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We study two-dimensional excitons confined in a lattice potential, for high fillings of the lattice sites. We
show that a quasicondensate is possibly formed for small values of the lattice depth, but for larger ones the
critical phase-space density for quasicondensation rapidly exceeds our experimental reach, due to an
increase of the exciton effective mass. On the other hand, in the regime of a deep lattice potential where
excitons are strongly localized at the lattice sites, we show that an array of phase-independent
quasicondensates, different from a Mott insulator, is realized.
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The phase diagram of bosonic particles exploring a lattice
potential is commonly described in terms of two essential
parameters: the interparticle interaction strength U giving
the increase of energy when two particles occupy the same
lattice site, and the particle tunneling strength J, determining
the hopping of a particle to a neighboring site [1–3]. Within
the minimal Bose-Hubbard model, two antagonist regimes
emerge at zero temperature. When tunneling is dominant, a
superfluid showing phase ordering over spatially distinct
sites can be reached, whereas above a critical ratio U=J
tunneling is suppressed and bosons remain fixed to their
lattice site. This results in an incompressible phase, a so-
calledMott insulator, where phase coherence extending over
various lattice sites is absent. Typically, varying the lattice
depth or the lattice period, U and J are modified and the
phase diagram is accurately explored [2,3].
Seminal experiments conducted with ultracold atomic

gases confined in optical lattices have provided model
studies of the Bose-Hubard model, initially in three
dimensions, and more recently, for effectively two- and
one-dimensional systems [3]. In the solid state, large efforts
have also been dedicated to the physics of the two-
dimensional Bose-Hubbard Hamiltonian, in particular for
quantum simulation perspectives. To this aim, promising
candidates include long-lived dipolar excitons of semi-
conductor bilayers. Such excitons are marked by a spatial
separation imposed between Coulomb-bound electrons and
holes. They are possibly engineered in coupled GaAs
quantum wells [4] or in van der Waals assemblies of
transition metal dichalcogenides monolayers [5]. In the
former case, excitons may be subject to an artificial lattice
potential engineered by electrostatic gates [6,7] while in the
latter case they naturally explore a periodic moiré potential
[8–10]. For both systems, the Bose-Hubbard model is
expected to provide an accurate low-energy description.

To explore the collective phases accessible to dipolar
excitons, GaAs double quantum wells provide an exper-
imental toy model system, since excitons are then possibly
manipulated in a regime of homogeneous broadening [11],
and spatially confined in on-demand potential landscapes
[12–17]. Using these degrees of freedom, we have recently
mapped out the quasicondensation crossover of bilayer
excitons in boxlike trapping potentials [11,18,19], deter-
mining the excitons’ equation of state and density fluctua-
tions, and correlated these to the degree of spatial and
temporal coherence at subkelvin temperatures.
Here, we report experiments characterizing the quasi-

condensation of GaAs bilayer excitons in a microscopic
lattice potential. We show that a quasicondensate is
destroyed above a threshold lattice depth around a fraction
of the chemical potential. We attribute the suppression of
coherence to the renormalization of the exciton effective
mass by the lattice potential which rapidly increases the
critical phase-space density of quasicondensation. Above a
threshold lattice depth, cold excitons enter then a normal
phase, but without yet being spatially localized at the lattice
sites. The localized regime is in fact obtained for lattice
depths large compared to the chemical potential. In this
regime, we show that an array of phase incoherent
quasicondensates localized at each site is possibly formed
at large filling factors. We underline that this realization
differs from a Mott insulator.
We study a square artificial lattice with spatial period

L ¼ 3 μm, at a bath temperature Tb set to 340 mK
(see Ref. [6] for the characterization of our device).
Indirect excitons are injected in the lattice potential
using a 100-ns-long laser excitation, repeated at 1.5 MHz,
resonant with the direct exciton absorption. In the following,
we focus on excitonic properties at a fixed average density
n ∼ 2 × 1010 cm−2, obtained 150 ns after extinction of the
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laser excitation for an average power set to 1.5 μW. The
phase-space densityD is then around 12 corresponding to a
chemical potential μ of about 0.8 meV, i.e., well above the
critical value Dc ∼ 8 for exciton quasicondensation [11].
Thus, we explore how the lattice depth influences quantum
statistical signatures, by continuously varying the height of
the potential barrier V0 separating the lattice sites [6].
Figure 1(d) illustrates the phases potentially accessible in

our experiments: for small U=J, realized in the limit of
vanishing lattice depth, a quasicondensate phase marked by
quasi-long-range order in the spatial and temporal coher-
ence is expected [2,20]. On the other hand, for a deep
lattice potential, i.e., for large U=J, one possibly enters the
regime where a Mott-insulating phase (MI), defined by the
same fixed number of excitons per lattice site, fluctuations
being suppressed by interaction [2], is energetically favor-
able. We then note that MI phases are protected since their
minimum excitation, resulting from an exciton hoping
between two lattice sites, has an energy cost equal to
U ¼ ðℏ2=4πmXa20Þg̃, mX being the exciton’s effective

mass, a0 describing the spatial extension of the exciton’s
wave function in lattice sites, while g̃ ∼ 4 is a dimensionless
parameter quantifying dipolar interactions between exci-
tons [11]. For our experimental conditions we deduce that
U ∼ kBTb. Then MI phases are not accessible due to
thermal excitations. Moreover, let us note that for our
device we only have access to high-filling factors, with
around 100 excitons per site.
We now turn to discuss our experimental results in these

different regimes. Let us start with the quasicondensate
regime at vanishingU=J, by settingV0 to 0. In this situation,
we studied the degree of spatial and temporal coherence of
the photoluminescence radiated by our device using aMach-
Zehnder interferometer where the photoluminescence field
ψ is recombined with itself, after a variable time delay τ, or a
spatial displacement r is introduced. Measuring the inter-
ference contrast at the interferometer output, we directly
deduced the amplitude of the first-order correlation function
jgð1Þðr; τÞj ∼ jhψ�ðri; tÞψðri þ r; tþ τÞiri;tj. Here h� � �iri;t
denotes the average over t, i.e., over the number of
realizations accumulated to produce one interferogram, as
well as the average over the positions ri where the fringe
contrast is evaluated, typically of the order of 10 μm to
compute the contrast from 3 fringes [Figs. 2(a) and 2(b)].
Figure 2(c) shows the variation of the photolumines-

cence first-order time correlation function jgð1Þð0; τÞj. We
note that initially it decays exponentially with a time
constant τc ∼ 4 ps, before a slower decay is found for
4≲ τ ≲ 7 ps. Very recently we have reported such behavior
and shown that the initial exponential decay reveals the
contribution of noncondensed excitons through the inelas-
tic two-body collisional rate. Indeed, the exciton-photon
coupling is linear so that the coherence of optically bright
excitons is imprinted in the photoluminescence [21]. Thus,
we find here an exciton’s collisional rate, 1=τc, in good
agreement with our previous studies [11]. On the other
hand, the slowly decaying part for τ ≳ τc marks the
contribution of quasicondensed excitons, which exhibit
an algebraically decaying time coherence τ−η [20].
Importantly, here we find that η ∼ 0.25, which is compat-
ible with the value predicted at criticality by the
Berezinskii-Kosterlitz-Thouless theory [22,23]. Let us then
note that our studies are realized for an exciton phase-space
densityD ∼ 12, very close to Ref. [11] where a very similar
exponent was deduced.
We further studied the degree of spatial coherence by

setting our interferometer such that krk ∼ 2 μm and τ ¼ 0.
This spatial separation is over an order of magnitude
beyond the classical limit set by the thermal de Broglie
wavelength, and 2 times larger than our optical resolution.
Figure 2(d) reveals that we observe interference fringes
signaling the buildup of quasi-long-range spatial coher-
ence. In these experiments the interference contrast
amounts to 23%, compared to 75% at the spatial autocor-
relation. From this difference we deduce that 1=3 of the

(a) (b) (c)

(d)

(e)

FIG. 1. (a)–(c) Real images of the photoluminescence for
V0 ¼ 0 (a), 1.5 meV (b), and 3 meV (c). Scales are given in
μm. (d) Schematic phase diagram for the two-dimensional Bose-
Hubbard model, as a function of the on-site interaction U, the
tunneling strength J, and the temperature T. At nonzero temper-
ature superfluid (SF) and Mott-insulating (MI) phases are
separated by a normal phase where physical properties are
classical. Our experiments, carried out at a fixed average density,
explore the parameter space along the dashed curved line. (e) At
the crossover between the SF and normal phases noncondensed
excitons (blue) are mostly located around the lattice barrier.
This effectively increases the lattice depth (solid line) compared
to the native one (dashed line). Quasicondensed excitons are
depicted in red.

PHYSICAL REVIEW LETTERS 126, 067404 (2021)

067404-2



optically bright excitons’ population contributes to the
quasicondensate [24]. In previous works, we had shown
that a quasicondensate also includes optically dark exci-
tons, that constitute around 2=3 of the total exciton
population at 340 mK [25]. However, the quasicondensed
fraction of dark excitons, 58%� 42%, is extracted with a
low accuracy since these are optically inactive so that their
quantum statistical distribution is not measurable precisely.
Thus, the overall fraction of quasicondensed excitons
amounts roughly to 50%, with a possible shift by �25%
due to our uncertainty when extracting the fraction of

quasicondensed dark excitons. These magnitudes well
reproduce the ones we deduced in electrostatic traps for
similar densities [18], in good agreement with path integral
Monte Carlo calculations [26]. Also, note that the ampli-
tude of jgð1Þj is of the same order for (krk ∼ 2 μm, τ ¼ 0)
and (r ¼ 0, τ ∼ 6 ps). This matching is expected since in
both cases only the fraction of quasicondensed bright
excitons contributes to the interference signal.
We now turn to the opposite regime where a deep lattice

potential is imprinted, V0 ¼ 3 meV ≫ μ. In this situation
Fig. 1(c) shows that excitons are strongly localized in the
lattice sites which have a characteristic spatial extension of
about 1 μm. This results in a modulation of the photo-
luminescence intensity, of around 20% along the horizontal
axis of our device, with a 3 μm period [6]. To study
spatially extended time coherence in the photolumines-
cence, we studied jgð1Þð0; τÞj fixing the interference period
to 4.5 μm, as in the measurements shown in Figs. 2(d)
and 2(e). Thus, the interference period is clearly distin-
guished from the one of the spatial modulation of the
photoluminescence intensity due to the lattice potential.
Figure 3(a) shows the variation of the interference contrast
with τ, which, unlike in Fig. 2(c), is reduced to an
exponential decay with a characteristic time of around

(a)

(d)

(b)

(e)

(c)

FIG. 2. (a) Interference pattern measured for V0 ¼ 0 and for
(r ¼ 0, τ ¼ 4.2 ps), together with the profile evaluated at the
center of the image (b) leading to jgð1Þj ¼ 28%. (c) Decay of the
first-order time coherence jgð1Þð0; τÞj as a function of the time
delay τ. Experimental data are depicted by the solid blue points,
while the red line shows an exponential decay with a character-
istic time constant of 4 ps. The dashed line shows an algebraic
time decay τ−η with η ¼ 0.25. The inset presents the same
measurements in linear scale and the gray shaded area marks
the limit of our experimental precision. (d) Spatial interference of
the photoluminescence measured for (krk ¼ 2 μm, τ ¼ 0), to-
gether with the interference profile evaluated at the center of the
image (e). Thus we deduce an interference contrast jgð1Þj ¼ 23%.
The interference period is set to 3 μm in (a) and (b) and to 4.5 μm
in (d) and (e).

(a)

(b)

FIG. 3. (a) Decay of the first-order time coherence for V0 ¼
3 meV in log-log scale. Experimental data are displayed by the
blue points while the red line shows an exponential decay with a
characteristic time equal to 2.8 ps. The inset provides the same
results in linear scale while the gray area underlines the limit set
by the signal-to-noise ratio. (b) Standard deviation of the photo-
luminescence energy measured at the position of 3 adjacent
lattice sites as a function of the lattice depth V0. Each measure-
ment is evaluated from an ensemble of 10 realizations all
performed under the same experimental conditions. The inset
provides a spatially resolved spectrum where the emission from
individual lattice sites is identified [6].
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3 ps. We then note that for V0 ¼ 3 meV a slightly higher
rate of inelastic collisions is deduced compared to V0 ¼ 0.
We attribute this difference as the manifestation of an
increased concentration of excess carriers [27] when we
impose a large difference between the potentials applied
onto our gate electrodes, as necessary to engineer a deep
lattice potential. As a result, excitons suffer additional
collisions with free carriers; nevertheless, the photolumi-
nescence is homogeneously broadened in this regime
as well.
Figure 3(a) shows that in a deep lattice potential cold

excitons do not exhibit any algebraically decaying time
coherence, and therefore lack quasi-long-range order
[11,20]. This implies that the phase between excitons
confined in each lattice site is randomly distributed. We
actually expected such a conclusion since the coupling
between the lattice sites, controlled by the tunneling coef-
ficient J, decreases exponentially with the barrier height,
like e−ðV0=ErÞ1=2 , whereEr ¼ π2ℏ2=ð2mL2Þ ∼ 0.2 μeV [2]. J
is then vanishingly small for V0 ∼ 3 meV. Moreover, the
schematic phase diagram shown in Fig. 1 recalls that for
V0 ¼ 3 meV a Mott-insulating phase is potentially acces-
sible. As mentioned earlier, this is unlikely in our experi-
ments carried out at a temperature comparable to the energy
gap protecting Mott phases. To verify this expectation we
studied thevariation of density fluctuations in the lattice sites
as a function of the lattice depth. Indeed a Mott insulator is
signaled by the same fixed number of particles in each site,
so that density fluctuations are theoretically vanishingly
small. For dipolar excitons density fluctuations are directly
accessed by the energy of the photoluminescence which is
governed by the strength of repulsive dipolar interactions
between excitons [28–30]. Figure 3(b) compares the stan-
dard deviation of the photoluminescence energy σEX

for 3
neighboring lattice sites as a function of V0. Overall, it
shows that the photoluminescence energy is highly stable in
our experiments, since it varies by only around 80 μeV.
However, we do not observe any clear dependence of σEX

over V0, and thus no sign of a Mott-insulating phase is
detected in the deep lattice regime. Moreover, we note that
Fig. 3(b) indicates strongly that thermodynamic equilibrium
is reached across the lattice potential since density fluctua-
tions do not depend on V0 [31].
Figures 2 and 3 show that extended temporal coherence is

destroyed when we pass from the regimewhere excitons are
delocalized in the lattice potential (V0 ¼ 0) to the onewhere
they are strongly localized (V0 ¼ 3 meV). To quantify this
transition, we have measured the degree of temporal
coherence as a function of the lattice depth, setting τ to
4.7 ps. Starting from a flat potential (V0 ¼ 0), Fig. 4(a)
shows that jgð1Þj decays very rapidlywhenV0 is increased by
a few 100 μeV. Actually, jgð1Þj is reduced to the amplitude it
would reach by decaying exponentially at a rate τc when
V0 ∼ 0.2 meV. This magnitude signals that time coherence
is governed by inelastic two-body collisions only,

manifesting that the fraction of quasicondensed excitons
has vanished.
The loss of coherence in a periodic potential is usually

discussed in terms of arrays of condensates in single
lattice sites connected by a Josephson coupling describing
quantum tunneling [31–35]. The latter decreases expo-
nentially with the difference between the barrier height
and the chemical potential [36]. In our strongly interacting
system, the barrier height seen by the quasicondensate
must also include the interaction with noncondensed
excitons. Indeed, unlike in a flat confining potential, in
a lattice noncondensed excitons are mostly localized
around the barriers separating accessible sites [37] [see
Fig. 1(e)]. This periodic arrangement minimizes the
system energy and leads to an effective barrier height

V�
0 ≈ V0 þ 2ðℏ=mÞg̃ðnðmaxÞ

nc − nðminÞ
nc Þ. Here, nðmax=minÞ

nc are
the maximum/minimum local density of noncondensed
excitons. As previously discussed, their difference is of
the order of half of the total population. Accordingly, we
deduce that V�

0 ∼ μ for V0 ∼ 0.2 meV ≪ μ, and a tran-
sition from a coherent condensate to incoherent array of
microcondensates can be expected for our parameter
space [32,33]. Alternatively, at finite temperatures the
loss of coherence can be understood in terms of a
renormalized effective mass m�

X ¼ mX=ð1 − V�2
0 =2μ2Þ

for small lattice amplitudes (V0 ≪ μ) [38]. For V�
0 ∼ μ

one has m�
X ∼ 2mX so that the effective critical phase-

space density for quasicondensation increases by a factor
of 2, from 8 to 16. It then exceeds our experimental
value D ∼ 12, driving a transition from a coherent (qua-
siuniform) condensate to an incoherent normal gas, as
observed in Fig. 4(a).

(b)(a)

FIG. 4. (a) First-order time coherence as a function of the
barrier height V0 in the weak lattice limit. The contrast measures
the amplitude of the first-order time correlation function
jgð1Þð0; 4.7 psÞj. (b) Local time coherence in the deep lattice
limit. Here the contrast measures the amplitude of the intensity
modulation along a bright interference fringe, i.e., along the
weaker confining direction. The shaded areas display our
instrumental resolution limited by the signal-to-noise ratio in
these measurements. Experiments have all been performed at a
bath temperature Tb ¼ 340 mK.
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The experiments reported in Fig. 4(b) allow us to
distinguish the two previous scenarios. There, we
extracted the exciton time coherence locally, i.e., in the
lattice sites, by ensuring that one bright interference fringe
coincided with one row of lattice sites. For each value of
V0 we then measured the intensity modulation along this
particular bright fringe Ci, and compared it to the bare
modulation of the photoluminescence in real space Cm
due to the localization in the lattice. Thus, we directly
deduce the average amplitude of jgð1Þj for the photo-
luminescence radiated by the lattice sites only. It
reads jgð1Þj ¼ 2ðCi − CmÞ=½ð1 − CiÞð1þ CmÞ�, since the
emission between the lattice sites does not yield any
measurable interference signal for τ ¼ 4.7 ps [Fig. 3(a)].
Figure 4(b) reveals then that the interference contrast is
vanishing for V0 ≲ 2 meV, the contrast increasing there-
after rapidly with V0. For V0 ¼ 3 meV it reaches an
amplitude similar to the one for V0 ∼ 0. Accordingly, we
deduce that for V0 ≲ 2 meV excitons lack extended
temporal coherence, whereas coherence builds up for
V0 ≳ 2 meV providing a signature of microscopic quasi-
condensates in the lattice sites for V0 ¼ 3 meV [11,20].
As shown in Fig. 3, these coherent exciton droplets are
independent from one another, i.e., with no defined phase
relation. Figure 4 shows that the transition between this
array of droplets and the extended quasicondensate
(V0 ∼ 0) passes then through a normal incoherent exciton
gas which is not localized by the lattice potential (see
Ref. [6]). Such transition does not correspond to the
framework of Josephson coupled array of condensates,
but rather suggests that coherence is destroyed due to a
renormalization of the exciton effective mass, which
yields a critical phase-space density exceeding our exper-
imental conditions.
To conclude, we have experimentally studied the

quasicondensate crossover for bilayer excitons confined
in a lattice potential. We have observed that a quasicon-
densate is formed when the barrier height is vanishing, but
rapidly destroyed when it is increased to around 0.2 meV.
We have shown that this behavior is consistent with a
renormalization of the exciton effective mass by the lattice
depth, which increases the critical phase-space density
for the quasicondensation crossover. On the other hand, in
the deep lattice limit, we have observed that an array of
phase incoherent quasicondensates localized at the lattice
sites develops. However, in order to reach the Mott
insulator regime, we estimate that the period of the lattice
has to be decreased to less than around 1 μm, such that the
effective trapping frequency is increased in the lattice
sites. Thus, the strength of on-site interactions is enhanced
[1] and becomes a few times larger than the thermal
activation energy.
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