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Abstract
Fanconi anaemia (FA) is the most frequent inherited bone marrow failure syndrome, due to mutations in genes encoding
proteins involved in replication fork protection, DNA interstrand crosslink repair and replication rescue through inducing
double-strand break repair and homologous recombination. Clinically, FA is characterised by aplastic anaemia, congenital
defects and cancer predisposition. In in vitro studies, FA cells presented hallmarks defining senescent cells, including p53-
p21 axis activation, altered telomere length, mitochondrial dysfunction, chromatin alterations, and a pro-inflammatory status.
Senescence is a programme leading to proliferation arrest that is involved in different physiological contexts, such as
embryogenesis, tissue remodelling and repair and guarantees tumour suppression activity. However, senescence can become
a driving force for developmental abnormalities, aging and cancer. Herein, we summarise the current knowledge in the field
to highlight the mutual relationships between FA and senescence that lead us to consider FA not only as a DNA repair and
chromosome fragility syndrome but also as a “senescence syndrome”.

Facts

● Unrestricted activation of the DDR signaling leads to a
constitutive activation of the growth inhibitory p53-p21
axis in Fanconi anemia (FA) cells.

● Several hallmarks of senescence, including telomere’s
abnormalities, ROS overproduction, altered nuclear
structure, overproduction of several pro-inflammatory
lymphokines, cytokines and growth factors are classi-
cally observed in FA cells.

● FANCA, FANCD2 and BRCA1 are actively degraded
to allow senescence progression induced by oncogene
activation.

Open questions

● Is the overactivation of the p53-p21 axis in FA that is, in
fine, responsible for the major clinical and cellular
stigmas of the syndrome?

● What is the role of the pro-senescent phenotype of the
FA cells in the bone marrow failure of the patients?

● How FA cells surround their growth inhibitory status to
become tumoral?

● Is the pro-senescent phenotype of the FA syndrome a
target for therapeutic approaches?

Introduction

Cellular senescence is a genetic process allowing pro-
liferation arrest with physiological roles in embryogenesis,
the maintenance and regeneration of tissues or the defence
mechanism against tumours. By contrast, its deregulation
has been primarily implicated in pathological processes,
such as accelerated aging, aged-associated disease and
tumorigenesis [1]. DNA damage and DNA damage sig-
nalling have been recognised as key and general triggers of
senescence initiation and maintenance [2, 3].

Fanconi anaemia (FA), the most frequent inherited bone
marrow failure syndrome (iBMFS), is characterised by
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congenital defects and leukaemia predisposition [4]. FA
occurs because of mutations in genes encoding the FANC/
BRCA pathway proteins involved in DNA interstrand
crosslink (ICL) repair and replication rescue through
managing one-ended or double-ended double-strand
breaks (DSB) repair via Break-Induced Replication (BIR)
or homologous recombination (HR) [5, 6]. FA is geneti-
cally and clinically heterogeneous [7]. Thus, we currently
have a largely imperfect understanding of the link between
the DNA damage response and DNA repair alterations of
FA cells and their cellular and clinical outcomes. Potential
alterations in the cellular senescence programme could
represent a missing link between genetics and pathophy-
siology in FA.

Herein, we summarise the current knowledge on both
senescence and FA to highlight the mutual relationships
between the two fields that led us, in fine, to consider FA
not only as a DNA repair and genome instability syndrome
but also as a “senescence syndrome”.

Cellular senescence

A senescent cell presents a multifaceted phenotype showing
permanent growth arrest, resistance to apoptosis, enhanced
secretion of several lymphokines, cytokines and growth
factors (senescence-associated secretory phenotype, SASP),
macromolecular damage and altered metabolism. Cell
senescence has two opposing faces: one physiological act-
ing during embryogenesis, tissue remodelling and repair,
normal aging and tumour suppression, and the other
pathological, acting as a driving force for degenerative
diseases and cancer [1, 8, 9]. Given this ambivalence, aging
and senescence are not synonymous. The first defines a
process at the level of the organism and the second defines
molecular and biological events at the tissue or cellular level
[10]. Three major causes of cellular senescence have been
described: replicative senescence, oncogene-induced
senescence (OIS) and stress-induced senescence (Fig. 1).
Whatever the initial input, the activation of the p53/p21 and
the p16/Rb pathways is a key event in the implementation
of the senescence program.

Origin of senescence

● Replicative senescence
Replicative senescence is due to replication-

associated telomere shortening. The telomere, the
extremity of the eukaryotic chromosome, comprises
repetitions over a length of 5–20 Kb of the DNA
sequence TTAGGG. They cannot be fully replicated by
DNA polymerases because of the “end replication”
problem [11]: chromosomes shorten at each cell division

and terminate with a 3′-ssDNA-end G-rich overhang
extremity, which resembles a resected one-ended DSB.
The shelterin complex, which includes TRF1, TRF2,
POT1, RAP1, TIN2 and TPP1 proteins, coats and caps
telomeric DNA mediating the folding back of the 3′-
ssDNA-end G-rich overhang inside the dsDNA region
that precedes it, leading to a T-loop structure that
“closes” the chromosome extremity (Fig. 2) [12].
Shelterin ensures telomere protection against extensive
resection impeding the activation of a pernicious DNA
damage response (DDR) that would manage a telomere
erroneously as a one-ended DSB [13]. Moreover, TRF2
inhibits ATM kinase-stimulated CtIP/MRN resection
and TPP1/POT1 inhibits ATR kinase-stimulated EXO1/
BLM resection. Inactivating mutations affecting one
protein of the shelterin complex leads to the constitutive
activation of ATM- or ATR-dependent DNA damage
signalling [13]. Thus, even if telomeres shorten at each
cell cycle, shelterin complex maintains their genetic
integrity and functionality during around 40–60 cell
divisions, the so-called “Hayflick limit” [14]. Further-
more, the short and shelterin-unprotected telomeres are
managed by DNA repair pathways, leading to telomere
end-associations and consequent post-mitotic DSB
accumulation, which, by switching-on constitutionally
the DDR, imposes a permanent cell cycle arrest. Indeed,
telomeres that are critically eroded present telomere
dysfunction-induced foci (TIFs) that reflect the accu-
mulation of 53PB1 on uncapped telomeres. Telomere
shortening is a major determinant of lifespan and
longevity [15]. In cancer cells, which maintain “indefi-
nitely” a high proliferative activity and escape to
senescence, the telomere’s length and functionality are
maintained by two alternative mechanisms: re-activation
of the telomerase, a ribonucleoprotein complex with
reverse transcriptase function associated with an RNA
template and several other proteins (which are turned off
in human somatic cells) or a HR mechanism known as
alternative lengthening of telomeres, observed in
~10–15% of human cancers [15, 16].

● Oncogene-induced senescence
The unrestrained activation of an oncogene induces

cellular senescence as a consequence of the DNA hyper-
replication-associated DNA damage which leads to a
permanent DDR activation: a phenomenon called OIS
[2, 3]. Even if activating mutations in RAS or BRAF are
commonly observed in many human cancers, their sole
activation is not sufficient to drive transformation and
requires additional hits. In their absence, unscheduled
oncogene activation leads to growth arrest and cellular
senescence, demonstrating that senescence in fine
represents an efficient antitumor mechanism. OIS is
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accompanied by the expression of tumour suppressors,
such as p53, p16INK4a and pRb, whose loss-of-function
leads to the abrogation or bypass of the senescence
programme [17, 18].

● Stress-induced senescence
Finally, several other stressful stimuli induce pre-

mature senescence again via the activation and perma-
nent maintenance of DDR signalling. They constitute a
heterogeneous group of events: alterations in DNA
methylation and/or histone landscape [19], cell exposure
to pro-inflammatory cytokines or the SASP produced by
neighbouring cells, oxidative stress or reactive aldehyde
due to endogenous cellular metabolism [20], mitochon-
drial and metabolic dysfunctions [21] (Fig. 1). Offering

an interesting exemple of the intricate links between
metabolic pathways, mitochondria activity, DNA
damage and redox homeostasis in cellular senescence,
a deficiency in the Alcohol Dehydrogenase 5 (ADH5),
which is critical for formaldehyde clearance, associates
alterations in mitochondrial dynamics and mitophagy as
well as increased ROS and DNA damage (induced by
the excess of oxidised aldehydes that react with DNA)
which converge to cellular senescence [22, 23].

Senescence: from physiology to pathology

The physiological requirements of senescence have been
proposed for many biological processes, such as tissue
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Fig. 1 Major molecular and cellular causes of senescence
implantation and consequences of SASP secretion on neighbour
cell reprogramming. Many factors lead to senescence implantation,
such as telomere replication, oncogene activation, damaging stimuli
and mitochondrial dysfunction. These factors all lead to DNA damage
persistence, ROS (reactive oxygen species) increase and stress path-
way activation, which drive permanent growth arrest and cellular
structural changes. When senescence is engaged, these cells express

SA-β-gal (senescence-associated β-galactosidase) and SAHF (senes-
cence-associated heterochromatin foci). They actively communicate
with their microenvironment through the SASP (senescence
associated-secretory phenotype). Depending on its composition,
secreted factors can either drive both the autocrine and paracrine
induction of senescence, immunoclearance, and tissue remodelling or
enhance the aggressiveness of neighbouring tumour cells.

Beyond DNA repair and chromosome instability—Fanconi anaemia as a cellular senescence-associated syndrome 1161



remodelling during embryogenesis, tissue repair and
immune-surveillance [1]. As revealed by the presence of
SA-β-gal (senescence-associated β-galactosidase) positive
cells, senescence occurs during embryonic development to
sculpt the organism. During embryogenesis, senescence is
p21 dependent but p53, p16 and DNA damage independent
and is regulated by the TGF-β/SMAD and the PI3K/FOXO
pathways. Senescent cells are cleared by macrophages,
allowing tissue remodelling [24, 25]. Tissue repair is a
process comprising four phases: haemostasis, inflammation,
proliferation and remodelling. Initially, senescence is
detected in fibroblast and epithelial cells early in response to
an injury. The senescent cells accelerate wound closure by
inducing myofibroblast differentiation through the secretion
of PDGF-AA [26]. However, an excess of senescent cells
after an injury may cause organ failure and/or permanent
illness. Extracellular signalling mediated by senescent cells
through the SASP can induce stem cell activation, which
promotes tissue regeneration and cellular plasticity [27].
Finally, premalignant senescent cells are removed from
healthy tissue by an efficient immune-surveillance system

that entails both the innate and adaptive immune response
through the “senescence surveillance” pathway [28].
Accordingly, senescence activation in a RAS-induced car-
cinoma mouse model resulted in the rapid regression of the
existing tumour. Senescence is a cellular defence mechan-
ism that can rapidly stop the abnormal proliferation of cells
with mutated oncogenes or cells that acquire irreversible
damage.

By contrast, the accumulation of senescent cells asso-
ciated with chronic inflammation causes disease, aging and
cancer. In advanced age, senescent cells accumulate in the
organism because of several factors, including declining
immune function and senescent cells clearance, DNA
damage accumulation and the inability to stabilise p53 to the
levels required to cause apoptosis [29–32]. The use of mice
in which positive p16 cells are selectively targeted for
elimination has unequivocally demonstrated that persistence/
accumulation of senescent cells impacts negatively indivi-
dual well-being and lifespan [33]. Moreover, retention of
unwanted senescent cells lead to the accumulation of SASP
components, particularly TGF-β, TNF-α, IL-6 and IL-8
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Fig. 2 Structure of the telomere. A Replication of telomeres which
shorten at each cell division and terminates with a 3-ssDNA-end
G-rich overhang extremity. B Telomeres, located at the chromosome
termini, are capped by the shelterin complex comprising six proteins.
TRF1 and TRF2, which form homodimers, interact with the telomeric

dsDNA form whereas POT1 is associated with telomeric ssDNA at the
3′ overhang. TIN2 acts as a bridge between these two homodimers.
The telomere likely exists in a dynamic equilibrium as a linear
structure with a free 3′ overhang (to the top) and the T-loop structure
(below).
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cytokines, which induce or support transformation,
epithelial–mesenchymal transition and invasiveness [34–36].
Thus, senescence can have two opposite outcomes in cancer,
acting against tumours and promoting their progression
[37, 38]. In progeroid and/or neugenerative diseases [39],
premature/excessive senescence has been associated also to
replication stress or altered reponse to DNA damage. Indeed,
it has been reported that progerin accumulation in the
Hutchinson-Gilford Progeria Syndrome affects the localisa-
tion of PCNA, the processivity factor of the DNA poly-
merase δ, affecting DNA replication and leading to
replication stress and the subsequent p53 activation [40].
Similarly, in the neurodegenerative diseases and UV-
sensitive disease Cockayne syndrome, mutations in the
nucleotide excision repair component CSB/ERCC6 leads to
the upregulation of the p53-p21 axis, cause and hallmark of
senescence (see below) [41, 42]. In addition, there is
extensive evidence indicating an involvement of senescent
cells accumulation in aggravate the neurodegeneration in
Parkinson’s, Alzheimer’s diseases, and Down syndrome
[43].

Senescence hallmarks

Despite their heterogeneity, several hallmarks define
senescent cells [8, 38].

● ATM and ATR activation
The major common biomarker that defines senescent

cells is the presence of persistently activated DDR due
to the accumulation of irreparable DNA lesions. For
exemple, a linear uncapped or eroded telomere looks
like a DSB and activates ATM kinase [44]. Its “repair”
results in end-to-end chromosome fusions or fusion with
a DSB extremity elsewhere in the genome, resulting in a
dicentric chromosome that will lead to a new DSB after
its breakage during mitosis. Thus, cells with eroded
telomeres maintain the ATM-dependent cell cycle
checkpoint that arrests proliferation in the “on” state
[45]. Oncogene unrestrained activation is followed by a
hyper-proliferative phase associated with an increased
number of active replicons and fork instability, leading
to robust S-phase-specific DDR engagement through
both ATM and ATR activation [2, 3]. Because the
oncogenic signals cannot be silenced, ATM/ATR
signalling is permanently maintained, inducing senes-
cence entry. The enforcement of DDR, which is
dependent on DNA replication, is both causative and
necessary to initiate and maintain OIS, opposing cell
transformation [2, 3]. Finally, most cellular stresses,
including exogenously induced DNA damage, endo-
genous oxidative stress, mitochondrial impairment,
changes in the chromatin landscape and exposure to

the SASP, affect the DNA chemistry or structure.
Therefore, while a mis-repaired DNA lesion can drive
transformation to increase the mutational landscape of a
cell, persistent DNA lesions lead to senescence by
hampering replication. In the absence of effective DDR,
senescence is bypassed, allowing abnormal cell prolif-
eration and transformation. Effectively, key DDR
players are progressively lost during cancer evolution
[46].

In summary, DDR activation and senescence repre-
sent initial barriers to oncogene-induced proliferation
and, to progress, cancer needs to bypass these barriers.
Thus, DDR signalling appears to be an important marker
and contributor to the cell’s decision to undergo
senescent.

● Activation of the p53-p21 and p16-pRb axes
Driven by ATM/ATR, DDR signalling leads to cell

cycle arrest by activating the p53-p21 and p16-pRb
axes, which inhibit factors associated with the G1-S
transition. Both axes play critical and pleiotropic roles in
growth inhibition outcomes: arresting the cell cycle
temporarily and permitting DNA damage repair or
permanently stopping the cell proliferation of highly
damaged cells by inducing senescence or cell death [47].

● Cellular structure alterations
Senescent cells become enlarged due to mTOR

pathway activation [48] and acquire an irregular shape
caused by the overexpression of vimentin filaments that
alters the cytoskeleton.

The plasma membrane composition is also modified.
Recent wide screening revealed that no less than one
hundred plasma membrane proteins could represent
potential senescence markers and their presence corre-
lates with survival increase in different tumours [49].

The upregulation of lysosomal proteins was detected
in senescent cells due to old lysosome accumulation,
increased lysosomal biogenesis and overexpression of
specific proteins, such as SA-β-gal, which is the product
of one of the multiple transcripts of the GLB1 gene
encoding lysosomal β-D-galactosidase [50]. The evalua-
tion of SA-β-gal activity is a commonly used readout for
senescent cells in culture and mammalian tissues,
despite the variability of its expression.

Generally, the senescent cell’s nucleus is enlarged,
exhibiting senescence-associated heterochromatin foci
(SAHF) observed as punctate DAPI foci visible by
microscopy. In addition to being enriched in hetero-
chromatin markers such as H3K9me3, HP1 and histone
macroH2A, an increased level of HMGA proteins is
required for SAHF formation [51]. Heterochromatin
remodelling has been proposed to be exploited by the
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cell to prevent the transcription of E2F target genes,
which are associated with S-phase entry and cell
proliferation [52]. In senescent cells, the nuclear
envelope structure is altered because of p53- and p16-
dependent downregulation of lamin B1 [53]. This event
affects the spatial reorganisation of chromatin and gene
expression [51, 54, 55]. The loss of integrity of the
nuclear envelope causes a release of chromatin pieces
from the nucleus to the cytoplasm. These cytoplasmic
chromatin fragments (CCFs) are processed using an
autophagic/lysosomal pathway [56].

Senescent cells also show mitochondrial alterations
caused by a mitochondria number increase due to
mitophagy reduction. This dysfunction is accompanied
by a significant mitochondrial potential membrane
decrease, ROS (reactive oxygen species) increase and
oxidative DNA damage [21, 57].

● Genetic and epigenetic regulation
With aging, genes associated with the stress response

are up-regulated, while genes involved in maintaining
genome integrity, including DNA repair genes, are
down-regulated [58]. Accordingly, the efficiency of
DNA repair in aged cells is reduced, leading to gradual
DNA damage accumulation and permanent DDR that
activates the senescence programme.

Histone and DNA methylation events are also
associated with senescence. DNA methylation of
constitutive heterochromatin is decreased by DMNT1
downregulation, but local hypermethylation of CpG
islands is observed at the promoter-proximal regions of
cell cycle genes associated with their repression [19].
For example, the repressive histone mark H4K20me3 is
enriched on the pro-apoptotic gene Bax in response to
senescence-associated oxidative stress [59].

In senescent cells, some genomic regions acquire a
more “open” structure, such as chromatin hosting the
major retrotransposon classes Alu, SVA and L1, and,
constitutive heterochromatin in centromeric and peri-
centromeric regions [60]. These features have also been
observed in cancer cells. Thus, premalignant senescent
cells undergo changes in methylome that cause cancer
progression when senescent cells can escape the
proliferative barrier [19].

● Secretory phenotype
Senescent cells secrete many factors, such as

cytokines (IL-1α, IL-6, IL-13), chemokines (IL-8,
CCL2), inflammatory molecules (TGF-β, IFN-γ), pro-
teinases (MMP-14, MMP-7, MMP-3) and growth
factors, which regulate several biological process [61].
The SASP is highly heterogeneous and dependent on the
cell type and senescence origin. It is also the result of a

transcriptional programme mediated by different factors.
Persistent DDR activation is associated with pro-
inflammatory transcription factor NF-κB activation or
with p62-mediated autophagy reduction, which, in turn,
inhibits GATA4, recently described as a senescence
regulator. Interestingly, the ATR/p62/GATA4 axis is
independent of p16INK4a and p53. GATA4 stabilisation
indirectly activates NF-κB to initiate and maintain the
SASP [62]. The p38/MAPK axis is also involved in the
NF-κB-dependent pro-inflammatory activity required
for SASP secretion [63]. Thus, p38/MAPK axis
upregulation induces the overexpression of matrix
metalloprotease MMP7 and activates IL-8 and TNF-α
oversecretion [64].

Recently, it has been shown that the recognition of
CCF by cGAS triggers the production of SASP factors
via STING, thereby promoting paracrine senescence
[65, 66].

Proteases are required for senescence progression. It
is the case of cathepsin-L1 (CTSL1) which degrades
53BP1, a key protein for DNA repair by non-
homologous end-joining (NHEJ), and cleaves the tail
of histone H3.3, facilitating the transcriptional silencing
of cell cycle regulators, including some E2F target genes
[67, 68].

Depending on the physiological context, SASP
factors can either reinforce senescence growth arrest in
an autocrine manner or relay the senescence phenotype
to surrounding cells in a paracrine manner (Fig. 1) [34].
The SASP also contributes to the surveillance and
elimination of senescent cells by the immune system.
Thus, paracrine senescence mediates the beneficial
effects of senescent cells on tissue homeostasis.
However, chronic expression of SASP proteins leads
to a disease state or an aging phenotype [17, 30, 33].
The SASP, through TGF-β, TNF-α, IL-6 and IL-8, also
induces transformation, the epithelial–mesenchymal
transition and invasiveness [34]. Senescent cells can
alter the tissue microenvironment affecting neighbour-
ing cells through paracrine signalling, leading to
angiogenesis stimulation by senescent fibroblasts, alter-
ing epithelial cell differentiation and promoting the
growth and tumorigenesis of epithelial cells [69, 70].

● Metabolic changes
Senescent cells remain metabolically active. Several

catabolic pathways are activated to stop futile DNA
repair activities. p53 represses PGC1A and PGC1B
expression, leading to mitochondrial biosynthesis arrest
and mitochondrial activity decrease, which drive the
increase in the AMP:ATP and ADP:ATP ratios and
AMPK (a central sensor of energy homeostasis)
activation. Activated p53 also modifies glucose uptake
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and glycolysis, promoting the tricarboxylic acid cycle,
oxidative phosphorylation and fatty acid oxidation
[21, 71]. These metabolic changes converge to increased
intracellular ROS levels, which are mitogenic signalling
molecules that fuel oncogene-driven aberrant cell
proliferation [72].

Fanconi anaemia

FA phenotype

Fanconi anaemia is a rare genetic disease affecting 1–4
newborns per million births and is the most frequent
iBMFS. FA is also associated with several diverse features,
all of which show incomplete penetrance, such as endocrine
dysfunction, congenital abnormalities in several unrelated
organs and cancer predisposition to acute myeloid leukae-
mia and solid tumours (particularly squamous cell carci-
noma of the head and neck) [4, 73]. Around 3/4 of FA
patients present at least one physical abnormality included
in the VACTERL-H association (Vertebral, Anal, Cardiac,
Trachea-esophageal fistula, Esophageal atresia, Renal upper
Limb and Hydrocephalus) and PHENOS acronym (skin
Pigmentation, small Head, small Eyes, Nervous system,
Otology, Short stature). The most frequent traits associated
with ~30% of the FA patients include short stature, radial
ray defects, skin pigmentary changes, renal malformations,
and microencephaly [7]. Long considered a DNA repair
disease, FA has been recently presented as an “accelerated
aging disease” due to the presence of clinical phenotypes
such as osteoporosis, ventriculoperitoneal shunts, ery-
throphagocytosis and type II diabetes mellitus [74].
Nevertheless, the biochemical and molecular bases of the
potentially accelerated organismal aging and their con-
sequence in FA were not defined.

The major hallmarks of FA cells include chromosomal
fragility and hypersensitivity to DNA ICL-inducing agents
such as mitomycin C, diepoxybutane and cisplatin. The FA
diagnosis is realised in vitro by the chromosome breakage
assay in lymphocytes or fibroblasts exposed to ICL-
inducing agents, which reveal high levels of typical chro-
mosome aberrations, such as tri- and quadri-radials [4, 73].

FANC proteins

Currently, 22 mutated genes (FANCA-FANCW ) have
been identified in FA patients. Proteins encoded by these
genes compose FANC pathway which is biochemically
and functionally organised into three groups (Fig. 3)
[5, 75] and involved in several functions related to DNA
metabolism, including ICL repair, replication fork pro-
tection and restart [76, 77]. Three models have been

proposed to manage ICL repair (Fig. 4) [6]. The key
points of the “single fork model” are arrest and collapse of
one replication fork, induction of an one-ended DSB, ICL
unhooking, TLS-dependent replication to complete repli-
cation of the strand with the unhooked ICL that will be
successively “repaired” by NER/ BER-mediated elim-
ination, and, finally, the HR-mediated (BIR) rescue of
replication [78]. The converging “double forks model” is
derived from in vitro reconstitution of the ICL repair steps
[79] but it seems be a minor ICL repair mechanism in
mammalian cells, estimated to 5–15% by Huang and col-
laborators [80, 81]. The most recent model proposed by
these last authors, is based on DNA-combing technique,
which allows the direct monitoring of DNA synthesis. The
replisome seems able to reassemble on the other side of
the ICL (“ICL traverse model”) to continue replication, an
event largely dependent on the translocase activity of
FANCM. ICL will be removed later by a BER/NER- and
TLS-mediated mechanisms. ICL traverse has been

Group III

Group II
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FANCG

FAAP20

FAAP100

FAAP24
UB

UB

FANCP/SLX4

FANCD1/BRCA2

FANCS/ BRCA1
FANCN/PALB2

FANCJ/BRIP1

FANCO/RAD51C

FANCR/RAD51

FANCU/XRCC2

FANCQ/ERCC4

FANCW/RFWD3

UB

FANCV/REV7

Fig. 3 FANC/BRCA pathway. Schematic representation of FANC
proteins in the three groups: proteins of group I associated with FAAP
proteins constitute the FANC core complex, which allows mono-
ubiquitylation of the FANCD2-FANCI complex (group II), which
enables DNA incision, TLS (translesion synthesis), ICL elimination
and replication rescue by homologous recombination, functions per-
formed by group III FANC proteins.
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observed in 50–60% of DNA fibers [80, 81]. Whatever the
model, final ICL removal and DNA structural recon-
stitution are dependent on DSB formation (one-ended or
double-ended) and repair via HR.

FANC pathway first group comprises eight FANC pro-
teins (FANCA, B, C, E, F, G, and L) and forms the FANC
core complex with FA-associated proteins (FAAPs).
Assembled at the chromatin on FANCM, the multisubunits
of the FANC core complex acts as a ubiquitin E3 ligase
(activity driven by FANCL in association with FANCT).
Combined with the ATR- and CHK1-mediated phosphor-
ylation of FANCE, D2 and I, the FANC core complex
ubiquitin-ligase activity monoubiquitylates FANCD2 and
FANCI (the group II). Monoubiquitylated ID2 heterodimer
re-localises on chromatin damaged sites, orchestrating the
recruitment and function of group III proteins that allow
DNA incision, TLS (translesion synthesis), ICL elimination

and replication rescue by HR-mediated mechanisms (Figs. 3
and 4) [6].

Loss-of-function in the FANC pathway leads to several
mitotic and post-mitotic abnormalities, including chromo-
some aberrations, anaphase bridges, lagging chromosomes
and micronuclei [82]. Moreover, FANCD2 can interact
directly with MCM proteins involved in replication [83] and
promotes alternative end-joining DNA repair by recruiting
POLθ [84]. FANCA plays a direct role in DSB repair,
independent of HR, by catalysing single-strand annealing
(SSA) and strand exchange [85]. These previous observa-
tions confirm the key role of FANC genes to prevent DNA
breakage and rescue stalled replication forks.

Furthermore, a functional FANC pathway is important to
protect specific regions of the genome called common fra-
gile sites (CFSs) where large genes are located [86, 87], by
managing conflict between transcription and replication
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Fig. 4 Repair of stalled forks by the FANC/BRCA pathway due to
ICL. Different models are proposed in literature. In “single fork” or
“double forks” models, replication forks are stalled at DNA ICL and
recognised by FANCM-FAAPs (FAAP24). FANCM promotes the
ATR-kinase dependent checkpoint response. The FANC core complex
is activated and monoubiquitylates the FANCD2-FANCI complex.
FANCI-FANCD2-ub complex and SLX4 are located in the chromatin

and promote SLX4/nuclease activities in ICL unhooking. A double-
strand break (one-ended or double-ended) is generated to allow sub-
sequent resection and strand invasion by homologous recombination
mediators in a process named break-induced replication (BIR) or
canonical HR. In “traverse” model, FANCM after FANCD2 recruit-
ment on ICL translocates in another side by MCM interaction to
continue DNA synthesis. ICL repair is postreplicatif.
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because it protects cells from unscheduled accumulation of
R-loops (DNA:RNA hybrid) [88]. In addition, FANCJ, with
a helicase function is involved in maintenance of genome
stability by recognition of specific DNA structure named G-
quadruplexes (G4) which interfere with DNA replication,
repair and mRNA transcription [89].

Subtle defects in immunity were observed in patients and
recently reported in Fanca−/− mice [90, 91].

Is FA a cellular senescence-associated disease?

A rapid survey of the characteristics of cells with FANC
pathway deficiency allows the identification of several key
hallmarks of senescence, including cellular hypo-prolifera-
tion, a short lifespan of fibroblasts in vitro, ATM, p53, p21
and p16 signal activation, and expression of SAHF and SA-
β-gal (Fig. 5) [92, 93].

Indirect evidence

● Unrestricted activation of DDR signalling
The first argument that links FA to altered senescence

is the persistent DDR activation observed in the patient’s
cells. The main direct consequence of FANC pathway
loss-of-function is the accumulation of DNA breaks at
stalled/delayed replication forks. Such breaks activate
DDR dependent on ATM or ATR, triggering the
formation of several chromatin-associated DNA repair
foci, assembling γH2AX, 53BP1, RIF1 and RAP80, and
the activation of the growth inhibitory pathway [92, 94].
The subtly but well-described constitutive activation of
the ATM-p53-p21 axis and ATR-CHK1 pathway is
involved in cell cycle delay and the activation of both
senescent and apoptotic programmes in FA. The
unscheduled and unrestrained activation of the p53-p21

 

Fig. 5 Fanconi Anaemia as a “senescence disease”. Fanconi anae-
mia cells are hypersensitive to multiple endogenous and exogenous
stresses. The FANC pathway deficiency and impaired alternative roles
of the FANC actors lead to persistent DDR activation and consequent
stress pathway activation (p53/p21, p16, NF-κB, p38/MAPKs) and
cell cycle arrest. The impaired DNA repair, accumulating defective

mitochondria, elevated ROS levels and persistent inflammation factors
(TNFα and TGF-β) contribute to exacerbate the stress pathway acti-
vation. This metabolic event leads to the pre-senescent status of FA
cells, which could explain development defects, cancer predisposition
and bone marrow failure observed in this disease (“dark side of
senescence”).
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axis, characterised by several iBMFS, is responsible for
the FA-associated haematological phenotype. p53
knockdown (which per se leads to increased genomic
instability and DNA damage [95]) rescues the hemato-
poietic defects in Fancd2−/− or Fanca−/− murine bone
marrow [96, 97], suggesting that BMF in FA is due more
to aberrant DNA damage signalling conveying growth-
inhibitory directives than to DNA damage per se.

● Relative attrition telomeres
Leukocytes from FA patients can present relatively

short telomeres, and FA cells are also characterised by
telomere loss and/or break and increased level end-to-
end telomere fusions that highlight a still poorly defined
role of the FANC pathway in telomere maintenance
[98, 99]. Several mechanisms were proposed to explain
the observed abnormalities in the structure and function-
ality of the telomeres in FA cells, including DNA break
accumulation at telomere sequences, accelerated repli-
cative shortening due to unscheduled NHEJ activity, and
impaired responses to oxidative stress. Moreover, some
FANC proteins have been identified at telomeres:
FANCD2, which colocalises with TRF1, FANCJ, a
helicase involved in resolving G4 DNA structure and,
recently, FANCM, whose depletion leads to ALT-
specific telomeric replication stress [99, 100]. In
addition, under replicative pressure, FANCC promotes
short telomere maintenance in the absence of telomerase
and its deficiency accelerates telomere attrition in bone
marrow cells, potentially participating in the FANCC’s
patient bone marrow failure [101].

Together, these previous observations support a
direct role of the FANC pathway, or some of its
components, in telomere integrity and functions, whose
loss not only increases genomic and telomeric instability
but also causes the activation of the senescence
programme.

● Cellular and metabolic changes
FA cell lines of complementation groups A, C, D2

and G present mitochondrial dysfunction characterised
by increased intracellular ROS levels, decreased mito-
chondrial potential, ATP production and oxygen uptake
and changes in mitochondrial morphology [102, 103].
These activities are associated with the inactivation of
enzymes essential for energy production (as cytochrome
C oxidase) and detoxification of ROS (superoxide
dismutase) [102]. Several FANC proteins interact
biochemically or functionally with enzymes involved
in redox homeostasis that are altered in FA cells.
FANCA, FANCC, and FANCG are associated with
cytochrome P450-related activities and/or respond to
oxidative damage. FANCD2 interacts with FOXO3 in

response to oxidative stress [104, 105]. FANCG
interacts with peroxiredoxin 3, and FANCJ is a repressor
of heme oxygenase-1 gene and sense oxidative base
damage [103]. FANCD2, which interacts with the
mitochondrial membrane ATP synthase ATP5α, appears
to be involved in mitochondrial energy metabolism and
mitochondrial gene transcription and translation
[106, 107]. Mutations in these FANC components lead
to the deregulation of mitochondrial homeostasis
associated with inflammation and subsequent increased
intracellular ROS levels. Moreover, via the FANCC-
Parkin interaction, the FANC pathway appears to be
involved in mitochondria turn-over, and its loss-of-
function leads to alterations in the process of mitophagy,
which is responsible for the clearance of damaged
mitochondria [108]. Recently, it has been demonstrated
that FANCD2 modulates mitochondrial stress response
to prevent common fragile site instability [87].

Recent observations have indicated that at least
FANCA and FANCI are involved in ribosome biogen-
esis and mRNA translation with still unappreciated
consequences on the metabolism of FA cells and
development of the clinical traits of the syndrome [109].

Newly, it has been demonstrated that hematopoietic
differentiation is associated to transient stem cells
transcription reprogramming which leads to R-loops
formation and nuclear formaldehyde overload. Thus, the
spontaneously generated high level of formaldehyde
results in DNA and/or proteins crosslink whose repair
requires FANC pathway. Notably, it has been described
that ADH5 loss-of-function, that leads to intracellular
formaldehyde overload and associated increased DNA
damage, is lethally synthetic in a Fancd2-KO back-
ground [110]. On the basis of the previous observations,
it has been proposed that the progressive and general
attrition of blood/bone marrow cellularity in FA patients
is due to the deleterious impact of endogenous produced
formaldhyde causing aborted hematopoietic differentia-
tion, DNA-damage-associated cell death and/or senes-
cence [111].

The described metabolic alterations in mitochondrial,
energetic and ribosomal physiology observed in FA are
also strongly associated with the senescence process in a
p53-dependent and -independent manner.

● Secretory phenotype
FA cells are characterised by altered responses to

and/or overexpression of several lymphokines, cyto-
kines and growth factors, including IL-1α, IL-6, TNF-α,
TGF-β and interferons [112, 113]. At least some
previous factors are also involved in DDR anomalies
and their neutralisation with specific antibodies or
inhibitors significantly reduces both FA cell
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chromosome fragility and hypersensitivity to treatment
with ICL-inducing drugs [113]. The origin of the
cytokine and growth factor overexpression/responses
remains debatable and could represent a “physiological”
response to palliate bone marrow failure, induced
downstream of the intracellular accumulation of ROS,
or induced by the presence of cytosolic DNA, or due to
the lack of a canonical role of some FANC protein (not
DNA repair related) in transcription or translational
control. The unscheduled activation of several intracel-
lular stress signalling pathways, including NF-κB, ERK,
Jun and p38-MAPK, in turn could contribute to cytokine
and growth factors hypersecretion.

Indeed, FA cells are characterised by an increased
level of both DNA damages and intracellular ROS that
both can contributes to stress signals activation leading
to pro-inflammatory cytokines production [114]. For
instance, overexpression can be due to NF-κB-
dependent matrix metalloprotease MMP-7 overexpres-
sion and/or the loss-of-function of FANCD2 that
suppresses TNF-α gene expression linking a consensus
element in the TNF-α promoter [115]. TNF-α over-
expression, in turn, amplifies stress signalling pathway
activation, the ROS level and mitochondrial dysfunction
[116].

In FA cells, the presence of DNA in the cytosol, due
to the alterations in DNA repair, can contribute to both
IFN signalling overactivation and IFN secretion via the
cGAS/STING pathway, a key cell defence against virus
infections [117, 118].

Finally, the activation of stress signalling pathways
and the secretion of several cytokines or growth factors
could be a futile and pernicious attempt to rescue
hematopoietic impairment and/or pancytopenia that
characterise FA patients.

All the previous pro-inflammatory mediators and
stress signals are produced and activated during the
senescence programme and can induce the senescence
process in target cells. Thus, their overproduction in FA
could lead to senescence either directly or by modifying
the DDR capabilities of the FA cells.

Direct evidence

MiTF is a key transcription factor involved in melanocyte,
mast cell and osteoclast biology. Its unscheduled over-
expression sustains melanoma progression and invasive-
ness, whereas its siRNA-mediated depletion in melanoma
leads to genetic instability, mitotic abnormalities, growth
arrest and senescence associated with the downregulation of
FANC genes, known be among its direct targets. Notably,
several consequences of MiTF depletion in melanoma were

recapitulated by FANCA or FANCD2 depletion despite the
maintenance of MiTF expression; inversely, their over-
expression limits the consequence of MiTF depletion on
melanoma cell behaviour [92].

We have recently demonstrated that FANC pathway
depleted cells shown senescence hallmarks and phenotypes.
In response to the unscheduled expression of an oncogene,
FANCA and FANCD2 were first activated (to counteract
the replication stress caused by the activated oncogene)
before being actively degraded to allow senescence pro-
gression. Interestingly, FANCA and FANCD2 down-
regulation precedes p53, p21 and p16 activation. FANCD2
ectopic overexpression delays OIS progression without a
major effect on p53 or p21 induction [93]. In FANCD2-
depleted cells, an anticipated activation of CTSL1 was
observed in parallel with the accelerated rise in senescence
initiation [93]. A similar outcome was also observed for
BRCA1, another FANC pathway-associated protein
(FANCS) [119]. CTSL1 activation may orchestrate the
arrest of futile DNA repair activities, permanently stopping
cell proliferation and pushing the cells into senescence.

Conclusion: FA as a “senescence disease”

The main downstream role of proteins of the FANC path-
way is to repair cross-linked DNA and rescue delayed/
blocked replication forks while maintaining genomic sta-
bility, and the multiple clinical and cellular phenotypes that
define FA may be caused by a single factor with multiple
tissue, cellular, biochemical and molecular consequences:
the unscheduled activation of the senescence programme as
a major consequence of the DNA damage-induced ATM-
p53-p21 axis.

Moreover, it is tempted to speculate that the pro-
senescent phenotype of the FA cells becomes, para-
doxically, a driving force to select rare pre-leukemic cells
that can overcome the growth-inhibited status characteristic
of FA cells: the “dark side” of senescence (Fig. 5). Rare
senescent cells could escape senescence and re-enter S-
phase of the cell cycle using different mechanisms, such as
transient inactivation of ATM, or ATR, combined with
CHK1 and CHK2 inactivation, mutation acquisition in key
proteins associated with senescence or reactivation of telo-
merase expression [120]. However, in DNA repair/DDR
proficient cells, the escape frequency from OIS is estimated
to be 1 in 106 cells [121], which is more probable in cells
with a pre-existing DNA repair or DDR deficit.

The FA clinical phenotype is characterised by abnormal
embryo development involved in birth defects that alters
several organs, including the skeleton, kidney and heart.
These developmental defects may be caused by the loss of
the organism’s normal ability to sculpt itself owing to the
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senescence and programmed cell death processes that
represent two alternatives for the same purpose and that are
abnormally active in FA cells.

The constitutive expression of the SASP, with multiple
helpful effects when optimally and transiently regulated in a
physiological setting, becomes unsafe with amplification of
hematopoietic stem cell attrition, a pro-inflammatory status,
DNA repair impairment and, finally, sustained cancer cell
growth and expansion. Our hypothesis also furnishes a
possible explanation of why Fanc-deficient mice generally
present a mild FA phenotype compared with FA patients,
despite similar hypogonadism/fertility reduction [122],
impairment in the DNA repair and DDR. Compared with
human cells, the telomeres in mice are longer and, to attain
their critical shortening, two or three generations or inacti-
vating mutations are needed in telomeric proteins. We
speculate that the absence of telomeric abnormalities in FA
mice reduces the intensity of the signal that leads to
senescence activation (for example, reduced or absent
secretion of pro-inflammatory cytokines, such as TNF-α of
TGF-β) reduce the penetrance of the clinical stigma in the
affected animals.

Thus, considering the involvement of FANC proteins in
the control of the senescence programme and potential
consequences of the deregulation of the latter for the FA
phenotype, we propose that FA should be considered not
only a DNA repair and chromosome fragility syndrome but
also a cellular senescence-associated illness.
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