

The erosive power of the Malvinas Current: Influence of bottom currents on morpho-sedimentary features along the northern Argentine margin (SW Atlantic Ocean)

Henriette Wilckens, Elda Miramontes, Tilmann Schwenk, Camila Artana, Wenyan Zhang, Alberto R. Piola, Michele Baques, Christine Provost, F. Javier Hernández-Molina, Meret Felgendreher, et al.

▶ To cite this version:

Henriette Wilckens, Elda Miramontes, Tilmann Schwenk, Camila Artana, Wenyan Zhang, et al.. The erosive power of the Malvinas Current: Influence of bottom currents on morpho-sedimentary features along the northern Argentine margin (SW Atlantic Ocean). Marine Geology, 2021, 439, pp.106539. 10.1016/j.margeo.2021.106539. hal-03371687

HAL Id: hal-03371687 https://cnrs.hal.science/hal-03371687

Submitted on 15 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The erosive power of the Malvinas Current: Influence of bottom currents on morpho-sedimentary features along the northern Argentine margin (SW Atlantic Ocean)

Henriette Wilckens, Elda Miramontes, Tilmann Schwenk, Camila Artana, Wenyan Zhang, Alberto Piola, Michele Baques, Christine Provost, F. Javier Hernández-Molina, Meret Felgendreher, et al.

▶ To cite this version:

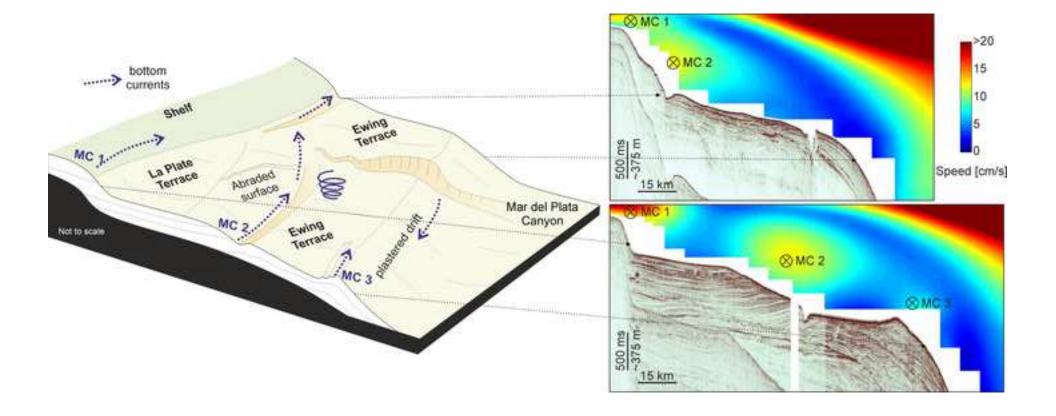
Henriette Wilckens, Elda Miramontes, Tilmann Schwenk, Camila Artana, Wenyan Zhang, et al.. The erosive power of the Malvinas Current: Influence of bottom currents on morpho-sedimentary features along the northern Argentine margin (SW Atlantic Ocean). Marine Geology, Elsevier, 2021, 439, pp.106539. 10.1016/j.margeo.2021.106539. hal-03371687

HAL Id: hal-03371687 https://hal-cnrs.archives-ouvertes.fr/hal-03371687

Submitted on 15 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Marine Geology


The erosive power of the Malvinas Current: Influence of bottom currents on morphosedimentary features along the northern Argentine Margin (SW Atlantic Ocean) --Manuscript Draft--

Manuscript Number:	MARGO-D-21-00047		
Article Type:	VSI:Contourites		
Keywords:	Contour current; Deep-water environment; Sediment drift; Contourite Depositional Systems; Sediment transport, Argentine Margin		
Corresponding Author:	Henriette Wilckens University of Bremen: Universitat Bremen Bremen, GERMANY		
First Author:	Henriette Wilckens		
Order of Authors:	Henriette Wilckens		
	Elda Miramontes		
	Tilmann Schwenk		
	Camila Artana		
	Wenyan Zhang		
	Alberto Piola		
	Michele Baques		
	Christine Provost		
	F. Javier Hernández-Molina		
	Meret Felgendreher		
	Volkhard Spieß		
	Sabine Kasten		
Abstract:	Sediment deposits formed mainly under the influence of bottom currents (contourites) are widely used as high-resolution archives for reconstructing past ocean conditions. However, the driving processes of Contourite Depositional Systems (CDS) are not entirely understood. The aim of this study is to establish a clearer link between contourite features and the oceanographic processes that form them. The morphosedimentary characteristics of a large CDS were analysed together with the current dynamics along the continental margin off northern Argentina. This study combines multibeam bathymetry, seismo-acoustic data, sediment cores, vessel-mounted Acoustic Doppler Current Profiler (VM-ADCP) data and numerical modelling of ocean currents. The contouritic features include large contourite terraces, as well as smaller erosional and depositional features like moats, erosion surfaces on the Ewing Terrace, sediment waves and contourite diffts. Measured and modelled near-bottom currents are strong (up to 63 cm/s at 150 - 350 m above the seafloor) where abraded surfaces and meats are present, and weak (below 30 cm/s) on the La Plata Terrace and the Ewing Terrace. Generally, bottom currents follow the upper and middle slope morphology. Decreasing velocity of water masses flowing northward leads to less erosion and finer sediment deposits. ADCP data and the hydrodynamic model show the formation of eddies near the seafloor which probably lead to the small erosion surfaces on the Ewing Terrace, even though it is mainly a depositional environment. Furthermore, modelled data show that a subsurface branch of the Malvinas Current continues flowing northwards (~36°S) beyond the surface confluence zone between the Malvinas Current and the Brazil Current. Overall, this study contributes to a better understanding of the formation of cDS and can help future reconstructions of past ocean conditions based on sedimentary structures.		

Suggested Reviewers:	Marta Ribó University of Auckland m.ribo@auckland.ac.nz Marta Ribó is a marine geologist with experience on evaluating sedimentary processes together with their hydrodynamics control. She has previously studied sediment transport and deposition mechanisms in a deep-water environment. Her skillset qualifies her to give constructive feedback in all chapters of our study.
	Amanda Thran UNSW: University of New South Wales m.thran@unsw.edu.au Amanda Thran has expert knowledge about numerical modelling of hydrodynamic and sedimentary processes on passive margins. She worked on the controls on the global distribution of contourite drifts. I would like to suggest her as a potential referee because her previous study aimed in further understanding the same processes as our new study.
	Adriano R. Viana Petróleo Brasileiro SA: Petrobras aviana@petrobras.com.br Adriano R. Viana research include Marine Geology, Margin Geotectonics, Multiphysics Methods and Basin Analysis. His work included analysed of Deep-water contourite systems and their control of bottom currents. I would like to suggest him as a potential referee because of interdisciplinary work and knowledge of contourite systems.
	Dmitrii Borisov FSBIS P P Shirshov Institute of Oceanology of the Russian Academy of Sciences: FGBUN Institut okeanologii imeni P P Sirsova Rossijskoj akademii nauk dborisov@ocean.ru Dmitrii Borisov is an expert in contourites and with knowledge in the working area of South Atlantic. He also has knowledge about Oceanography.
	Leticia Burone Universidad de la Republica Uruguay Iburone@fcien.edu.uy Leticia Burone work includes the disciplines of Oceanography, Marine Ecology, Sedimentology. She previously worked on hydrological and morphological controls on surface sedimentation. Furthermore, she previously worked at the South American margin and knows the unique oceanographic setting.
	Tove Nielsen Geological Survey of Denmark and Greenland (GEUS) tni@geus.dk Tove Nielsen work included the analyses of Sedimentary processes and contourites with a focus on Paleontology.

Highlights:

- Near-bottom currents are strong (up to 63 cm/s) over abraded surfaces and moats
- Near-bottom currents are weak (below 30 cm/s) on La Plata and the Ewing Terrace
- Formation of eddies near the seafloor probably lead to small erosion surfaces
- Sediment transport is associated with high-velocity alongslope bottom-current jets
- Model indicates: near the seafloor Malvinas Current splits in 3 branches at ~39°S

1 The erosive power of the Malvinas Current: Influence of bottom currents on morpho-2 sedimentary features along the northern Argentine Margin (SW Atlantic Ocean) 3 Henriette Wilckens^{a,b}*, Elda Miramontes^{a,b}, Tilmann Schwenk^a, Camila Artana^c, Wenyan 4 5 Zhang^d, Alberto Piola^{e,f}, Michele Bagues^{e,g}, Christine Provost^h, F. Javier Hernández-6 Molina^{*i*}. Meret Felgendreher^{*j*}. Volkhard Spieß^{*a*}. Sabine Kasten^{*a,b,k*} 7 8 ^a Faculty of Geosciences, University of Bremen, Bremen, Germany ^b MARUM - Center for Marine Environmental Sciences, University of Bremen, Germany 9 10 ° MERCATOR-OCÉAN, Parc Technologique du Canal, 8-10 rue Hermès, Ramonville Saint Agne, 11 France. 12 ^d Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany 13 ^e Departamento Oceanografia, Servicio de Hidrografia Naval, Buenos Aires, Argentina 14 ^f Instituto Franco-Argentino para el Estudio del Clima y sus Impactos (UMI-IFAECI/CNRS-CONICET-15 UBA), Buenos Aires, Argentina 16 ⁹ Acoustic Propagation Department, Argentinian Navy Research Office and UNIDEF (National Council 17 of Scientific and Technical Research - Ministry of Defense), Buenos Aires, Argentina 18 ^h Laboratoire LOCEAN-IPSL, Sorbonne Universités (UPMC, Univ. Paris 6) CNRS-IRD-MNHN, Paris, 19 France 20 ¹ Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK 21 ^j Department of Geosciences, Kiel University, Kiel, Germany 22 ^k Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany 23

- 24
 - * Corresponding author: Henriette Wilckens: <u>cwilcken@uni-bremen.de</u>
- 25

26 Abstract:

27 Sediment deposits formed mainly under the influence of bottom currents (contourites) are 28 widely used as high-resolution archives for reconstructing past ocean conditions. However,

the driving processes of Contourite Depositional Systems (CDS) are not entirely understood.

30 The aim of this study is to establish a clearer link between contourite features and the

oceanographic processes that form them. The morphosedimentary characteristics of a large
 CDS were analysed together with the current dynamics along the continental margin off

33 northern Argentina. This study combines multibeam bathymetry, seismo-acoustic data,

34 sediment cores, vessel-mounted Acoustic Doppler Current Profiler (VM-ADCP) data and

35 numerical modelling of ocean currents.

The contouritic features include large contourite terraces (La Plata Terrace, Ewing Terrace) and an abraded surface connecting the terraces, as well as smaller erosional and depositional features like moats, erosion surfaces on the Ewing Terrace, sediment waves and contourite drifts. Measured and modelled near-bottom currents are strong (up to 63 cm/s at 40 150 - 350 m above the seafloor) where abraded surfaces and moats are present, and weak (below 30 cm/s) on the La Plata Terrace and the Ewing Terrace. Generally, bottom currents 41 42 follow the upper and middle slope morphology. Decreasing velocity of water masses flowing 43 northward leads to less erosion and finer sediment deposits. ADCP data and the 44 hydrodynamic model show the formation of eddies near the seafloor which probably lead to 45 the small erosion surfaces on the Ewing Terrace, even though it is mainly a depositional 46 environment. Furthermore, modelled data show that a subsurface branch of the Malvinas 47 Current continues flowing northwards (~36°S) beyond the surface confluence zone between 48 the Malvinas Current and the Brazil Current. Overall, this study contributes to a better 49 understanding of the formation of CDS and can help future reconstructions of past ocean 50 conditions based on sedimentary structures.

51

52 Keywords: Contour current; Deep-water environment; Sediment drift; Contourite

53 Depositional Systems; Sediment transport, Argentine Margin

54

55 **1 Introduction**

56 Continental margins can be shaped by ocean currents, which influence sediment erosion and deposition even at large scales (Heezen, 1959; Heezen and Hollister, 1964; Stow et al., 57 58 2009). Sediment deposits formed mainly under the influence of bottom currents (i.e. currents 59 flowing near the seafloor) are classified as contourites (Rebesco and Camerlenghi, 2008; 60 Rebesco et al., 2014). These currents often supply oxygen and nutrients favouring the 61 development of deep-sea ecosystems with high biodiversity, for instance cold-water corals are 62 often found in contourite depositional systems (Hebbeln et al., 2016; Steinmann et al., 2020). 63 Bottom currents that lead to large sediment deposits can also control the distribution of 64 microplastics and lead to hotspots in the same area where biodiversity is high which is a 65 possible threat for marine ecosystems (Kane et al., 2020). Furthermore, contourites are 66 important for several fields including paleoclimatology and palaeoceanography, risk 67 management regarding slope instabilities and hydrocarbon exploration (Rebesco et al., 2014;

68 Hernández-Molina et al., 2018). Many physical oceanographic processes, ranging from lowfrequency quasi-steady geostrophic currents, sub-inertial oscillations, tides to high-frequency 69 70 internal waves, have potentially significant impact on the morphogenesis and evolution of 71 contourites. On a long time scale, the development of contourites is subject to climate-induced 72 change in thermohaline circulation and isostatic movements (e.g. tectonics). However, it is still 73 not clear how these multi-scale processes interact and control the formation and evolution of 74 contourites. Understanding the present deposition mechanisms is necessary for the 75 reconstruction of past ocean conditions based on the geological record (Surlyk and Lykke-76 Andersen, 2007; Preu et al., 2012; Betzler et al., 2013).

77 A large Contourite Depositional System (CDS) has been recognised along the northern 78 margin of Argentina and Uruguay (Hernández-Molina et al., 2009; 2016a; Preu et al., 2012; 79 2013). The CDS includes three large contourite terraces that have been documented along 80 the continental margin off the Río de la Plata Estuary (northern Argentine) in close proximity 81 to the Mar del Plata (MdP) submarine Canyon (Preu et al., 2012; 2013). The study area is 82 located in the confluence zone of the northward flowing Malvinas Current and the southward 83 flowing Brazil Current (Fig. 1; Artana et al., 2019b; Piola and Matano, 2019). This complex 84 oceanographic setting makes it an interesting study area for analysing the influence of currents 85 on contourite formation. In this study we use a multidisciplinary approach based on multibeam 86 bathymetry, hydroacoustic data, sediment cores, vessel-mounted Acoustic Doppler Current 87 Profiler (VM-ADCP) data, Conductivity, Temperature and Depth (CTD) data and 25 years of 88 high-resolution ocean reanalysis. The main aim of the study is to derive further insights into 89 basic physical oceanographic mechanisms that control the formation of large-scale 90 contourites in such a complex and unique oceanographic configuration. More specifically, this 91 multidisciplinary project has the following three main goals: 1) to report on the characteristics 92 of near-bottom currents in the Brazil-Malvinas Confluence Zone; 2) to discuss differences 93 within the contourite system regarding seafloor morphology, sediment architecture and grain 94 size; 3) to interpret and discuss the oceanographic processes that may contribute to the 95 formation of the observed contouritic features.

96

97 2 Regional setting

98 **2.1 Oceanographic framework**

99 Strong ocean currents are present along the continental margin of Argentina and Uruguay 100 from the surface down to 2000 m water depth (Piola and Matano, 2019). The Malvinas Current 101 (MC) transports cold and nutrient rich waters northwards. The Brazil current flows southwards 102 along the continental slope and transports warmer, saltier waters and is shallower than the 103 Malvinas Current (Piola and Matano, 2019). The study area is located in the region where 104 these two boundary currents encounter, forming the Brazil-Malvinas Confluence Zone. On 105 average, the axis of the confluence zone is situated at an approximate latitude of 38°S (Gordon 106 and Greengrove, 1986; Artana et al., 2019b; Piola and Matano, 2019). The confluence shows 107 large migrations at synoptic (800 km) and interannual (300 km) scales compared to rather 108 small seasonal changes (<150 km) (Artana et al., 2019b). Numerical simulations suggest that 109 at the confluence the Malvinas Current splits into two branches at the sea surface (Provost et 110 al., 1995; Artana et al., 2019b). The offshore branch joins the Brazil Current and detaches 111 from the continental slope while the inner branch subducts and continues flowing northward 112 along the upper continental slope (Artana et al., 2019b).

113 Malvinas and Brazil Current refer to the continuous horizontal movement of water, they can 114 be composed of different water masses which are defined by their different chemical 115 composition and can be identified based on the potential temperature, salinity and dissolved 116 oxygen (Maamaatuaiahutapu et al., 1994). The northward flowing water masses at the 117 continental slope from sea surface to bottom are Subantarctic Surface Water (SASW), Antarctic Intermediate Water (AAIW), Circumpolar Deep Water (CDW) and the Antarctic 118 Bottom Water (AABW) (Preu et al., 2013; Piola and Matano, 2019). The southward flowing 119 120 water masses are Tropical Water, South Atlantic Central Water (SACW), AAIW and North 121 Atlantic Deep Water (NADW) (Preu et al., 2013; Valla et al., 2018; Piola and Matano, 2019). 122 Southward flowing AAIW is an older (saltier and less oxygenated) variety of the AAIW 123 recirculated around the South Atlantic subtropical gyre (Valla et al., 2018). The NADW flows 124 southward between Upper Circumpolar Deep Water (UCDW) and Lower Circumpolar Deep 125 Water (LCDW) (Reid et al., 1977; Piola and Matano, 2019). The depth of the interfaces 126 between the water masses varies with time and between locations. In close proximity to the 127 MdP Canyon the interfaces between AAIW, UCDW, NADW, LCDW and AABW are located at 128 1200, 2000, 3200, 3800 m, respectively (Preu et al., 2013). The zone of interest in this study 129 (located at 450-1400 m water depth) is mainly under the influence of the AAIW (identified with 130 a salinity minimum and a dissolved oxygen maximum) and the UCDW (identified with a 131 dissolved oxygen minimum) (Fig. 1B and 1C, Preu et al., 2013). The interface between the 132 UCDW and the NADW is characterised by an increase of salinity and dissolved oxygen 133 decrease with depth (Fig. 1B and 1C). This modern ocean circulation and stratification pattern 134 was established during the Middle Miocene after the onset of the (paleo-) NADW circulation 135 in the southern hemisphere, which significantly influenced the formation of the CDS (Preu et 136 al., 2012).

137

138 2.2 Geological setting

139 The study area is located at the passive volcanic-rifted continental margin of north 140 Argentina, offshore the Río de la Plata estuary formed during the Cretaceous period (Fig. 1A; 141 Hinz et al., 1999; Franke et al., 2007). The rivers flowing into the Río de la Plata, together with 142 the Colorado and Negro rivers that are located further south, are the main sources of 143 sediments to the continental margin (Giberto et al., 2004; Voigt et al., 2013; Razik et al., 144 2015a). Frenz et al. (2003a) and Razik et al. (2015a) analysed the sediment grain size of 145 surface sediments from the SE South American margin and suggested that sedimentation and grain size distribution on the margins of Argentinian and Uruguayan is strongly controlled by 146 147 the oceanic circulation. The continental slope is composed of contourites, forming a large 148 Contourite Depositional System (CDS) composed of moats/channels, contouritic terraces, 149 abraded surfaces and sediment drift deposits (Urien and Ewing, 1974; Hernández-Molina et 150 al., 2009; 2016a; Krastel et al., 2011; Preu et al., 2012; 2013; Voigt et al., 2016; Warratz et al., 151 2017; 2019). At the southern Argentine margin 4 terraces (i.e. relatively flat surfaces) are 152 present: Nágera Terrace at ~500 m depth, the Perito Moreno Terrace at ~1000 m depth, the 153 Piedra Buena Terrace at ~2500 m depth and the Valentin Feilberg Terrace at ~3500 m depth 154 (Hernández-Molina et al., 2009). Nágera Terrace, Perito Moreno and Valentin Feilberg Terrace can be followed further to the north but in the northern part of the margin they are 155 156 known as La Plata Terrace at ~500 m depth, the Ewing Terrace at ~1200 m depth and the 157 Necochea Terrace at ~3500 m depth (Urien and Ewing, 1974; Preu et al., 2013), Seismic data 158 shows that the La Plata Terrace is much wider south of the MdP Canyon compared to the 159 north (Preu et al., 2013). The La Plata Terrace is deeper (~500 m) south of the MdP Canyon 160 compared to the north where it is located at shallower depth (~400 m) (Preu et al., 2013). Preu 161 et al. (2012) reconstructed the evolution of the internal stratigraphy of the Ewing Terrace in 162 close proximity of the MdP Canyon from Oligocene to modern times. Contourite terraces can 163 show depositional and erosional features and often correspond to the landward part of 164 plastered drifts (Hernández-Molina et al., 2016a; Thiéblemont et al., 2019). Part of the Ewing 165 Terrace is associated with plastered drifts at the basinward side, but at the La Plata Terrace 166 no plastered drifts could be recognised (Hernández-Molina et al., 2009; Preu et al., 2013). 167 Two channels where found in the landward side of the Ewing Terrace that where recently 168 reclassified as moats due to the evidence of sedimentation and its association with a 169 separated mounded drift (Fig. 2; Bozzano et al., 2011; 2020; Preu et al., 2012; 2013; Voigt et 170 al., 2013; Steinmann et al., 2020). Steinmann et al. (2020) described the southern moat for 171 the purpose of analysing cold-water corals in close proximity to this moat. In the moat, current 172 speeds decreasing from south to north between 3 and 52 cm/s have been reported 173 (Steinmann et al., 2020). Bozzano et al. (2020) described several morphological depressions 174 in which dropstones lie, possibly with an origin from the Antarctic Peninsula and Subantarctic 175 islands.

The prominent MdP Canyon crosses the Ewing Terrace between 1000 - 4000 m water depth (Krastel et al., 2011). The canyon is disconnected from the continental shelf and it has been excluded that it ever had a direct connection (Krastel et al., 2011). Turbidity currents in the canyon were only active from the Last Glacial Maximum to the late deglacial (Warratz et

al., 2019). During sea-level high stands, most of the sediments from the Río de la Plata plume
were transported northwards and did not directly reach the zone around the MdP Canyon
(Razik et al., 2015a). The MdP Canyon acts in part as a sediment trap for sediments
transported along the Ewing Terrace by bottom currents (Voigt et al., 2013; Warratz et al.,
2019).

185

186 3 Materials and methods

187 **3.1 Oceanographic dataset**

188 Ocean velocities were measured with a 38 kHz vessel-mounted Acoustic Doppler Current 189 Profiler (VM-ADCP) during the R/V SONNE cruise SO260 in January-February 2018 (Kasten 190 et al., 2019). These short-term measurements are used to understand small-scale 191 oceanographic phenomena (e.g. eddies and local acceleration) and changes in bottom 192 currents that can be linked to the underlying morphology. However, these data cannot show 193 seasonal or interannual variations. The data were processed with the Cascade V7.2 software, 194 leading to a horizontal grid cell size of 1 km and vertical grid cell size of 16 m. For analyses of 195 the currents near the sea-surface, the average velocity between 50 and 150 m depth below 196 sea surface was calculated. For analyses of the near-bottom current the average velocity 197 between 150 and 350 m above seafloor was calculated. Below 150 m above seafloor the data 198 quality is too poor to be used with confidence (similar to Steinmann et al. (2020)). However, 199 Steinmann et al. (2020) showed that the selection of this level is a reasonable approximation 200 of bottom currents since, in this particular area, the vertical shear of the along-slope velocity 201 between these depths is low. The maximum range of the 38 kHz VM-ADCP system in this 202 area was about 1500 m. In areas where the seafloor lies below the range of the instrument 203 (e.g inside the MdP Canyon), no analyses of bottom currents is possible.

The Conductivity, Temperature and Depth (CTD) data were acquired using a Sea-Bird 9.11 plus and were used to identify the different water masses in the study area at the time of the R/V SONNE cruise SO260 (Fig. 1) (Kasten et al., 2019). Typically, the CTD profiles were collected to 50 m above the ocean floor.

208 The direct current observations are only useful to depict the circulation over a limited region 209 at the time of the cruise. To better understand the large-scale and long-term circulation we 210 use high-resolution ocean reanalysis. The Mercator Ocean reanalysis (GLORYS12) delivers 211 daily mean values (temperature, salinity, currents, sea-ice, and sea level) over the period 212 1993-2017 as part of the Copernicus Marine Environment Monitoring Service (CMEMS, 213 http://marine.copernicus.eu/) and assimilates measurements (Lellouche et al., 2018: Artana 214 et al., 2019a). The model uses the ETOPO bathymetry (Fig. S1 of the supplementary 215 material). The reanalysis was validated with direct observations including current 216 measurements at depth (Artana et al., 2018). The resolution of the model is 1/12° in horizontal 217 and 50 vertical levels. In the 450 and 1400 m water depth range the model vertical resolution 218 varies between 80 and 200 m.

219

220 **3.2 Geological and geophysical dataset**

221 Multibeam bathymetry was acquired during cruise SO260 in 2018 with a hull-mounted 222 Kongsberg Simrad system EM122 operating at a nominal frequency of 12 kHz (swath opening 223 angle across track up to 150°, the opening angle of each beam is 0.5°x1°, equidistant mode) 224 (Kasten et al., 2019). Processing and gridding were carried out using the open-source 225 software MB-Systems. This data set was used to construct a grid with a 25 m cell size for 226 detailed analysis of two moats in the study area. A combined grid with a 100 m resolution was 227 computed with MB-Systems (Fig. 2) using previously collected multibeam data acquired during 228 R/V Meteor cruise M78/3 in 2009 (Kongsberg Simrad system EM120) and R/V Meteor cruise 229 M49/2 in 2001 (Atlas Hydrosweep system DS2) for the analysis of the larger area. Data from 230 the GEBCO grid (General Bathymetric Chart of the Oceans; GEBCO Compilation Group 231 (2020); https://www.gebco.net/) at 15 arc-second intervals are used in areas where no 232 multibeam bathymetry is available. The resulting bathymetric grid has been visualised with the 233 open-source software QGIS (QGIS 3.12).

For detailed analyses of sub-bottom morpho-sedimentary features, we used sediment echosounder data collected with a hull-mounted narrow-beam parametric PARASOUND P70

236 system during cruise SO260 (Kasten et al., 2019). The PARASOUND system makes use of 237 the parametric effect to produce a secondary low frequency based on two primary high 238 frequencies (for details, see Grant and Schreiber (1990)). For the analyses of the subseafloor, 239 the secondary low frequency, which was set to 4 kHz, is used. This results in a vertical 240 resolution of a few decimetres. A despike algorithm was applied to remove noise bursts from 241 crosstalk with other sounding systems using the software package 'VISTA Desktop Seismic 242 Data Processing Software' (Schlumberger). To enhance reflector coherency, the envelope 243 was calculated and visualised with 'The Kingdom Software' (IHS Markit).

244 The high-resolution multi-channel reflection seismic data set was acquired during R/V 245 Meteor Cruise M49/2 in 2001 (Spieß et al., 2002). The seismic data were previously analysed 246 in Preu et al. (2012) and Preu et al. (2013). In this study, the two longest available seismic 247 profiles on both sides of the MdP Canyon are used for a joint interpretation of the seafloor 248 sedimentary structures together with oceanographic results from model outputs. These 249 profiles are most representative because they cover the entire La Plata Terrace and Ewing 250 Terrace and are perpendicular to the flow direction making it easier to understand the geology 251 and oceanography together. Seismic profiles were acquired with an analogue streamer from 252 the University of Bremen. The streamer has 96 channels over a length of 600 m. As an 253 acoustic source, a 1.7 L GI-Gun (TMSODERA) with a main frequency of 100-500 Hz was 254 used. This results in a vertical resolution of a few metres. The data set was processed with 255 the software package 'VISTA Desktop Seismic Data Processing Software' (Schlumberger) 256 following standard seismic procedures including bandpass filtering and common mid-point 257 (CMP) binning. CMP bin size varies among profiles between 5 and 10 m depending on data 258 quality and coverage. After the CMP stacking a residual static correction and finite-difference 259 time migration was calculated (Preu et al., 2012; 2013). For interpretation of the data, the 260 software package 'The Kingdom Software' (IHS Markit) was used.

261 Sediment samples were collected during the R/V SONNE cruise SO260 and the R/V 262 Meteor cruise M78/3 using different sampling methods: giant box corer, multicorer, grab

263 sampler and gravity corer (Krastel and Wefer, 2012; Kasten et al., 2019). Grain size analyses 264 were performed on bulk sediment samples with a Beckman Coulter Laser LS 13 320 at 265 MARUM laboratories using Sodium hexametaphosphate as a dispersant. We also used grain 266 size measurements from previous studies to get a better understanding of the overall sediment 267 dynamics, which are available on PANGAEA (Frenz et al. (2003b) https://doi.pangaea.de/10.1594/PANGAEA.95396: 268 and Razik et al. (2015b) 269 https://doi.org/10.1016/j.margeo.2015.03.001).

270 3.3 Nomenclature

271 For classifying the different observed contouritic features, we follow the nomenclature of 272 Faugères et al. (1999), Stow et al. (2002b) and Rebesco et al. (2014). Plastered drifts are 273 usually located on a gentle slope and are characterised by a broad, slightly mounded and 274 convex geometry. They are associated with contourite terraces on the landward side, which 275 are relatively flat surfaces. The limits of the contouritic terraces are marked by a significant 276 increase in the slope gradient over a distance of several kilometres. In the seismic and 277 Parasound data the limits are further identified as either an abraded/erosion surface or a 278 transition to a plastered drift. Separated mounded drifts are more mounded than plastered 279 drifts and often associated with steeper slopes, from which they are detached by a distinct 280 erosional contourite channel or a non-depositional moat (Rebesco et al., 2014).

281 For the names of the different features in this region (e.g. terraces and canyons), we follow 282 the widely accepted nomenclature of previous papers that described these structures to some 283 extent (Urien and Ewing, 1974; Hernández-Molina et al., 2009; 2016a; Krastel et al., 2011; 284 Preu et al., 2012; 2013; Voigt et al., 2016; Warratz et al., 2017; 2019). The southern moat in 285 the study area was named Ewing Terrace Moat by Steinmann et al. (2020) and is here 286 referred to as Ewing Terrace Moat 1 (ET-Moat 1). As our study area extends further north and 287 includes a second moat located north of the MdP Canyon that is also up-slope the Ewing 288 Terrace, we named it Ewing Terrace Moat 2 (ET-Moat 2). The ET-Moat 2 was previously 289 named La Plata Terrace Moat (Bozzano et al., 2020). Since this moat is disconnected from

the La Plata Terrace by an erosional surface visible in seismic and Parasound data we find it more accurate to name it ET-Moat 2. The term 'bottom current' is used in a general way for all currents flowing near the seafloor and does not refer to any specific origin, flow direction or velocity (Rebesco and Camerlenghi, 2008).

294

295 4 Results

296 **4.1 Modelled bottom currents**

297 Simulated bottom currents averaged over 25 years show that the dominant flow direction 298 is towards the N-NE (Figs. 3A and 4). The Malvinas Current affects most of the upper and 299 middle slope down to depths of about 1600 m south of the MdP Canyon and about 1300 m 300 north of the canyon (Figs. 3A and 5). In the model the Malvinas Current splits near the seafloor 301 (SW part of study area) into three branches, here referred to as MC 1, MC 2 and MC 3 (Figs. 302 3A and 5). The strongest mean bottom currents in the study area, reaching up to 25 cm/s, are 303 located at about 1000 m water depth in the zone where the Malvinas Current splits into three 304 branches (Fig. 3A). MC 1 flows along the shelf edge and upper slope (at 200 m water depth), 305 along the La Plata Terrace, with average near-bottom current speeds of 8 cm/s. MC 2 flows 306 along the slope (abraded surface ~700 m) connecting the La Plata Terrace and the Ewing 307 Terrace with an average speed of 8 cm/s (Figs. 3A and 5). MC 1 and 2 remerge downstream 308 of the La Plata Terrace, west of MdP Canyon. These inner branches of the Malvinas Current 309 (MC 1+2) flow in the NE direction to ~36°S. North of this latitude bottom currents are mainly driven by the Brazil Current and flow south-eastwards at the shelf edge and upper slope (Fig. 310 311 3A). The deepest branch of the Malvinas Current (MC 3) flows northeastward along the Ewing 312 Terrace (~1200 m) and decreases in speed from 25 to 5 cm/s (over 60 km) as the terrace 313 widens and the slope orientation changes to north-south (Fig. 3A). The three Malvinas Current 314 branches observed near the seafloor do not always extend upwards to the sea surface. The 315 two offshore Malvinas Current branches flowing over the abraded surface (MC2) and over the 316 basinward limit of the Ewing Terrace (MC3) have their maximum northeastward velocity at 317 about 500 and 1000 m water depth, respectively, and their velocity sharply decreases towards

the sea surface (Fig. 5). Thus, the current velocity of MC2 and MC3 can be higher close to thebottom than at shallower depths.

320 The Malvinas Current affects different water masses in the study area, based on model 321 results of the potential density: the SASW from the surface down to ~500 m water depth, the 322 AAIW from ~500 to ~1100 m and the UCDW below ~1100 m (Figs. 4 and 5). The shallowest 323 branch of the Malvinas Current (MC 1) contains SASW, while the intermediate branch (MC 2) 324 contains AAIW and the deepest branch (MC 3) is at the interface between the AAIW and the 325 UCDW (Figs. 4 and 5). The interface between the AAIW and the UCDW is located at the Ewing 326 Terrace (Fig. 4). On average all water masses (SASW and AAIW) over the La Plata Terrace 327 flow towards the N-NE (Fig. 4). Similarly, the mean bottom currents at the Ewing Terrace also 328 flow towards the N-NE (Figs. 3A and 4). The influence of the Brazil Current, which flows 329 towards the S-SE, is only noticeable close to the sea surface in the region above the Ewing 330 Terrace (Fig. 4). The MdP Canyon influences the bottom current flow direction, leading to 331 redirection of N-NE flowing water to the NE (Fig. 3B).

332

333 The standard deviation of modelled bottom currents over 25 years reaches 16 cm/s over 334 the abyssal plane below 4000 m water depth and is lower over the shelf edge and continental slope, where it is mostly lower than 5 cm/s (Fig. 3B). The variability in flow speed on the La 335 336 Plata Terrace is lower than 5 cm/s. In contrast, the variability in flow speed over the Ewing 337 Terrace is up to 10 cm/s, being the highest on the offshore part of the terrace near the MdP 338 Canyon (Fig. 3A). High bottom current variability in this part of the Ewing Terrace is related to 339 changes in current direction and speed. Bottom currents modelled over one month (January-340 February 2012) indicate that the deep branch of the Malvinas Current does not extend north 341 of 39°S. During that time the Ewing Terrace, and especially the offshore part at 1500-2000 m 342 water depth, is affected by southward-flowing bottom currents that exceed 35 cm/s. The 343 interaction of this southward flowing bottom current and of the MC 2 with the seafloor 344 topography results in the formation of a cyclonic eddy centred in the southern part of the Ewing 345 Terrace (Fig. 3C). In contrast, bottom currents over the La Plata Terrace show a similar pattern during January-February 2012 compared the 25-year average, although bottom current
speeds are considerably higher during this short period of time, reaching 20 cm/s north of the
MdP Canyon (Fig. 3C).

349

350 4.2 Direct current observations

351 The VM-ADCP data close to the sea surface show generally a strong (>40 cm/s) northward 352 current in the region over the abraded surface connecting the La Plata Terrace with the Ewing 353 Terrace and the Ewing Terrace south of the MdP Canyon, corresponding to the Malvinas 354 Current (Fig. 6A). In the region above the deeper part of the MdP Canyon surface currents are 355 strong (>50 cm/s) and flow in a southward direction, corresponding to the Brazil Current. Over 356 the Ewing Terrace north of the MdP Canyon, the velocity is generally lower and the flow 357 direction is more variable compared to the region south of the MdP Canvon because it 358 corresponds to the confluence zone between the Malvinas and Brazil currents (Fig. 6A).

359

360 Generally, near-bottom currents are lower than surface currents (Fig. 6). Similar to the 361 reanalysis, stronger near-bottom currents were measured at the abraded surface and slower 362 currents over the contourite terraces (Fig. 6B). The speed over the Ewing Terrace south of the 363 MdP Canyon is higher (16 cm/s) than north of the MdP Canyon (11 cm/s) (Table 1). During 364 the cruise, the average speed over the abraded surface was 26 cm/s. Inside ET-Moat 1 and 365 ET-Moat 2 bottom currents were even higher, reaching average speeds of 30 and 31 cm/s 366 (Table 1). In all three locations, the velocity decreased northeastwards (Fig. 6). The average 367 measured near-bottom current inside the moats is very similar but the standard deviation in 368 ET-Moat 2 is almost twice as high as in ET-Moat 1 (Table 1). The velocity at the SW part of 369 ET-Moat 2 is higher than at ET-Moat 1. The velocity decreases faster in the northward direction 370 in ET-Moat 2 than it does in ET-Moat 1 (Fig. 6B).

Over ET-Moat 1 the velocity is higher close to the bottom (800-1000 m) than at mid-depth (400-800 m) (Fig. 7A). In contrast, currents above the abraded surface generally decrease with increasing depth (Fig. 7B). The profile perpendicular to the ET-Moat 1 confirms that the

higher velocity at depths is only a local feature within the moat and does not affect the entire
water column (Fig. 8A). Furthermore, this profile shows lower velocities over the Ewing
Terrace (Fig. 8A). The near-bottom flow at 7-15 km distance along the profile turns by 180°
and thus flows southward. This flow reversal occurs only close to the seafloor and does not
reach the sea surface (Fig. 8B). In this turn, the speed increases and is locally up to 20 cm/s
near the seafloor (Fig. 8A).

380

Table 1: Average mean speed for different areas: the Ewing Terrace south and north of the MdP Canyon, the slope connecting the La Plata Terrace with the Ewing Terrace (abraded surface) and the moats south and north of the MdP Canyon (ET-Moat 1 and 2):

	Mean speed: ADCP Standard deviation: ADCP		
	measurement [cm/s]	measurement [cm/s]	
Ewing Terrace South	16	8	
Ewing Terrace North	11	6	
Abraded surface	26	11	
ET-Moat 1 (south)	30	8	
ET-Moat 2 (north)	31	15	

384

385 **4.3 Seafloor morphology and sediment architecture**

386 The upper and middle slope of the northern Argentine continental margin are characterised 387 by the presence of two contourite terraces separated by an abraded surface and a plastered 388 drift associated with the deeper contourite terrace (Ewing Terrace) (Fig. 2). The La Plata 389 Terrace is the shallowest contourite terrace. South of the MdP Canyon, it is located at 500-600 m water depth, has a width of ~40 km and an average slope of 0.3°. North of the MdP 390 391 Canyon the width of the La Plata Terrace decreases drastically (Fig. 5A). The abraded surface 392 that separates both terraces has a width of 25 km, an average slope of 0.7° and is 393 characterised by truncations (Fig. 5B). The characteristics of the Ewing Terrace change north 394 and south of the MdP Canyon. South of the MdP Canyon, it is located at 1000-1400 m, 395 between the abraded surface and the plastered drift. The terrace deepens towards the MdP 396 Canyon. It is ~40 km wide and has a convex morphology due to the presence of a mounded 397 deposit on top of the plastered drift that creates a topographic high. North of the MdP Canyon, 398 the Ewing Terrace is located at 800-1400 m between the abraded surface landwards and the 399 plastered drifts basinwards (Fig. 5A). It is ~70 km wide and has an average slope of 0.4°. The 400 limit of the Ewing Terrace, that transitions into the plastered drift, is marked by an increase in 401 slope, from 0.4° to >1° (Fig. 5).

402

403 Two moats and parallel separated mounded drifts are located at the landward side of the 404 Ewing Terrace (Fig. 9). ET-Moat 1 is located in a much deeper water depth (~1150 m) than 405 ET-Moat 2 (~775 m). Even though the moats are located in different water depths, they show 406 several similarities regarding length (95 km in ET-Moat 1 and 70 km in ET-Moat 2), max. width 407 (7 km in ET-Moat 1 and 6 km in ET-Moat 2 m) and max. depth relative to the basinward 408 mounded drift (100 m in ET-Moat 1 and 90 m in ET-Moat 2) (Table 2). Both moats widen 409 towards the N-NE and water depth increases in the same direction. However, the depth 410 between the bottom of the moats and the top of the separated mounded drift increases 411 northward for ET-Moat 1 and decreases for ET-Moat 2. Internal terraces and scours are only 412 visible inside ET-Moat 1 (Figs. 9A and 10B).

413

Table 2: Key parameters of ET-Moat 1 (south of MdP Canyon) and ET-Moat 2 (north of MdPCanyon):

	ET-Moat 1	ET-Moat 2
Length (SW-NE direction)	95 km	70 km
Max. width (NW-SE direction)	7 km	6 km
Water depth	1000 - 1300 m	700 - 850 m
Max. depth relative to basinward	100 m (deeper in NE)	90 m (deeper in SW)
mounded drift		

416

South of the MdP Canyon, truncating parallel reflections are visible in the Parasound data
within the abraded surface, as well as in the landward slope and in the deepest point of ETMoat 1 (Fig. 10B). In contrast, north of the MdP Canyon, Parasound penetration in ET-Moat 2

420 and on its landward slope is very limited, and no reflections are recognised (Fig. 10A). Small 421 separated mounded drifts are identified associated with the moats and are located 422 basinwards. These contourite drifts become larger towards the N-NE (Figs. 9 and 10). The 423 mounded drift related to ET-Moat 1 shows continuous reflections with a sigmoidal to obligue. 424 landward progradation pattern (Fig. 10B). The bottom boundary of the separated mounded 425 drifts is characterised by a large erosive surface that affected the moat and part of the 426 contourite terrace. The separated mounded drift mainly developed in the space adjacent to 427 the moat previously generated by the erosion. Truncations inside the separated mounded drift 428 are abundant, suggesting frequent phases of erosion and drift construction. Adjacent to ET-429 Moat 2 the reflections are continuous with a sigmoidal, landward progradation pattern (Fig. 430 10A). Further offshore of the contourite drift, a small unit with continuous reflections is 431 deposited on top of an erosional surface (Fig. 10A). On the Ewing Terrace south of the MdP 432 Canyon continuous reflections are imaged, sometimes interrupted by small erosional surfaces 433 close to the seafloor (Fig. 10B).

434

Sediment waves are at the seaward edge of the Ewing Terrace south of the MdP Canyon (Fig. 9A). The crests of the sediment waves are oriented parallel to the slope and migrate basinwards (up-slope). These sediment waves are on top of a drift crest located between the Ewing Terrace and the plastered drift (Fig. 11C). The reflections of the sediment waves have good lateral continuity. They are located on top of an unconformity (showing several truncating reflections; Fig. 11A, B). The reflectivity below the sediment waves is generally low.

441

442 **4.4 Sediment samples**

The grain size of surface sediments in general decreases northwards and with increasing depth. All analysed samples on the contourite terraces (excluding the moats) can be divided in three regions with similar sediment grain size: La Plata Terrace, Ewing Terrace south of the MdP Canyon and Ewing Terrace north of the MdP Canyon. The analyses show that the median grain size is coarser on the La Plata Terrace (average median grain size of 78 µm)

448 and on the Ewing Terrace south of the MdP Canyon (average median grain size of 103.2 µm) compared to the Ewing Terrace north of the MdP Canyon (average median grain size of 60.1 449 450 um; Fig. 12A). The grain size distribution on the La Plata Terrace is bimodal with a main mode 451 at 106 µm and a second mode at 27 µm, and it is poorly sorted with a standard deviation of 452 3.67 µm. On the Ewing Terrace south of the MdP Canyon, the grain size distribution typically 453 shows only one mode at 106 µm, and is poorly sorted with a standard deviation of 3.45 µm 454 (Fig. 12B). In contrast, north of the MdP Canyon, the grain size distribution is typically bimodal 455 with a main mode at 88 µm and a secondary mode at 20 µm, and it is poorly sorted with a 456 standard deviation of 3.64 µm. Sediment grain size in the moats is coarser and can reach 457 median values of 168 µm, but its variability is very high (Fig. 12C). Sediment sample 22712-3 458 (inside ET-Moat 1) also contains rock fragments with sizes up to 10 cm. Surface sediments in 459 the plastered drift and inside the MdP Canyon are much finer, with median grain sizes below 460 63 µm and percentages of sand below 60% (Fig. 12A).

461

462 **5 Discussion**

463 **5.1 Bottom current dynamics over the CDS**

464 The Brazil-Malvinas Confluence Zone is a very dynamic area, where southward flowing water from the Brazil Current encounters northward flowing water from the Malvinas Current 465 466 (Fig. 1; Piola et al., 2018; Artana et al., 2019b; Piola and Matano, 2019). Current velocity 467 measurements can resolve local intensification of the current and the small eddies. This is very important for linking oceanographic processes with sedimentary features. However, they 468 lack large-scale coverage and continuity over long periods of time, which is especially 469 470 important in a highly variable area like the confluence zone. This gap can be filled by numerical 471 modelling that allows us to extend our observations in space and time, and can thus improve 472 the understanding of long-term mean currents and short-term variability. This is especially 473 important to establish sediment patterns (here the CDS) in geological time scales. The long-474 term reanalysis covers a period of 25 years, however, contourites are developed over several 475 thousands of years. Still, the model is very useful for understanding current dynamics since

476 the modern ocean circulation and stratification pattern was already established during the 477 Middle Miocene (Preu et al., 2012). Even though the ocean circulation has changed to some 478 extent in terms of strength or position since the Middle Miocene, but the patterns and 479 processes that form the CDS have remained similar.

480 In the present study, we focus our analysis on the near-bottom currents and discuss the 481 differences between currents near the seafloor and at the sea surface in the confluence zone. 482 Numerical simulations indicate that at the sea surface in the confluence zone, the Malvinas 483 Current splits into two branches: the outer branch veers offshore and mixes with the Brazil 484 Current, while the inner branch subducts below the Brazil Current (Artana et al., 2019b). The 485 model results show that on average the Brazil-Malvinas Confluence Zone between the 486 northward flowing and the southward flowing currents is located further south near the surface 487 (Fig. 3; Artana et al., 2019b). The Malvinas Current at 39°S near the seafloor further splits into 488 three branches that flow along the contourite terraces and over the abraded surface located 489 between the terraces, respectively (Fig. 14). The velocity of the two offshore Malvinas Current 490 branches in the confluence zone greatly decreases towards the sea surface (Fig. 5). Direct 491 measurements at 40-41°S indicate that the mean Malvinas Current has an equivalent 492 barotropic structure (Vivier and Provost, 1999). This usually indicates more homogeneous velocities throughout the water column. Thus, the described changes in velocity within the 493 494 Malvinas Current might be connected to the interaction of the Malvinas Current with the Brazil 495 Current at the confluence and to the interaction with the seafloor morphology. An intensification of near-bottom currents was observed in the VM-ADCP measurements 496 497 collected above ET-Moat 1 (Fig. 7A). In contrast, the branch of the Malvinas Current located 498 at the shelf edge (MC1) shows higher velocities near the surface and decreases with depth, 499 resulting in less impact on the seafloor morphology and sediment transport of the upper 500 continental slope (Fig. 5).

501 The Malvinas Current affects different water masses (Fig 4). Preu et al. (2013) identified 502 different water masses at the seafloor based on all available historical CTD data. The extent 503 of the NADW interaction with the seafloor based on the historical observations derived by Preu

et al. (2013) is in good agreement with the southward near-bottom flow determined by the
long-term average circulation derived from the ocean reanalysis (Fig. 13), suggesting that the
model depicts a realistic near-bottom circulation.

507 The VM-ADCP measurements show similar flow patterns as the 25-year averaged model result but generally the measured speed is higher (Figs. 3 and 6), which might be expected 508 509 since it displays instantaneous measurements. Thus, the differences in speed probably reflect 510 the strong flow variability in the confluence zone. The 1-month simulation result (12/01/2012 511 to 14/02/2012) also shows higher bottom current velocity than the 25-year averaged model 512 result (Fig. 3). It highlights the variability not only in current speed but also in current direction. 513 When the Brazil Current is particularly strong, the flow direction over the Ewing Terrace can 514 turn towards the south (Fig. 3C). On a seasonal scale the speed of the Malvinas Current is 515 usually stronger during austral winter (June -Sep.) shifting the confluence further northward 516 (Saraceno et al., 2005), than during summer (Nov. -Feb.). However, Paniagua et al. (2018) 517 deponstrated that this is not always the case. They showed that the Malvinas Current was 518 significantly stronger from early January to mid-April 2015 compared to mid-April to mid-519 August 2015 period. Even though these variations may not be relevant on a large scale, they 520 may lead to local intensification of bottom currents with important implications for sediment 521 transport (Fig. 3).

522

523 **5.2 Formation of sedimentary features**

524 Sediment dynamics

Generally, for a constant seafloor depth a decrease in near-bottom current speed is observed from south to north in both modelled and measured currents (Figs. 3 and 6). This agrees well with the northward decrease in sediment grain size of surface sediments (Fig. 12). Erosional surfaces and coarse grain size are generally an indication for strong bottom currents and contourite deposition, whereas fine grain size is rather a sign for weak bottom currents. In order to better understand whether the observed and modelled near-bottom currents would be capable of eroding and transporting sediment, we calculated the bottom 532 shear stress ($\tau = \rho u_*^2$, with seawater density ρ and friction velocity u_*) from VM-ADCP 533 measurements. Observed bottom shear stresses reach critical shear stresses (0.13 -534 0.17 N/m²) for the observed sediment grain sizes (60-130 µm; according to critical shield 535 parameter for motion initiation proposed by (Soulsby and Whitehouse, 1997)) along the slope 536 between the La Plata Terrace and the Ewing Terrace, as well as along the moats (Fig. 6). This 537 shear stress corresponds to current velocities at 150 m above the seafloor over 30 cm/s, 538 assuming a logarithmic relation between the friction velocity and the variation of velocity with 539 height, a von Kármán constant equal to 0.4 and bottom roughness length equal to 0.0035 m 540 (Schlichting, 1962). This prediction of sediment erosion based on the bottom shear stress 541 agrees with the erosion visible in the Parasound data at the slope between the La Plata 542 Terrace and the Ewing Terrace as well as along the moats (Figs. 4, 5 and 10).

543

544 Some contouritic features are commonly related to mean flow velocity (Stow et al., 2009) 545 or the corresponding mean bottom shear stress (Schlichting, 1962; Soulsby and Whitehouse, 546 1997). But for further understanding sediment dynamics not only the mean velocity is relevant 547 but also the flow variability and secondary (smaller scale) processes (e.g. eddies) that can 548 increase bottom shear stress on the seafloor and control contouritic processes (Thran et al., 549 2018; Chen et al., 2019). On the Ewing Terrace south of the MdP Canyon, we observed 550 erosional surfaces in the Parasound data even though the mean speed is low over the terrace 551 (Fig. 10). Internal acceleration due to a sloping morphology can lead to flow instabilities that 552 can lead to generation of waves and eddies (Rebesco et al., 2014; Zhang et al., 2016). This 553 phenomenon possibly occurs at the Ewing Terrace south of the MdP Canyon that is tilted 554 slightly towards the NE (Fig. 2). Furthermore, in this area the terrace width increases and thus 555 the contour current has more space to flow over the flat terrace (Fig. 2). The divergence of 556 isobaths may cause a decrease in the mean flow and also lead to the development of flow 557 instabilities. We propose that this sudden widening can lead to turbulences and eddies at the 558 seafloor, similar to water flowing out of a channel or a river mouth (Falcini and Jerolmack, 2010). This is also reflected by a slightly enhanced flow variability on the Ewing Terrace 559

560 compared to the La Plata Terrace (Fig. 3B). Furthermore, as previously described, during 561 times when the Malvinas Current is relatively weak, the flow direction over the Ewing Terrace 562 can turn towards the south at the basinwards edge (Fig. 3C). On the other hand, one branch 563 of the Malvinas Current (MC 2) flows northward along the abraded surface (landwards of the 564 Ewing Terrace). The opposite flow direction makes the occurrence of clockwise rotating eddies 565 likely. VM-ADCP measurements and hydrodynamic modelling results averaged over one 566 month confirm the presence of a cyclonic eddy on the Ewing Terrace (Figs. 3C and 8B). This 567 suggest that these eddies can lead to local erosion because shear stress can be much higher 568 in turbulent flow compared to laminar flow (Fig. 14; Schlichting and Gersten, 2016). However, 569 this change in flow direction was not observed at all ADCP profiles and is not apparent in the 570 model derived 25-year average bottom currents at the Ewing Terrace. Thus, these eddies may 571 be transient features and there are energetic periods during which the sediment is eroded. 572 alternating with calm periods during which sediment deposition is favoured. This variability in 573 bottom currents may also explain the absence of a clear erosional surface and the presence 574 of several small erosional surfaces at the Ewing Terrace (Fig. 11). These new observations 575 refine our understanding of the sediment dynamics in the vicinity of the MdP Canyon. The 576 depositional system located further south of this study area at ~ 45°S might be different 577 because of a more stable Malvinas Current with its main branch being located over the terrace 578 (Piola et al., 2013).

579

580 Moats and separated mounded drifts

581 Moats and paleomoats and the related separated mounded drifts are commonly used to 582 reconstruct bottom currents because they provide a clear indication for strong bottom currents 583 and their direction (Surlyk and Lykke-Andersen, 2007; Betzler et al., 2013). To make these 584 reconstructions more reliable, it is necessary to study the geomorphology of active moats 585 together with the characteristics of the flow regime. At the landward edge of the Ewing Terrace, 586 two up-slope migrating moats are located, each with an associated separated mounded drift 587 (Fig. 10). The separated mounded drifts have a sigmoidal reflection pattern. The morphology 588 of the observed separated mounded drifts is not typical for a drift associated with a moat 589 (Faugères et al., 1999; Stow et al., 2002a; Rebesco et al., 2014). In the separated mounded 590 drifts described here; the sigmoidal reflections terminate at the seaward side at one point. 591 Typically, the units between the reflectors become thinner leading to almost parallel, uniform 592 reflectors at the basinward side of the drift (Faugères et al., 1999; Stow et al., 2002a; Betzler 593 et al., 2013; Rebesco et al., 2014). The unusual depositional character is possibly connected 594 to the strong bottom currents, making it an erosive and very sandy and even gravelly moat, 595 and a silty-sandy separated mounded drift (Bozzano et al., 2011), while separated mounded 596 drifts related to moats are typically mud dominated (Rebesco et al., 2014; Miramontes et al., 597 2016). The initiation for developing a moat might be connected to local eddies, as discussed 598 earlier. However, it is not clear yet how the development of moats initially starts and further 599 investigation is needed. Possibly, there are turbulences and small eddies occurring in the 600 moats that lead to erosion but these cannot be resolved by the presented model because of 601 a lack of higher resolution. For detailed understanding of flow patterns inside of the moat very 602 high-resolution numerical modelling of bottom currents is needed or extensive ADCP 603 measurements.

604 The available ADCP data show that bottom currents inside the moat increase locally (Fig. 605 8). Along and cross slope ADCP sections confirm that this increase in flow velocity is restricted 606 to the near-bottom currents inside the moat (Fig. 7). Thus, after the moat started to form it 607 affected the bottom currents, probably focusing bottom currents and leading to an increase in 608 velocity. Current speed standard deviation in ET-Moat 2 is almost twice as high as in ET-Moat 609 1 which could be due to a stronger decrease of speed in ET-Moat 2 and larger flow fluctuation 610 in shallower environments. Taking velocity fluctuations in turbulent flow into account (Inman, 611 1949), this may explain why the sediment is less sorted. ET-Moat 2 progressively widens 612 northwards, while ET-Moat 1 shows a sudden widening in its central zone towards the abraded 613 surface (Fig. 9). A scour is located at the edge where the moat suddenly widens (Fig. 9A). The 614 interaction of bottom currents with the edge on the slope possibly leads to the formation of 615 vortices and eddies that may have formed the observed scour inside the moat (Fig. 9A). This

616 process of cutting back of the slope can be an important factor responsible for widening the 617 contourite terrace. Furthermore, the ADCP data also show that as the moats widen northwards 618 the flow velocity decreases (Figs. 6 and 7). This has implications for the along-slope sediment 619 transport. Sediment transported in close proximity to ET-Moat 1 by the MC2 current branch 620 can be deposited at the MdP Canyon head and subsequently transported down the canyon 621 by turbidity currents (Warratz et al., 2019).

622

623 Drift crest

624 The modelled bottom currents averaged over 25 years show that the flow variability over 625 the La Plata Terrace is lower than over the Ewing Terrace. The highest flow variability is at 626 the basinward edge of the Ewing Terrace south of the MdP Canyon where MC3 drastically 627 decreases in speed (from 25 to 5 cm/s over 60 km) (Figs. 3B, 5B, 11E). The maximum 628 northward extent of MC3 fluctuates and is dependent on the strength of the Malvinas Current, 629 which can explain the higher variability in speed compared with the rest of the Ewing Terrace 630 (Fig. 3B). In this area a drift crest or morphologic high developed on the upper part of the 631 plastered drift (Figs. 9A, 11A, 14), possibly as a result of a weakening bottom current with 632 reduced sediment transport capacity, allowing deposition along its path. The decrease in 633 bottom current speed towards the north may also inhibit the transport of coarse sediment, 634 favouring its deposition and forming the observed drift crest, which is mainly composed of 635 sand, with a median grain size of 103 µm.

636

637 <u>Sediment waves</u>

The drift crest on the basinward edge of the Ewing Terrace is covered in part by several sediment waves that migrate basinwards up-slope of the drift crest (Fig. 11). Sediment waves can be formed by downslope flowing turbidity currents and along-slope flowing bottom currents. The sediment waves discussed here are not associated with any downslope submarine channel and they are thus not formed by turbidity currents. They are contouritic sediment waves and part of the CDS. Flood (1988) proposed that the lee-wave mechanism

644 can form sediment waves under bottom currents. Lee-waves can develop within a bottom current that flows over a wavy topography (Flood, 1988), but the sediment waves initiation 645 646 process is not well understood. In agreement with this theory, the sediment waves discussed 647 here are located at the lee side of the drift crest described before. This drift crest could possibly 648 lead to the development of the lee-waves. Flood (1988) assumed that the sediment waves are 649 perpendicular to the current direction. However, further theoretical analyses taking the Coriolis 650 force into account indicate that sediment waves under bottom currents can be obligue to the 651 flow direction (Blumsack and Weatherly, 1989; Hopfauf and Spieß, 2001). Oblique sediment 652 waves have been observed at several places (McCave, 2017). In this study we report on 653 sediment waves that are parallel to the direction of currents (Figs. 9, 11). This parallel 654 orientation to the flow direction seems unlikely to be explained by lee-waves alone. Thus, other 655 processes have to be taken into consideration. Previous research reported that internal waves 656 can form sediment waves and dunes (Hand, 1974; Reeder et al., 2011; Droghei et al., 2016; 657 Ribó et al., 2016; Reiche et al., 2018; Yin et al., 2019; Miramontes et al., 2020). Internal waves 658 can propagate at density discontinuities and have been previously proposed as a cause for 659 the development of the Ewing Terrace and the La Plata Terrace (Hernández-Molina et al., 660 2009; Preu et al., 2013). The suggested mechanism is that the internal waves can propagate 661 at the interface of AAIW, UCDW and NADW, respectively. The sediment waves discussed 662 here are located slightly below the interface between the AAIW and the UCDW (Fig. 14). 663 Internal waves with an amplitude of up to 250 m have been reported in deep-sea environments 664 (Van Haren and Gostiaux, 2011). Possibly, part of the energy from the internal wave propagating at the interface of AAIW/UCDW interacts with the northward bottom flow which 665 666 influences the deposition of sediment waves. The formation of these sediment waves was 667 initiated several thousands of years ago likely during times when the Malvinas Current was 668 stronger, for example during glacial times when the current was presumably stronger (e.g. 669 Voigt et al., 2013). However, the processes leading to the formation of sediment waves are 670 still not well understood.

671

672 <u>Terrace formation</u>

673 The initiation of the formation of the contouritic terraces was suggested by some authors to 674 be related to internal waves propagating at water mass interfaces (Hernández-Molina et al., 675 2009; 2016b; Preu et al., 2013; Ercilla et al., 2016; Yin et al., 2019; Llave et al., 2020). Other 676 authors proposed that internal waves may be secondary processes that can form channels 677 and dune fields on contourite terraces, but are not responsible for the original formation of the 678 contourite terrace, which they argued is probably related to strong currents (Miramontes et al., 679 2019; Miramontes et al., 2020). The model derived 25-year average bottom currents and the 680 near-bottom water mass distribution derived from CTD measurements confirm that the 681 contouritic terraces in the northern Argentine margin are roughly located at water mass 682 interfaces (Figs. 4 and 13; Preu et al., 2013). However, the modelled bottom currents averaged 683 over 25 years indicate that the La Plata Terrace is not located at the interface of Brazil Current 684 and AAIW as suggested by Preu et al. 2013, but at the interface of SASW and AAIW (Fig. 4). 685 It has also been suggested that contourite terraces in the Mediterranean Sea are located 686 in zones of relatively high geostrophic bottom currents, while plastered drifts are located in the 687 adjacent zone of less intense bottom currents (Miramontes et al., 2019). Strong currents are 688 observed and modelled only in the inner (landward) part of the contourite terraces, while the 689 central and external (basinward) parts are affected by weaker bottom currents, although with 690 a higher variability at the external (basinward) edge of the terrace (Figs. 3, 5 and 6). Modelled 691 and observed bottom currents are the weakest over the plastered drifts (Figs. 3, 5 and 6). This 692 current regime is also reflected in the general sediment stratigraphy of the Ewing Terrace 693 (Preu et al., 2012). The landward part, where high currents are present, shows more evidence 694 of erosion. As the water movement weakens towards the basinward side, more deposition is 695 possible and large plastered drifts form. On top of this general stratigraphy, secondary 696 deposits like separated mounded drifts, drift crests and sediment waves were deposited as 697 discussed before. We suggest that contourite terraces may have been initiated by erosion on 698 the slope generated by the (paleo) Malvinas Current that progressively cut the slope 699 landwards, widening the contourite terrace with time. The fact that the Argentine contourite

700 terraces are much wider and flatter than other terraces observed for instance in the 701 Mediterranean Sea (Ercilla et al., 2016; Miramontes et al., 2019), along the Mozambican 702 margin (Thiéblemont et al., 2019; Miramontes et al., 2020) and in the Makassar Strait 703 (Brackenridge et al., 2020) could be related to the higher speed of near-bottom currents as 704 part of the Malvinas Current. The particular flat morphology with an abrupt edge of the terraces 705 along the Argentine margin may favour the formation of internal waves at the terrace edge, in 706 a similar way as at the shelf break (Jackson et al., 2012) that could also favour sediment 707 transport and erosion along the terrace. These processes are however expected to be weaker 708 than on the upper slopes and at the shelf break because of the weaker density gradient (Fig. 709 1B). Up to date, no internal waves could be directly identified near the seafloor in the study 710 area. Magalhaes and da Silva (2017) analysed internal waves along the Malvinas Current with 711 multispectral satellite imagery and found that most of the internal waves are located south of 712 the study area in areas of submarine canyons. These internal waves propagate upstream of 713 the Malvinas Current (Magalhaes and da Silva, 2017) and are thus not perpendicular to the 714 slope. New in situ measurements and modelling studies would be necessary to determine the 715 role of internal waves in the formation of contourite terraces.

716

717 **5.3 Sediment origin and submarine transport**

718 The primary origin of sediment deposits in the study area was linked to a mountainous 719 origin and igneous source rock lithology from the Andes, transported by the Colorado and 720 Negro Rivers to the ocean (Razik et al., 2015a). The sediment is then transported northward 721 by along-slope bottom currents (Malvinas Current) and is finally deposited in the study area 722 forming the observed contourite depositional system. Part of the sediment transported along 723 the Ewing Terrace may reach the head of the MdP Canyon. The general decrease in 724 northward bottom current speed towards the MdP Canyon (Figs. 3 and 7) would favour the 725 accumulation of sediments at the canyon head that could be transported down canyon by 726 turbidity currents, in a similar way as longshore currents feeding shelf-incised submarine 727 canyons like the Monterrey Canyon (Paull et al., 2005) and the Cap Breton Canyon (Mazières

728 et al., 2014). Voigt et al. (2013) and Warratz et al. (2019) reported the absence of turbidites 729 during the Holocene and the presence of turbidites during deglacial and glacial periods, which 730 have the same composition as the sediments from the Ewing Terrace (Warratz et al., 2019). 731 This was previously linked to a variability in the nepheloid layer depending on the current 732 strength (Voigt et al., 2013; 2016; Warratz et al., 2019). Since sandy sediment is transported 733 mainly as bedload under the observed and modelled bottom current velocities and is not part 734 of the nepheloid layer, we propose that sediment transport associated with high velocity along-735 slope bottom-current jets (here MC2) plays an important role in the sediment input to the MdP 736 Canyon head and is then transported downslope by turbidity currents. The presence of only 737 one major tributary to the MdP Canyon (Fig. 2; Krastel et al., 2011) also indicates a sediment 738 input coming from the canyon head rather than from the southern lateral side of the canyon.

739 Some previous studies focused more on the variability of the latitude of the confluence zone 740 and on the reconstruction of the strength of the Malvinas Current based on geological, 741 geophysical data and oceanographic data (Lumpkin and Garzoli, 2011; Preu et al., 2012; 742 2013; Voigt et al., 2013; 2016; Razik et al., 2015a; Artana et al., 2018; 2019a). It is important 743 to consider that the mean latitude of the confluence zone is not the same at the sea surface 744 and near the seafloor (Fig. 6). The reanalyses from Artana et al. (2019a) showed that the 745 strength of the Malvinas Current has not changed over the period of 1993-2017. A southward 746 shift of the mean confluence zone of 0.6 to 0.9° per decade was observed in recent times 747 (1992-2007) (Lumpkin and Garzoli, 2011). Thus, the shift in the confluence might be more 748 controlled by the Brazil Current. This southward trend of the confluence zone is expected to 749 continue with the present global warming due to anthropogenic climate change (de Souza et 750 al., 2019). This shift could possibly threaten the cold-water coral ecosystem on the Ewing 751 Terrace (Hebbeln et al., 2016; Steinmann et al., 2020).

The frequency of turbidity currents in the MdP Canyon is linked to the strength of the Malvinas Current. After the last glacial maximum, when the climate became generally warmer and sea level rose, the Malvinas Current became weaker on average (Preu et al., 2013; Voigt et al., 2013; Warratz et al., 2019). These weaker currents can only transport finer sediment

and thus probably transported less sediment into the study area leading to a lower
sedimentation rate and fewer turbidites in the MdP Canyon (Voigt et al., 2013; 2016; Warratz
et al., 2019). The described onset of sediment wave deposition on the Ewing Terrace possibly
started in this calmer environment (Fig. 11).

760

761 6 Conclusions

This study represents a step forward in understanding the sediment dynamics in proximity 762 763 to the Mar del Plata (MdP) submarine Canyon at the northern Argentine Margin by combining 764 geophysical and sedimentological datasets (multibeam bathymetry, seismo-acoustic data and 765 sediment cores) with oceanographic datasets (vessel-mounted ADCP measurements, CTD 766 data and ocean reanalysis). Overall, this study contributes to a better understanding of the 767 formation of contourite depositional systems and can help future reconstructions of past ocean 768 conditions based on sedimentary structures. The main conclusions can be summarized as 769 follows:

Measured and modelled current data show that in close proximity to the MdP Canyon,
 the Malvinas Current dominates the sediment dynamics at the seafloor. We propose
 that sediment transport associated with high-velocity along-slope bottom-current jets
 plays an important role in supplying sediments to the MdP Canyon head similarly to
 longshore currents feeding shelf-incised submarine canyons. The moat of the Ewing
 Terrace is possibly also a pathway for sediment transport to the MdP Canyon head.

ADCP measurements together with the 25-year reanalysis of ocean currents show a northward decrease of the northward-flowing waters. This decrease in speed leads to less erosion and the accumulation of finer sediment deposits north of the MdP Canyon, as observed in the surface sediment samples.

Modelling results indicate that near the seafloor the Malvinas Current splits into 3
 branches (at ~39°S). The shallowest branch (MC1) flows along the upper slope of the
 La Plata Terrace and continues flowing below the Brazil Current until ~36° S. MC2 flows

along the abraded surface connecting the La Plata and Ewing Terrace. The offshore
branch (MC3) flows at the basinward edge of the Ewing Terrace and drastically
decreases in speed south of the MdP Canyon.

The decrease in speed of branch MC3 reduces sediment transport capacity, which
 therefore allows deposition along its path and possibly leads to the formation of the
 observed drift crest. Downstream of the drift crest sediment waves with a parallel
 orientation to the flow direction are deposited.

790 Measured and modelled near-bottom currents are strong (up to 63 cm/s at 150 - 350 m 791 above the seafloor) where abraded surfaces and moats are present, and weak (lower 792 than 30 cm/s) on the La Plata Terrace and the Ewing Terrace. The strong bottom 793 currents generate the moats located at the landward slope of the Ewing Terrace that 794 are very sandy and even gravelly. In the moats, an intensification in flow velocity was 795 measured and an up-slope migration observed. We suggest that contourite terraces 796 may have been initiated by erosion on the slope generated by the (paleo) Malvinas 797 Current that would progressively cut the slope landwards, widening the contourite terrace with time. 798

799 The divergence of isobaths at the terraces possibly explains the measured and modelled weaker near-bottom currents on the La Plata Terrace and the Ewing Terrace. 800 801 Together with the sloping morphology of the Ewing Terrace this can lead to flow 802 instabilities near the seafloor. We suggest that this effect leads to local cyclonic eddies 803 near the seafloor, which have also been measured and modelled. We propose that 804 these eddies are transient and can cause local erosion only during energetic periods. 805 The alternation between sediment deposition and erosion may also explain the absence 806 of a clear large-scale erosional surface and the presence of several small erosional 807 surfaces at the Ewing Terrace.

808

809

810 7 Data Availability

The ADCP data and surface grain size analyses used in this paper will be made available at PANGAEA database (<u>www.pangaea.de</u>). Modelled data is freely available from the Copernicus Marine Environment Monitoring Service (CMEMS, <u>http://marine.copernicus.eu/</u>).

815 Acknowledgements:

816 We thank the captains, crews and onboard scientific teams for their support during R/V SONNE cruise SO260 in 2018, R/V Meteor cruise M78/3 in 2009 and R/V Meteor cruise M49/2 817 818 in 2001. We appreciate the help of K. Zonneveld and K.-H. Baumann for processing the CTD 819 data during the SO260 cruise. We thank Brit Kockisch for her support during the collection 820 and analysis of sediment samples. For funding of the cruise SO260 we acknowledge the DFG 821 Research Centre/Cluster of Excellence 'The Ocean in the Earth System' (MARUM - Center 822 for Marine Environmental Sciences at the University of Bremen). For additional funding we 823 thank the Helmholtz Association (Alfred Wegener Institute Helmholtz Centre for Polar and 824 Marine Research, Bremerhaven). The sediment sample material was provided by the GeoB 825 Core Repository at the MARUM - Center for Marine Environmental Sciences, University of 826 Bremen, Germany. The project was funded by the University of Bremen and supported by the 827 GLOMAR - Bremen International Graduate School for Marine Sciences.

828

829 **References**

Artana, C., Ferrari, R., Bricaud, C., Lellouche, J.-M., Garric, G., Sennéchael, N., Lee, J.-H.,
Park, Y.-H., Provost, C., 2019a. Twenty-five years of Mercator ocean reanalysis
GLORYS12 at Drake Passage: velocity assessment and total volume transport. Advances
in Space Research.

Artana, C., Lellouche, J.M., Park, Y.H., Garric, G., Koenig, Z., Sennéchael, N., Ferrari, R.,
Piola, A.R., Saraceno, M., Provost, C., 2018. Fronts of the Malvinas Current System:
Surface and Subsurface Expressions Revealed by Satellite Altimetry, Argo Floats, and

837 Mercator Operational Model Outputs. Journal of Geophysical Research: Oceans 123,
838 5261-5285.

Artana, C., Provost, C., Lellouche, J.M., Rio, M.H., Ferrari, R., Sennéchael, N., 2019b. The
Malvinas current at the confluence with the Brazil current: Inferences from 25 years of
Mercator ocean reanalysis. Journal of Geophysical Research: Oceans 124, 7178-7200.

Betzler, C., Lüdmann, T., Hübscher, C., Fürstenau, J., 2013. Current and sea-level signals in
periplatform ooze (Neogene, Maldives, Indian Ocean). Sedimentary Geology 290, 126-137.

Blumsack, S., Weatherly, G., 1989. Observations of the nearby flow and a model for the growth
of mudwaves. Deep Sea Research Part A. Oceanographic Research Papers 36, 13271339.

Bozzano, G., Cerredo, M.E., Remesal, M., Steinmann, L., Hanebuth, T.J.J., Schwenk, T.,
Baqués, M., Hebbeln, D., Spoltore, D., Silvestri, O., Acevedo, R.D., Spiess, V., Violante,
R.A., Kasten, S., 2020. Dropstones in the Mar del Plata Canyon Area (SW Atlantic):
Evidence for Provenance, Transport, Distribution, and Oceanographic Implications.
Geochemistry, Geophysics, Geosystems, e2020GC009333.

Bozzano, G., Violante, R.A., Cerredo, M.E., 2011. Middle slope contourite deposits and
associated sedimentary facies off NE Argentina. Geo-Marine Letters 31, 495-507.

Brackenridge, R.E., Nicholson, U., Sapiie, B., Stow, D., Tappin, D.R., 2020. Indonesian
Throughflow as a preconditioning mechanism for submarine landslides in the Makassar
Strait. Geological Society, London, Special Publications 500, 195-217.

Chen, H., Zhang, W., Xie, X., Ren, J., 2019. Sediment dynamics driven by contour currents
and mesoscale eddies along continental slope: A case study of the northern South China
Sea. Marine Geology 409, 48-66.

Droghei, R., Falcini, F., Casalbore, D., Martorelli, E., Mosetti, R., Sannino, G., Santoleri, R.,
Chiocci, F., 2016. The role of Internal Solitary Waves on deep-water sedimentary
processes: the case of up-slope migrating sediment waves off the Messina Strait. Scientific
reports 6, 36376.

- Ercilla, G., Juan, C., Hernandez-Molina, F.J., Bruno, M., Estrada, F., Alonso, B., Casas, D., Ií
 Farran, M., Llave, E., Garcia, M., 2016. Significance of bottom currents in deep-sea
 morphodynamics: an example from the Alboran Sea. Marine Geology 378, 157-170.
- Falcini, F., Jerolmack, D.J., 2010. A potential vorticity theory for the formation of elongate
 channels in river deltas and lakes. Journal of Geophysical Research: Earth Surface 115.
- Faugères, J.-C., Stow, D.A., Imbert, P., Viana, A., 1999. Seismic features diagnostic of
 contourite drifts. Marine Geology 162, 1-38.
- Flood, R.D., 1988. A lee wave model for deep-sea mudwave activity. Deep Sea Research Part
 A. Oceanographic Research Papers 35, 973-983.
- Franke, D., Neben, S., Ladage, S., Schreckenberger, B., Hinz, K., 2007. Margin segmentation
 and volcano-tectonic architecture along the volcanic margin off Argentina/Uruguay, South
 Atlantic. Marine Geology 244, 46-67.
- Frenz, M., Höppner, R., Stuut, J.-B., Wagner, T., Henrich, R., 2003a. Surface sediment bulk
 geochemistry and grain-size composition related to the oceanic circulation along the South
 American continental margin in the Southwest Atlantic, The South Atlantic in the Late
 Quaternary. Springer, pp. 347-373.
- [dataset] Frenz, M., Höppner, R., Stuut, J.-B.W., Wagner, T., Henrich, R., 2003b. Terrigenous
 silt grain-size distributions in the SW Atlantic, In supplement to: Frenz, M et al. (2003):
 Surface Sediment Bulk Geochemistry and Grain-Size Composition Related to the Oceanic
 Circulation along the South American Continental Margin in the Southwest Atlantic. In:

- Wefer, G; Mulitza, S & Ratmeyer, V (eds.), The South Atlantic in the Late Quaternary:
 Reconstruction of Material Budgets and Current Systems, Springer, Berlin, Heidelberg,
 New York, 347-373. PANGAEA.
- 887 GEBCO, Compilation-Group, 2020. GEBCO 2020 Grid.
- Giberto, D., Bremec, C., Acha, E.M., Mianzan, H., 2004. Large-scale spatial patterns of
 benthic assemblages in the SW Atlantic: the Rio de la Plata estuary and adjacent shelf
 waters. Estuarine, Coastal and Shelf Science 61, 1-13.
- Gordon, A.L., Greengrove, C.L., 1986. Geostrophic circulation of the Brazil-Falkland
 confluence. Deep Sea Research Part A. Oceanographic Research Papers 33, 573-585.
- Grant, J., Schreiber, R., 1990. Modern swathe sounding and sub-bottom profiling technology
 for research applications: the Atlas Hydrosweep and Parasound systems, Marine
 Geological Surveying and Sampling. Springer, pp. 9-19.
- Hand, B.M., 1974. Supercritical flow in density currents. Journal of Sedimentary Research 44,637-648.
- Hebbeln, D., Van Rooij, D., Wienberg, C., 2016. Good neighbours shaped by vigorous
 currents: Cold-water coral mounds and contourites in the North Atlantic. Marine Geology
 378, 171-185.
- Heezen, B.C., 1959. Dynamic processes of abyssal sedimentation: erosion, transportation,
 and redeposition on the deep-sea floor. Geophysical Journal International 2, 142-163.
- Heezen, B.C., Hollister, C., 1964. Deep-sea current evidence from abyssal sediments. Marine
 Geology 1, 141-174.

905	Hernández-Molina, F.J., Campbell, S., Badalini, G., Thompson, P., Walker, R., Soto, M., Conti,
906	B., Preu, B., Thieblemont, A., Hyslop, L., 2018. Large bedforms on contourite terraces:
907	Sedimentary and conceptual implications. Geology 46, 27-30.

Hernández-Molina, F.J., Paterlini, M., Violante, R., Marshall, P., de Isasi, M., Somoza, L.,
Rebesco, M., 2009. Contourite depositional system on the Argentine Slope: An exceptional
record of the influence of Antarctic water masses. Geology 37, 507-510.

- Hernández-Molina, F.J., Soto, M., Piola, A.R., Tomasini, J., Preu, B., Thompson, P., Badalini,
 G., Creaser, A., Violante, R.A., Morales, E., Paterlini, M., De Santa Anab, H., 2016a. A
 contourite depositional system along the Uruguayan continental margin: Sedimentary,
 oceanographic and paleoceanographic implications. Marine Geology 378, 333-349.
- Hernández-Molina, F.J., Wåhlin, A., Bruno, M., Ercilla, G., Llave, E., Serra, N., Rosón, G.,
 Puig, P., Rebesco, M., Van Rooij, D., 2016b. Oceanographic processes and
 morphosedimentary products along the Iberian margins: A new multidisciplinary approach.
 Marine Geology 378, 127-156.
- Hinz, K., Neben, S., Schreckenberger, B., Roeser, H., Block, M., De Souza, K.G., Meyer, H.,
 1999. The Argentine continental margin north of 48 S: sedimentary successions, volcanic
 activity during breakup. Marine and Petroleum Geology 16, 1-25.
- Hopfauf, V., Spieß, V., 2001. A three-dimensional theory for the development and migration
 of deep sea sedimentary waves. Deep Sea Research Part I: Oceanographic Research
 Papers 48, 2497-2519.
- Inman, D.L., 1949. Sorting of sediments in the light of fluid mechanics. Journal of Sedimentary
 Research 19, 51-70.
- Jackson, C.R., Da Silva, J.C., Jeans, G., 2012. The generation of nonlinear internal waves.
 Oceanography 25, 108-123.

Kane, I.A., Clare, M.A., Miramontes, E., Wogelius, R., Rothwell, J.J., Garreau, P., Pohl, F.,
2020. Seafloor microplastic hotspots controlled by deep-sea circulation. Science 368,
1140-1145.

932 Kasten, S., Schwenk, T., Aromokeye, D.A., Baques, M., Baumann, K.-H., Bergenthal, M., 933 Bösche, J., Bozzano, G., Brune, R., Bülten, J., Chiessi, C.M., Coffinet, S., Crivellari, S., 934 Dehning, K., Dohrmann, I., Dröllner, M., Düßmann, R., Durica, J.T., Frederichs, T., Garcia 935 Chapori, N., Gonzalez, L., Hanebuth, T.J.J., Hilgenfeldt, C., Hüttich, D., Jones, C.K., Klann, 936 M., Klar, S., Klein, T., Kockisch, B., Köster, M., Lantzsch, H., Linowski, E., Long, J.H., 937 Melcher, A.-C., Ogunleye, O.J., Pereyra, N., Rehage, R., Riedinger, N., Rosiak, U., Schmidt, W., Schnakenberg, A., Spieß, V., Steinmann, L., Thieblemont, A., Volz, J., 938 939 Warnke, F., Warratz, G., Wenau, S., Zonneveld, K.A.F., 2019. Dynamics of sedimentation processes and their impact on biogeochemical reactions on the continental slope off 940 941 Argentina and Uruguay (MARUM), Cruise No. SO260/Leg 1 & Leg2, Leg 1: January 12-942 January 30, 2018, Buenos Aires (Argentina)-Montevideo (Uruguay), Leg 2: February 2-943 February, 14, 2018, Montevideo (Uruguay)-Buenos Aires (Argentina), DosProBio, Sonne-944 Berichte.

Krastel, S., Wefer, G., 2012. Report and preliminary results of RV METEOR Cruise M78/3.
Sediment transport off Uruguay and Argentina: from the shelf to the deep sea; 19.05. 2009–
06.07. 2009, Montevideo (Uruguay)–Montevideo (Uruguay). Meteor-Berichte.

Krastel, S., Wefer, G., Hanebuth, T.J., Antobreh, A.A., Freudenthal, T., Preu, B., Schwenk, T.,
Strasser, M., Violante, R., Winkelmann, D., 2011. Sediment dynamics and geohazards off
Uruguay and the de la Plata River region (northern Argentina and Uruguay). Geo-Marine
Letters 31, 271-283.

Lellouche, J.-M., Greiner, E., Le Galloudec, O., Garric, G., Regnier, C., Drevillon, M., Benkiran,
M., Testut, C.-E., Bourdalle-Badie, R., Gasparin, F., Hernandez, O., Levier, B., Drillet, Y.,
Remy, E., Le Traon, P.-Y., 2018. Recent updates on the Copernicus Marine Service global

955 ocean monitoring and forecasting real-time 1/12° high resolution system. Ocean Science956 Discussions.

Llave, E., Hernández-Molina, F.J., García, M., Ercilla, G., Roque, C., Juan, C., Mena, A., Preu,
B., Van Rooij, D., Rebesco, M., 2020. Contourites along the Iberian continental margins:
conceptual and economic implications. Geological Society, London, Special Publications
476, 403-436.

961 Lumpkin, R., Garzoli, S., 2011. Interannual to decadal changes in the western South Atlantic's
962 surface circulation. Journal of Geophysical Research: Oceans 116.

Maamaatuaiahutapu, K., Garçon, V.C., Provost, C., Boulahdid, M., Bianchi, A.A., 1994. Spring
and winter water mass composition in the Brazil-Malvinas Confluence. Journal of Marine
Research 52, 397-426.

Magalhaes, J., da Silva, J., 2017. Close Internal waves along the Malvinas Current: Evidence
of transcritical generation in satellite imagery. Oceanography 30, 110-119.

968 Mazières, A., Gillet, H., Castelle, B., Mulder, T., Guyot, C., Garlan, T., Mallet, C., 2014. High-

969 resolution morphobathymetric analysis and evolution of Capbreton submarine canyon head

970 (Southeast Bay of Biscay—French Atlantic Coast) over the last decade using descriptive

and numerical modeling. Marine Geology 351, 1-12.

972 McCave, I.N., 2017. Formation of sediment waves by turbidity currents and geostrophic flows:
973 A discussion. Marine Geology 390, 89-93.

974 Miramontes, E., Cattaneo, A., Jouet, G., Thereau, E., Thomas, Y., Rovere, M., Cauquil, E.,

975 Trincardi, F., 2016. The Pianosa contourite depositional system (northern Tyrrhenian Sea):

976 Drift morphology and Plio-Quaternary stratigraphic evolution. Marine Geology 378, 20-42.

977 Miramontes, E., Garreau, P., Caillaud, M., Jouet, G., Pellen, R., Hernández-Molina, F.J.,
978 Clare, M.A., Cattaneo, A., 2019. Contourite distribution and bottom currents in the NW

979 Mediterranean Sea: coupling seafloor geomorphology and hydrodynamic modelling.980 Geomorphology 333, 43-60.

Miramontes, E., Jouet, G., Thereau, E., Bruno, M., Penven, P., Guerin, C., Le Roy, P., Droz,
L., Jorry, S.J., Hernández-Molina, F.J., 2020. The impact of internal waves on upper
continental slopes: insights from the Mozambican margin (southwest Indian Ocean). Earth
Surface Processes and Landforms 45, 1469-1482.

- Paniagua, G.F., Saraceno, M., Piola, A.R., Guerrero, R., Provost, C., Ferrari, R., Lago, L.S.,
 Artana, C.I., 2018. Malvinas Current at 40°S–41°S: First Assessment of Temperature and
 Salinity Temporal Variability. Journal of Geophysical Research: Oceans 123, 5323-5340.
- Paull, C.K., Mitts, P., Ussler III, W., Keaten, R., Greene, H.G., 2005. Trail of sand in upper
 Monterey Canyon: offshore California. Geological Society of America Bulletin 117, 11341145.
- Piola, A.R., Franco, B.C., Palma, E.D., Saraceno, M., 2013. Multiple jets in the Malvinas
 Current. Journal of Geophysical Research: Oceans 118, 2107-2117.
- Piola, A.R., Matano, R.P., 2019. Ocean Currents: Atlantic Western Boundary Brazil
 Current/Falkland (Malvinas) Current, in: Cochran, J.K., Bokuniewicz, H., Yager, P. (Eds.),
 Encyclopedia of Ocean Sciences, 3rd Edition.
- Piola, A.R., Palma, E.D., Bianchi, A.A., Castro, B.M., Dottori, M., Guerrero, R.A., Marrari, M.,
 Matano, R.P., Möller, O.O., Saraceno, M., 2018. Physical oceanography of the SW Atlantic
 Shelf: a review, Plankton Ecology of the Southwestern Atlantic. Springer, pp. 37-56.
- Preu, B., Hernández-Molina, F.J., Violante, R., Piola, A.R., Paterlini, C.M., Schwenk, T., Voigt,
 I., Krastel, S., Spiess, V., 2013. Morphosedimentary and hydrographic features of the
 northern Argentine margin: The interplay between erosive, depositional and gravitational

processes and its conceptual implications. Deep Sea Research Part I: OceanographicResearch Papers 75, 157-174.

Preu, B., Schwenk, T., Hernández-Molina, F.J., Violante, R., Paterlini, M., Krastel, S.,
Tomasini, J., Spieß, V., 2012. Sedimentary growth pattern on the northern Argentine slope:
The impact of North Atlantic Deep Water on southern hemisphere slope architecture.
Marine Geology 329-331, 113-125.

- Provost, C., Gana, S., Garçon, V., Maamaatuaiahutapu, K., England, M., 1995. Hydrographic
 conditions in the Brazil-Malvinas Confluence during austral summer 1990. Journal of
 Geophysical Research: Oceans 100, 10655-10678.
- 1011 Razik, S., Govin, A., Chiessi, C.M., von Dobeneck, T., 2015a. Depositional provinces,
 1012 dispersal, and origin of terrigenous sediments along the SE South American continental
 1013 margin. Marine Geology 363, 261-272.
- 1014 [dataset] Razik, S., Govin, A., Chiessi, C.M., von Dobeneck, T., 2015b. (Figure 3) Grain-size 1015 distributions of the terrigenous sediment fraction from surface sediment samples along the 1016 continental margin between East Brazil and Patagonia, In supplement to: Razik, S et al. 1017 (2015): Depositional provinces, dispersal, and origin of terrigenous sediments along the SE 1018 South American continental margin. Marine Geology, 363. 261-272, 1019 https://doi.org/10.1016/j.margeo.2015.03.001. PANGAEA.
- 1020 Rebesco, M., Camerlenghi, A., 2008. Contourites. Elsevier.

Rebesco, M., Hernández-Molina, F.J., Van Rooij, D., Wåhlin, A., 2014. Contourites and
associated sediments controlled by deep-water circulation processes: State-of-the-art and
future considerations. Marine Geology 352, 111-154.

- Reeder, D.B., Ma, B.B., Yang, Y.J., 2011. Very large subaqueous sand dunes on the upper
 continental slope in the South China Sea generated by episodic, shoaling deep-water
 internal solitary waves. Marine Geology 279, 12-18.
- Reiche, S., Hübscher, C., Brenner, S., Betzler, C., Hall, J.K., 2018. The role of internal waves
 in the late Quaternary evolution of the Israeli continental slope. Marine Geology 406, 1771029 192.
- 1030 Reid, J.L., Nowlin, W.D., Patzert, W.C., 1977. On the characteristics and circulation of the
 1031 southwestern Atlantic Ocean. Journal of Physical Oceanography 7, 62-91.
- 1032 Ribó, M., Puig, P., Muñoz, A., Iacono, C.L., Masqué, P., Palanques, A., Acosta, J., Guillén, J.,
- Ballesteros, M.G., 2016. Morphobathymetric analysis of the large fine-grained sediment
 waves over the Gulf of Valencia continental slope (NW Mediterranean). Geomorphology
 253, 22-37.
- Saraceno, M., Provost, C., Piola, A.R., 2005. On the relationship between satellite-retrieved
 surface temperature fronts and chlorophyll a in the western South Atlantic. Journal of
 Geophysical Research: Oceans 110.
- 1039 Schlichting, H., 1962. Boundary Layer Theory, 6th edn., 744 pp. McGraw-Hill, New York.
- 1040 Schlichting, H., Gersten, K., 2016. Boundary-layer theory. Springer.
- 1041 Soulsby, R., Whitehouse, R., 1997. Threshold of sediment motion in coastal environments,
- 1042 Pacific Coasts and Ports' 97: Proceedings of the 13th Australasian Coastal and Ocean
- 1043 Engineering Conference and the 6th Australasian Port and Harbour Conference; Volume
- 1044 1. Centre for Advanced Engineering, University of Canterbury, p. 145.
- Spieß, V., Albrecht, N., Bickert, T., Breitzke, M., Brüning, M., Dreyzehner, A., Groß, U., Krüger,
 D., von Lom-Keil, H., Möller, H., 2002. ODP Südatlantik 2001 Part 2. Meteor-Berichte 2, 1.

- Steinmann, L., Baques, M., Wenau, S., Schwenk, T., Spiess, V., Piola, A.R., Bozzano, G.,
 Violante, R., Kasten, S., 2020. Discovery of a giant cold-water coral mound province along
 the northern Argentine margin and its link to the regional Contourite Depositional System
 and oceanographic setting. Marine Geology 427, 106223.
- Stow, D.A., Faugères, J.-C., Howe, J.A., Pudsey, C.J., Viana, A.R., 2002a. Bottom currents,
 contourites and deep-sea sediment drifts: current state-of-the-art. Geological Society,
 London, Memoirs 22, 7-20.
- Stow, D.A., Hernández-Molina, F.J., Llave, E., Sayago-Gil, M., Díaz del Río, V., Branson, A.,
 2009. Bedform-velocity matrix: the estimation of bottom current velocity from bedform
 observations. Geology 37, 327-330.
- Stow, D.A., Pudsey, C., Howe, J., Faugères, J.-C., Viana, A., 2002b. Deep-water contourite
 systems: modern drifts and ancient series, seismic and sedimentary characteristics.
 Geological Society of London.
- Surlyk, F., Lykke-Andersen, H., 2007. Contourite drifts, moats and channels in the Upper
 Cretaceous chalk of the Danish Basin. Sedimentology 54, 405-422.
- Thiéblemont, A., Hernández-Molina, F.J., Miramontes, E., Raisson, F., Penven, P., 2019.
 Contourite depositional systems along the Mozambique channel: The interplay between
 bottom currents and sedimentary processes. Deep Sea Research Part I: Oceanographic
 Research Papers 147, 79-99.
- Thran, A.C., Dutkiewicz, A., Spence, P., Müller, R.D., 2018. Controls on the global distribution
 of contourite drifts: Insights from an eddy-resolving ocean model. Earth and Planetary
 Science Letters 489, 228-240.

- Urien, C.M., Ewing, M., 1974. Recent sediments and environment of southern Brazil, Uruguay,
 Buenos Aires, and Rio Negro continental shelf, The geology of continental margins.
 Springer, pp. 157-177.
- Valla, D., Piola, A.R., Meinen, C.S., Campos, E., 2018. Strong mixing and recirculation in the
 northwestern Argentine Basin. Journal of Geophysical Research: Oceans 123, 4624-4648.
- 1074 Van Haren, H., Gostiaux, L., 2011. Large internal waves advection in very weakly stratified
 1075 deep Mediterranean waters. Geophysical Research Letters 38.
- 1076 Vivier, F., Provost, C., 1999. Direct velocity measurements in the Malvinas Current. Journal of1077 Geophysical Research: Oceans 104, 21083-21103.
- 1078 Voigt, I., Chiessi, C.M., Piola, A.R., Henrich, R., 2016. Holocene changes in Antarctic
 1079 Intermediate Water flow strength in the Southwest Atlantic. Palaeogeography,
 1080 Palaeoclimatology, Palaeoecology 463, 60-67.
- 1081 Voigt, I., Henrich, R., Preu, B., Piola, A.R., Hanebuth, T.J., Schwenk, T., Chiessi, C.M., 2013.

1082 A submarine canyon as a climate archive—interaction of the Antarctic Intermediate Water

1083 with the Mar del Plata Canyon (Southwest Atlantic). Marine Geology 341, 46-57.

- Warratz, G., Henrich, R., Voigt, I., Chiessi, C.M., Kuhn, G., Lantzsch, H., 2017. Deglacial
 changes in the strength of deep southern component water and sediment supply at the
 Argentine continental margin. Paleoceanography 32, 796-812.
- Warratz, G., Schwenk, T., Voigt, I., Bozzano, G., Henrich, R., Violante, R., Lantzsch, H., 2019.
 Interaction of a deep-sea current with a blind submarine canyon (Mar del Plata Canyon,
 Argentina). Marine Geology 417, 106002.
- Yin, S., Hernández-Molina, F.J., Zhang, W., Li, J., Wang, L., Ding, W., Ding, W., 2019. The
 influence of oceanographic processes on contourite features: A multidisciplinary study of
 the northern South China Sea. Marine Geology 415, 105967.

Zhang, W., Hanebuth, T.J., Stöber, U., 2016. Short-term sediment dynamics on a meso-scale
 contourite drift (off NW Iberia): Impacts of multi-scale oceanographic processes deduced
 from the analysis of mooring data and numerical modelling. Marine Geology 378, 81-100.

1097 Figure captions

1098

Fig. 1. (A) Regional bathymetric map showing the SE American margin. The arrows indicate the general circulation pattern of the cold Malvinas Current, the warm Brazil Current and their confluence. (B/C) Potential temperature versus Salinity/Oxygen based on CTD data collected during Cruise SO260 that allowed the identification of different water masses: SASW: Subantarctic Surface Water, SACW: South Atlantic Central Water, AAIW: Antarctic Intermediate Water, UCDW: Upper Circumpolar Deep Water. σ_0 : potential density anomaly.

Fig. 2. Bathymetric map of the study area showing the location of the main morphological
and contouritic features, sediment cores, CTD stations, seismic and Parasound profiles. The
first contour line at 200 m indicates the approximate location of the continental shelf break.
The deeper contour lines are every 500 m. (See Fig. 1 for location)

1110

Fig. 3. (A) Modelled mean bottom velocity; (B) model standard deviation $\underline{\sigma} (= \sqrt{EKE})$ of over 25 years; and (C) Modelled mean bottom velocity from 12/01/2012 to 14/02/2012. Note that the scale for the speed and the standard deviation is not the same. MC 1-3 refers to three branches of the Malvinas Current near the seafloor.

1115

Fig. 4. Cross-sections of the hydrodynamic model showing the 25-year mean flow direction
in combination with seismic sections. The white dashed lines indicate the interface of water
masses calculated based on the potential density anomaly (SASW: Subantarctic Surface
Water, SACW: South Atlantic Central Water, AAIW: Antarctic Intermediate Water, UCDW:

1120	Upper Circumpolar Deep Water). The location of the cross-sections is shown in Figs. 2 and
1121	4. (A) Seismic section GeoB01-141 located north of MdP Canyon and (B) GeoB01-135
1122	located south of MdP Canyon (modified from Preu et al. (2012; 2013)).

1123

1124 Fig. 5. Cross-sections of the hydrodynamic model showing the 25-year mean speed in

1125 combination with seismic sections. The white dashed line indicates the border between

southward and northward-flowing currents (see Fig. 5). The location of the cross-sections is

shown in Figs. 2 and 4. (A) Seismic section GeoB01-141 located north of MdP Canyon and

(B) GeoB01-135 located south of MdP Canyon (modified from Preu et al. (2012; 2013)).

1129

1130 Fig. 6. (A) Near-surface velocity from ADCP data averaged between 50 to 150 m below sea

1131 surface. (B) Near-bottom velocity from ADCP data averaged between 150 to 350 m above

1132 the seafloor. Yellow arrows indicate the modelled mean bottom current velocity over 8 cm/s.1133

Fig. 7. (A) ADCP cross-section showing the speed over and parallel to ET-Moat 1 and (B)
ADCP cross-section parallel to the slope connecting the La Plata Terrace with the Ewing

1136 Terrace. The sections are parallel to each other. See Fig. 2 for location.

1137

Fig. 8. (A) ADCP cross-section showing the speed across the southern Ewing Terrace in combination with Parasound data. Note that ADCP data and Parasound data are not in the same vertical scale (B) ADCP cross-section showing the current flow direction with arrows. The speed corresponds to the length of the vectors. An average mean velocity over 50 m is shown every 100 m below the sea surface. See Fig. 2 for location.

1143

Fig. 9. Bathymetric map of the Ewing Terrace showing the main small-scale features: moats,
separated mounded drifts, sediment waves and drift crest (A) south and (B) north of the MdP
Canyon.

1147

Fig. 10. Parasound data showing (A) Ewing Terrace Moat 2 north of MdP Canyon and (B)
Ewing Terrace Moat 1 south of MdP Canyon. See Fig. 10D for location. (C) Mean speed and
(D) standard deviation of modelled bottom currents.

1151

Fig. 11. (A)(B)(C) Parasound data showing S-SE edge of southern Erwin Terrace (south of
MdP Canyon). See Fig. 11E for location. (D) Mean speed and (E) standard deviation of
modelled bottom currents.

1155

1156 Fig. 12. (A) Median grain size of all the bulk sediment samples collected in this study

1157 (circles), median grain size of the terrigenous fraction (diamonds, Razik et al., 2015) and

1158 percentage of sand of the bulk surface sediment (triangles, Frenz et al., 2003). (B) Grain

1159 size distribution of three samples located on the contourite terraces. (C) Grain-size

1160 distribution of two samples located inside of the two moats.

1161

1162 Fig. 13: Modelled bottom current velocity (over 25 years) together with an illustration of the

1163 water masses (identified from CTD data) at the seafloor (adapted from Preu et al. (2013)).

1164

1165 Fig. 14. Conceptual model of the main bottom currents and associated contouritic features in

the study area. The approximate water mass interfaces in this region are indicated (after

1167 Preu et al., 2013; Kasten et al., 2019; Piola and Matano, 2019). MC: Malvinas Current, SW:

1168 Surface Water, AAIW: Antarctic Intermediate Water, UCDW: Upper Circumpolar Deep

1169 Water, NADW: North Atlantic Deep Water.

1 Supplementary material

2 For the analyses of model bottom currents, the underlying bathymetry plays a vital part because the 3 currents interact with the seafloor morphology. There are generally no major differences between the ETOPO Bathymetry used for the Model (Fig. S1 A) and the GEBCO Bathymetry combined with the 100-4 5 m grid measured with a Multibeam Echosounder (MBES) used for the geomorphological analysis (Fig. 6 S1 B). The comparison of the isobaths calculated from the different grids shows generally the same 7 structure. On the shelf, both grids are similar, and in the study area (450 to 1400 m water depth), the 8 differences are only minor. Because of the lower resolution of the ETOPO grid, the steep slopes cannot 9 be resolved with the same details and the canyons are slightly wider (Fig. S1 C).

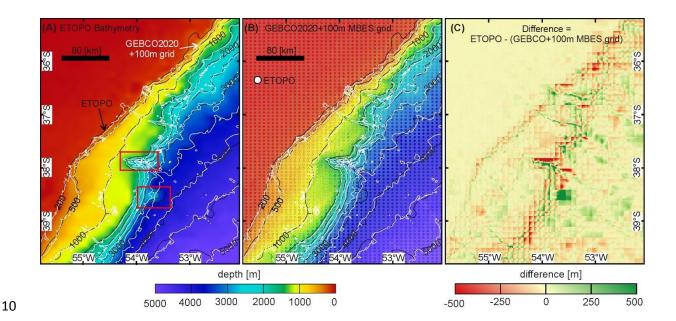
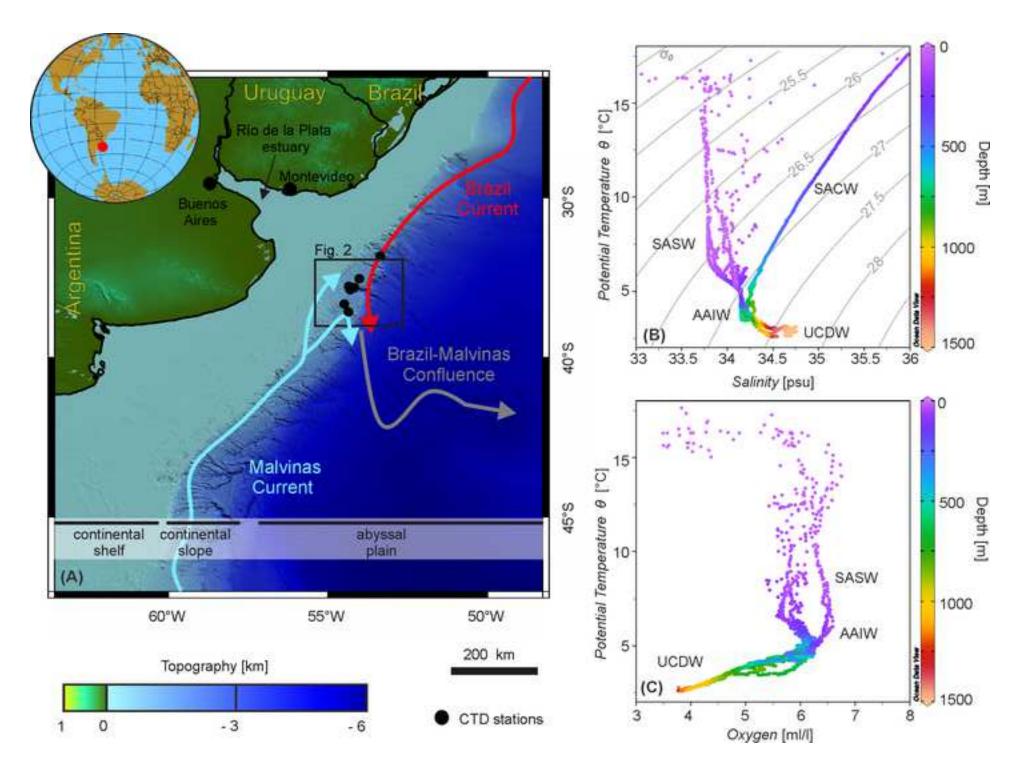
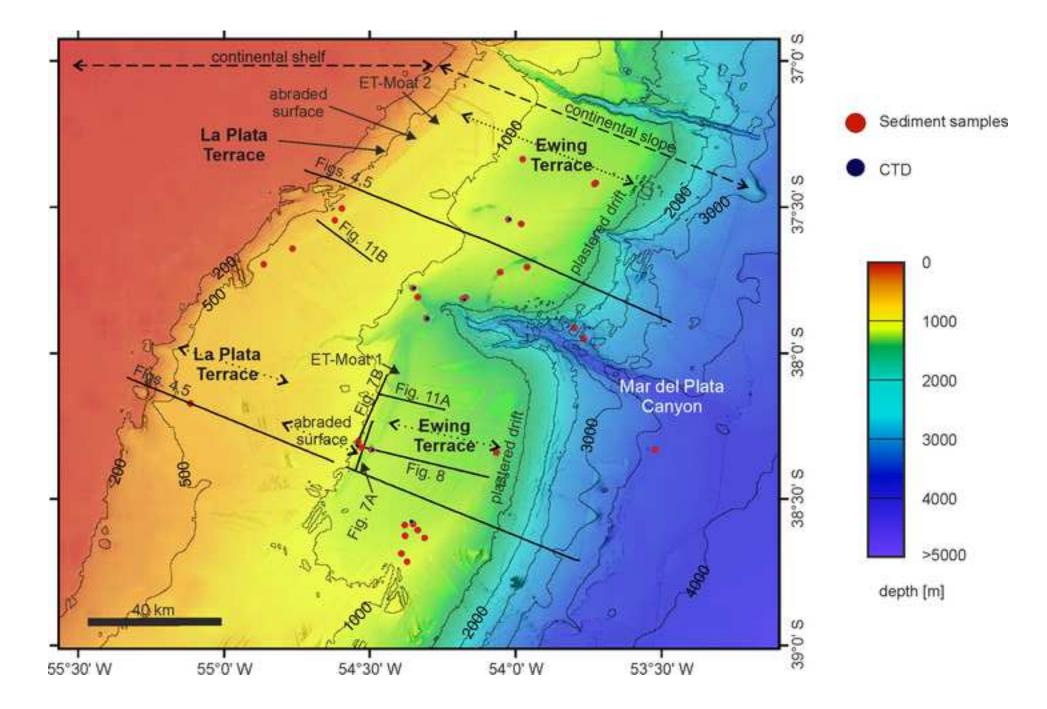
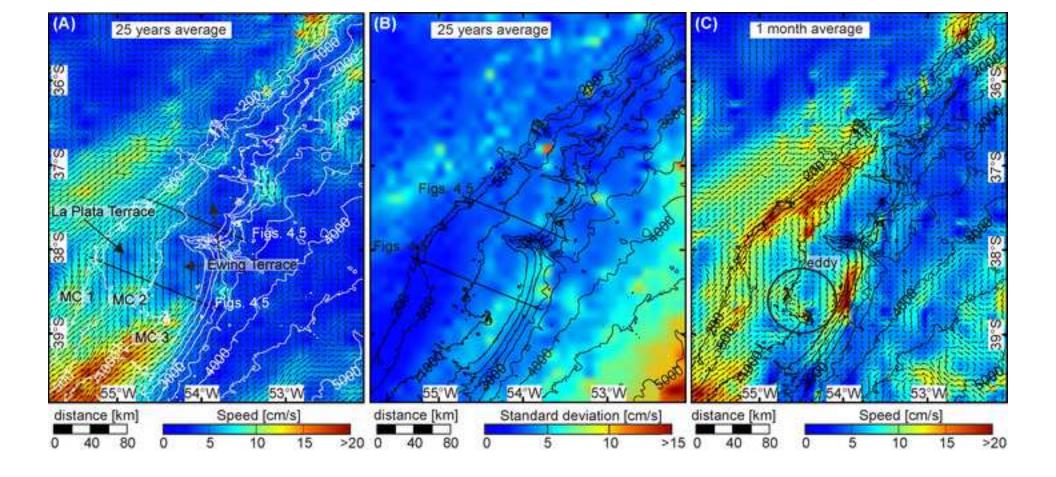
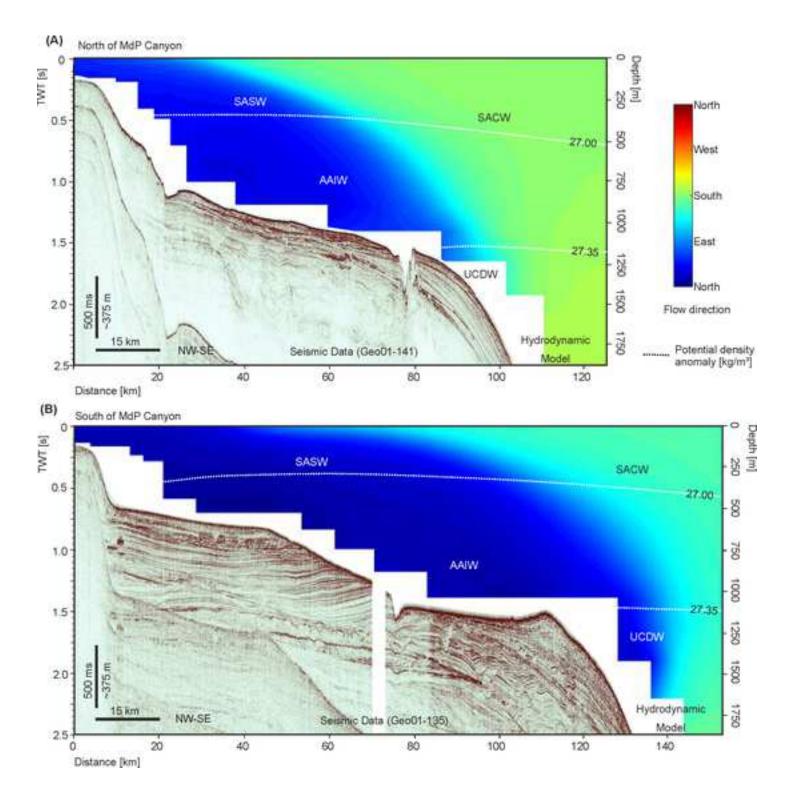
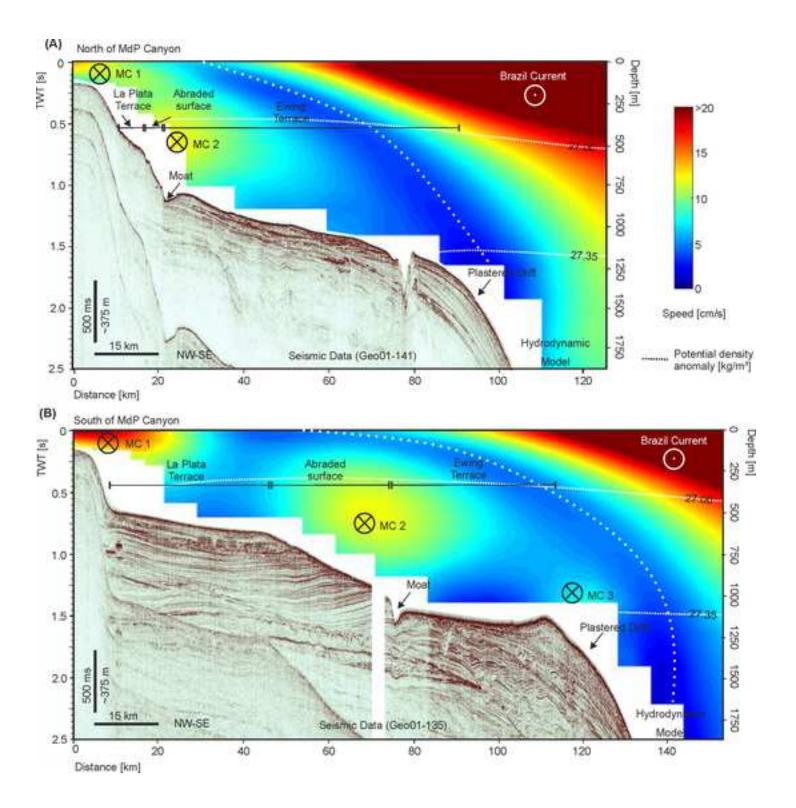
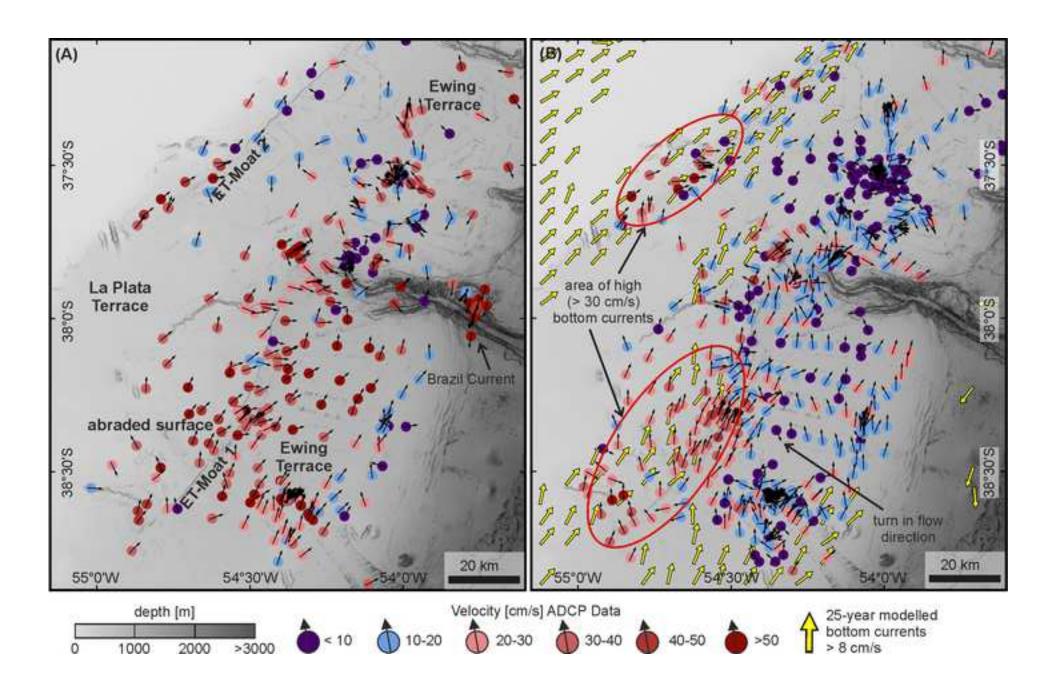
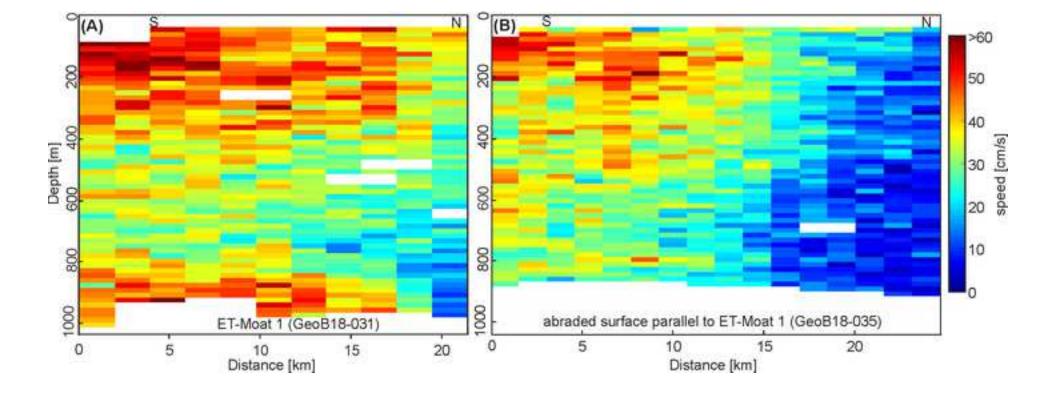





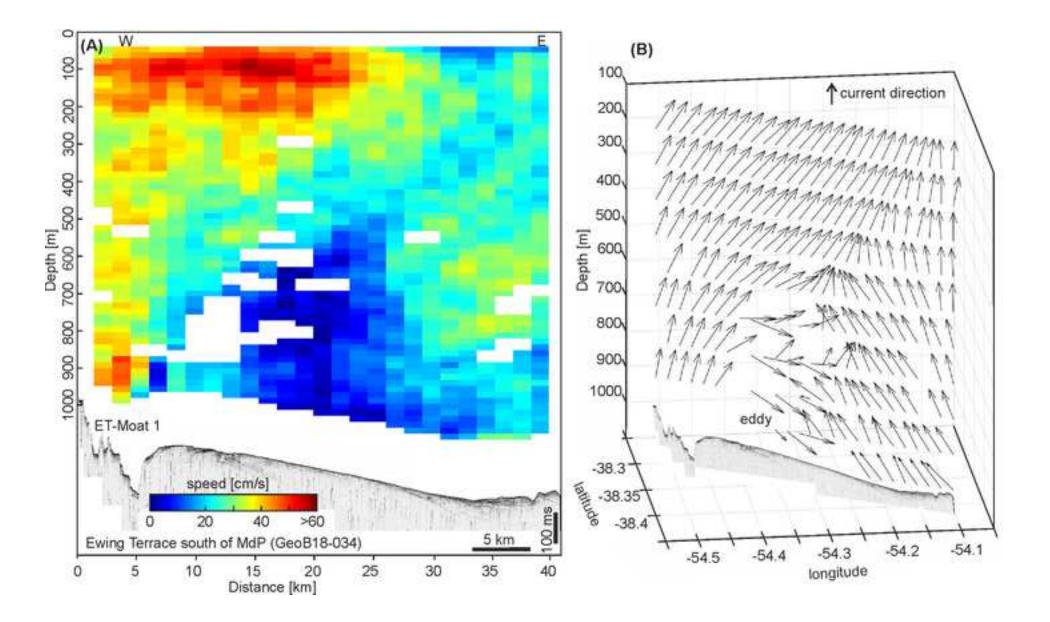
Fig. S1: (A) ETOPO Bathymetry used for the Model. The red boxes indicate differences between isobaths calculated from ETOPO Bathymetry and of GEBCO Bathymetry combined with the 100-m grid measured with a Multibeam Echosounder (MBES). (B) Comparison between the GEBCO Bathymetry combined with the 100 m grid and ETOPO Bathymetry (coloured dots). (C) Difference between the ETOPO Bathymetry and the GEBCO Bathymetry combined with the 100-m grid.

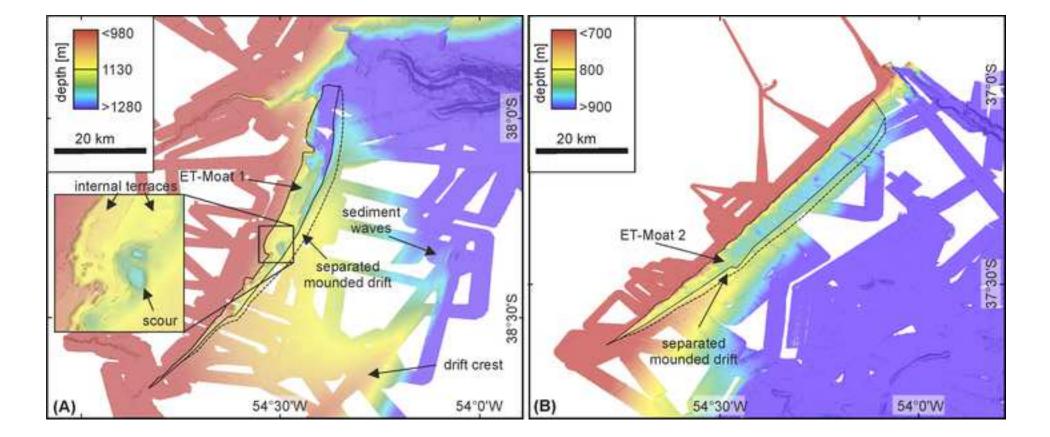


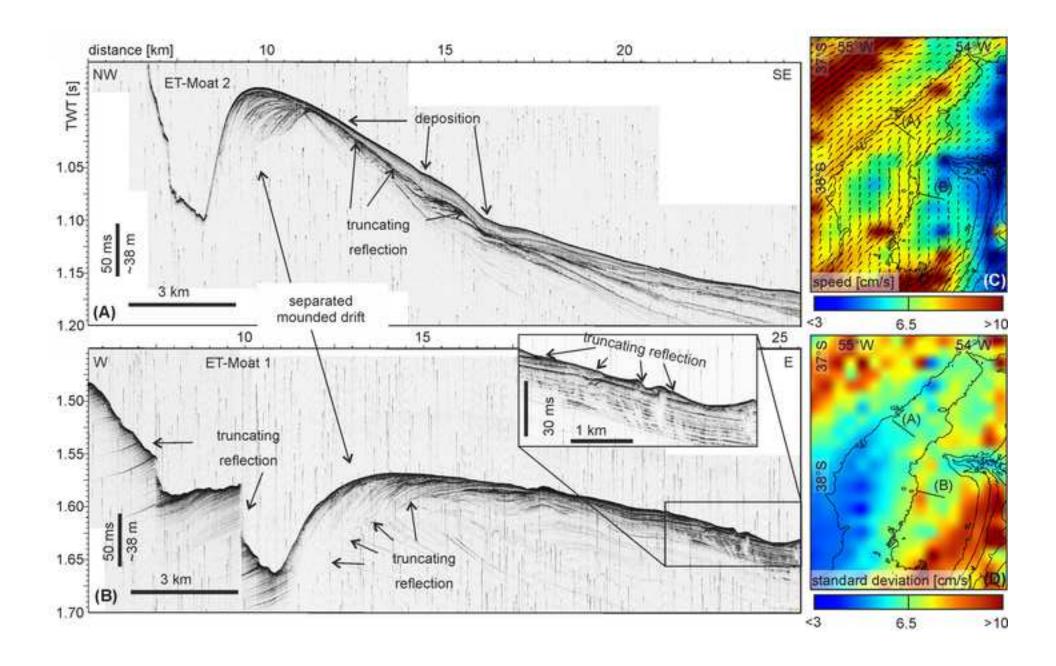


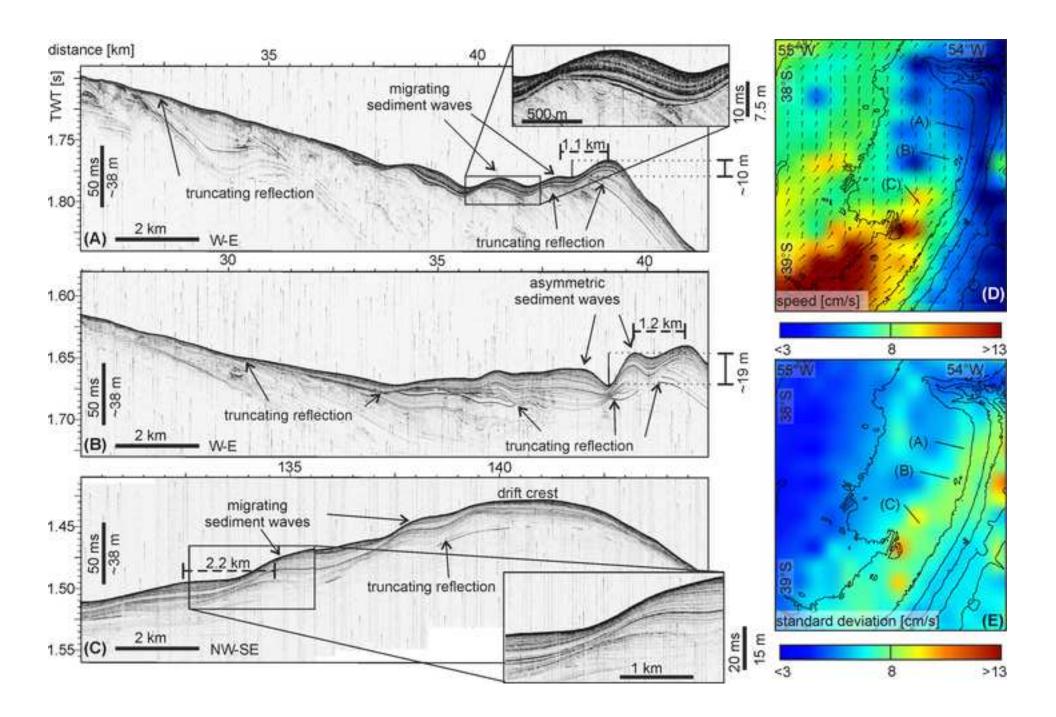


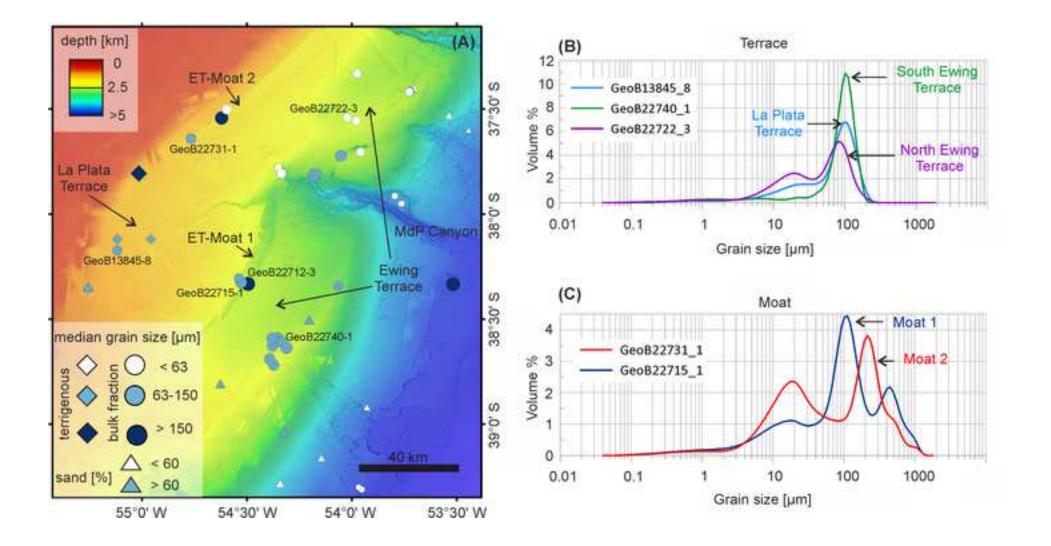


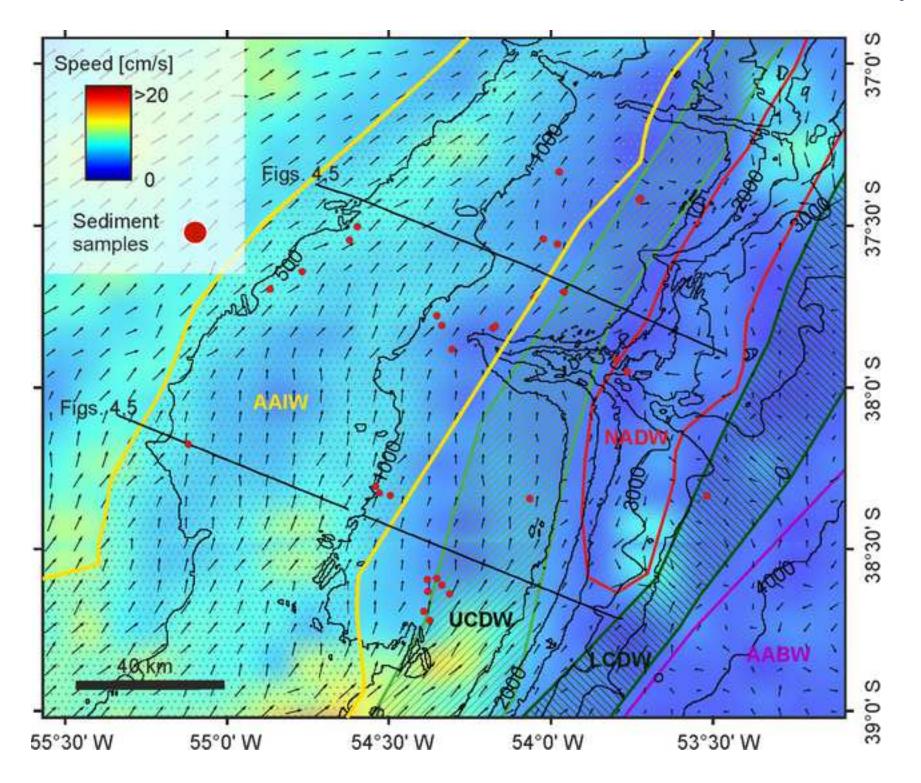


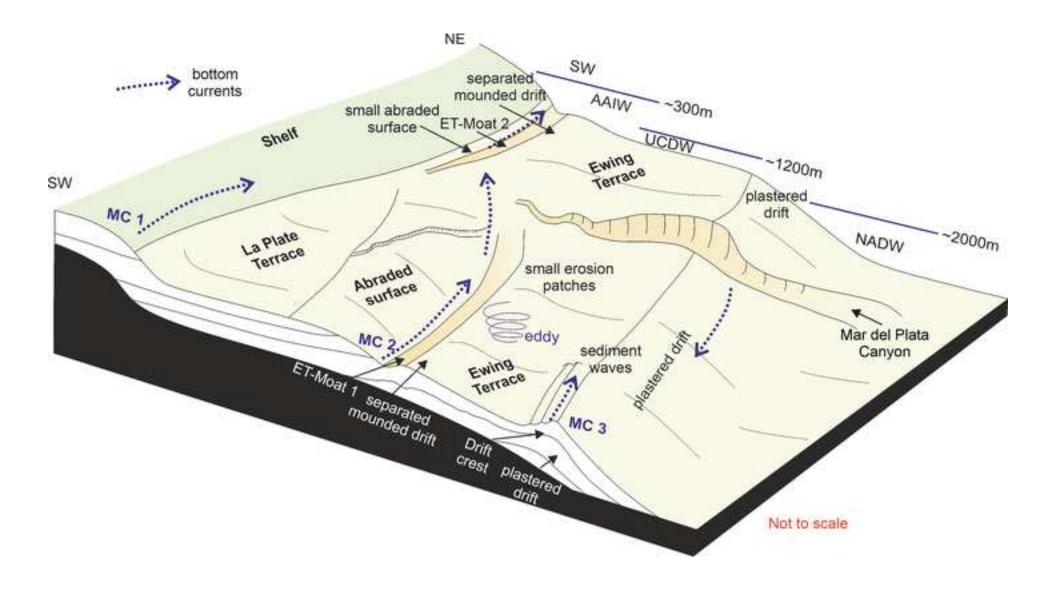












Declaration of interests

☑ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: