt}t=1} cos ¢

Performing identical calculations for the other contributions leads to, when noting a, = tan™! (%)

+ _T + -1 (_Hth .
) and ag, = S~ Qo1 = tan (H—h—Z)?k :

af =Z—a; =tan’? (E) a5, = Z_ ag, = tan™" (
Ik

+ ——
S T2 D 2 H—h=29}
- Contribution incoming from the western cavity’s surface:

7 n—az;E 7 n+ag
j j 13(8, p)|cos ¢|dg sin?6d6 + f f 12(6, p)|cos @|dg sin?6do
6 =0Yp=n-ag,

=0 (p:ﬂj—ag 0

o

T

fag T (tif + 7', tan @)Ki T d
RO Tk Toltan I3 cos @ cospde

—t
¢_aGE

'

+ Ta (7 + 7ot Ki d
ro(Tx +T'ptan ) 13<COS¢>C05§0 @

+
01
0
5 !

To

d
+ S(p)cosqo @

(21)

fa
¢=

[04
J Tao (1} — 7'y tan @)Kis <
0=0 co

o
+ —
T

(Xg T/o T_
f f T*(z, T4 + 15 tan @)Ki, ( - >d‘c;{ do
p=ai. Jti=0 cos @

agl /o Tu
+ J j T*(zt, tf + 15 tan @)Ki, ( )drf{ do
p=0 Jri=o cos @

0_’6 T/o T_
+ f f T*(zt, 14 — 15 tan @)Ki, ( - >dr{{ do
0=0J7t=0 cos ¢

- Contribution incoming from the southern cavity’s surface:



T 3
2

i 2
—J- j 1 (6, p)|cos @|de sin*6d6
0 Jo=0 p=rta,

= ; | 4 T — an k n (22)
! T, t @ Ki i Q@ d(p
f 0 RS( 0 k ) l3 (C S ) S1

+ + _
ot ar.t - - 1 (Fu ” Tk +
+ T*[t'y — (t; — t¢) tan @, 7, |1Ki, dt tan@ de
(p:O ‘[;:O (p

COoS

- Contribution incoming from the eastern obstacle’s surface:

T (2 [T %k -

—f f I5.(6,¢)|cos |de sin*6d6
0 Jo=0 p=n-ag,_

ag‘;E T’:

= TRsp(Th + T tan @)Kis (cos

p=ag,

cos @ do (23)
)

a;E T/o T“I
+ f f T*(z, T4 + 15 tan @)Ki, ( ) dt} do
pmazy Vet cos ¢

- Contribution incoming from the southern obstacle’s surface:

[z (%0 _
Ef f I1£.(6, p)|cos p|de sin*6do

0=0""p=n—as,
os , C(to— TR
= [ Tl - - D an ki sin ¢ dgp (24)
oz cos @
os
ad T + +
os 0 Ty — T
+j ] T4[T'0—(T{{—T,}L)tango,TJ]KQ( “ k)dr{ftanqod(p
(p:ags 1;{2:1;,1’ Cos @

. . . . N h
whence it comes for the eastern cavity’s surface temperature radiosity at the point My (9y,) if oS V5 -2

2RH _ . _ H-h
and o <k ==



7T[T1§E (37k) - EETg]

2pg
a,'{', TI;
= f Tan (T — T tan @)Kis ( ) sin @ do
9=0 cos ¢
ad 7,
+f Tro(Td +Totan<p)K13< )cosgod(p
p=agy cos
ad,
+ Tro (T + 7'y tan @)K < ) cos @ dg
- (25)
+f Tro (Ti —Totan<p)K13< )cosq)d(p
¢=0
af
+f Trs(t'y — T tan <p)Ki3< )smq)d(p
(p 0
+ j Ty (Ti + 7o tan @)Kis ( ) cos @ do
p=az cos @
OF
+] T4 (r0 — ) tan 91K (2% ) sin g dep + e
pmcs, RosT To — 7)) tan @]Kis | —— " sinp do + kXg

where the internal contribution X is expressed by, in the general case of an non-isothermal medium:

ay VI
KN g _f f — (tf =) tang, tf1Ki, 059 dt} tan g do

o o o
+ f f T*(z}, 1} + 1 tan @)Ki, ( - )dr{{ do
o=at Jo cos @

- +_
=agp u=0

(24531 T/o ,l.l:
+ j j T*(zf, 18 + 15 tan @)Ki, (
=0 cos

(p) dr} do

[245) T/o ,l.lI
+ j T*(z, 14 — 14 tan @)Ki, ( ) dt} do (26)
0=0Jrt=0 cos @
o [Tk Ty — Tk
+ j Ty — (13 —T,z)tango,T{{]Kiz( )dr;j tan @ do
0=0Jrt=0 cos @
agy Tl -
+ f T*(z, T4 + 14 tan @)Ki, ( “ ) dr} do
p=ag, 'Ti=1" cos g
as To + _ o+
s -1
+ f T4[T’0—(T,‘:—T,}L)tanq),T{{]Kl’z( = k)dr;jtancpdgo
p=ag, th=tf Cos @

For a constant internal temperature T, the kX function writes:

KXp T . . . . _ .
=5 Bis;(t'g, af) + Bis, (T’O, a(’;E) — Bis;(t'y, ap,) — Bisz(t'g, ap) — BlS3(TO, a;E)

+ Biss (1o, a5, ) — Ciss (i, ay) — Ciss(tf, ad) — Ciss(to — 77, ad, (27)

+ Ciss(to — 7, ag;)



When the whole cavity’s northern surface is not completely seen by the observation point My (), which
arrives for (% <+vV5—-2and0 <, < %) or (% >+5—-2and 0 < §, < HT_h), the radiosity temperature

P : ‘o + _T_ 4+ _ -1 (_H-h )
similarly writes, after defining the angle ay, = S~ (g = tan (H+h_2yk :

7T[TI§E (yk) - fETg]

20
N1 T]:
= f Ten(T'o — T tan @) Kis ( ) sing do
=0 cos @
+
ao1 TIO
+ f Tao (T} + 7'y tan @)Kis < ) cos @ dg
=0 cos @
%o 4 [+ ™o
+ T -1yt Ki d
f(p=0 ro (T — T'otan¢) l3<cos(p>C05<P 4 (28)
as .
+ ] Tgs(T'o — Tf tan @)Kis < « ) sing do
©=0 cos @
a+
°E 4 + , To
+ Trop (Tk + To tan @)Kiz cos @ de
p=ag, 0s
agg 4
+ Tasslt'o — (To — 74) tan @] Kis < 20 ) sing dg + kXg
p=dsg

where the general function X is given by:

“IJ\ru Tlo Tt ‘[;
KNE:f f T4[r’0—(T,j—T,j)tan(p,T,j]Ki2< = )dr;ttampd(p
p=0 Jrf=1f cos ¢

0-’81 Tlo Ty
+ f f T*(z, T4 + 15 tan @)Ki, ( >dT$ do
0=0 Jet=0 cos ¢

ag Tl . . . T,
+ f 3 -L’;:oT (t4, T4 — T4 tan @)Ki, (cos (p) dr;r do

¢
af T Ty — Tk (29)
+f f T4[T’0—(T,j—T,;)tan(p,Tf[]Ki2< >dt$tan<pd<p
0=0Jzt=0 cos @
agy T/ T
+ j j T*(zt, 14 + 15 tan @)Ki, ( ) dt} do
p=az, t=r' cos
as o + _ o+
s -1
+ T4[T'0—(T{{—T,}L)tango,TJ]KQ( = k)drf{tan(pd(p
(p:aES ‘[,:;:‘[;: Cos @
which for isothermal media reduces to:
KR T . P . P , T , _ . _ 4
=5 Biss(t'y, ap1) — Bis;(t'g, ap) — Biss (TO, aGE) + Bis; (TO, aGE) — Cis; (T, an1) (30)

— Ciss(tjf, ad) — Ciss(to — 17, ad,) + Ciss(to — 74, a5

Let us now examine points for which HT_h <P, < g as illustrated in Fig. 3:



M (NE)

% (VE)

$x(NE)

H 5
Ik

94(SE) Bo

Psp

h 2hH A H 2hH
<V5-2o0r(z>V5-2and—— < §, <) —>\/_ 2and—<yksH+h

My (NE)
2(NE)

TS

My (NE)
2(NE)

Pso
b3
H-h H-—h
My(SE) [5,.(SE) 2 2
R(SE)

Note that if E < \/3 — 2, the point M (NE) is always located on X,, while if ﬁ > \/§ — 2, this point

belongs to ZN for 222 < Vi < ——. Furthermore, if Zh—H <—, or equwalently < -, then the pomt

M, (NE) is on the western surface |f m <P < ;, Whlle it is always on the northern surface for ; > 5,

which is depicted in Fig. 3
The straight line passing through the two points M, and Psg cuts the cavity’s southern surface at the point

M, (SE) of abscissa x = yk(z;h)_Hlf:_h) , whence one deduces from this result that M, (SE) is on X if
=

Vi > Hgi M with 2= < Vi < g which implies 2> 1.
The cases (; > \/_— 2 and HT_hgfzk <2h—H) and (— = and —< Ve < H(H h)) lead to identical

expressions of the radiosity temperature. Finally, the three different cases for pornts M, located on the
partial segment HT_h < P < % of s are summed up hereafter:
2hH

. (%g\/E—ZandHT"‘gyksg)or(%>\/§—2andmsyks

Nz

)I



n[TlgE (57k) - EETg]

2pg
ot -
= J. Tan(T'o — T tan @)Kis ( ) sin @ do
=0 cos @
af 7,
+ f Tgo (Th + 7' tan @)Kis ( > cosp do
p=ag, cos @
aa T’O
+ f Ta, (tif — 7' tan @)Kis cos @ do (31)
a}' TI-:
+ f Trs(t'o — T tan @) Kis < > sing do
®=0 oS @
as
s + . To
+ f<p=o Trop (Tk + To tan @)Kis (COS <p) cos@ de
o 4 + . To
+ o Trop (Tk — To tan @)Kz (cos <p) cosp dy + kX

where this time the angle a;_ is a5, = tan™! (W—HM) and the function X writes:

H—-h
ay [T + _ -+
ar. 1 + + 1 [ Fu T Tk +
KNRp = T*[t'y — (rf — 7)) tan @, 7/ |Ki, dt, tang do
p=0J1f =1} cos ¢
@ [ . N ( Ta
+ f f T*(t, 1 + 15 tan @)Ki, ( )dr{{ do
p=agy ;=0 cos @
+ T*(z, 1 — 14 tan @)Ki, dt, do
p=asp 73=0 cos ¢ (32)
< (T 41t -~ - e (e " Tk +
+f f T [TO—(Tu—Tk)tan(p,Tu]Klz< >dtutan<pd<p
0=0Jrt=0 cos ¢
agy (7o -
+ f T*(z, T4 + 15 tan @)Ki, ( ) dt} do
=0 Jri=1"g
(XEE T/o T-‘I
+ f f T*(t, T4 — 15 tan @)Ki, ( ) dt} do
¢=0 T+=T"0 Ccos (p
which for isothermal media leads to:
KNE _ T . ’ + . / + . ’ — . / — . +
Tr =37 Biss(t'y, @) + Biss (7o, aGE) — Biss (7', ap) + Biss (7', aGE) — Biss(7o, a(,E) (33)
— Biss(to, a5,) — Ciss (i, ay) — Ciss(tf, ad)
o1 H-h _ . _ 2hH 1 H-h _ . _ H(H-h)
. (\/3—2s;<§andTSykSH—M)or(EzgandTSyksH—Hl),



n[TlgE ()A’k) - EETg]

2pg
aNl 4 Vi —_ . T’: .
= Ten(t'y — T tan @)Ki, sinp do
9=0 cos ¢
“o 4 + ’ . TIO
+ Tro(th — T'ptan @)Kis “osq ) €059 do
v= o Y (34)
aS 4 ! + . T; .
+ Trs(t'o — 75 tan @) Kis sing do
9=0 cos ¢
+faGET4 (T + 14t )K'(TO) d
oo rop (T + To tan @)Kiz (— " cospdo
Qg T
+ f Tasp (Th — To tan @)Ki; ( 0 ) cos @ do + kRg
9=0 cos ¢
where similarly the general internal contribution writes:
(2951 T/g T‘l-,'L— — T]‘("
KR g :f f T*'y — (tf — 1) tan @, t}]Ki, dt tanp do
p=0 Jri=1f cos @
+ T*(z, 1 — 14 tan @)Ki, dt, do
p=agz,. Jt5=0 cos @
L Ty — T
+f f T4[T'0—(T,j—T,;)tango,T{{]Ki2< “ k)dr;ttangodq) (35)
0=0Jrt=0 cos ¢
agy T T
+ f f T*(t#, T} + 7 tan @)Ki, ( ) dr} do
p=0 Jrt=1"g cos @
aEE o 4 + + _ . T‘l: +
+ T*(t), 15 — 1, tan @)Ki, dt, do
p=0 Jtt=1", cosg

which for isothermal media simplifies into:

KRp T , , _ . , _ . . _ , _
= =5" Biss(t'y, ap) + Bisg (T 0 aGE) — Bis; (To, a:;E) - BlS3(T0, aGE) — Cis3 (15, apy) (36)

— Ciss(tf, ad)

- - - + _ E_ - _ -1 H—h )
and finally, when introducing the angle as5; = > — a5, = tan (zyk-mh
H(H-h) H

h 1 "
° - > = < < —
H—3and Hin =Yk =7




n[TlgE (37k) - EETg]

2pg
altll ‘[’:
= J. Tay (T — T tan @)Kis ( ) sinp do
=0 cos ¢
2 . N Tl-:
+ Trs(t'o — T t Ki inpd
rs(T'o — T tan @)Kiz <cos<p> smme ag (37)

Tsp (Th + 7o tan @)Ki; ( cos @ dg

cos de + kXg

=
)

agE
+ Ta  (t} — 1o tan @)Ki (
RGE( k 0 @)Kis cos @

where the global internal contribution writes:

an1 (Tlo TJ —T;
KNE:f f T4[T’0—(T;—T;)tan(p,TJ]KQ( o5 >dr{{tan<pd<p
- 4

(p:O ;:T;:

st Ar L . (Tu — Tk
+.f f T*[t'y — (14 —Tk)tan(p,TJ]KQ( o5 o )drfjtancpdcp

(38)
-
j j T*(z}, T} + 1 tan @)Ki, ( - )dr{{ do
0=0 Jri=r, Cos ¢
agE T/ TL_L
+ f f T*(z, T4 — 15 tan @)Ki, ( >dru do
p=0 Jtt=1", cosg
In this latter case, the isothermal medium contribution xX; reduces to:
KNE _ T[ . + . —_ . f— + . + + 39
poab Biss(to, ad,) — Biss(to, ag5,) — Ciss(ti, afy) — Ciss(tjf, ady) (39)

For points M, on the upper part of the eastern surface with y, > g one performs the formal variable

change y & H — y for the horizontal surfaces arguments and Tgy < Trs, Whence if % <P < HTJrh , one

deduces from what precedes the different expressions of the cavity’s eastern radiosity temperature,
reported in the Annex 2.

The western obstacle’s surface radiosity temperature is deduced from the previous results by applying the
formal substitution X < H — X relatively to Xz in the temperatures integrals and adding the same change
in the argument of the surfaces northern and southern temperatures. Similarly the radiosity temperature
for X, is obtained with the substitution y < X and for X5 one applies y & H — y relatively to Z.

The general equations for the radiosity temperatures have to be now discretized, which shall be described
in the next section.

111 - DISCRETISATION OF THE RADIOSITY TEMPERATURES EQUATIONS

I11-1. The obstacle’s radiosity temperatures
The integrals containing the radiosity temperatures are discretized in the following way, firstly
exemplified on the obstacle’s surfaces. For the eastern surface, the observation points are located on the

segment HT_h <P < HTM for k € {M, ..., M + 2P — 6} with 3 punctual cells.



For any point M;, on o, the generic point of ordinate y = y,, + HT_htan ¢ covers the whole upper surface
¥ above M, of ordinate §, for a propagation angle ¢ € [0,&7].

For a non-punctual cell (k #{M,M + P —1,M + 2P — 2}), the contribution of X; above M, can be
discretized as:

74 To
f Taz(t# + 7 tan <p)Ki3( )cosq)d(p
=0 cos @
. 2(M+P-2) .\ (40)
TS f(pkK'(%) dp+ ) T8 f(pm K'(TO) d
= i cosp do , i cos @ do
RE k omo \cosg g RE,m . \cos o

where the two angles @, and @ limiting the whole cell labelled by its index m are always defined by
P — A—y =9+ —tan ¢ and 9, + A— =P + HT_htan @, or equivalently ¢;;, = tan™! [W}

and ¢}, = tan™! [—z(yme’;l)My].

In the formal sum of Eq. (40), the indices of the punctual cells {M,M + P — 1, M + 2P — 2} are omitted
because these cells are of zero depth. Using the Bis; function implies:

EE T
j Tag (T + 7o tan @)Kis ( 0 ) cosp do
0=0 cos @
2(M+P-2) (41)

= TI?E,kBiS3 (To, i) + Z TgE,m[BiS3 (To, Pm) — Bis3 (o, o))
m=k+1
Similarly, the point of ordinate y = , — H—_htanga covers the whole upper surface Xz below M, for a

propagation angle ¢ € [O tan™?! (H_h)] and for the same non-punctual cell of index k, the contribution
of £ below M, can be formally discretized as:

gE TO
f Tap(tit — Totan<p)Kl3< )COS(pd(p
®=0
k-1 ~ - (42)
= T3 f Ki(T )cos do + TE f(p KL(TO )cos d
= REm — 3 cos @ pap REk - 3 cos @ pap
m=2 m

where the two boundary angles @,, at the lower limit of the cell labelled m and @,}, at the lower limit of

the same cell are defined by ¥, — %y =9, — HT_htan Pm and y,, + %y =9, — HT_htan @5 In the formal
sum (42), the indices of the punctual cells {M,M + P — 1,M + 2P — 2} are still omitted. The previous
expression can be rewritten with the Bis; function under the form:

& -
J Tag(ti — 7o tan @)Kis ( ) cos @ do
9=0 cos @
k-1 (43)
TRem[Biss(To, @) — Biss (o, @) + T Biss (to, )

m=2



whence the total contribution of Xz to o’s radiosity temperature is given by:

% 4 -+ Yo ‘e 4 -+ To
T, t Ki d T, —Tgt Ki ( ) d
-[p:O re (T + Totan @)Kis (cosq))COS(p ‘P+L=O re(Tk — To tan @)Kz cos @ cospap
k-1
= Z Trem Biss(To, §m) — Bisz(to, Ga)] + 2Tgg 1 Biss (to, i) (44)
m=2
2(M+P-2)
+ D ThomlBiss (o, 0i) - Biss (o, 9]
m=k+1
which can formally be summed up under the generic form:
& 4 -+ Yo ‘e 4 -+ To
T, t Ki d T, —Tgt Ki ( ) d
-[p:O re (T + Totan @)Kis (cosq))COS(p ‘P+L=O re(Tk — To tan @)Kz cos @ cospap

2(M+P-2) (45)

_ § E,0pma
- Ck,m TRE,m
m=2

Note that for the three punctual cells k = {M,M + P — 1, M + 2P — 2} the contribution of the whole
surface X still writes under the expression given by Eqg. (45), with the changes C,’if”" = 0and

. _ 2Ay
CEey = Gy = Biss[ro,tan™ (32)]

For the contribution originating from the cavity’s northern surface, one has for any point M (9;) on og:

&N

.-
Cy(k) = f Tan (T"0 + Tx tan @)Kz (co;(

sing de
9=0 (p)

(PI\+/1+2P—1 TI:
Ki ( ) ingd
i3\ cos ) S0 40 (46)

_ T4

= TRN,M+2P—1f
¢=0

2(M+P-2)

+ z T;?}N,m

m=M+2P P=¢m

(P;;z TI:
i
cos @

> singp de

where this time the two angles @, and @, are defined by HTHI + (H -y, ) tan @, = Xy — A?’? and

HTJrh + (H — $;) tan o;, = &, + A?’?, with x,,, > HTM from which Eq. (44) rewrites:

2(M+P-2)

Cn (k) = Ten m42p-1Cis3 (T, Prrszp-1) + Z TanmlCisz (T, Ph) — Cisz (T, Pm)] (47)
m=M+2P

2(M+P-2) CN,GET4
m=M+2P-1"“~k,m °~RNm:

The contribution of the cavity’s southern surface to the og’s radiosity temperature expresses exactly in
the same way, simply by using the formal substitution H — ¥, &< ¥, leading to:

or in a more synthetic form, introducing the coefficients C,’(VTZE Cy(k) =Y



& o
Cs(k) = j Tas(t"y + T3 tan @)Kis < k >sin<p do
0=0 Cos @
2(M+P-2) (48)
= TI?S,M+2P—1CiS3 (TIJ{» ‘f’1T/1+2P—1) + Z TgS,m[Ci53 (T;KIN’;;L) — Cisg (T;{’(f’rﬁ)]
M=M+2P
AX

where the angles @, and @, for the southern cavity surface are defined by Heh oy Vitan @ = X — ~

and HT”l+yk tan @5, = &, +A2—x, or in a more synthetic form, introducing the coefficients C,f,‘,’f, as
2(M+P 2) S,
Cs(k) = Xon=m+2p— 1Cx, GETRSm

Then the obstacle’s eastern surface radiosity temperature writes in its discrete form:

2(M+P-2)

T &
[ RGE(yk) oz z (CE GETREm + CN GETRNm + CS GETRS m) + 1o, (1) (49)

ZpO'E

In the global expression of Eq. (49), some coefficients can be equal to 0.
The three other radiosity temperatures of the obstacle are obtained equivalently as what precedes.

The discrete coefficients CO 20 in the partial contribution CO "OTRO_m of the radiosity temperature of o,

have exactly the same expressions of the coefficients CE *°F for a given index k. Furthermore, the northern
contribution of the cavity to the obstacle’s western surface writes:

én o
f Tan (To — Tj tan @)K, ( ) sing do
9=0 cos @ 50
(7’17/1—1 TI; M-2 Pm T};
:TgN,M—lf Ki3( )sin<pd(p+ Z T}?N,mf Ki3( >sin<pd<p
p=0 cos @ - o=t cos @
m=2 m

where the boundary angles @;,, and @;, are similarly defined by HT_h —(H—-9y)tanp,, = Xy, — A?’? and

HT_h — (H —y,)tan @t = %, + A?’?, with x,, < HT_h from which (50) rewrites:

51_\'—1 T
Cy (k) =f Tan(To — Tk tan(p)Ki3< k )sin(pdq)
=0 cos ¢
M-2 (51)
= Trnm-1Cis3 (T, Pry—1) + Z TinmlCiss(Ti, @m) — Ciss(tic, )]
m=2
whence Cy (k) = X023 Com 0Ty m With Corn® = Coply o for2<m<M—1.
Obviously one similarly has Cg(k) = SH23 CoCTds o With Conl = ClyEyip_yyom fOr2<m <M — 1.

Then the obstacle’s western radiosity temperature is completely deduced from the obstacle’s eastern
radiosity temperature.

For the obstacle’s northern radiosity temperature, using the formal substitution y < X, one writes as for
the eastern one:



N 2(M+P-2)
n[TlgO'N(xk) - EGNTéN

] N, E, o, s
2 = z (Com¥Tanm + Cen¥ Trem + Com  Taom) + k8o (X)) (52)
oN m=2

with /o = CEF ¢PON = ¢VOF and ¢V = C7'°F for a given index k.

The obstacle’s southern radiosity temperature is similarly obtained with the analogous coefficients
s,os _ 0,00 _ ~Eog ,Eos _ ~Noo _ ,~N,OoE 0,05 _ ~S,00 _ ,~SOE
Cem = Cem =Cim s Cem =C =C and Gy, ;,” = C

km k2(M+P-1)-m km T Yk2(M+P-1)-m

I11-2. The cavity’s radiosity temperatures

Similarly to what precedes, the cavity’s eastern surface radiosity temperature can be discretized in
a same way and writes in the general case:

n[TlgE(j}k) - SETEL]
2pg

2(M+P-2)

= > (COETom + CE Ty + CEET ) (53)
m=2

E os,E E ~
+ Z (le,fn TgGE,m + ijn Tgcg,m + C;f,% T}%GN,m) + KNE(}’R)
m=M+1

where the coefficients C,ff1 are detailed in the Annex 3, some of them being of 0 value, depending on
which case is treated.

For an identical position ¥, the cavity’s western surface radiosity temperature similarly writes:

7T[T}§0 k) — gng]

2po
2(M+P-2)
— E, 04 N,0 4 S,0 m4
= Z (Ck,mTRE,m + G Trvm + Ck,mTRS,m) (54)
m=2
M+2P-3
00,0 4 05,04 oN,Om4 ~
+ Z (Ck,m TRoo,m + Ck,m TRGS,m + Ck,;\?[l TRO'N,TT'L) + KNO (yk)
m=M+1
EO _ ~OE 60,0 _ ~O6gE ~NO _ ,NE S0 _ ASE
where Ck,m - Ck,m and Ck,m - Ck,m ’ Ck,m — Yk2(M+P-1)-m and Ck.m - Yk2M+P-1)-m’
05,0 _ ,~0gE on,O _ ,OonNE - - ~ 5 .
Cem = Cramep—1y—m aNd o™ = Gy 3004 p—1)—m» Where the substitution § < H — 3 has been applied.

Using the formal substitution y < X allows writing for the cavity’s northern surface radiosity
temperature:

”[Tﬁzv (fk) - ENTzs]

2pn

2(M+P-2)

= > (CENTom + CoNThom + CEnTasm) (55)

,N ,N ,N ~
+ Z (C]?,?n Tgco,m + CIS,% TI?GN,m + sz,fn Ti?og,m) + KNN(xk)



i SN _ ~OE ~ON _ ~SE EN _ ~NE - on.N _ (ORE
with € = Cny G = G @nd Gy = Gy for the cavity’s surfaces, and Gy = G 7

oo,N os,E og,N on.E
C, 2" =C,> and C,.2" = C, /™" for the obstacle’s surfaces.

The cavity’s southern radiosity temperature similarly writes:

n[Tas(®) — &sTs']

2ps
2(M+P-2)
_ E,S m4 0,S m4 N,Sm4
- Z (Ck,mTRE,m + CemTrom t+ Ck,mTRN,m) (56)
m=2
M+2P-3
00,Sm4 0s,Sm4 OE,Sm4 A
+ Z (Ck,m Troom T+ Ck,m Trogm T Ck,m TRGE,m) + 1R (Zx)
m=M+1
. 0,S _ ,SE NS _ ,OE ES _ ~NE -
with G = Ce2m+p—1-m» Ciem = Ciom and Cpr, = Cr 2 (M+P—1)—m for the cavity’s surfaces, and
0s,S _ ,~OgkE 060,S _ ,OsE oS _ ,OopnNE )
Ck,m = Ck,m , Ck,m = Ck'Z(MJrP_l)_m and Ck‘m = Cya(M+P-1)-m for the obstacle’s surfaces.

Note that for a given set of cavity’s surfaces radiosity temperatures, the set of obstacle’s radiosity
temperatures can be written in a linear matrix system form:

Ocp = 2p%(CE'GE@E + CVOEBy + C5FOs + KR, ) + E6,Top ]
Ooo = ZP% (CEoE@, + CNoEBy + C5750; + KR, ) + £, TopT (57)
Oy = 2'0% (CE'GE@N + CVOEQE + CSOED, + KNO'N) + gGNTéNIA

where the C5(V)0, CN($)E are rectangular matrices of size (2P — 1;2M + 2P —5), the 0, and
X, are column vectors of size 2P — 1, I being the unit column vector of same size, and the @E(O,N,S) are

column vectors of size 2M + 2P — 5
Similarly, one forms a linear system of the four cavity’s surfaces radiosity temperatures vectors as:

~~

205 aoin avra acnn
6 — 2 (COFB, + CVEBy + C948)

20n ] ) ) (58)
=— (CoEQ,, + COSEO,, + CNEQ,, + kRi) + ex T
-~ 2 ~ —_ 2 _ I~ —~
0o — 22 (COFB, + CVED + 50
n 2 . ) (59)
= TO (CoEEQ,, + CoSEQ4, + CONEQ,, + KkRp) + o ToT
2PN panEA  AcEA Ao EA
Oy — ﬂ(CN'EG)E + C5E0, + COFDy)
" (60)

_ 2w

=— (Co5E@,, + COPEQ,, + CONEQ,, + KRs) + exThT



—~ 2 L —_~ ] —_ A —~
05 — L2 (EVED, + C5EQ, + COFOy )
" (61)

2 _
7’;5 (Co5E@q, + COFEQ,, + CONE@,, + KcNs) + esTH

where the COWSIE ENHE are square matrices of size (2M + 2P — 5; 2M + 2P — 5), the Corw.9F and

CosmE are rectangular matrices of size (2M + 2P — 5; 2P — 1), X are column vectors of size
2M + 2P — 5 and I the unit column vector of same size.
We shall now present some numerical results for various cases.

IV - NUMERICAL RESULTS
IV-1. Grid generation
The grid has been built considering a total number of cells (the 5 point cells included) depending

on the number of cells in the area [H h H+h] and outside, such that N, = 2M 4+ 2P — 3 where M — 2 is

the number of non-zero depth cells on the Iength T'

Assuming cells intervals of constant depth in the whole domain leads to Ax = NH , and in the area

=

[0 ] the interval Ax must verify (M — 2)Ax = — Whence M=2+ [[ ]] or in an equivalent way
M=2+ HT M +P— 4)]], where [x] stands for the mteger part of a real number x.

Note that if it exists two integers g and r such that % =1- g, and if it exists an integer m which verifies

N, — 5 = 2mr, the integer M is defined by the simple relation M = 2 + mq, whence P = 2 + m(r — q):
under these two conditions, the interval Ax is perfectly determined and each non-zero depth cell’s centre
is distant from its neighbour of Ax everywhere on a cavity’s surface and on an obstacle’s surface.

If however the ratio E is not rational, although a depth interval Ax can be defined from Ax = and the

t—

integer M from M = 2 + [[ ]] the latter relation cannot insure that the nodes position defined by the
relation (E) with a same depth interval will be verified. To overcome this difficulty, we define two depth

intervals on the areas [HT_hHT"Lh] and elsewhere, such that Ax, = the integers M and P still being

H-h
2(M=2)’

defined by M = 2 + [[ZT_:]] with Ax = NHS a fictive depth interval, and P = 222 — M leading to an
-
, . _ h
obstacle’s depth interval Ax, = 2=2)

With such a definition, one always has N; = 2M + 2P — 3 and Ax. =~ Ax,, the equality being strictly
verified for obstacles such that the ratio % is rational and for a judicious total cells number (punctual cells

included); on the contrary, a special attention must be paid for the nodes closed to the obstacle’s
boundaries {M — 1,M + 1,2M + 2P — 3,2M + 2P — 1}

With such a description, any point X¥ on a cavity’s surface is located in a cell characterised by its integer
index p defined by the useful relations:

~Hh
|fx<—p—2+ﬂAxC]] ifr="p=mit<i<ip= M+1+|l — H;

H

iff=2p=M+P-1if <<l p= M+P+|l__ﬂ;'f9?=HT+h,p=M+2P—2;

X0




L
andlfx>—,p M+2P—1+H H

Axc

The previous relations reduce to p = 3 + [[ ]] ifl <5< H—+h, p=4+ [[ ]] if < g <222 and finally

p= 5+H ]]lfx>—forthecaseAxC = Ax,

IV-2. Radiosity temperatures description for different varying parameters

The following results are obtained on a Personal Computer with 3.25 GB of RAM from numerical
programs written in Fortran 77. The special functions Ki,, Bis; and Cis; are computed from the
numerical routines written by Altac and Tekkalmaz and D. E. Amos [28].

Since the cavity’s and obstacle’s radiosity temperatures are coupled each other, the computation program

Is built in an iterative way with an error criterion such that the condition T,§"+1) - Tén)| <107® K is

verified for all radiosity temperatures T on the eight boundary surfaces in each small surface cell labelled
by its index k. Note that the accuracy from this criterion is only relative, since the medium is not at
radiative equilibrium but at imposed temperature, for which the condition div q, = 0 is not verified,

where gq,. is the radiative flux vector internal field. Hence the integrated condition );; n; fl, q.dl; =0

implying the normal integrated fluxes on the eight surfaces, which can define an absolute accuracy
criterion as in [14], cannot be verified unless the complete radiative field is determined in the whole

medium. Under this condition of relative accuracy, the selected criterion TR(”“) — TR(")| < 107K for

the radiosity temperatures always converges in all selected cases for any cells number on the eight
surfaces.

IV.2.1. Isothermal semi-transparent media:

We shall quantify now the influence of the obstacle on the cavity’s radiosity temperatures, firstly
when all the surfaces of the obstacle are black and the four surfaces of the cavity are reflecting the
incident radiation with the same emissivity, the cavity containing a cold isothermal medium at 7;,, = 0 K.
We look simultaneously at the obstacle’s size and absorption coefficient of the surrounding medium, for
given surfaces temperatures.

To evaluate the performance of the numerical integrations and observe the influence of the grid’s cells
number, we choose first a black obstacle at high temperature with &, = 1, while the almost perfectly
reflecting surfaces of the cavity have their emissivity set to e = 0.01. The isothermal surfaces have their

temperatures imposed to T, = 100 K and T, = 1000 K. We let vary the length ratio from % « 1 to high

values around 1 for a given absorption coefficient for almost transparent media to moderately absorbing

ones. We put an insight on the temperatures at the centre of the cavity’s surfaces so as at the two values

H-h
H=R and 22, Numerical results are reported in Figs. 4a-e. We also give an insight of the numerical values

dependlng on the iterative process for a particular case in Table 1 for a small ratio E = 0.01

e Caser=0.0L: (§<\/§—2)

K(m_l) Ny, (M, P) Niter (H+h) (K) Tx (g) (K)
0.01 101 (49,3) 519 757.971 757.241
0.01 251 (123,4) 520 759.131 759.124
0.01 501 (247,5) 520 759.127 759.124
0.01 1001 (495,7) 520 759.125 759.123




0.01 2001 (990,12) 520 759.124 759.123
0.01 3001 (1485,17) 520 759.1232 759.1232
0.1 101 (49,3) 143 533.873 531.878
0.1 251 (123,4) 143 536.055 536.029
0.1 501 (247,5) 143 536.041 536.029
0.1 1001 (495,7) 143 536.034 536.029
0.1 2001 (990,12) 143 536.030 536.029
0.1 3001 (1485,17) 143 536.0293 536.0292
1. 101 (49,3) 25 298.094 291.411
1. 251 (123,4) 25 304.472 304.385
1. 501 (247,5) 25 304.424 304.385
1. 1001 (495,7) 25 304.401 304.385
1. 2001 (990,12) 26 304.389 304.385
1. 3001 (1485,17) 26 304.3851 304.3853
10. 101 (49, 3) 17 77.453 74.670
10. 251 (123,4) 19 80.105 80.077
10. 501 (247,5) 20 80.088 80.078
10. 1001 (495,7) 21 80.079 80.078
10. 2001 (990,12) 21 80.074 80.078
10. 3001 (1485,17) 22 80.0728 80.0779

. . i +h h
Table 1: Cavity’s surface radiosity temperatures at three positions H? and g for - =0.01
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Figure 4a: Cavity’s surface radiosity temperature for a small ratio % = 0.01

. Case§=0.1:(§<x/§—2)

958 — T(K)
957.5 —
957
956.5 i

956

k=0.01m™!

839

838.5

838

837.5

837

836.5

~ T(K) k=0.1m*

=01

=| >

RN EEEEE EEREE REERE REN

T

836
955.5
835.5
[ L N TR AR AT I X
9559 8355 0.2 0.4 0.6 0.8 1H
555~ T(K) ©=1.m"* 170 - T(K) ©=10.m™*
l 160 |-
550 -
150 |-
545 -
140 |-
- B
540 130 |- h
E 120 |-
535 ;
110 |
530 -
100

y 2
1H

I R ST N R
5250 0.2 0.4 0.6 0.8

900

(=]
N
(=]
’Y
=4
o
o
3
NS
| ®

Figure 4b: Cavity’s surface radiosity temperature for a ratiog = 0.1 verifying g <V5-2

h _ o1
. CaseE—O.S.(\/§—2<E<§)



988 — T(K) k=0.01m™?! 946 ~ T(K) k=0.1m™?!
987.5
- 944 |-
987 |- |
- 942~
986.5 - s
; ko3 | I
986 |- H o0 4
985.5 |- i
938 |-
985 i
; 936 |-
984.5 |-
984 x 934~“| | T ER S | TR BTN
0 0.2 0.4 0.6 0.8 1H 0 0.2 0.4 0.6 0.8 1H
760  T(K) x=1m™ 300~ T(K) x=10.m™
750 |- 280
740 200
i . 240 2
730 7=03 - 7=03
- 220
720 | -
- 200
710} i
- 180 |-
700 - 160
r L n 1 L L 1 L . 5 1 L L L 1 L L n IX : L L 1 1 L L L 1 L 1 L L ] i
630, 0.2 0.4 0.6 0.8 1H 1404 0.2 0.4 0.6 0.8 1H
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Figure 4e: Cavity’s surface radiosity temperature for a high ratio % =09

The iterative resolution shows that the iterations number depends essentially on the absorption
coefficient and not on the cells’ number, excepted for moderate to high absorptions. In the case of almost
transparent or few absorbing media, the results are qualitatively and quantitatively of good quality even

for a small number of cells around N, = 251 for any ratio % like for cavities without any obstacle, but



increasing the cells number insures smooth results. The presented figures have been obtained for a total
cells number N, = 1001 in each configuration, which allows short computation times and accurate
results.

The highly different behaviours of the cavity’s radiosity temperatures, depending on the ratio % values,

are significantly put in evidence in Figs (4a-e): when the ratio is smaller than v/5 — 2, the influence of the

obstacle is not limited to the area [H—h H—J’h] but strongly affects the whole extended zone [;’i z+Z]
which can be of large size up to moderate absorption coefficients. When the ratio increases, the influence

H-h H+h

of the obstacle is more concentrated in the domain [— ] while the morphology of the radiosity

temperature changes in the obstacle’s zone as soon as ; becomes larger than v/5 — 2.

Note that for optically thin media with low absorption coefficients, the edge effects are not significant
near the surface boundaries, while they significantly modify the radiosity temperature structure for

moderate absorption coefficients, especially for small ratios %

In the way to obtain the minimal obstacle’s size which can be detected and still has an influence on the
cavity’s radiosity temperatures, we decrease the length of the obstacle’s side while increasing the cells
number, for a given absorption coefficient, by comparing with the radiosity temperature obtained without
any obstacle.

For a square cavity of length H = 1m, whose four reflecting surfaces of same emissivity e, = 0.01 are
isothermal, with an imposed temperature T, = 100 K, the radiosity temperature on the surfaces without
any internal obstacle for various absorption coefficients inside the cold medium of zero constant
temperature is given by:

[Ty D) — &cT¢]
2pc

H — (H — 3;) tan ¢] Klsl(H i)

lsimpd(p

kH
TE(9, + Ht Ki ( ) d
® Dk an @)Ki; cos cosp de (70)

4rn . ( KH
+ T (9 — Htan @)Ki, ( ) cosp dp

CoS
tan™
+ f
»=0

( KV
cos
In the case of very absorbing medla R \/— ~ 0.316, and the radiosity temperature on each side of the

S

TR (H — Jx tan 9)Ki3

)simpd(p

S

cavity tends to be constant with TR ~ 31.62 K. The symmetric radiosity temperatures relatively to ;,
without any obstacle, are numerically reported on Table 2 at the surface’s centre and at the end points:

k(m™) Tr(x > 0;x > H) (K) Ty (g) (K)
0.01 84.279 84.142
0.1 56.613 55.748

1. 39.390 35.672




10. 37.198 31.627

Table 2: Cavity’s surface radiosity temperatures without any obstacle at three positions 0, H and g

Note that from Eq. (70), the radiosity temperature is not constant on the surface in the most general case,
even for same constant and equal surface temperatures, at any absorption coefficient, the radiosity
temperature being constant only in the limiting case of the optically depth media approximation x — oo

The evolution of the cavity surface radiosity temperature without any obstacle inside the cavity is
depicted in Fig. 5 for several absorption coefficients when the four surfaces are isothermal (T, = 100 K)
with the same emissivity - = 0.01. One observes that the radiosity temperature is not constant but tends

to a constant value when the absorption coefficient increases, close to §/e. T, for k = 10.m™1!
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Figure 5: Cavity’s surface radiosity temperature without any obstacle when T, = 100 K for various
absorption coefficients

If one compares to the radiosity temperatures obtained for a hot very small obstacle with §<< 1, one

observes that the obstacle remains playing a significant rule, strongly increasing the radiosity temperature
mean magnitude and roughly modifying its morphologic structure in the case of optically thin media,
while for relatively high optical depths such as kH = 10., the radiosity temperatures magnitude is not
very far from the attempted value in a cavity without any obstacle in the same conditions of reflexion on
the surfaces, although its structure is altered comparatively to the case with no internal obstacle.
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Figure 6: Cavity’s surface radiosity temperature for a very small obstacle with % =103

Indeed, the influence of the obstacle illustrated in Fig. 6 still remains noticeable on the cavity’s radiosity
temperature for the four selected absorption coefficients, with a qualitative behaviour very similar to the

case % = 0.01. For instance, when the semi-transparent medium is weakly absorbing with x = 0.01 m™1,
the mean radiosity temperature on one cavity’s highly reflecting surface of temperature T, = 100 K is

around T = 466 K for a hot black obstacle of temperature T, = 1000 K with % = 1073, while itis only
84 K when = = 0.
For smaller obstacles with to % < 1073, our results remain no longer accurate with oscillating values even

h _ :
for a large cells number. Nevertheless, very small obstacles up to E~10 3 can be taken into account and

may be considered as a radiative perturbation on the whole device, but of small amplitude for relatively
high absorption coefficients.

Interesting now again to the obstacle characterised by% = 0.01, one inverts the temperatures of the cavity

and black obstacle’s surfaces, i.e. the obstacle is cold relatively to the cavity, and one examines the
radiosity temperature behaviour for the same four selected absorption coefficients when the internal
medium remains cold at T,, = 0 K. The results are depicted in Fig. 7 for equivalent conditions of
reflection on the surfaces of the cavity, i.e. & = 0.01

962 860 — T(K)

961.5 858

i 856
961
854 |
960.5
852

960 i
850

959.5 5 848

846

ool o 00

(=)
(=]
N
o
IS
=
o
o
0
N
x| =




690 — T(K) 660 — T(K)
u e=1m? - k=10.m™!

680 I s
640 -
670

™: h 620

! 600

640 |

- 580
630 |

TR

560

620 L n | L L L 1 . L L 1 . . 1

04 0.6 0.8

<)
)
N
o
A
o
)
o
®
L
| %

Figure 7: Cavity’s surface radiosity temperature for T, = 1000 K and T, = 100 K, case % = 0.01

For a cold small obstacle, one observes that its influence on the cavity surface radiosity temperature is
very limited to the case of an optically thin medium, with a small amplitude. As soon as the absorption
coefficient increases, the radiosity temperature field on the cavity surface has a structure close to the one
obtained when no obstacle is present, with a magnitude rapidly tending to the optically thick media

radiosity temperature. One concludes that obstacles with small ratios % have a strong influence on the

cavity’s radiosity temperature if they are much hotter than the cavity’s surfaces.
Returning to the case of a hot obstacle, we look at the influence of the emissivity of the cavity’s surfaces
on the radiosity temperatures with respect to the absorption coefficient when the obstacle’s size is much
lower than the cavity’s one. The radiosity temperatures are reported in the Fig. 8
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Figure 8: Cavity’s radiosity temperature for various emissivities on the cavity’s surfaces when % = 0.01,
for two absorption coefficients

One notes that increasing the emissivity of the cavity’s surfaces doesn’t dramatically change the
morphologic structure of the radiosity temperatures at any absorption coefficient, but strongly modifies
their amplitudes. A same trend can be observed for higher ratios %

The determination of the cavity ( and/or obstacle) radiosity temperatures making no assumption on the

surfaces emissivity behaviour, we look at the case of a sinusoidal varying emissivity on the four cavity’s
surfaces when the obstacle’s surfaces are black, to precise the influence of the emissivity on the radiosity



temperatures for a cold emitting and absorbing internal medium, with T, = 1000 K and T, = 100 K. We

examine the influence of the medium’s absorption coefficient for different ratios o when the cavity’s

surfaces emissivity variation is given by &, = 1—10 [1 — sin (7%’6)] symmetric relatively to the surface’s

centre. The numerical results are described in Figs. 9a-d.

. Case%=0.1:(%<\/§—2)

1 . (Tnx
= ﬁ[l i (T)]

855 T(K)
850
845 |
840
835
830

k=001m™?

1 . (Tnx
= mll s (7)]

=

785

780

775

770

765

Z=01 760 =01
825
755
820
815 750
810 745
805 740
X
= 735
800 =
1 . (Tnx U . (Tnx
e = 5[~ (7)) . e =51 - ()] "
550 — T(K) k=1.m 160_— T(K) xk=10.m
545 | s
- 150 -
540 F 5
. 140 -
535
- 130
530 r
g 2-0a 2=01
525 120 |
520 5
R 110 |
515 | -
100
510 [
= X o X
505 = 90 =

Figure 9a: Cavity’s radiosity temperature for% = 0.1 with T, = 1000 K, Tp = 100 K and ¢, = 1 for

different absorption coefficients
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Figure 9b: Cavity’s radiosity temperature for% = 0.3 with T, = 1000 K, T, = 100 K and ¢, = 1 for
different absorption coefficients
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Figure 9c: Cavity’s radiosity temperature for - =05 with T, = 1000 K, T, = 100 K and ¢, = 1 for
different absorption coefficients
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Figure 9d: Cavity’s radiosity temperature for% =09 withT, = 1000 K, T, = 100 K and g, = 1 for
different absorption coefficients

Note that the morphologic structure of the radiosity temperature is strongly modified by the spatial
variation of the emissivity on the surface. One observes that for an emissivity perfectly symmetric
relatively to the centre of the cavity, the radiosity temperatures are identical on the four cavity’s surfaces.




For a slightly modified emissivity e, = % [1 — sin (2%)] the latter one is no longer symmetric relatively

to the cavity’s centre but antisymmetric, and the problem is no longer geometrically symmetric: this can
be analized on the radiosity temperatures which are not symmetric and moreover different on the

surfaces, as exemplified in Fig. 10 for a small ratio % = 0.1, for four different absorption coefficients:
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Figure 10: Cavity’s radiosity temperature for% = 0.1 and four different absorption coefficients

Taking now into account the ability of reflecting obstacle’s surfaces, we examine the case of almost black
cavity’s surfaces with &, = 0.95 with T, = 1000 K, and a much colder highly reflecting obstacle with
T, = 100 K and ¢, = 0.05, for four different absorption coefficients. The results are reported in Fig. 11

. h Lo . .
for a ratio 0= 0.5, which insures to have a noticeable effect of the cavity’s surfaces on the obstacle.
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Figure 11: Obstacle’s radiosity temperature for various absorption coefficients when % =0.5

As it can be seen in Fig. 11 the obstacle’s radiosity temperature is almost constant on each whole surface
for small absorption coefficients, which is more verified for small ratios e while the radiosity

temperature smoothly evolves when increasing the absorption coefficient. Is has been numerically
observed that the obstacle’s radiosity temperature spatial field is not mainly affected by the reflexion and
imposed temperature conditions on the physical surfaces of the global device, but the mean magnitude is
strongly depending on the different parameters.

If one furthermore takes into account the effect of the isothermal medium temperature T,,, on the radiosity
temperatures, exemplified here in Fig. 12 for a cold (T, = 100 K) highly reflecting cavity e = 0.1 and
hot (T, = 1000 K) almost black obstacle ¢, = 0.9, we notice that it plays a significant influence on the
cavity’s radiosity temperature, especially for moderate to high absorption coefficients, both on the
structure field and magnitude. For a small absorption however, the influence of the medium’s temperature
IS less important.
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Figure 12: Cavity’s radiosity temperature for various absorption coefficients when % = 0.1 and for two
isothermal media of different temperature

IVV.2.1. Non-isothermal semi-transparent media:

The case of a non-isothermal internal absorbing-emitting medium has also been examined. We
present hereafter some simulation cases of cavity’s radiosity temperatures when the emitting-absorbing
medium is non-isothermal, the central obstacle’s surfaces still being black.

In all examined following cases, the boundary conditions on the cavity and obstacle’s surfaces are kept to
be T = 1000 K, T, = 100 K, &, = 0.1 and &, = 1 and the internal medium is subjected to an imposed
sinusoidal spatially varying temperature field with T, = 500 K. The results are described for different
ratios g

In the first case exemplified in Figs 13a-c, the temperature field of the absorbing-emitting medium is
symmetric relatively to the cavity’s centre with a sinusoidal variation given by

T(x,y) =To{1+ %COS [4” (;-XL +(3-v) ‘
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Figure 13a-c: Cavity’s surface radiosity eastern and western temperatures for a completely symmetric
sinusoidal temperature field with T, = 500 K for three characteristic ratios % and four different
absorption coefficients

One observes that when the temperature field is symmetric relatively to the cavity’s center, the four
radiosity temperatures on the cavity surfaces are equal, with a shape highly similar to the one observed in
the case of an isothermal medium, except for the case of media with relatively high absorption
coefficients for which the influence of the non-isothermal field is preponderant.

IV.2.1b. Sinusoidal completely non symmetric internal temperature field:
In the second case illustrated in Figs 14a-c, the temperature field of the absorbing-emitting medium is
completely non-symmetric relatively to the cavity’s centre with a sinusoidal analogous variation given by

,ﬂ_ 2 2
T(x,y)=T, 1+%COS[M]

e Case h_ 0.1:
H



826

824

822

820

T(K)

T

h 2
i i { " 147: (7—x) +yz‘}
x,y)=To 1+5cos TR

Kk =0.01m™*

777

774

771

- T(K)

Kk =0.1m"

1

- h h
818 |- =l 768 =
816 |-
i 765
814 |
762
812
L & 5 5 o TR | 1 1 ) X ) X
810o 0.2 0.4 0.6 0.8 1H 7590 0.2 0.4 0.6 0.8 1H
2
3 4 (Lzl—x) + y? e 0
o k=1.m k=10.m
670 () T(x,y) =Ty (1 +5 cos|[————— 700
660 |- 650
650 | 600
640 |- " 550 "
r =i ==
630 |- 500
5
620 |- 450
610 400
| TR | RIS | 1 1 ) X x
6005 0.2 0.4 0.6 0.8 1H 250 H
h
e Case—-=0.3:
H
{ 1 14,, (g_,)ﬁyz‘} { 1 |4n (g_x)iyzl}
Txy)=To |1+ —_—— o - Tx,y)=To (1+3 — o =
930 ~ T(K) &) =To |14 g s 7 K =001m™* 905 ~ T(K) ) =Tpdobgms i Kk =01m™*
I 900 |-
925 |- B
- 895 [~
920" 890 [
' k=03 E r =03
| H s H
915 B8s 2
- 880 /7
910
/ 875
T & i P | 1 1 ) X ) X
9050 0.2 0.4 0.6 0.8 1H 8700 0.2 0.4 0.6 0.8 1H




h #
s
i —24.05 — 7 =

NS

T(xy) =T, - =
780 ~ T(K) D=l K=1m™ 700 [
I o < 5
7 % R 4
| g 650 a
760 R A3
600 |-
740 :
I " 550 |-
2_o3
H |
720 500
5 450
700 |- -
400 |-
[ 1 1 L1 1 |l ;
6804 0.2 0.4 0.6 0.8 1H 220
h
e Case—=0.5
H
fi: .5\ (A
" 4n (7—1) +y? " 4n (7—x) +y?
T(x,y)=To (1 +5cos o Kk =0.01m1 950 T(x,y) =T, 1+Ecos — k =0.1m™1!

960 — T(K)

i 945 |-
955 g
940 f
950 | 935 F
- 930 |
945 i
925 |
a40 | 920 F
915
935 -
’ 910

930 905 —

880~ T(K) ki=tm 750

h #
» _,.{ 1 ‘47{ (7—)() +)yz‘}
T(x,y)=T, 1+5¢.os TR

AN 700 |-

860
i 650 |-
840 600 |-
i 550 |-
820 8
E 500 |
800 450 |
5 400
780 E .
- 350 |-
760 300:‘.‘1 MR | i1 P | Tl
0 0 0.2 0.4 0.6 0.8 1H

Figure 14a: Cavity’s surface radiosity eastern and western temperatures for a non-symmetric sinusoidal
temperature field with T, = 500 K for three characteristic ratios % and four different absorption
coefficients

When the temperature field of the internal medium is no longer symmetric relatively to the center we note
that logically the radiosity temperatures are different on the four surfaces of the cavity, especially for
mean optical depths around or greater than one. For small absorption coefficients however, the radiosity
temperatures are very similar in each case on the four surfaces, which suggest that the radiosity



temperatures are not strongly affected by the temperature field of the internal medium: this let suspect
that when determining the radiative field inside the medium in presence of reflecting surfaces, the
radiative coupling between the internal medium and reflecting surfaces is low if the absorption coefficient
of the internal medium is small, while the coupling may become strong for moderate to highly absorbing
media.

To terminate this numerical section, we finally present some miscellaneous cases combining spatial
varying emissivities and internal temperature field, in a completely symmetric case and a mixed
symmetric/antisymmetric device, hereafter illustrated in Figs. 15-16 for a given absorption coefficient
k=1m"?

In the first case, the emissivity is equal on the four surfaces of the cavity, with a sinusoidal symmetric
spatial evolution relatively to the centre of the surfaces. Combining to this emissivity behaviour a
perfectly symmetric sinusoidal evolution relatively to the cavity’s centre of the internal temperature field,
leads to a symmetric variation of the radiosity temperature on the surface, for each surface, mainly

depending on the ratio % for a given absorption coefficient and prescribed set of surfaces imposed
temperatures, as it can be observed in Fig. 15
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Figure 15: Symmetric sinusoidal variations of the cavity’s surfaces emissivity and internal temperature

field with T, = 500 K for three characteristic ratios % for a moderate absorption coefficient

In the second case, the temperature of the internal medium keeps the same symmetric sinusoidal variation
and the cavity’s four surfaces emissivities are such that eg(y) = €o(y) and ey (x) = &5(x), with
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Figure 16: Antisymmetric sinusoidal variation of the cavity’s surfaces emissivity and symmetric internal

temperature field with T, = 500 K for three characteristic ratios % for a moderate absorption coefficient

The latter figure suggests that the internal radiative field is strongly depending on the reflection
conditions on the surfaces of the device, an identical conclusion being done in the case of obstacle’s
reflecting surfaces, which let appear singular radiative behaviours in media at radiative equilibrium or in
situation of radiation-conduction coupling.

V — CONCLUDING REMARKS

In this paper we completely described the exact analytical expressions of the radiosity
temperatures on the diffusely reflecting surfaces of a cavity containing a centred opaque obstacle with
reflecting surfaces, surrounded by a non-isothermal absorbing-emitting semi-transparent medium. We
carefully detailed all the possible geometric configurations arising on each surface by putting in evidence

the critical rule of the parameter % already pointed out in [24], and consequently determined the

associated expressions in each case. The lengths ratio appears to be a major parameter in the resulting
radiative behaviour on the cavity’s surfaces, which is also strongly depending on the internal medium’s
absorption coefficient so as the imposed surfaces temperatures and emissivities. The numerical results
show that in some particular conditions of small absorptions and relative imposed surfaces temperatures
magnitudes, the influence of the obstacle remains highly sensible even for extremely small obstacles



comparatively to the cavity’s surface size, which may have a strong incidence to the determination of the
radiative field in the case of radiative equilibrium. It has also been pointed out that the space variation of
the emissivity on the surfaces plays a major rule on the radiosity temperatures. The influence of the
medium’s temperature has also been examined, which may let suspect a strong radiative coupling
between the cavity and obstacle surfaces and the internal medium in situation of radiative equilibrium or
thermal coupling with conduction for moderately absorbing media. The determination of the incident
radiation and radiative flux field in reflecting cavities with a reflecting obstacle is now under investigation
before examining the case of radiative equilibrium and conductive-radiative coupling in the full device.

ANNEX 1: obstacle’s radiosity temperatures for the western, norther and southern surfaces
* Western obstacle’s surface radiosity temperature:
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where the internal contribution X, keeps the expression of Eq. (14) for isothermal media. When the
medium is not isothermal, the internal contribution follows the same geometric substitution £ & H — X
and whence writes:
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* Northern obstacle’s surface radiosity temperature:
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where the internal contribution X = writes in the general case of an non-isothermal medium:
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where the exact internal contribution Xg is given by:
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with the formal substitution R, (%) = R;,(Jx), Which keeps the expression (A5) of the northern
contribution in the case of an isothermal medium.

ANNEX 2: cavity’s eastern radiosity temperature for points on the upper part of the surface
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In the latter expression the general internal contribution is described by:
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whence the isothermal xX; function reduces to:
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where the internal contribution k&g is similarly given by:
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+
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%
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“o Fro 40+ .+ - ; Tu
T*(tf, 14 — 14 tan )Ki,
+ ). cos

+__n
u=To
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which for isothermal media reduces to:

KXg T . _ . , _ , . / . _
=5 Biss(t'g, ag) + Biss (T o ‘105) — Bis;(1'y, a}) — Bisg (T o a;fE) — BlS3(T0, aGE)
+ Bis3(ro, a;E) — Ciss (1, af) — Ciss(tf, ad) — Cis, (TO - T, a:;N) (B6)

+ Cis3(ro - Tk, agN)
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where the global internal contribution is expressed by:
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and leading to for internal media:
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- CiS3(T]-(|_; a,;rl) - Ci53(T0 - T]:, a;N) + Ci53(T0 - T];, agN)

ANNEX 3: discrete determination of the cavity’s eastern radiosity temperature



If% <+/5—2and % <P < HT_h the northern contribution is obtained from:
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2(M+P-2) +
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with ¢, = tan™?! < meA 2> and ¢}, = tan™! <Hx_—";k for any point M, on Xz such — < Vi < H—h

which can be summed up under the formal expression:
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] Ty (T'o — T tan p)Kis (
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where C,IX’ = Cis3 (1, o) — Cis3 (1), o) and C,ICVA’; = CkM+P .= C,I(V,SHP , =0
Similarly for the southern contribution, one obtains:

2(M+P-2)

(p)smq)d(p— z Com Tts.m (€3)

ag
f Tgs(t'o — Tk tan ) Kis <
»=0

where the coefficients Cy', are given by Co'y; = Cimrp—1 = Cirpazp—p = 0 and
Cik, = Ciss(tf, o) — Ciss (T, o) form # {M,M + P — 1,M + 2P — 2}

The whole obstacle’s eastern surface being seen in this configuration, its contribution to X5 writes as for
the two previous surfaces:

agy -
j T,?GE(T,:’ + 1o tan @)Kis ( k ) cos @ do
p=az, cos ¢

M+P-2 +
. Pm ] T
= TRopm Kis (cos ) cos @ do (c4)
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A Pm ] To
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Z(ﬁm—f/k)—Af/] and @}, = tan~! [2(37m—37k)+A37

with ¢;;, = tan™?! [ ] for any point M,, whence:
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where C,Zf\ﬁp_l = 0 and C,Zf,’lE = Biss(1q, ¢;) — Biss (1, 9;7)

Similarly one obtains for the southern obstacle’s surface contribution:
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The contribution of the lower part of £, writes for a non-punctual cell k # M:

_ k
ao T’
f Teo(ti¥ — 'y tan @)K ( sO > cospdp = Z C,g',fngo,m (%))
m=2

where the coefficients .5, are such that Ce = Bis; [r’o,tan‘1 (%)] and

COE = Bisy(t'y, ) — Biss (o, o) for2 <m <k — 1

Ifk=M,ie 9, = HT_h C,S',f =0 and c,ﬁ;f_l = Bis; [T'o:tan_l (%)]

For the upper part below the obstacle, the contribution writes, for k = M:

+ p-1
@01 T
f Tro (T + 7'y tan @)K <cosog0> cospde = Clg;f+T,§0,k + z C;gfngo,m + C,ng,?O,p (€8
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where p is the index such that the point of ordinate y = y, + H(H::lzyk) - (H_lzci(:_h)

on the cavity’s

western surface belongs to the cell of number p, i. e. §, — A?y Sy<P+ A?y, which can be summed up as
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In these conditions, the coefficients C., write Cys * = Biss [r’o, tan~! (A—y)]
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The treatment of the upper part above the obstacle is performed similarly by determining first the index g
HH+h-29y)
H+h -

number q, given by g =5 + [[A%]] since ¥ is always greater than HTJrh from which the last contribution

such that y = 9, + —:—;: ¥r on the cavity’s western surface belongs to the cell of

writes, for k < M:
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