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ORIGINAL INVESTIGATION

Angiotensin II‑induced upregulation 
of SGLT1 and 2 contributes to human 
microparticle‐stimulated endothelial 
senescence and dysfunction: protective effect 
of gliflozins
Sin‑Hee Park1, Eugenia Belcastro1, Hira Hasan1, Kensuke Matsushita2, Benjamin Marchandot2, Malak Abbas2, 
Florence Toti1, Cyril Auger1, Laurence Jesel1,2, Patrick Ohlmann2, Olivier Morel1,2* and Valérie B. Schini‑Kerth1* 

Abstract 

Background:  Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduced cardiovascular risk in type 2 diabetes 
patients independently of glycemic control. Although angiotensin II (Ang II) and blood-derived microparticles are 
major mediators of cardiovascular disease, their impact on SGLT1 and 2 expression and function in endothelial cells 
(ECs) and isolated arteries remains unclear.

Methods:   ECs were isolated from porcine coronary arteries, and arterial segments from rats. The protein expres‑
sion level was assessed by Western blot analysis and immunofluorescence staining, mRNA levels by RT-PCR, oxidative 
stress using dihydroethidium, nitric oxide using DAF-FM diacetate, senescence by senescence-associated beta-galac‑
tosidase activity, and platelet aggregation by aggregometer. Microparticles were collected from blood of patients 
with coronary artery disease (CAD-MPs).

Results:  Ang II up-regulated SGLT1 and 2 protein levels in ECs, and caused a sustained extracellular glucose- and 
Na+-dependent pro-oxidant response that was inhibited by the NADPH oxidase inhibitor VAS-2780, the AT1R 
antagonist losartan, sotagliflozin (Sota, SGLT1 and SGLT2 inhibitor), and empagliflozin (Empa, SGLT2 inhibitor). Ang 
II increased senescence-associated beta-galactosidase activity and markers, VCAM-1, MCP-1, tissue factor, ACE, and 
AT1R, and down-regulated eNOS and NO formation, which were inhibited by Sota and Empa. Increased SGLT1 and 
SGLT2 protein levels were observed in the rat aortic arch, and Ang II- and eNOS inhibitor-treated thoracic aorta seg‑
ments, and were associated with enhanced levels of oxidative stress and prevented by VAS-2780, losartan, Sota and 
Empa. CAD-MPs promoted increased levels of SGLT1, SGLT2 and VCAM-1, and decreased eNOS and NO formation in 
ECs, which were inhibited by VAS-2780, losartan, Sota and Empa.
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Background
Endothelial dysfunction characterized by impaired 
endothelial cellular function including blunted nitric 
oxide (NO) formation, oxidative stress, endothelial senes-
cence, and increased microparticles (MPs) shedding, is 
an early hallmark of the development of cardiovascular 
diseases that is initially affecting highly localized arterial 
sites which are exposed to disturbed flow and low shear 
such as bifurcations and curvatures [1, 2]. Endothelial 
dysfunction is an independent predictor of atherothrom-
botic events in coronary artery disease (CAD) patients 
and has lately been proposed as a key determinant of 
outcome in heart failure with preserved ejection fraction 
(HFpEF) [3–5]. Plasma membrane-derived circulating 
MPs have emerged as a surrogate biomarker and effec-
tor of endothelial dysfunction and cardiovascular risk [6], 
including heart failure [7–9] and behave as a biological 
transcellular signal delivery system promoting vasocon-
striction, vascular oxidative stress, fibrosis and remod-
eling, and also proinflammatory responses [10]. MPs can 
also contribute to endothelial senescence and dysfunc-
tion especially by modulating the NO/reactive oxygen 
species (ROS) balance in favor of oxidative stress, which 
promotes procoagulant and proinflammatory responses 
[11, 12]. Indeed, exposure of endothelial cells (ECs) to 
circulating MPs from acute coronary syndrome patients 
induced premature endothelial senescence and thrombo-
genicity through activation of the Ang II/AT1R/NADPH 
oxidase pathway [13]. Such findings are in good agree-
ment with observations indicating that the angiotensin 
system contributes to the induction of endothelial dys-
function in the inner curvature of the aortic arch [14], in 
experimental models of atherosclerosis and aging, hyper-
tension, diabetes and in patients at high cardiovascular 
risk [15–17]. ECs express angiotensin-converting enzyme 
(ACE) that stimulates the conversion of angiotensin I 
(Ang I) into the biologically active Ang II [18], which, in 
turn, causes NADPH oxidase-mediated oxidative stress 
and promotes vasoconstriction, endothelial senescence 
and dysfunction, and vascular and cardiac remodeling 
[19, 20].

Recent findings have emphasized the potential role of 
sodium-glucose cotransporters (SGLTs), which trans-
port glucose across the plasma membrane via a symport 

mechanism and the concomitant transfer of sodium in 
the development of cardiovascular disease. Several clini-
cal trials have indicated cardiovascular beneficial effects 
of SGLT2 inhibitors by lowering mortality from cardio-
vascular causes and hospitalization for heart failure in 
type 2 diabetic mellitus patients (T2DM) with estab-
lished cardiovascular diseases [21–23] and these effects 
appeared to be independent of glycemic control [24, 25]. 
Several potential mechanisms have been suggested to 
contribute to their beneficial effects including a reduc-
tion in blood pressure, arterial stiffness and albuminuria, 
induction of natriuresis and diuresis, improvement of the 
lipid profile, myocardial energetics by increasing oxida-
tion of ketone bodies and of visceral adiposity, and weight 
loss [26, 27]. The fact that high glucose caused the redox-
sensitive upregulation of SGLT1 and 2 through the local 
angiotensin system promoting endothelial senescence 
[28] suggests also a beneficial effect on the endothelial 
function. Despite of the remarkable cardiovascular bene-
fits, the expression of SGLT1 and SGLT2 on ECs remains 
poorly studied as well as their role in the control of the 
endothelial function.

Therefore, the present study examined whether Ang II 
and CAD-MPs known to activate the local angiotensin 
system induce SGLT1 and 2 expression in ECs to pro-
mote premature senescence and dysfunction. In addition, 
the possibility that SGLT1 and 2 contribute in a feedfor-
ward manner to sustain the pro-oxidant response and the 
deleterious effects of both Ang II and CAD-MPs on ECs 
was evaluated. Moreover to assess the physiological rele-
vance, experiments have investigated the expression level 
of SGLT1 and 2 at an arterial site prematurely affected by 
endothelial dysfunction and exposed to disturbed flow 
and low shear stress (aortic arch) and an arterial site at 
low risk exposed to laminar flow and high shear stress 
(thoracic aorta), and also in thoracic aorta segments 
exposed to either Ang II or following inhibition of the 
endothelial formation of NO in adult rats.

Materials and methods
Materials
Empagliflozin was provided by Boehringer Ingel-
heim Pharma GmbH & Co KG (Biberach an der Riss, 
Germany) and sotagliflozin was from CliniSciences 

Conclusions:  Ang II up-regulates SGLT1 and 2 protein expression in ECs and arterial segments to promote sustained 
oxidative stress, senescence and dysfunction. Such a sequence contributes to CAD-MPs-induced endothelial dysfunc‑
tion. Since AT1R/NADPH oxidase/SGLT1 and 2 pathways promote endothelial dysfunction, inhibition of SGLT1 and/or 
2 appears as an attractive strategy to enhance the protective endothelial function.

Keywords:  Endothelial senescence and dysfunction, Angiotensin II, Circulating microparticles, SGLT1, SGLT2, 
Empagliflozin
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(Nanterre, France). All other chemicals were from Sigma-
Aldrich (Sigma-Aldrich Chimie SARL, St Quentin Falla-
vier, France) unless otherwise specified.

Animals and ex vivo treatment of rat aorta
Male Wistar rats (10 week-old) were obtained from Jan-
vier labs (Le Genest St Isle, France). Only male rats were 
studied because of their more stable hormonal profile 
than female rats. After 1 week, rats were euthanized by 
injection of an overdose of ketamine and xylazine (120 
and 20 mg/kg, respectively, i.p.). The aortic arch and tho-
racic aorta were isolated and cleaned of connective tis-
sue. The thoracic aorta was cut into 6 segments (3–4 mm 
in length). Segments of aortic arch and thoracic aorta 
were incubated in MCDB 131 medium (Invitrogen) sup-
plemented with fungizone (2.5 µg/ml), penicillin (100 U/
ml), streptomycin (100 µg/ml), L-glutamine (2 mM, all 
from Lonza, Levallois-Perret, France) for 15 h. In the case 
of the thoracic aorta, segments were incubated in the 
absence or presence of either a NADPH oxidase inhibitor 
(VAS-2870, 1 µM), an AT1R antagonist (losartan, 1 µM), 
a dual SGLT1 and SGLT2 inhibitor (sotagliflozin, 100 
nM) or a selective SGLT2 inhibitor (empagliflozin, 100 
nM) for 30 min before the addition of Ang II (100 nM) 
or a NO synthase inhibitor (Nω-nitro-L-arginine, L-NA, 
300 µM) for 15 h. Thereafter, segments were washed with 
phosphate-buffered saline solution (PBS) without cal-
cium before being snap frozen or embedded into FSC22 
Blue Frozen Section Compound (Leica Biosystems, 
France) and then frozen in liquid nitrogen, and stored at 
− 80 °C.

Patients and isolation of circulating microparticles
The Institutional Review Board has approved the study 
and all participants gave informed consent. Twenty-six 
patients with CAD (between 50 and 88 years old) were 
enrolled at the University Hospital of Strasbourg, France. 
The extent of CAD was characterized by coronary angi-
ography. Patients with a history of chronic inflammatory 
disorders or atrial fibrillation were excluded. Clinical 
characteristics of patients are given in the Additional 
file 1: Table S1.

Blood samples collected by arterial puncture into 
tubes containing 129 mM sodium citrate were processed 
within 1  h 30 min. Platelet-poor plasma (PPP) samples 
containing circulating MPs were acquired by double cen-
trifugations at room temperature and immediately stored 
at − 80 °C until use as previously described [29]. For 
ex vivo experiments, PPP samples from individual CAD 
patients were thawed and centrifuged twice at 14,000g 
for 1 h at 4 °C. The MPs pellets after centrifugation were 
concentrated in calcium and magnesium-free Hank bal-
anced salt solution (HBSS) before the addition to ECs. To 

determine the effects of modulators, two series of washed 
MPs were produced from pooled PPP samples of 6 and 
5 CAD patients. Briefly, 50 ml of PPP samples were sub-
jected to a double centrifugation step (14,000g, 1 h, 4 °C) 
and the final pellet was resuspended in 1.2 ml of HBSS.

Two MP isolation procedures were performed, based 
on capture by 2 types of biotinylated ligands: annexin-V 
or specific antibodies. Ligands were separately insolu-
bilized onto streptavidin-coated microtitration plates 
before incubation with PPP. This capture system allows 
the extensive washing ensuring specific MP binding, 
lipoproteins are not captured. Each capture procedure 
shows a specific advantage for the assessment of circulat-
ing MPs in clinical subsets. Annexin-V probes PhtdSer 
accessibility at the MPs surface, whereas mAbs target 
plasma membrane proteins. Because PhtdSer is a ubiq-
uitous feature of MPs, the quantity of MPs captured on 
annexin-V provides information on the total amount of 
circulating procoagulant MPs, regardless of their cel-
lular origin. The quantity of MPs captured onto specific 
antibodies identifies the shedding cell type and may give 
additional indication on the cell response to a specific 
vascular stress, according to the membrane antigens 
eventually sorted out in MPs. Identical batches of mAb to 
various cell types or phenotypes were used throughout all 
assays: anti-CD11a for leukocytes, anti-CD31 and CD105 
for ECs, anti-GPIb for platelets. Background values in the 
quantification of MPs were obtained with corresponding 
irrelevant immunoglobulin (Ig) Gs and subtracted. The 
concentration of MPs was measured by prothrombinase 
assay using a microplate reader set in kinetics software 
and referred to as nM phosphatidylserine equivalent (nM 
PhtdSer eq). The phosphatidylserine content of MPs cap-
tured onto annexin-V were detected at 405 nm using a 
chromogenic substrate for thrombin. No direct compari-
son between capture by annexin-V and antibodies can 
be done because affinities for the respective ligands and 
incubation times are different. Variations in measure-
ments are routinely less than 10 % (identical PPP sam-
ple assayed on 15 separate occasions), regardless of the 
pathologic issue and of the capture system (annexin-V 
or antibodies) [30]. Finally, analysis of MPs size was per-
formed using qNano Gold system as recommended.

Cell culture
Porcine hearts were obtained from the local slaughter-
house (SOCOPA, Holtzheim, France) and ECs were iso-
lated from porcine left circumflex coronary arteries as 
described previously [31]. Briefly, porcine left circumflex 
coronary arteries were dissected and cleaned of connec-
tive tissues. After washing with PBS without calcium to 
remove remaining blood, ECs were isolated by type I col-
lagenase (Invitrogen) treatment at 1 mg/ml for 15 min at 
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37 °C and cultured in a T25 flask containing MCDB 131 
medium supplemented with 15  % fetal calf serum, fun-
gizone (2.5 µg/ml), penicillin (100 U/ml), streptomycin 
(100 µg/ml), L-glutamine (2 mM) and grown to 80–90 % 
confluence for 48–72 h (passage 0). All experiments were 
performed with cultured ECs at passage 1, which were 
treated 15 h after passaging. ECs were exposed to serum-
free culture medium for 2 h before the addition of Ang II 
or CAD-MPs. In some experiments, ECs were pretreated 
with a pharmacological modulator for 30 min before the 
addition of Ang II or CAD-MPs. In experiments with 
CAD-MPs, ECs were incubated with CAD-MPs at 10 nM 
PhtdSer eq for 48 h.

Western blot analysis
After treatment, ECs washed with cold PBS and fro-
zen segments of the aortic arch and thoracic aorta were 
homogenized in extraction buffer (composition in mM: 
Tris/HCl 20 (pH 7.5), NaCl 150, Na3VO4 1, Na4P2O7 10, 
NaF 20, okadaic acid 0.01, 1 % Triton X-100 and pro-
tease inhibitor cocktail (Complete Mini, Roche)). Total 
proteins (15 µg) were separated on 8 or 12 % SDS poly-
acrylamide gels and transferred electrophoretically onto 
nitrocellulose membrane (GE Healthcare Life Sciences). 
After blocking with 5 % bovine serum albumin in Tris-
buffered saline containing 0.1 % Tween 20 for 1 h at room 
temperature, membranes were incubated with a primary 
antibody against either rabbit polyclonal anti-SGLT1 
(for porcine; 1:1,000, Abcam, ab14685, for rat; 1:1000; 
Santa Cruz Biotechnology; sc-98974), rabbit polyclonal 
anti-SGLT2 (for porcine; 1:1,000, Abcam, ab37296, for 
rat; 1:1,000; Santa Cruz Biotechnology; sc-98975), rab-
bit polyclonal anti-angiotensin-converting enzyme (ACE, 
1:1,000, Abbiotec, 250450), rabbit polyclonal anti-angio-
tensin type 1 receptor (AT1R, 1:1,000, Abcam, ab124505), 
mouse monoclonal anti-eNOS (1:5,000, BD Transduction 
Laboratories, 610297), rabbit monoclonal anti-VCAM-1 
(1:10,000, Abcam, ab134047), rabbit polyclonal anti-
MCP-1 (1:1,000, Abcam, ab25124), rabbit polyclonal 
anti-tissue factor (TF, 1:1,000, Sekisui Diagnostics, 4509), 
mouse monoclonal anti-KLF4 (1:1,000, Santa Cruz Bio-
technology, sc-166238), mouse monoclonal anti-α-Actin 
(1:1,000, Santa Cruz Biotechnology, sc-32251) or mouse 
monoclonal anti-β-tubulin (1:20,000, Sigma-Aldrich, 
T7816) overnight at 4 °C. After washing, membranes 
were incubated with the secondary antibody (peroxi-
dase-labeled anti-rabbit or anti-mouse immunoglobulin 
G, 1:10,000, Cell Signaling Technology, #7074, #7076, 
respectively) for 1 h at room temperature. The immuno-
reactive bands were developed by enhanced chemilumi-
nescence (ECL, Amersham) using ImageQuant LAS 4000 
(GE Healthcare).

Immunofluorescence staining
ECs were cultured on 8-well Lab-Tek® chambers and 
exposed to either H2O2 (100 µM) or Ang II (100 nM) for 
24 h. Cells were fixed during 30 min with 4 % (w/v) para-
formaldehyde and then incubated with blocking/permea-
bilizing buffer (PBS containing 1 % BSA (w/v) and 0.5 % 
Triton X-100 (w/v)) for 30 min at room temperature. 
After buffer removal, cells were incubated with 1:100 
dilution of either rabbit anti-SGLT1 or SGLT2 for 1 h at 
4 °C. After washing 3 times with PBS, they were further 
incubated with a 1:250 dilution of a polyclonal goat anti-
rabbit immunoglobulin G coupled to CF 633 (Alexa Fluor 
633 conjugate, Invitrogen) for 1  h at room temperature 
in the dark. After washing 3 times with PBS, cells were 
incubated with 1  mg/ml 4’,6-diamidino-2’-phenylindole 
dihydrochloride (DAPI, Thermo Fisher) during 3 min at 
room temperature, in order to counterstain nuclei. After 
disassembling, slides were mounted with fluorescent 
mounting medium. Images were acquired using a Leica 
TCS SPE confocal microscope.

Cellular and in situ level of oxidative stress
ECs were cultured on 8-well Lab-Tek® chambers and pre-
treated with either an antioxidant (N-acetyl cysteine, 1 
mM) for 2 h, VAS-2870 (1 µM), a cyclooxygenase inhibi-
tor (indomethacin, 30 µM), a mixture of mitochondrial 
respiratory chain inhibitors (myxothiazol, KCN and rote-
none, 0.5, 1, 1 µM, respectively), losartan (1 µM), sotag-
liflozin (100 nM) or empagliflozin (100 nM) for 30 min 
before the addition of Ang II for 30 min or 24 h. To deter-
mine the contribution of glucose and sodium, ECs after a 
24-h treatment period with Ang II were exposed to differ-
ent concentrations of glucose (0, 0.344, 1.375, 5.5, 10, 15, 
20 and 25 mM) for 1 h in either sodium-containing buffer 
(mM: NaCl 140, KCl 5, CaCl2 2.5, MgSO4 1, KH2PO4 1, 
and HEPES 10, pH 7.4) or sodium-free buffer with NaCl 
replaced by N-methyl-D-glucamine-Cl. To evaluate the 
role of glucose metabolism, a non-metabolizable glucose 
analogue, methyl α-D-glucopyranoside (AMG, 25 mM) 
was tested and mannitol (25 mM) was used to rule out 
an osmotic effect. In some experiments, ECs were incu-
bated with a Na+/H+ exchanger (NHE)-1 inhibitor (cari-
poride, 10 µM), a Na+/Ca2+ exchanger (NCX) inhibitor 
(KB-R7943, 10 µM) or a Na+/K+-ATPase (NKA) inhibi-
tor (ouabain, 10 nM). For in situ experiments, aorta cryo-
sections (25 µm) were incubated with either sotagliflozin 
(100 nM) or empagliflozin (100 nM) for 30 min at 37 °C. 
Thereafter, cells and aorta sections were exposed to dihy-
droethidium (5 µM), a redox-sensitive fluorescent dye for 
30 min at 37 °C in the dark. After washing 3 times with 
PBS, cells and aorta sections were mounted with fluores-
cent mounting medium. Images were acquired using a 
Leica TCS SPE confocal microscope.
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Transfection of siRNA to ECs
ECs were transfected with siRNA (40 nM) targeting 
SGLT2 (Eurogentec; SGLT2 siRNA sense GCC​UCA​
AUC​UUU​AAC​AGC​A, antisense UGC​UGU​UAA​AGA​
UUG​AGG​C), negative control siRNA sense UCA​CCA​
UGA​UCU​ACA​CUG​U, antisense ACA​GUG​UAG​AUC​
AUG​GUG​A) for 6  h before the addition of Ang II (100 
nM) for 24 h. Transfections were conducted using Lipo-
fectamine 3000 (Invitrogen) according to the manufac-
turer’s instructions.

Determination of senescence‐associated β‑galactosidase 
(SA‑β‑gal) activity
Fluorescence-based SA-β-gal activity was determined 
in ECs using 5-dodecanoylaminofluorescein di-β-D-
galactopyranoside (C12FDG), a membrane-permeable 
fluorogenic substrate of β-galactosidase, by flow cytom-
etry as described previously [32]. ECs were pretreated 
with either VAS-2870 (1 µM), losartan (1 µM), sotagli-
flozin (100 nM), empagliflozin (100 nM), cariporide (10 
µM) or KB-R7943 (10 µM) for 30 min before the addi-
tion of Ang II (100 nM) for 24  h. ECs were exposed to 
chloroquine (300 µM), a lysosomal inhibitory drug, for 
1 h before the addition of C12FDG (33 µM) for 1 h. After 
washing twice with PBS, ECs were harvested by trypsi-
nization and centrifuged at 10,000  rpm for 10 min at 4 
°C followed by resuspension in ice-cold PBS. The relative 
SA-β-gal activity was estimated using the MFI of the pop-
ulation determined by BD FACSCelesta flow cytometer.

mRNA expression by quantitative RT‑PCR
Total RNA was isolated from ECs using NucleoSpin® 
RNA Plus kit (Machery-Nagel). RNA isolated from ECs 
(500 ng) was used to synthesize cDNA using the Maxima 
H Minus First Strand cDNA Synthesis Kit, with dsD-
Nase (Thermo Fisher). RT-qPCR was performed with 
SYBR® Green Master Mix (Applied Biosystems) using 
a StepOnePlus Real-Time PCR System (Applied Biosys-
tems). Primer sequences are shown in Additional file  1: 
Table S3. 18s, Hprt and Gusb were used as housekeeping 
genes. Relative quantitation was determined by standard 
2(−ΔΔCT) calculations.

Cellular level of NO
ECs were cultured on 8-well Lab-Tek® chambers and 
treated with either sotagliflozin (100 nM) or empagli-
flozin (100 nM) for 30 min before the addition of Ang 
II for 24  h or CAD-MPs for 48  h. ECs were exposed to 
DAF-FM diacetate (4-amino-5-methylamino-2’,7’-dif-
luororescein diacetate, 1 µM), a NO-sensitive fluores-
cent dye, for 20 min at 37 °C in the dark. The formation 
of NO was induced by the exposure of ECs to bradykinin 
(100 nM) for 15 min. After washing 3 times with PBS, 

cells were mounted with fluorescent mounting medium. 
Images were acquired using a Leica TCS SPE confocal 
microscope.

Determination of platelet aggregation
Platelets isolated and suspended in Tyrode buffer at 
310,000 platelets/µl from healthy human blood were 
obtained from the Etablissement Français du Sang-
Alsace, Strasbourg. Suspensions of platelets (450 µl) 
were incubated into a cuvette with stirring at 37 °C in an 
aggregometer (Chronolog 490, Diagnostica Stago SAS, 
Asnière sur Seine, France). ECs were cultured on Cyto-
dex 3 microcarrier beads and pretreated with either 
sotagliflozin (100 nM) or empagliflozin (100 nM) for 30 
min before the addition of Ang II for 24 h. ECs on Cyto-
dex 3 beads (about 500 cells) were added to suspensions 
of platelets for 1 min before the addition of bradykinin 
(100 nM) to stimulate the endothelial formation of NO 
for 1 min. Thereafter, a thromboxane A2 analog (U46619, 
0.3 µM) was added to induce platelet aggregation.

Statistical analysis
Values are expressed as means ± SEM. Statistical analysis 
was assessed by one-way analysis of variance followed by 
Tukey’s multiple comparison post hoc test using Graph-
Pad Prism (Version 7). Group differences were consid-
ered statistically significant at P < 0.05.

Results
Ang II up‐regulates the expression of SGLT1 and 2 in ECs
Low signals of SGLT1 and SGLT2 proteins were observed 
in control ECs (Fig.  1a). These signals increased in 
response to Ang II in a time-dependent manner reach-
ing both about 180 % after a 24-h stimulatory period 
(Fig.  1a). The response to Ang II at 24  h was concen-
tration-dependent with significant increased levels at 
concentrations greater than 10 nM, and reaching about 
370 and 470 % at 100 nM, respectively (Fig.  1b). Higher 
SGLT1 and 2 fluorescence signals were also observed in 
ECs in response to Ang II and to H2O2 (Fig. 1c). The stim-
ulatory effect of Ang II on SGLT2 protein levels was not 
observed following pre-treatment of ECs with a SGLT2 
siRNA or with an inactive sequence (Fig. 1d).

Role of SGLT1 and 2 in the Ang II‑induced pro‑oxidant 
response in ECs
Since Ang II is a potent inducer of the generation of ROS 
in ECs [33], the possibility that SGLT1 and 2 may con-
tribute to the pro-oxidant response was evaluated using 
dihydroethidium. Exposure of ECs to Ang II increased 
the level of ethidium fluorescence after 30 min and the 
stimulatory effect persisted up to 24 h (Fig. 2 and Addi-
tional file  1: Figure S1A and B). Both the short and 
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sustained pro-oxidant responses to Ang II were abol-
ished by the antioxidant N-acetyl cysteine, and the AT1R 
antagonist losartan (Additional file 1: Figure S1A and B). 
The characterization of the Ang II-triggered formation 
of ROS has indicated that the NADPH oxidase inhibi-
tor, VAS-2870, the cyclooxygenase inhibitor, indometha-
cin and inhibitors of the mitochondrial respiratory chain 
(combination of myxothiazol, KCN and rotenone) all sig-
nificantly inhibited both short-term and long-term pro-
oxidant responses, indicating the involvement of several 
sources including NADPH oxidase, cyclooxygenases and 
the mitochondrial respiratory chain (Additional file  1: 
Figure S1A and B).

Next the possibly that SGLT1 and 2 contribute to the 
pro-oxidant response to Ang II in ECs was determined 
using a dual SGLT1 and 2 inhibitor, sotagliflozin and a 
selective SGLT2 inhibitor, empagliflozin. The 24-h but 
not the 30-min pro-oxidant response to Ang II was abol-
ished by sotagliflozin and empagliflozin (Fig. 2a, b), indi-
cating that although SGLT1 and 2 do not contribute to 

the early pro-oxidant response, they have a crucial role in 
perpetuating the pro-oxidant response. Sotagliflozin and 
empagliflozin alone did not affect the low basal formation 
of ROS after 30 min and 24 h in ECs (Fig. 2a, b).

To further characterize the role of SGLT1 and 2 in the 
pro-oxidant response to Ang II, the role of extracellular 
glucose and Na+ was assessed. The pro-oxidant response 
of Ang II at 24  h was significantly reduced by decreas-
ing the extracellular concentration of glucose and also by 
replacing extracellular Na+ by N-methyl-D-glucamine, 
and abolished in the absence of both extracellular glucose 
and Na+ (Fig. 2c), indicating a key role of both extracel-
lular glucose and Na+ possibly subsequent to their entry 
via SGLT1 and 2.

In addition, exposure of ECs to increasing concentra-
tions of glucose from 5.5 to 25 mM for 24 h induced a 
pro-oxidant response at concentrations greater than 
20 mM (Fig. 2d). Moreover, the combined treatment of 
ECs with Ang II and high glucose resulted in an additive 
pro-oxidant response (Fig.  2d). A similar potentiating 
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effect of the pro-oxidant response to Ang II was also 
observed in response to a non-metabolizable glucose 
analogue, AMG, which has been shown to enter cells 
via SGLTs (Fig. 2d) [34, 35]. In contrast, no such effect 
was observed with mannitol ruling out an osmotic effect 
(Fig.  2d). Thus, Ang II and high glucose act together 
to promote an excessive level of oxidative stress that is 

independent of glucose metabolism. Moreover, the sus-
tained pro-oxidant response to Ang II was markedly 
inhibited by cariporide (Na+/H+ exchanger-1 inhibitor) 
and KB-R7943 (Na+/Ca2+ exchanger inhibitor), but not 
affected by ouabain (Na+/K+-ATPase inhibitor) suggest-
ing the involvement of NHE-1 and NCX, besides SGLT1 
and 2 (Fig. 2e).
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Control

Ang II
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e

Fig. 2  The sustained Ang II-induced formation of ROS in ECs is sensitive to a dual SGLT1 and SGLT2 inhibitor, sotagliflozin, and a selective SGLT2 
inhibitor, empagliflozin. ECs are incubated with either (a, b) sotagliflozin (SOTA, 100 nM) or empagliflozin (EMPA, 100 nM) for 30 min before 
the addition of Ang II for either 30 min (a) or 24 h (b). For characterization of the role of SGLT1 and 2 in the pro-oxidant response to Ang II, 
ECs are incubated with Ang II for 24 h before being exposed to (c) the indicated glucose concentrations for 1 h in the presence or absence of 
sodium, (d) the indicated glucose concentrations, methyl α-D-glucopyranoside (AMG, a non-metabolizable glucose analogue), or mannitol, 
and (e) cariporide (a NHE-1 inhibitor, 10 µM), KB-R7943 (a NCX inhibitor, 10 µM), or ouabain (a NKA inhibitor, 10 nM) for 1 h, and the subsequent 
determination of dihydroethidium staining by confocal microscope. Results are shown as representative micrography of dihydroethidium staining 
(upper panels) and corresponding cumulative data (lower panels). Data are expressed as mean ± SEM of n = 3. *P < 0.05 vs. control and #P < 0.05 vs. 
Ang II
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SGLT1 and 2 act in a feedforward manner to sustain 
the stimulatory effect of the Ang II/AT1R/NADPH oxidase/
ROS pathway on SGLT1 and 2 expression in ECs
Since H2O2 induced the expression of SGLT1 and 2 in 
ECs [28], the role of ROS in the Ang II-induced expres-
sion of SGLT1 and 2 was evaluated. All inhibitors of 
the pro-oxidant response to Ang II (N-acetyl cysteine, 
VAS-2870, indomethacin and the mitochondrial res-
piratory chain inhibitors) abolished the stimulatory 
effect of Ang II on SGLT1 and 2 protein expression lev-
els (Fig.  3a, b) demonstrating a crucial redox-sensitive 
mechanism. Moreover, the fact that sotagliflozin and 
empagliflozin abolished the Ang II-induced up-regula-
tion of both SGLT1 and 2 (Fig. 3c, d) suggests that acti-
vation of SGLT1 and 2 contributes to promote their own 
expression.

Role of SGLT1 and 2 in Ang II‑induced senescence 
and dysfunction in ECs
Since Ang II is a potent redox-sensitive inducer of senes-
cence in ECs [36], the role of SGLT1 and 2 was evalu-
ated using SA-β-gal activity. Ang II increased SA-β-gal 
activity, which was significantly inhibited by losartan and 
VAS-2870, and by sotagliflozin and empagliflozin, but 
not by cariporide and KB-R7943 (Fig. 4a), indicating the 
involvement of the AT1R/NADPH oxidase/SGLT1 and 
2 pathways in the pro-senescence response. Consistent 
with the SA-β-gal activity, Ang II upregulated the expres-
sion of senescence markers p53 and p21 at both the 
mRNA and protein levels, and also the p16 protein level 
whereas the mRNA level was below detection, and all 
these effects were abolished by sotagliflozin and empagli-
flozin (Fig. 4b–f).
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cumulative data (lower panels). Data are expressed as mean ± SEM of n = 3. *P < 0.05 vs. control and #P < 0.05 vs. Ang II
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Since endothelial senescence has been identified as 
an upstream signaling event promoting endothelial 
dysfunction [37], the role of SGLT1 and 2 in Ang II-
induced endothelial dysfunction was evaluated. Ang 
II caused a down-regulation of the protein expres-
sion level of eNOS in ECs associated with a reduced 
bradykinin-stimulated formation of NO and inhibitory 
effect on platelet aggregation, and an up-regulation 
of VCAM-1, MCP-1 and tissue factor (Fig. 5a–f, i and 
j). The Ang II-induced down-regulation of eNOS was 
prevented significantly by N-acetyl cysteine and the 
mitochondrial respiratory chain inhibitors but not by 
VAS-2870 and indomethacin, whereas all inhibitors 
of the Ang II-induced pro-oxidant response inhibited 

the up-regulation of VCAM-1 (Fig. 5a, b). In addition, 
both sotagliflozin and empagliflozin prevented the 
Ang II-induced down-regulation of eNOS and forma-
tion of NO in response to bradykinin, and the up-regu-
lation of VCAM-1, MCP-1 and tissue factor indicating 
a determinant role of SGLT1 and 2 in the induction of 
endothelial dysfunction (Fig.  5c–f and i). In addition, 
knockdown of SGLT2 expression prevented the Ang 
II-induced up-regulation of VCAM-1 by 63 % (data not 
shown). Ang II also induced an up-regulation of ACE 
and AT1R, which was abolished by both sotagliflozin 
and empagliflozin (Fig.  5g, h), suggesting that SGLT1 
and 2 have a determinant role in the Ang II/AT1R/
NADPH oxidase pro-oxidant stimulatory signal.
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Role of SGLT1 and 2 in arterial endothelial dysfunction: 
Protective effect of NO
To obtain physiological relevance, the expression level 
of SGLT1 and 2 proteins was assessed ex vivo at arterial 
sites either at high (aortic arch characterized by prema-
ture endothelial dysfunction and exposure to disturbed 
flow and low shear) or low risk (thoracic aorta protected 
by laminar flow and the high shear-induced endothelial 

formation of NO) [2]. An increased expression level of 
SGLT1 and 2 proteins was observed in the aortic arch 
compared to that in the thoracic aorta, and this effect 
was associated with an up-regulation of VCAM-1 and a 
down-regulation of proteins sensitive to flow including 
eNOS and KLF4 (Fig.  6a–j). A higher pro-oxidant level 
was observed in the inner curvature of the aortic arch 
than in the outer curvature (Fig. 6k). In addition, a 15-h 
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Fig. 6  Up-regulation of SGLT1 and SGLT2 at an arterial site at high risk (aortic arch) and following stimulation of an arterial site at low risk (thoracic 
aorta) with either Ang II or an eNOS inhibitor. The segments of thoracic aorta are incubated either with VAS (1 µM), LOS (1 µM), SOTA (100 nM) or 
EMPA (100 nM) for 30 min before the addition of (a-e, l) Ang II (100 nM) or (f–j, m) Nω-nitro-L-arginine (L-NA, 300 µM) for 15 h, and the subsequent 
determination of (a–J) the expression level of target proteins by Western blot analysis, and (k–m) dihydroethidium staining by confocal microscope. 
Results are shown as representative immunoblots and micrography of dihydroethidium staining (upper and left panels) and corresponding 
cumulative data (lower and right panels). Data are expressed as mean ± SEM of n = 3–4. *P < 0.05 vs. control thoracic aorta (a–j, l, m) and outer 
aortic arch (k), and #P < 0.05 vs. Ang II-treated thoracic aorta (a–e, l) and L-NA-treated thoracic aorta (f–j, m)

(See figure on next page.)
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exposure of thoracic aortic rings to either Ang II or an 
inhibitor of NO formation (L-NA) resulted in an up-reg-
ulation of SGLT1 and 2, VCAM-1 and also of eNOS and 
KLF4 most likely as a compensatory mechanism for the 
low levels of NO associated with a pro-oxidant response 
throughout the arterial wall (Fig. 6a–j, l and m). The Ang 
II- and L-NA-induced up-regulation of target proteins 
was prevented by losartan, VAS-2780 and also by sotagli-
flozin and empagliflozin, and the pro-oxidant response by 
sotagliflozin and empagliflozin (Fig. 6a–j, l and m). Thus, 
these findings indicate the involvement of AT1 receptors, 
NADPH oxidase-derived oxidative stress and also SGLT1 
and 2, and that the endothelial formation of NO counter-
acts the expression of SGLT1 and 2.

Circulating MPs from CAD patients induce expression 
of SGLT1 and 2 in ECs to promote endothelial dysfunction
Since circulating MPs from patients with acute coronary 
syndrome induced premature endothelial senescence 
and thrombogenicity involving the local pro-oxidant 
angiotensin system [13], experiments were performed to 
determine whether circulating MPs from CAD patients 
induce SGLT1 and 2 expression in ECs and, if so, to 
clarify their role in the induction of endothelial dysfunc-
tion. Clinical characteristics of the CAD patients are 
provided in the Additional file  1: Table  S1. The cellular 
origin of patient-derived MPs was determined follow-
ing their captured onto insolubilized antibodies directed 
either to platelets (GPIb+), leukocytes (CD11a+) or ECs 
(CD31+ and CD105+) and the subsequent measurement 
of the procoagulant MPs concentration by prothrombi-
nase assay. The data indicated that patient-derived MPs 
originated from leukocytes and platelets, and also, to 
some extent, from ECs (Additional file 1: Table S2). The 
MPs size was determined using Tunable Resistive Pulse 
Sensing (qNano Gold system) and a NP250 nanopore 
(110–630 nm). The findings indicated that the diameter 
of MPs spanned from 181 nm (10 % percentile) to 413 
nm (90 % percentile; n = 5). The value distribution peaked 
at a mode diameter of 195 ± 5 nm and the median value 
was 249 ± 4.5 nm. Of importance, no event was recorded 
using a NP80 nanopore (40–255 nm) indicating that the 
MPs preparations did not contain exosomes. The CAD-
MPs from 11 out of 15 patients increased in ECs the pro-
tein expression level of both SGLT1 and 2, 15/15 patients 
that of VCAM-1, and 12/15 patients down-regulated that 
of eNOS (Fig.  7a–d, Additional file  1: Figure S2A–D). 
The CAD-MPs-induced down-regulation of eNOS pro-
tein level was associated with a reduced formation of 
NO in response to bradykinin (Fig.  7i). Moreover, the 
CAD-MPs-induced effect on target proteins was pre-
vented by VAS-2870, losartan, sotagliflozin and empagli-
flozin, and on the bradykinin-induced formation of NO 

by sotagliflozin and empagliflozin (Fig. 7e–i), suggesting 
that the AT1R/NADPH oxidase pathway mediates the 
expression of SGLT1 and 2, which, in turn, contribute to 
the induction of endothelial dysfunction.

Discussion
The major findings of the present study indicate that Ang 
II and MPs derived from CAD patients cause via the AT1 
receptor/NADPH oxidase pathway a redox-sensitive 
up-regulation of the expression of SGLT1 and 2 in ECs, 
which, in turn, have a key role to promote ultimately 
endothelial senescence and dysfunction. They further 
indicate that SGLT1 and SGLT2 protein levels are up-
regulated ex vivo in pathological rat arteries (i.e., aortic 
arch, Ang II- and eNOS inhibitor-treated thoracic aorta 
vs. thoracic aorta) promoting oxidative stress in the arte-
rial wall and endothelial dysfunction most likely subse-
quent to the impaired endothelial formation of NO. Thus, 
endothelial SGLT1 and/or SGLT2 appear as novel targets 
for protection of the vascular system.

Gliflozins and cardiovascular protection
Gliflozins including empagliflozin, dapagliflozin, and 
canagliflozin are a novel class of antidiabetic agents 
used for the treatment of T2DM that selectively inhibit 
SGLT2 to prevent glucose reabsorption in the renal prox-
imal tubule. Cardiovascular outcome trials have shown 
remarkable cardioprotective effects of these selective 
SGLT2 inhibitors showing reduced mortality from car-
diovascular causes, all-cause death and hospitalization 
for heart failure in T2DM patients with established car-
diovascular diseases [21–23]. Since the beneficial effect 
on cardiovascular outcome by empagliflozin in T2DM is 
independent of glycemic control, the underlying mecha-
nisms remain to be determined [24, 25]. It has been sug-
gested that AMPK activation-mediated reduced energy 
depletion and inflammation contribute to the cardio-
vascular benefits of empagliflozin as observed 8  h after 
administration of lipopolysaccharide to mice [38]. Empa-
gliflozin also attenuated the cardiotoxic effects exerted by 
doxorubicin on left ventricular function and remodeling 
in nondiabetic mice, independently of glycemic control 
[39]. Moreover, given the lack of reduction of macro-
vascular thrombotic events observed with gliflozins in 
clinical trials, a paradigm shift has been proposed point-
ing at their putative role in the improvement of coronary 
microvascular dysfunction which is an important deter-
minant of prognosis in HFpEF patients [40, 41]. Recently, 
it has been shown that empagliflozin improved coronary 
microvascular function in prediabetic ob/ob−/− mice 
[42].

 Several lines of experimental evidence suggest that 
gliflozins might possibly improve the pivotal protective 
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endothelial function. Indeed, ipragliflozin improved 
endothelial dysfunction, restored the phosphorylation of 
Akt and eNOS, decreased the formation of ROS and the 
expression of pro-atherosclerotic factors in the abdomi-
nal aorta from streptozotocin-induced diabetic mice 
[43]. Moreover, empagliflozin improved endothelium-
dependent relaxations in streptozotocin-induced diabetic 
rats [44], reduced atherosclerotic plaque formation in 
ApoE−/− mice by improving the inflammatory response 
and insulin resistance [45], and improved endothelial 
function in an experimental model of metabolic syn-
drome the ZSF1 rat [46]. Recent observations have also 
emphasized that cardiac microvascular ECs mainly via 
endothelial-derived NO exert a direct positive effect on 
cardiomyocyte function, and that this effect is impaired 
by inflammation and prevented by empagliflozin [47, 
48]. Observations also suggest that ECs senescence 
appears to act as a key early signal promoting endothelial 

dysfunction since expression of the senescent marker 
p53 selectively in ECs promoted endothelial dysfunc-
tion and a reduced formation of NO in isolated arteries 
[49]. Senescent ECs have been observed in human aortic 
arch [50] and coronary arteries [51] at sites overlapping 
atherosclerotic plaques characterized by an endothelial 
dysfunction. A role of SGLT1 and 2 in diabetes-related 
endothelial dysfunction is also supported by the fact that 
high glucose promoted premature senescence and pro-
atherothrombotic responses in ECs and that this effect is 
inhibited by empagliflozin and associated with an up-reg-
ulation of the expression level of SGLT1 and 2 [28]. Con-
sistent with those findings, a recent meta-analysis has 
indicated that SGLT2 inhibitors significantly improved 
flow-mediated dilation [52].

The angiotensin system is a major contributor to 
endothelial dysfunction observed prematurely at athero-
prone arterial sites at risk, and also in aging- and major 
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Fig. 7  Circulating MPs from patients with coronary artery diseases (CAD) up-regulate SGLT1 and SGLT2 to promote their own expression and 
involve the AT1R/NADPH oxidase pathway to induce endothelial dysfunction in ECs. (a–d) ECs are exposed to CAD-MPs (10 nM PhtdSer eq) from 
5 individual CAD patients. (e−i) ECs are incubated with either VAS (1 µM), LOS (1 µM), SOTA (100 nM) or EMPA (100 nM) for 30 min before the 
addition of CAD-MPs (10 nM PhtdSer eq) pooled from 6 (e–h) and 5 (i) patients with CAD for 48 h. Thereafter, (a–h) the expression level of target 
proteins is assessed by Western blot analysis, and i the formation of NO in response to bradykinin by DAF-FM. Results are shown as representative 
immunoblots and micrography of DAF-FM staining (upper and left panels) and corresponding cumulative data (lower and right panels). Data are 
expressed as mean ± SEM of n = 3. *P < 0.05 vs. control, and #P < 0.05 vs. CAD-MPs (e–h) and bradykinin (i), and $P < 0.05 vs. CAD-MPs + bradykinin (i) 
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cardiovascular disease-related endothelial dysfunction 
such as coronary artery disease [14–17]. The angiotensin 
system promotes vascular pro-oxidant, pro-atherothrom-
botic and pro-senescence responses, and contributes to 
MPs shedding [7, 8, 53]. Indeed, circulating MPs from 
patients with acute coronary syndrome blunted ex vivo 
endothelium-dependent relaxations in rat aortic rings 
[54] and caused the induction of premature senescence in 
ECs via the Ang II-dependent NADPH oxidase-mediated 
formation of ROS, resulting ultimately in endothelial dys-
function [13]. Therefore, the present study examined the 
possibility that Ang II and CAD-MPs, activators of the 
local angiotensin pathway, affect the expression of SGLT1 
and 2 in ECs and, if so, assessed their contribution to the 
induction of endothelial dysfunction.

The AT1R/NADPH oxidase/SGLT1/2 pathway: an inducer 
of endothelial senescence
The present findings indicate that Ang II is a potent 
inducer of SGLT1 and 2 protein expression in ECs, which 
is mediated by oxidative stress and that this response 
ultimately leads to endothelial senescence and dysfunc-
tion. Of importance, these findings extend previous ones 
showing that the high glucose-induced expression of 
SGLT1 and 2 in ECs involves the local angiotensin sys-
tem [28], and, thus, indicate that the stimulatory effect of 
Ang II is independent of hyperglycemia. The characteri-
zation of the Ang II-induced pro-oxidant response medi-
ated via the AT1 receptor indicated that it is observed 
within 30 min and, thereafter, perpetuated for at least 
24  h. In addition, both the early and sustained pro-
oxidant responses involved several sources including 
NADPH oxidase, cyclooxygenases and the mitochondrial 
respiratory chain. Although sotagliflozin and empagliflo-
zin did not affect the Ang II-induced early pro-oxidant 
response, both abolished the sustained response, as well 
as endothelial senescence and dysfunction indicating that 
SGLT1 and 2 appear to have a key regulatory role con-
trolling the deleterious impact of Ang II on ECs. Moreo-
ver, the fact that sotagliflozin and empagliflozin abolished 
the Ang II-induced up-regulation of SGLT1 and 2 protein 
levels, suggests that they promote their own expression 
most likely by inducing uptake of Na+ and glucose, and, 
subsequently, the pro-oxidant response. The central role 
of SGLT1 and 2 is also supported by the fact that both 
sotagliflozin and empagliflozin abolished the Ang II-
induced up-regulation of ACE and AT1 receptor in ECs, 
a major feedforward mechanism potentiating the induc-
tion of endothelial senescence and dysfunction [28].

Since SGLTs cotransport glucose and Na+ into 
the cell driven by the Na+ and glucose gradient, the 
impact of extracellular glucose and Na+ level on the 

Ang II-induced pro-oxidant response was determined. 
The sustained pro-oxidant response of ECs to Ang II 
was reduced by decreasing progressively the extra-
cellular glucose concentration and in the absence of 
extracellular sodium, and also, alternatively, potenti-
ated by increasing the extracellular concentration of 
glucose. Such a response was not observed with man-
nitol, thus excluding an osmotic effect. In addition, a 
similar potentiating effect as with high glucose was 
observed with the non-metabolizable glucose ana-
logue, AMG, which has been shown to enter into cells 
primarily via SGLTs [34, 35]. The further characteriza-
tion of the sodium pathway in the pro-oxidant response 
of ECs has indicated that although NHE and NCX but 
not the Na+/K+-ATPase are involved in the pro-oxidant 
response to Ang II, they do not contribute to the induc-
tion of endothelial senescence. Altogether, these find-
ings indicate that both extracellular glucose and Na+ 
are major determinant factors setting the level of the 
sustained pro-oxidant response to Ang II promoting 
endothelial senescence most likely subsequent to their 
entry via SGLT1 and 2 in ECs. They further support 
the concept that SGLT1 and 2 act as glucose sensors 
as previously suggested in cardiomyocytes [55], hypo-
thalamic neurons [56] and rat mesangial cells [57], and 
that they might contribute to hyperglycemia- and high 
salt intake-associated vascular complications.

Consistent with previous findings, the Ang II-induced 
pro-oxidant response caused the induction of endothe-
lial senescence and dysfunction. The pathological ECs 
are characterized by blunted eNOS-derived NO for-
mation, a reduced antiaggregatory effect and the up-
regulation of pro-atherothrombotic makers including 
VCAM-1, MCP-1 and tissue factor. All of these effects 
were abolished by sotagliflozin and empagliflozin indi-
cating that SGLT2 and most likely also SGLT1 are key 
contributors to endothelial dysfunction and the associ-
ated pro-atherothrombotic responses. Ex vivo investi-
gations of rat arteries have also indicated an increased 
expression level of SGLT1 and 2 proteins at arterial 
sites at risk including the aortic arch and also in the 
thoracic aorta in response to either Ang II or inhibition 
of the eNOS-derived NO formation, which, in turn, 
contribute to oxidative stress and endothelial dysfunc-
tion. Moreover, the potential clinical implication of the 
present findings is supported by the fact that CAD-MPs 
were able to up-regulate the expression level of SGLT1 
and 2 proteins via the activation of the AT1R/NADPH 
oxidase pathway to promote endothelial dysfunction 
as indicated by the down-regulation of eNOS and the 
bradykinin-induced formation of NO, and the up-reg-
ulation of VCAM-1, and that all these effects are abol-
ished by sotagliflozin and empagliflozin.
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Conclusions
The present findings indicate that Ang II and circulating 
MPs from CAD patients via the activation of the local 
angiotensin system are potent inducers of SGLT1 and 2 
expression to sustain the glucose- and Na+-dependent 
pro-oxidant response that ultimately leads to endothelial 
senescence and pro-atherothrombotic responses (Fig. 8). 
They further suggest that inhibition of SGLT1 and/or 
SGLT2 might be an attractive therapeutic strategy to pro-
tect the endothelial function, and, hence, the subsequent 
development of cardiovascular disease.
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